
ON HYPERBOLIC DIMENSION GAP FOR ENTIRE
FUNCTIONS

Abstract. Polynomials and entire functions whose hyperbolic di-
mension is strictly smaller than the Hausdorff dimension of their
Julia set are known to exist but in all these examples the latter
dimension is maximal, i.e. equal to two. In this paper we show
that there exist hyperbolic entire functions f having Hausdorff di-
mension of the Julia set HDpJf q ă 2 and hyperbolic dimension
HypDimpfq ă HDpJf q.

1. Introduction

In this paper we consider some relations between the Hausdorff di-
mension HDpJf q and the hyperbolic dimension HypDimpfq of the Julia
set Jf of an entire function f : C Ñ C, where C, as usually, denotes
the complex plane. More precisely, we show the following.

Theorem 1.1. There exist hyperbolic entire functions f in the Eremenko–
Lyubich class B such that

HypDimpfq ă HDpJf q ă 2.

The concept HypDimpfq of hyperbolic dimension has been intro-
duced by Shishikura in [16]. Given an entire function f : C Ñ C it is
defined to be the supremum of Hausdorff dimensions of all hyperbolic
sets of f . We recall that a set X Ă C is hyperbolic if it is compact,
forward–invariant under f and if there exist c ą 0 and κ ą 1 such that

|pfn
q

1
pzq| ě cκn for every z P X and all n ě 1.

It is immediate from this definition that X Ă Jf . For hyperbolic poly-
nomials the whole Julia set is a hyperbolic set, whence there is no
difference between the hyperbolic dimension and the Hausdorff dimen-
sion of the Julia set. In general, since hyperbolic sets of f are subsets
of the Julia set of f , we have that

(1.1) HypDimpfq ď HDpJf q.
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Examples of entire functions with strict inequality are known ([18],
[20]). Quite recently Avila-Lyubich [1, 2] showed that there exist
Feigenbaum polynomials having this property. But in all known ex-
amples with strict inequality in (1.1) the Hausdorff dimension of the
Julia set is maximal, i.e. equal to two and Avila-Lyubich mention that
for arbitrary polynomials f with HDpJf q ă 2 one should have equality.
Here we show that this is not the case for entire functions even inside
the Eremenko-Lyubich class B consisting of all entire functions having
a bounded set of finite singularities.

In order to prove Theorem 1.1 we first need good candidates of entire
functions whose Julia sets have Hausdorff dimension less than two. The
first such examples where found by Gwyneth Stallard during 1990’s.
The interested reader can find an overview in her survey in [15]. These
examples are entire functions having one single logarithmic tract over
infinity (see Section 2.1 for the definition of the singularities of entire
functions) and, as nowadays it is well known, the geometry of such a
tract or the growth of the function in the tract does influence the size
of the Julia set. Particularly interesting for the present work is her
family of intermediate growth in [17]. The growth does depend on a
parameter p ą 0 and these functions are defined by the formula

(1.2) Epzq :“
1

2iπ

ż

L

exp
`

eplog ξq1`pq
˘

ξ ´ z
dξ ,

where L is the boundary of the region

(1.3) G “

"

x ` iy P C : |y| ă
πx

p1 ` pqplog xqp
, x ą 3

*

,

oriented in the clockwise direction, for z P CzG and by analytic contin-
uation for z P G ; details of the analytic extension are given in Section
2.2. The reader should have in mind that this function is close to

(1.4) fpzq “ exp
`

eplog zq1`p˘

for z P G

and is bounded elsewhere. Here plog zq1`p is defined so that it gives
real values for real z ą e.

Consider then the family
`

El : C Ñ C
˘

lPC defined by the formula

Elpzq :“ Epz ´ lq.

Shifting in this way the function E by a large l ą 0 makes the logarith-
mic tract backward invariant and JEl

Ă G so that only the dynamics
of El in G, the domain on which El is close to the function fl given by
the formula

flpzq :“ fpz ´ lq,
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is relevant for our purposes, details of this and the definition of the
Julia set in the present setting are given in Section 2.1.

Fact 1.2 (Stallard [19]). Let p ą 0. All the functions El, l P C, belong
to the Eremenko–Lyubich class B and there exists a constant Cp ą 0
such that for all real l ą Cp we have that

HDpJEl
q “ 1 `

1

1 ` p
ă 2 .

In the present note we analyze the hyperbolic dimension of these
functions. In fact, we first work with the functions fl and then transfer
the results to the globally defined entire functions El.

The key point is to employ the thermodynamic formalism of [10] and,
in particular, the Bowen’s Formula from this paper that determines
hyperbolic dimension. We will see that limlÑ8 HypDimpElq “ 1 which
clearly implies that HypDimpElq ă HDpJEl

q provided that l ą Cp is
large enough.

1.1. Notation. We use standard notation such as Dpz, rq for the open
disk in C with center z P C and radius r ą 0. When the center is the
origin, we also use the simplified notation

Dr :“ Dp0, rq.

The complement of its closure will be denoted by

D˚
r :“ CzDr.

Frequently we deal with half–spaces. Let

Hs :“
␣

z P C : ℜz ą s
(

, s ě 0 .

When s “ 0, then we also write H for H0.
Many constants, especially those in Fact 2.3, depend on the param-

eter p of the definitions of the functions E and f . However, this will
be fixed throughout the whole paper and we may ignore it.

We say that

A ĺ B

for non–negative real expressions A and B if and only if there exists
a positive constant C independent of variable parameters involved in
A and B such that A ď CB. We then say that A ľ B if and only if
B ĺ A. Finally, A — B if and only if A ĺ B and B ĺ A.
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2. Singularities, models and approximating entire
functions

2.1. General definitions. Iversen’s classification of singularities is
explained in length in [9], see also [4]. An entire function g : C Ñ C
can have only two types of singular values. Firstly, a point b P Ĉ is a
critical value of g if and only if b “ gpcq for some c P C with g1pcq “ 0.

Secondly, a complex number b P Ĉ is an asymptotical value of g if and
only if there exists a continuous function γ : r0,`8q Ñ C such that

lim
tÑ`8

γptq “ 8 and lim
tÑ`8

fpγptqq “ b.

In this latter case for every r ą 0 there exists an unbounded connected
component Ωr of g

´1pDpb, rqq such that

Ωr1 Ă Ωr

whenever r1 ă r and
č

rą0

Ωr “ H.

Such a choice of components is called an asymptotic tract over b and it
is called logarithmic tract in the case when the map g : Ωr Ñ Dpb, rqztbu
is a universal covering for some r ą 0. The set of singular values of
f is proved to consist of all critical and asymptotic values of f . Its
intersection with C will be denoted by Spgq.

We consider functions belonging to the Eremenko–Lyubich class B
that consists of all entire functions g for which Spgq is a bounded set.
These functions are also called of bounded type. If g P B, then there
exists r ą 0 such that Spgq Ă Dr. Then g´1pD˚

r q consists of mutually
disjoint unbounded Jordan domains Ωr with real analytic boundaries
such that g : Ω Ñ D˚

r is a covering map (see [8]). Thus, an entire
function g in class B has only logarithmic singularities over infinity.
As we already mentioned it, the connected components of g´1pD˚

r q are
called tracts or, more precisely, logarithmic tracts. Then there exist all
holomorphic branches of the logarithm of g restricted to Ωr. Fix one
of them and denote it by τ . So,

(2.1) g|Ωr “ exp ˝τ,

where

φ “ τ´1 : Hlog r Ñ Ωr

is a conformal homeomorphism. In addition, φ extends continuously
to 8 and φp8q “ 8.

Keeping this notation, if we restrict g to the tracts over infinity then
it is now standard, especially since the appearance of the papers [5, 6]
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by Chris Bishop, to call the map

g|g´1pD˚
r q : g

´1
pD˚

r q Ñ D˚
r

a model function. We will see that the functions considered in our
current paper have only one single tract over infinity. This is the reason
why we use the following simplified definition of a model function. This
is in the spirit of the definition in [13], see [5, 6] for the general one.

Definition 2.1. A model is any holomorphic map

g “ eτ : Ωr Ñ D˚
r ,

where

(1) r P r1,`8q,
(2) Ωr is a simply connected unbounded domain in C, called a tract,

such that BΩr is a connected subset of C
and

(3) τ : Ωr Ñ Hlog r is a conformal homeomorphism fixing infinity;
the latter more precisely meaning that

τpzq Ñ 8 as z Ñ 8.

The tract Ωr may or may not intersect the disk Dr. The later case
has important dynamical consequences.

Definition 2.2. If f is a model or an entire function of bounded type
and if there exists r ą 0 such that

(2.2) Spfq Ă Dr and f´1pD˚
r q Ă D˚

r

then f is called of disjoint type.

If f is such a disjoint type model or entire function then the Julia
set of f is defined to be

Jf :“
␣

z P D˚
r : fn

pzq P D˚
r for all n ě 1

(

.

For disjoint type entire functions this definition conicides with the usual
one, see Proposition 2.2 in [14].

2.2. Elementary properties of the functions E and f . We now
discuss elementary properties of the functions introduced in the intro-
duction and we examine how they behave with respect to the above
definitions.

To start with we recall that these functions have been introduced
and studied by Stallard and her paper [17, Section 3] lists elementary
properties of E and f . We recall now some necessary facts from this
paper.
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Let’s denote by

Gx0,κ :“

"

z “ x ` iy P C : x ą x0 and |y| ă κ
πx

p1 ` pqplog xqp

*

and abbreviate Gx0 “ Gx0,1 so that the set G of (1.3) is G3 “ G3,1. Let
n ě 3 and σn`1 be the boundary of GzGn`1. The orientation of σn`1

as well of all following boundary curves are always understood in the
clockwise direction. Cauchy’s Integral Formula shows that

1

2iπ

ż

σ`
n

fpξq

ξ ´ z
dξ “ 0 for every z R G.

Therefore, still for z R G,

Epzq “
1

2iπ

ż

BG

fpξq

ξ ´ z
dξ “

1

2iπ

ż

BGn`1

fpξq

ξ ´ z
dξ .

It follows that the right hand integral gives the holomorphic extension
of E to the domain CzGn`1.

Consider now a point z P GzGn`1. Then Cauchy’s Residue Theorem
shows that

Epzq “
1

2iπ

ż

BGn`1

fpξq

ξ ´ z
dξ

“ ´
1

2iπ

ż

BpGnzGn`1q

fpξq

ξ ´ z
dξ `

1

2iπ

ż

BGn

fpξq

ξ ´ z
dξ

“ fpzq `
1

2iπ

ż

BGn

fpξq

ξ ´ z
dξ

Starting with this observation, one can get the following fact which
is contained in Lemma 3.1 in [17] along with its proof.

Fact 2.3. Let qL, pL be the boundary of GD`1, 5
6
, GD´1, 7

6
respectively.

Then there exist constants C,D ą 3 such that the following hold.

(1) If z R GD then

|Epzq| ď C

and
if z P GD then

|Epzq ´ fpzq| ď C as well as |E 1
pzq ´ f 1

pzq| ď C.

(2)

Epzq “
1

2πi

ż

qL

fptq

t ´ z
dt for z R GD
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and

Epzq “ fpzq `
1

2πi

ż

pL

fptq

t ´ z
dt for z P GD.

(3) If z P GD, 7
6
zIntpGD, 5

6
q then

|fpzq| ď exp
´

´
1

2
e

1
2

plogℜzq1`p
¯

.

Item (1) from this Fact 2.3 shows that f´1pD˚
r q Ă GD for every

r ą 2C. Elementary estimates based on the explicit representation of
f show that f´1pD˚

r q is a simply connected unbounded domain in C. It
turns out that the same is true for the approximating entire function
E, details can be found in Proposition 2.2 of [13]. Thus, we have the
following.

Fact 2.4. Let C be given by Fact 2.3. Then there exists r0 ą 4C such
that

SpEq Ă Dr0{2

and for every r ě r0{2 both sets E´1pD˚
r q and f´1pD˚

r q are simply
connected unbounded domains in C contained in GD. They will be
respectively denoted by

ΩE,r :“ E´1
pD˚

r q and Ωf,r :“ f´1
pD˚

r q .

From now on fix any

(2.3) r ě r0{2,

where r0 comes from Fact 2.4. Then the map f : Ωf,r Ñ D˚
r is of the

form fpzq “ eτpzq with τ : Ωf,r Ñ Hlog r given by

τpzq :“ exppplog zq
1`p

q.

We have to know what the inverse conformal homeomorphism φ “

τ´1 : Hlog r Ñ Ωf,r looks like. Indeed, a straightforward calculation
gives

(2.4) φpξq “ exp
´

plog ξq
1

1`p

¯

where log is the principal branch of logarithm again, i.e. determined
by the requirement that log 1 “ 0.

In conclusion

(2.5) f|Ωf,r
“ eτ : Ωf,r Ñ D˚

r

is a model as defined in Definition 2.1 and Fact 2.3 explains how the
entire function E approximates this model.
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Lemma 2.5. There exists a constant K ě 1 such that

1

K
ď

|φ1pξ ` iyq|

|φ1pξq|
ď K

for every ξ with ℜpξq ě log r0 and every 0 ď y ď 2π.

Proof. The statement follows from Koebe’s Distortion Theorem since
the conformal map φ “ Hlog r0 Ñ Ωf,r0 is in fact defined on the half
space Hlogpr0{2q. □

2.3. Disjoint Type Versions of El and fl. Given any l P C, the
functions fl “ f ˝ Tl and El “ E ˝ Tl, where Tl is the translation
z ÞÑ z ´ l, have been defined in the introduction. We have that El P B
since it is known, see [19], that E P B.
Obviously,

(2.6) Ωfl,r :“ f´1
l pD˚

r q “ f´1
pD˚

r q ` l “ Ωf,r ` l,

and also

(2.7) ΩEl,r “ E´1
l pD˚

r q “ E´1
pD˚

r q ` l.

By Fact 2.4, for all r ě r0{2 and l P r0,`8q, all these tracts are
contained in respective sets GD ` l. So, setting

(2.8) lr :“ maxt0, r ´ Du ,

we have that

(2.9) Ωfl,r , ΩEl,r Ă D˚
r

for all r ě r0{2 and all l ě lr. Consequently, all the functions fl,El,
l ě lr, are of disjoint type and for their Julia sets we have that

(2.10) Jfl ,JEl
Ă D˚

r

for all r ě r0{2 and all l ě lr.
Recall that for the model f we have the expression (2.5). The anal-

ogous expression for fl is

(2.11) fl|Ωfl,r
“ eτl : Ωfl,r Ñ D˚

r

where τlpzq “ τpz ´ lq so that the inverse of τl is

(2.12) φl “ φ ` l : Hlog r Ñ Ωfl,r

where φ is still the conformal map defined by (2.4)
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3. Thermodynamical formalism

Our ultimate goal is to determine the hyperbolic dimension of the
functions El which can be done under certain conditions by employing
the methods of thermodynamic formalism. The hyperbolic dimension
is then given by the zero of the topological pressure, the fact that goes
back to Bowen [7]. In the present context, namely for disjoint type
models and entire functions of bounded type, such a theory has been
developed in [10].

Let g :“ fl or g :“ El. Given t ą 0, the transfer operator for the
map g and for the parameter t is defined by the formula

(3.1) Lg,thpwq :“
ÿ

gpzq“w

|g1
pzq|

´t
1 hpzq for every w P D˚

r

where

|g1
pzq|1 :“

|g1pzq|

|gpzq|
|z|

is the logarithmic derivative of g evaluated at the point z and where
h is a function belonging to CbpD˚

r q, that is, the Banach space of all
complex–valued bounded continuous functions defined on D˚

r endowed
with the supremum norm.

We are to find out for which parameters t ą 0 the following two
crucial properties hold:

(3.2) }Lg,t11}8 ă `8 and lim
wÑ8

Lg,t11pwq “ 0.

Indeed, since our map g is of disjoint type, once (3.2) is verified
then, following [10, Section 8], we deduce that the whole thermody-
namic formalism, along with all its applications obtained in [10], holds.
Especially Bowen’s Formula does. This formula involves topological
pressure which for the disjoint type map g is given at a parameter
t P p0,`8q by the formula

(3.3) Ppg, tq “ lim
nÑ8

1

n
logLn

g,t11pwq

where w P D˚
r is any arbitrarily chosen point; the limit does exist.

3.1. Estimates for the Transfer operators of the Model Func-
tions fl.

Proposition 3.1. Let Lfl,t be the transfer operator of fl, l ě 0, with a
parameter t ą 0. Fix r ě r0. Let w0 P D˚

r . Then

Lfl,t11pw0q ă 8 if and only if t ą 1 .

Moreover, if t ą 1 then (3.2) holds for g “ fl.
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Proof. Having w0 P D˚
r and t ą 0, let us start exactly as in the proof of

Theorem 4.1 in [10]. If zl P f´1
l pw0q then, using (2.11), the logarithmic

derivative can be expressed as follows:

|f 1
l pzlq|1 “ |τ 1

l pzlqzl| “
|φlpξq|

|φ1
lpξq|

“ |plogφlq
1
pξq|

´1

where ξ “ τlpzlq and where φl “ φ` l is the map of (2.12). Notice that
ξ “ u` iv does not depend on l where u “ log |w0|. From this together
with Lemma 2.5, we get that

Lfl,t11pw0q “
ÿ

exppξq“w0

|plogφlq
1
pξq|

t
—

ż

R
|plogφlq

1
plog |w0| ` ivq|

tdv .

Now, since φl “ φ ` l and since we have the explicit expression (2.4)
for φ, we can calculate as follows:

|plogφlq
1
pξq| “

ˇ

ˇ

ˇ

ˇ

φpξq

φpξq ` l

ˇ

ˇ

ˇ

ˇ

1

1 ` p

1

|ξ|| log ξ|
p

1`p

—

ˇ

ˇ

ˇ

ˇ

φpξq

φpξq ` l

ˇ

ˇ

ˇ

ˇ

1

|ξ|plog |ξ|q
p

1`p

.

since argpξq P p´π{2, π{2q. Therefore,

(3.4) Lfl,t11pw0q —

ż

R

ˇ

ˇ

ˇ

ˇ

φpξq

φpξq ` l

ˇ

ˇ

ˇ

ˇ

t
1

|ξ|tplog |ξ|q
tp

1`p

dv.

Since lim|v|Ñ`8 φplog |w0| ` ivq “ 8, we have that

2

3
ď

ˇ

ˇ

ˇ

ˇ

φpξq

φpξq ` l

ˇ

ˇ

ˇ

ˇ

ď 2

whenever |v| “ |ℑpξq| is sufficiently large. Thus we get from (3.4) that
Lfl,t11pw0q is finite if and only if t ą 1.

The uniform bound of }Lfl,t}8 ă 8 also follows from (3.4). Indeed,
let w “ eξ P D˚

r . Then z “ φpξq P GD, whence x “ ℜpzq ą 0. Thus,

(3.5)

ˇ

ˇ

ˇ

ˇ

φpξq

φpξq ` l

ˇ

ˇ

ˇ

ˇ

2

“
x2 ` y2

px ` lq2 ` y2
ď 1.

It follows from this that

Lfl,t11pwq ĺ

ż

R

1

|ξ|tplog |ξ|q
tp

1`p

dv “
1

2

ż

R

1

pu2 ` v2q
t
2 plogpu2 ` v2qq

tp
1`p

dv.

Since for every for w P D˚
r we have u ě ur “ log r it follows that

(3.6) sup
wPD˚

r

Lfl,t11pwq ĺ C :“

ż

R

1

pu2
r ` v2q

t
2 plogpu2

r ` v2qq
tp

1`p

dv ă `8.
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Finally, if t ą 1 then δ “ pt ´ 1q{2 ą 0, whence

(3.7) Lfl,t11pwq ĺ
1

uδ

ż

R

1

|ur ` iv|1`δ
dv ĺ

1

plog |w|qδ
.

This shows that limwÑ8 Lfl,t11pwq “ 0. □

The next result gives an estimate for the topological pressure. More
precisely, it shows that for a given t ą 1 the pressure Ppfl, tq ă 0 for
all sufficiently large values of l.

Proposition 3.2. Let t ą 1. Fix r ě r0. Then, for every ε ą 0 there
exists lε,r,t ě lr such that

Lfl,t11pwq ď ε for every l ě lε,r,t and every w P D˚
r .

Proof. Let t ą 1 and ε ą 0. We are in the same situation as in the
proof of Proposition 3.1. The first benefit we take out of this proof
is that the convergence limwÑ8 Lfl,t11pwq “ 0 is uniform in l ě 0; see
(3.7). Therefore, there exists rε ě r such that

Lfl,t11pwq ă ε whenever |w| ě rε and l ě 0.

Moreover, this proof shows that the integral
ż

R

1

|ξ|tplog |ξ|q
tp

1`p

dv ξ “ u ` iv ,

converges uniformly for u ě ur “ log r. Therefore, there exists V “ Vε,t

such that
ż

|v|ěV

1

|ξ|tplog |ξ|qtp{1`p
dv ď

ε

2
for every u ě ur.

So, by invoking now (3.4) and (3.5), we conclude that it remains to
estimate the integral

ż

|v|ăV

ˇ

ˇ

ˇ

ˇ

φpξq

φpξq ` l

ˇ

ˇ

ˇ

ˇ

t
1

|ξ|tplog |ξ|q
tp

1`p

dv

from above by ε{2 for all l ě 0 large enough and all w P D˚
rzD˚

rε . Here
we used again the notation ξ “ u ` iv, u “ log |w|. Notice that all
points ξ that appear in this integral belong to the compact set

K “ tξ “ u ` iv : log r ď u ď log rε and |v| ď V u.

Since M :“ supξPKt|φpξq|u ă `8, we have that
ˇ

ˇ

ˇ

ˇ

φpξq

φpξq ` l

ˇ

ˇ

ˇ

ˇ

ď
M

l ´ M
,
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for every l ą M and all ξ P K. Thus,
ż

|v|ăV

ˇ

ˇ

ˇ

ˇ

φpξq

φpξq ` l

ˇ

ˇ

ˇ

ˇ

t
1

|ξ|tplog |ξ|q
tp

1`p

dv ď C
M

l ´ M
ď

ε

2
,

where C P p0,`8q is the constant coming from (3.6) and the last
inequality was written assuming that l is large enough. □

3.2. Behavior of the Transfer Operators for Entire functions
El. We now have sufficiently strong estimates for the transfer operators
of the models fl. Since ultimately we are after the entire functions El,
we have to carry over these estimates to the transfer operators of these
functions El. Since the entire functions approximate the models, i.e.
since we have Fact 2.3, we are in a similar situation as in [11] where
also the operators of some models and approximating entire functions
have been compared. Following the approach of that paper we will
prove the following.

Proposition 3.3. There exist constants K P r1,`8q and r1 ě r0 such
that for every t ą 1, all l P C, and all r ě r1, we have that

1

Kt
ď

LEl,t11pwq

Lfl,t11pwq
ď Kt for all w P D˚

r .

In our proof of Proposition 3.3 we adapt here the approach of [11],
particularly Section 7 of that paper. We will show that [11, Lemma
7.3] holds in the present setting if r ě r0 is large enough. This will
suffice. We first shall prove the following.

Fact 3.4. For all sufficiently large r ě r0, say r ě r1 ě r0, we have
that

1

2
ď

|Elpzq|

|flpzq|
ď 2 and

1

2
ď

|E1
lpzq|

|f 1
l pzq|

ď 2

for all l P C and all z P Ωfl,r.

Proof. The first inequality is a direct consequence of item (1) in Fact
2.3 combined with the inequality r ě r0 ą 4C established in Fact 2.4.

In order to proof the second inequality we also start with item (1)
in Fact 2.3. It gives

ˇ

ˇ

ˇ

ˇ

|E 1pzq|

|f 1pzq|
´ 1

ˇ

ˇ

ˇ

ˇ

ď
C

|f 1pzq|
for all z P Ωf,r Ă GD.

This time we have to estimate |f 1pzq| and to show that there exists
some r ě r0 such that

(3.8)
C

|f 1pzq|
ď

1

2
for all z P Ωf,r.
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Remember that fpzq “ eτpzq “ eφ
´1pzq for every z P Ωf,r. Thus,

f 1
pzq “

fpzq

φ1pξq
where ξ “ φ´1

pzq P Hlog r.

Obviously |fpzq| ą r but what about |φ1pξq|? From the formula (2.4)
we get

φ1
pξq “

1

1 ` p
exppplog ξq

1
1`p q

1

plog ξq
p

1`p ξ
.

If v :“ log ξ then

(3.9) |φ1
pξq| ď

ˇ

ˇ

ˇ

ˇ

ˇ

exppv
1

1`p q

v
p

1`p ev

ˇ

ˇ

ˇ

ˇ

ˇ

“

exp
´

ℜ
`

v
1

1`p ´ v
˘

¯

|v|
p

1`p

.

Since ξ P Hlog r, ℜv ą log log r, and |ℑv| ă π{2, so if we write v “ seiα,
then

s ą log log r and |α| ă
π{2

log log r
.

Thus,

ℜ
`

v
1

1`p ´ v
˘

“ ´s

ˆ

cosα ´ s´
p

1`p cos
´ α

1 ` p

¯

˙

ď ´
s

2
ď ´

log log r

2

provided r is sufficiently large. In this case we get from (3.9) that

|φ1
pξq| ď

1
?
log rplog log rq

p
1`p

.

This shows that (3.8) holds for all r ě r0 sufficiently large. Thus, 3.4
holds for f and E, i.e. if l “ 0. It then holds for all l P C because of
(2.6).

□

Having established Fact 3.4, the proof of Proposition 7.4 in [11] ap-
plies word by word and shows that the required inequality in Proposi-
tion 3.3 holds.

4. Proof of Theorem 1.1

As it was explained in the Introduction, it suffices to show that

(4.1) lim
lÑ8

HypDimpElq “ 1.

In order to do this fix t ą 1. Fix also any r ě r1, for example r “ r1.
By virtue of Proposition 3.2 we have that

Lfl,t11pwq ď K´t
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for all l ě lK´t,r,t and all w P D˚
r . So, by Proposition 3.3,

LEl,t11pwq ď 1

for all l ě lK´t,r,t and all w P D˚
r . In conjunction with (3.3) this gives

that
PpEl, tq ď 0

for all l ě lK´t,r,t. So, if X Ă JEl
is an arbitrary hyperbolic set for El,

then
PpEl|X , tq ď 0.

The supremum over all hyperbolic sets of the left hand side of this
inequality is the hyperbolic pressure PhyppEl, tq of El evaluated at t, so
we have that

(4.2) PhyppEl, tq “ suptPpEl|X , tq : X is a hyperbolic set for Elu ď 0.

Now, we want to use the Bowen’s Formula of [3]. Theorem B of this pa-
per applies to the functions El and states that the hyperbolic dimension
of the set El is equal to

HypDimpElq “ infts ą 0 : PhyppEl, sq ď 0u.

Combined with (4.2), we thus get that

HypDimpElq ď t

for all l ě lK´t,r,t. So, the formula (4.1) is established and the proof of
Theorem 1.1 is complete.
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