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Abstract. We study skew-product dynamics for a large class of finitely-generated semi–
hyperbolic semigroups of rational maps acting on the Riemann sphere, which general-
izes both the theory of iteration of a single rational map of a single complex variable
(complex/holomorphic dynamics) and the theory of countable alphabet conformal iterated
function systems (CIFSs). We construct the thermodynamic formalism for such dynamical
systems and geometric potentials by developing the notion of nice families that extend to
the case of our highly disconnected skew product phase space the powerful notion of nice
sets due to Rivera–Letelier and Przytycki, and the allied earlier notion of K(V ) sets due
to Denker and the last named author. We leverage out techniques to prove the existence
and uniqueness of equilibrium states for a wide class of Hölder potentials, and concomitant
statistical laws: central limit theorem, law of iterated logarithm, and exponential decay of
correlations. We devote lots of space and effort to control (non-recurrent) critical points
which is a notoriously challenging task even for a single rational function; more generators
add qualitatively new challenges. Beyond dynamics, but still with dynamical methods, we
advance the study of finer fractal geometrical properties of the intricate Julia sets associ-
ated to such systems and, in particular, via equilibrium states, we perform a multifractal
analysis of Lyapunov exponents. We use the Nice Open Set Condition (NOSC) introduced
by the last two authors, and apply our new techniques to settle a long-standing problem in
the theory of rational semigroups by proving that for our class of semigroups the Hausdorff
dimension of each fiber Julia set is strictly smaller than the Hausdorff dimension of the
global Julia set of the semigroup. In Appendix A we provide corrected proofs of some
two lemmas (not used in the current paper) from the article ”Measures and Dimensions
of Julia Sets of Semi–hyperbolic Rational Semigroups”, Discrete & Continuous Dynamical
Systems, 30 (2011), 313–363, by H. Sumi and M. Urbański.
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1. Introduction

A rational semigroup G is a semigroup generated by a family of non–constant rational
maps g : Ĉ −→ Ĉ, where Ĉ denotes the Riemann sphere, with the semigroup operation
being functional composition. For a rational semigroup G, we set

F (G) :=
{
z ∈ Ĉ : G is normal in a neighborhood of z

}
and

J(G) := Ĉ \ F (G).
F (G) is called the Fatou set of G and J(G) is called the Julia set of G. If G is generated
by a family {fi}i, then we write G = ⟨f1, f2, . . .⟩. We say that G is finitely generated if
there exists a finite collection f1, . . . , fk such that G = ⟨f1, f2, . . . fk⟩.
The work on the dynamics of rational semigroups was initiated by Hinkkanen and Martin

([13], [14]), who were interested in the role of the dynamics of polynomial semigroups while
studying various one–complex–dimensional moduli spaces for discrete groups, and by F.
Ren’s group ([60]), who studied such semigroups from the perspective of random complex

dynamics. The theory of the dynamics of rational semigroups on Ĉ has developed in many
directions since the 1990s ([13, 60, 14, 32, 33, 34, 35, 36, 37, 38, 39, 47, 40, 41, 42, 43, 44]).

Since the Julia set J(G) of a rational semigroup G generated by finitely many elements
f1, . . ., fu has backward self–similarity, i.e.,

(1.1) J(G) = f−1
1 (J(G)) ∪ · · · ∪ f−1

u (J(G))

(see [34]), it can be viewed as a significant generalization and extension of both, the theory
of iteration of rational maps (see [24]), and conformal iterated function systems (see [21]).
For example, the Sierpiński gasket can be regarded as the Julia set of a rational semigroup.
The theory of the dynamics of rational semigroups borrows and develops tools from both
of these theories. It has also developed its own unique methods, notably the skew product
approach (see [34, 35, 36, 37, 40, 41, 42, 43, 47], and [48]). We remark that by (1.1), the
analysis of the Julia sets of rational semigroups somewhat resembles “backward iterated
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functions systems”, however since each map fj is not in general injective (critical points),
some qualitatively different extra effort is needed in the case of semigroups.

The theory of the dynamics of rational semigroups is somehow related to that of the
random dynamics of rational maps. Especially, if one looks at separated fiber Julia sets
Jω. Similarities and differences of these two theories become particularly transparent in
Section 16 where we compare the Hausdorff dimension of those fiber Julia sets Jω and the
Hausdorff dimension of the global Julia set J(G).

In this paper, we investigate dynamics, ergodic theory, and geometry of t–conformal
measures mt and equilibrium states µt, equivalent to mt, of the skew product map

f̃ : Σu × Ĉ −→ Σu × Ĉ

and geometric potentials on the Julia set J(f̃), i.e. ones of the form

J(f̃) ∋ ξ 7−→ −t log |f̃ ′(ξ)| ∈ R

where t ≥ 0 is a fixed parameter. Our starting point is the paper [49] and we go far
beyond. We introduce in the current manuscript the class of totally non–recurrent (TNR)
C–F balanced rational semigroups of finite type which we abbreviate as the class of finely
non–recurrent rational semigroups (FNR). This suffices for dynamics and ergodic theory.
When we deal with geometry of fiber and global Julia sets we impose in addition the Nice
Open Set Condition of [49]. In the current manuscript this condition is studied at length
in Section 13 of our current manuscript. We would like to emphasize that the Nice Open
Set Condition and Nice Sets (Families), discussed later, are totally independent concepts.
In particular, the adjective “Nice” was independently introduced for both concepts many
years ago. Although it may be a little bit confusing for some readers, we stick to the
historical terminology to respect history and in order not confuse readers even more by
inventing yet new names. We think that in our current manuscript this is the first time in
the literature that both “nice” concepts are used simultaneously.

We develop the ergodic theory, stochastic properties, and geometry of measures mt and
µt.

Throughout the course of our exposition we introduce and define various subclasses
of rational semigroups. These look like quite technical concepts but this is an actual,
essentially indispensable, feature of (intricate) ergodic theory, dynamics, and geometry of
rational semigroups. For the convenience of the reader we collect all these definitions and
summarize relations between them in Appendix C.

One of our most important key tools and concepts is that of nice sets. It was originally
introduced in [31] and extensively used, among others in [28]. It permits us to build

sufficiently rich symbolic dynamics of the skew product map f̃ : Σu × Ĉ → Σu × Ĉ to
utilize extensively the results and methods of the countable alphabet theory of subshifts of
finite type, also known as topological Markov chains. Most notably those developed in [21],
[19], and [57] and [58]. As in [49] our main technical tool is that of “holomorphic” inverse

branches; in quotations because they live on the Cartesian product Σu × Ĉ. We however
define them more carefully and more precisely than in [49], and we make a more refined

use of them than in [49]. In particular, they are instrumental in forming nice families of f̃
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and are members of the graph directed Markov system (in the sense of [21]) generated by
these families.

We deal with t–conformal measures mt and equilibrium states µt by bringing up and
elaborating on the refined tool of Vitali relations due to Federer (see [8]). This tool is needed
basically because, unlike for true conformal maps, the “holomorphic” inverse branches of
iterates of f̃ , enormously distort the balls in the product space Σu × Ĉ. In fact, they are
more like affine maps with two different contracting factors. We rely heavily here on deep
results from [8]. Another tool, already employed in [54] and subsequent papers of the third
named author, is the Martens method of producing σ–finite invariant measures absolutely
continuous with respect to a given quasi–invariant measure. It was considerably refined
and generalized in [49]. We apply and develop this method to construct the f̃–invariant
measures µt. These are first constructed as merely σ–finite measures and proven to be finite
only much later after preparing the machinery of nice families and symbolic representation.

Using the, already several times mentioned, symbolic dynamics we prove that the f̃–
invariant measures µt are the unique equilibrium states of the potentials −t log |f̃ ′(ξ)| in a
very classical sense. These are the only measures that maximize the free energy functions
associated to these potentials (see below in this introduction for a more precise statement)
and the supremum is equal to the topological pressure P(t).

The methods we develop in this paper are sufficiently strong and refined to allow us to
solve a long standing open problem in the theory of iteration of rational semigroups asking
about the relation of the Hausdorff dimension of the fiberwise Julia sets Jω and the global
Julia set J(G). We show that for C–F balanced TNR rational semigroups of finite type the
Hausdorff dimension of every fiberwise Julia set Jω is smaller than the Hausdorff dimension
of the global Julia set J(G). We prove a little bit more in this respect.

Now we shall describe the main results of [49] and the current paper. The notation and
concepts we use in this description are fairly standard for the theory of rational semigroups
and thermodynamic formalism. These are carefully defined and introduced in Preliminaries,
throughout the manuscript and in Appendix C. We start our description with [49]. Its main
results are comprised in the following.

Theorem 1.1. Let f = (f1, . . . , fu) ∈ Ratu be a u–tuple of rational maps for a positive
integer u. Let G = ⟨f1, . . . , fu⟩. Suppose that

(1) There exists an element g of G such that deg(g) ≥ 2,

(2) Each element of Aut(Ĉ) ∩G (if this is not empty) is loxodromic,
(3) G is semi–hyperbolic, and
(4) G satisfies the Nice Open Set Condition.

Then, we have the following.

(a) J(G) ∩ PCV(G) is nowhere dense in J(G) and, for each t ≥ 0, the function

z 7−→ Pz(t) ∈ R

is constant throughout a neighborhood of J(G)\PCV(G) in Ĉ. Denote this constant
by P(t).
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(b) The function

[0,+∞) ∋ t 7−→ P(t) ∈ R
has a unique zero. This zero is denoted by h = hf .

(c) There exists a unique |f̃ ′|h–conformal measure m̃h for the map f̃ : J(f̃) −→ J(f̃).

(d) Let mh := m̃h ◦ p−1
2 . Then there exists a constant C ≥ 1 such that

C−1 ≤ mh(Bs(z, r))

rh
≤ C

for all z ∈ J(G) and all r ∈ (0, 1].

(e)

hf = HD(J(G)) = PD(J(G)) = BD(J(G)),

where HD,PD,BD denote the Hausdorff dimension, packing dimension, and box
dimension, respectively, with respect to the spherical distance in Ĉ.

We denote this common value by hG; it depends only on the semigroup G and
is independent of the set of generators (satisfying conditions (1)–(4) above) used to

for the skew product map f̃ . Moreover, for each z ∈ J(G) \ PCV(G), we have

hG = Tf (z) = t0(f) = SG(z) = s0(G).

(f) For every t ≥ 0 there exists a |f̃ ′|t–conformal measure mt for the map f̃ : J(f̃) →
J(f̃).

(g) Let Hh and Ph be the h–dimensional Hausdorff measure and h–dimensional packing
measure respectively. Then, all the measures

Hh, Ph, and, mh

are mutually equivalent with Radon–Nikodym derivatives uniformly separated away
from zero and infinity.

(h)

0 < Hh(J(G)),Ph(J(G)) <∞.

(i) There exists a unique Borel probability f̃–invariant measure µ̃h on J(f̃) which is
absolutely continuous with respect to m̃h. The measure µ̃h is metrically exact, hence
ergodic, and equivalent with m̃h.

Definition 1.2. Any rational semigroup G with non-empty Fatou set F (G) that satisfies
conditions (1)–(3) from Theorem 1.1 (i.e. it is semi-hyperbolic and satisfies the Funda-
mental Assumption formulated below) is called *semi–hyperbolic.

We want to emphasize now, and will repeat it within the main body of our manuscript, that
being semi–hyperbolic and *semi–hyperbolic does not depend on the choice of generators
but on the semigroup alone.
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We will now describe the main results of the current paper. As we have already men-
tioned, we introduce in it the class of non–recurrent (TNR) C–F balanced rational semi-
groups of finite type, called in short the class of finely non–recurrent (FNR) rational semi-
groups. Loosely speaking these adjectives respectively mean that the closure of the post-
critical set is disjoint from the critical set and the part of the postcritical set lying in the
Fatou set is at a positive distance from the Julia set. In Section 17 we give some examples
of totally non–recurrent (TNR) C–F balanced rational semigroups of finite type. Many of
our main results need only some parts of these assumptions but we do not discern them
here for the sake of ease of exposition. We refer the reader to actual theorems in the body
of the paper for most adequate assumptions.

We prove that there exists an open interval ∆∗
G ⊃ [0, h] for which, among others, the

following theorems hold.

Proposition 1.3. If G is a *semi–hyperbolic rational semigroup generated by a u–tuple
of rational maps f = (f1, . . . , fu) ∈ Ratu, then the function t 7−→ P(t), t ≥ 0, has the
following properties.

(a) For every t ≥ 0 we have that P(t) ∈ (−∞,+∞) and P(0) ≥ log 2 > 0.

(b) The function [0,+∞) 7−→ P(t) is strictly decreasing and Lipschitz continuous. More
precisely:

(c) If 0 ≤ s ≤ t < +∞, then

− log ∥f̃ ′∥∞(t− s) ≤ P(t)− P(s) ≤ −α(t− s),

where the constant α > 0 comes from the Exponential Shrinking Property (Theo-
rem 3.5).

(d) limt→+∞ P(t) = −∞.

Making a substantial use of Marco Martens’s method, which originated in [17] and was
explored for example in [49], we prove the following.

Theorem 1.4. Let G be a *semi–hyperbolic rational semigroup. If t ∈ ∆G then there exists
a unique, up to a multiplicative constant, Borel σ–finite f̃–invariant measure µt on J(f̃)
which is absolutely continuous with respect to mt. In addition, the measure µt is weakly
metrically exact and equivalent to mt, in particular it is ergodic.

In Section 6, entitled Nice Sets (Families), we explore in detail one of the most important
tools for us in the current paper. It is commonly referred to as nice sets or nice families.
It has been introduced in [31], and extensively used, among others in [28]. We adopt this
concept to the setting of rational semigroups.

We would like to emphasize again, repeating what was written shortly before, that the
Nice Open Set Condition and Nice Sets (Families) are totally independent concepts. In
particular, the adjective “Nice” was independently introduced for both concepts many years
ago. Although it may be a little bit confusing for some readers, we stick to the historical
terminology to respect history and in order not confuse readers even more by inventing yet
new names. We think that in our current manuscript this is the first time in the literature
that both “nice” concepts are used simultaneously.
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The absolutely first fact needed about nice sets and families is their existence. It is by
no means obvious and we devote the whole Section 6 for this task. In the existing proofs
for ordinary conformal systems, i.e. cyclic semigroups, the concept of connectivity of the
phase space, usually C or Ĉ, plays a substantial role. In our present setting of the skew
product map

f̃ : Σu × Ĉ −→ Σu × Ĉ,
the phase space is “highly” not connected. In order to overcome this difficulty we define the
concept of connected families of arbitrary sets. These have sufficiently many properties of
ordinary connected sets, for example one can speak of connected components of any family
of sets, to allow for a proof of the existence of nice families. As a matter of fact, we do not
even use the topological concept of connected subsets of the Riemann sphere Ĉ. Our main
theorem of this section is the following.

Theorem 1.5. Let G = ⟨f1, . . . , fu⟩ be a TNR semigroup. Fix R ∈ (0, R∗(G)). Fix also
κ ∈ (1, 2). Let

Crit∗(f) ⊂ S ⊂ J(G) \B2(PCV(G), 8R)

be a finite aperiodic set. Then for every r ∈ (0, R] small enough there exists

US(κ, r) = {Us(κ, r)}s∈S,

a nice family of sets for f̃ , associated to the set S, such that

(A)

Σu ×B2(s, r) ⊂ Us(κ, r) ⊂ Σu ×B2(s, κr)

for each s ∈ S.

(B) If a, b ∈ S, ρ ∈ HIB(Ub(κ, r)), and f̃
−∥ρ∥
ρ (Ub(κ, r)) ⊂ Ua(κ, r), then∣∣∣(f−1

ρ

)′
(z)
∣∣∣ ≤ 1

4

for all z ∈ B2(b, 2R) ⊃ p2
(
Ub(κ, r)

)
.

The first consequence of this theorem, which is the gate to all of its other consequences,
is that it gives rise to the existence of sufficiently rich “conformal–holomorphic” maximal
graph directed Markov system in the sense of [21]. More precisely, it gives the following.

Theorem 1.6 (for the notation and details see Section 6 and Theorem 6.11). If G is a
TNR rational semigroup generated by a u–tuple of rational maps (f1, . . . , fu) ∈ Ratu and

U = {Us}s∈S is a nice family of sets for f̃ , then the family

SU :=
{
f̃−||τ ||
τ : Xt(τ) −→ Xi(τ)

}
τ∈DU

forms a graph directed system in the sense of [21]. Furthermore,

(a) The corresponding incidence matrix A(U) is then determined by the condition that

Aτω(U) = 1

if and only if t(τ) = i(ω).
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(b) The limit set JU of the system SU is contained in J(f̃) and contains U ∩ Trans(f̃),

where Trans(f̃) is the set of transitive points of f̃ : J(f̃) −→ J(f̃), i.e. the set of

points z ∈ J(f̃) such that the set {f̃n(z) : n ≥ 0} is dense in J(f̃) .

(c) The graph directed system SU is finitely primitive.

We denote by D∞
U the symbol space

(
DU
)∞
A(U)

generated by the matrix A(U); as in the case of

Σu its elements (infinite sequences) start with coordinates labeled by the integer 1. Likewise
D∗

U and Dn
U , n ∈ N, abbreviate respectively

(
DU
)∗
A(U)

and
(
DU
)n
A(U)

, n ∈ N.

In addition, we denote by ϕe, e ∈ DU , all the elements of SU .

The next section, Section 7, entitled The Behavior of Absolutely Continuous Invariant
Measures µt Near Critical Points, is very technical and devoted to study the behavior
of conformal measures mt and their invariant versions µt near critical points of the skew
product map

f̃ : Σu × Ĉ −→ Σu × Ĉ.
Its main outcome is Proposition 7.4 which gives a quantitative strengthening of quasi–
invariance of conformal measures mt. This is the first and only place where the hypothesis
of finite type of the semigroup G is explicitly needed; it demands that the set of critical
points of f̃ lying in the Julia set J(f̃) of f̃ is finite.

Section 8, Small Pressure PΞ
V (t), is still technical. We prove that the (ordinary) topolog-

ical pressure of the potentials −t log |f̃ ′|, t ∈ ∆∗
G, with respect to the dynamical system f̃

restricted to the compact f̃–invariant set of all points whose forward iterates avoid an open
neighborhood of the set of critical points of f̃ , is smaller than P(t). This inconspicuous
looking fact is instrumental, one could even say, indispensable, in many further proofs. It
intervenes for example in the proof of Lemma 8.3 which in plain words asserts that the
measure mt of the “tails” of the maximal graph directed Markov system generated by a
(sufficiently good) nice family, decays exponentially fast. This fact is in turn instrumental
in Sections 12.1 and 12.2, making application of Young towers possible. This fact also
makes the proof of Variational Principle in Section 11, so simple. It is also used in Sec-
tion 16 to show that the Hausdorff dimension of fiber Julia sets Jω is smaller than the
Hausdorff dimension of the global Julia set J(G).

Section 9, Symbol Space Thermodynamic Formalism associated to Nice Families; Real
Analyticity of the Original Pressure P(t), brings up full fledged fruits of the existence of
nice families. It forms a symbolic representation (subshift of finite type with a countable
infinite alphabet) of the map generated by a nice family and develops the thermodynamic

formalism of the potentials ζt,s resulting from those of the form −t log |f̃ ′| and the “first
return time” ∥τ1∥. The first most transparent of its consequences, already possible to be
stated and proved in this section, is the following.

Theorem 1.7 (Theorem 9.9). If G is a FNR rational semigroup, generated by a u–tuple
of rational maps (f1, . . . , fu) ∈ Ratu, then the topological pressure function

P : ∆∗
G −→ R
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is real–analytic.

In Section 10, Invariant Measures: µt versus µ̃t ◦ π−1
U ; Finiteness of µt, we link the

measures m̃t and µ̃t of the previous section living on the symbol space with the conformal
and invariant measures mt and µt living on the Julia set J(f̃). This link is given by
Lemma 10.7. We translate here many results of the previous sections, expressed in the
symbolic language, to the language of the actual map f̃ . We eventually prove here, see
Theorem 10.13, that all the measures µt, t ∈ ∆∗

G, are finite, thus probability measures after
normalization.

In Section 11, Variational Principle; The Invariant Measures µt are the Unique Equi-
librium States, we prove a full version of the classical Variational Principle for potentials
−t log |f̃ ′|, t ∈ ∆∗

G with respect to the dynamical system f̃ : Σu × Ĉ → Σu × Ĉ and we
identify measures µt as the only equilibrium states. More precisely, we prove the following.

Theorem 1.8. If G is a FNR rational semigroup, and t ∈ ∆∗
G, then

sup

{
hµ(f̃)− t

∫
J(f̃)

log |f̃ ′|dµ : µ ∈M(f̃)

}
=

= sup

{
hµ(f̃)− t

∫
J(f̃)

log |f̃ ′|dµ : µ ∈Me(f̃)

}
= P(t),

and

hµt(f̃)− t

∫
J(f̃)

log |f̃ ′|dµt = P(t),

while

hµ(f̃)− t

∫
J(f̃)

log |f̃ ′|dµ < P(t)

for every measure µ ∈M(f̃) different from µt.

In Section 12.1, Stochastic Laws on the Symbol Space for the Shift Map Generated by
Nice Families, making use of the link with symbol thermodynamic formalism of Section 9,
we embed the symbol space D∞

U , along with the shift map acting on it, into an abstract
Young tower (see [57] and [58]) as its first return map. We then prove the fundamental
stochastic laws such as the Law of Iterated Logarithm, the Central Limit Theorem, and
exponential decay of correlations, in such abstract setting.

In Section 12.2, Stochastic Laws for the Dynamical System (f̃ : J(f̃) → J(f̃), µt), making
use of the previous section, via the natural projection from the abstract Young tower to the
Julia set J(f̃), we prove in Theorem 12.6 the fundamental stochastic laws for dynamical

systems (f̃ , µt), t ∈ ∆∗
G, such as the Law of Iterated Logarithm, the Central Limit Theorem,

and exponential decay of correlations.

Part 3 of our manuscript is devoted to study finer fractal and geometrical properties
of the fiber Julia sets Jω and the global Julia set J(G). Throughout this whole part we
assume that G is a FNR rational semigroup satisfying the Nice Open Set Condition; we
refer to such rational semigroups as NOSC-FNR. We would like to mention that we prove
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at the end of Section 13 that each TNR rational semigroup satisfying the Nice Open Set
Condition is of finite type.

In Section 13, entitled Nice Open Set Condition, we formulate this condition and thor-
oughly study it at length preparing all the tools based on this condition that we need in
further sections. We would like to note that our treatment somewhat differs from that
of [49]. We would like to emphasize that the Nice Open Set Condition and Nice Sets
(Families) are totally independent concepts. In particular, the adjective “Nice” was inde-
pendently introduced for both of them many years ago. Although it may be a little bit
confusing for some readers, we stick to the historical terminology to respect history and in
order not confuse readers even more by inventing yet new names. We think that in our
current manuscript this is the first time in the literature that both “nice” concepts are used
simultaneously.

In Section 14, entitled Hausdorff Dimension of Invariant Measures µt and Multifractal
Analysis of Lyapunov Exponents we provide a full account of Hausdorff dimensions of level
sets of Lyapunov exponents. More precisely, for every point (ω, z) ∈ J(f̃), we denote

χ(ω, z) := lim sup
n→∞

1

n
log |(f̃n)′(ω, z)| and χ(ω, z) := lim inf

n→∞

1

n
log |(f̃n)′(ω, z)|

and call them respectively the upper and lower Lyapunov exponents at the point (ω, z).
If χ(ω, z) = χ(ω, z), we denote the common value by χ(ω, z) and call it the Lyapunov
exponent at (ω, z). Given χ ≥ 0, we define

K(χ) :=
{
(ω, z) ∈ J(f̃) : χ(ω, z) = χ(ω, z) = χ

}
,

which is actually the level set of the function J(f̃) ∋ (ω, z) 7−→ χ(ω, z) corresponding to
its value χ. For every t ∈ ∆∗

G, let

Dt(f̃) :=
{
χµt,q : q ∈ [0, 1]

}
,

where the measures µt,q are introduced in the formula (14.22) by means of the temperature
function Tt(q), and χµt,q are the corresponding Lyapunov exponents. The main result of
Section 14 is the following.

Theorem 1.9 (Theorem 14.9). If G is a NOSC-FNR non–exceptional rational semigroup,

then for every t ∈ ∆∗
G\{hf}, the set Dt(f̃) is a non–degenerate interval with endpoints χµhf

and χµt, and the function

Dt(f̃) ∋ χ 7−→ HD(p2(K(χ))) ∈ [0, 2]

is real–analytic.

Being a non–exceptional semigroup is a mild requirement meaning that either one of the
conditions (a)–(g) from Proposition 14.8 holds. It is for example satisfied if J(f̃) contains
some non–exceptional critical points, see Proposition 14.15, in fact if and only if each
element of G is a critically finite map with parabolic orbifold; see Theorem 14.14. As a
preparatory result to the above theorem, which is however also interesting on its own, we
prove in this section the following result.
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Theorem 1.10 (Theorem 14.2). If G is a NOSC-FNR rational semigroup and t ∈ ∆∗
G,

then

HD(µt ◦ p−1
2 ) =

hµt(f̃)

χµt
= t+

P(t)

χµt
.

Throughout the whole manuscript, given an integer q ≥ 1 and u > 0 large enough, we
mean by logq(u) the qth iteration of the natural logarithm applied to u; for example:

log1(u) = log(u), log2(u) = log(log(u)), log3(u) = log
(
log(log(u))

)
.

In Section 15, which is entitled Measures mt ◦ p−1
2 and µt ◦ p−1

2 versus Hausdorff Measures
Huκ and H

uκ exp
(
c
√

log(1/u) log3(1/u)
), following the general scheme of [30] and [55] (see also

[21]), we establish singularity and absolute continuity relations between measures µt and
mt with respect to generalized measures H

uκ exp
(
c
√

log(1/u) log3(1/u)
), where the subscript is a

gauge function. More precisely, denoting

gt,c(u) := uHD(µt◦p−1
2 ) exp

(
c

√
log(1/u) log3(1/u)

)
,

as the ultimate theorem of this section, we prove the following.

Corollary 1.11 (Corollary 15.6). Let G be a NOSC-FNR rational semigroup. Assume
that t ∈ ∆∗

G and σ̃t > 0. Then

(a) If 0 ≤ c ≤ 2σ̃tχ
−1/2
µt , then µt ◦ p−1

2 and Hgt,c on J(G) are mutually singular. In

particular, the measures µt ◦ p−1
2 and H

tHD(µt◦p
−1
2 ) are mutually singular.

(b) If c > 2σ̃tχ
−1/2
µt , then µt ◦ p−1

2 is absolutely continuous with respect to Hgt,c on
J(G). Moreover, H(ℓ̃c)t

(E) = +∞ whenever E ⊂ J(G) is a Borel set such that

µt ◦ p−1
2 (E) > 0.

This result is a corollary for Theorem 15.5 involving the upper and lower class functions
commonly used in probability theory.

In Section 16, HD(J(G)) versus Hausdorff Dimension of Fiber Julia Sets Jω, ω ∈ Σu, we
provide the solution to the long standing open problem in the theory of rational semigroups
concerning the size of fiberwise Julia sets Jω versus the global Julia set J(G). We show
that for all NOSC-FNR rational semigroups of finite type the Hausdorff dimension of every
fiberwise Julia set Jω is smaller than the Hausdorff dimension of the global Julia set J(G).
We also show that if G is expanding then the supremum of Hausdorff dimensions of all
fiberwise Julia set Jω, ω ∈ Σu is smaller than the Hausdorff dimension of the global Julia
set J(G). In formal terms, we have the following.

Theorem 1.12. If G is a NOSC-FNR rational semigroup, then

HD(Jω) < h = HD(J(G))

for every ω ∈ Σu. If in addition, G is expanding, then

sup
{
HD(Jω) : ω ∈ Σu

}
< h = HD(J(G)).
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In the final section of our paper, i.e. Section 17, Examples, we provide a large class
of examples of semi–hyperbolic rational semigroups with the Nice Open Set Condition.
Figure 1 shows three Julia sets of semi–hyperbolic rational semigroups for which our results
apply.

(a) (b) (c)

Figure 1. Julia sets J(G) for G = ⟨f1, f2⟩ for (a) f1 = ϕ2
1, f2 = ϕ2

2 where
ϕ1(z) = z2 − 1 and ϕ2(z) = z2/4 ; (b) f1(z) = z2 − 1 and f2(z) = z3/2; (c)
f1(z) = z2 − 1 and f2(z) = iz4.

2. General Preliminaries on Rational Semigroups

Let u ∈ N = {1, 2, 3, . . .}. Let Rat be the set of all rational maps on the Riemann sphere

Ĉ. In this paper, an element of Ratu is called a u–tuple map . Let f = (f1, . . . , fu) ∈ Ratu

be a u–tuple map and let

G = ⟨f1, . . ., fu⟩
be the rational semigroup generated by {f1, . . . , fu}.We then also say that G is generated
by the u–tuple map f = (f1, . . . , fu). To be sure, this means that

G =
{
fωn ◦ fωn−1 ◦ · · · ◦ fω2 ◦ fω1 : n ≥ 1 and (ω1, ω2, . . . , ωn) ∈ {1, . . ., u}n

}
.

Let

Σu := {1, . . ., u}N

be the space of all one–sided sequences of u–symbols endowed with the product (Tichonov)
topology. Σu then becomes a compact metrizable space. There are plenty of metrics on
Σu compatible with this topology. For our purposes in this paper we choose only one of
them, one which is quite natural. Indeed, fix ϑ ∈ (0, 1) and denote by |·, ·|ϑ the metric on
Σu defined by the following formula.

(2.1) |ω, τ |ϑ := ϑmin{n≥1:ωn ̸=τn}−1,



14 JASON ATNIP, HIROKI SUMI, AND MARIUSZ URBAŃSKI

with the usual convention that ϑ∞ = 0. We then define the metric ∥·, ·∥ϑ on Σu × C as
equal to max{|·, ·|ϑ, | · − · |}; more precisely:

∥(ω, z), (τ, w)∥ϑ := max
{
|ω, τ |ϑ, |z − w|

}
.

We will frequently omit the subscript ϑ writing just ∥(ω, z), (τ, w)∥ for simplicity. We
denote the ball with radius r > 0 centered at some point ω ∈ Σu and generated by the
metric |·, ·|ϑ as B1(ω, r). Likewise, we denote the ball with radius r > 0 centered at some
point z ∈ C and generated by the metric | · − · | as B2(z, r). Then B((ω, z), r) denotes the
ball centered at (ω, z) with radius r defined with respect to the metric ∥·, ·∥ϑ. Obviously

B((ω, z), r) = B1(ω, r)×B2(z, r).

Occasionally, but very rarely, we will use the spherical metric on Ĉ. If z and w are points
in Ĉ then the spherical distance between them is denoted by |z − w|s. Spherical balls are

denoted by Bs(z, r), z ∈ Ĉ, r > 0.
We will also need annuli. We recall their standard definition. Given w ∈ C and two radii
0 < r ≤ R, we set

A(w; r, R) := B2(w,R) \B2(w, r) = {z ∈ C : r ≤ |z − w| < R}.
In general, denote by diam(A) the diameter of a set A with respect to the metric on the
space the set A is contained in. This is just the supremum of distances between points in
A. Usually in this paper such metric space will be either C, Σu, or Σu×C; most often this
will be C and will the write diamC(A), diamΣu(A), and diamΣu×C(A) respectively. Also,
for A, B, any two subsets of a metric space (M,d) put

distM(A,B) := inf
{
d(a, b) : a ∈ A, b ∈ B

}
.

Let G be a rational semigroup and let F be a subset of Ĉ. We set

G(F ) :=
⋃
g∈G

g(F )

and
G−1(F ) :=

⋃
g∈G

g−1(F ).

Moreover, we set
G∗ := G ∪ {Id},

where Id denotes here the identity map on Ĉ. We then define analogously the sets G∗(F )
and (G∗)−1(F ). In fact

G∗(F ) = F ∪G(F ) and (G∗)−1(F ) = F ∪G−1(F ).

Let f̃ : Σu× Ĉ −→ Σu× Ĉ be the skew product map associated with f = (f1, . . ., fu).
It is given by the formula

f̃(ω, z) := (σ(ω), fω1(z)),

where (ω, z) ∈ Σu × Ĉ, ω = (ω1, ω2, . . .), and σ : Σu −→ Σu denotes the one–sided shift
map, i.e.

σ
(
(ωn)

∞
n=1)

)
= (ωn+1)

∞
n=1.
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We denote by p1 : Σu× Ĉ → Σu the projection onto Σu and p2 : Σu× Ĉ → Ĉ the projection
onto Ĉ. That is,

p1(ω, z) = ω and p2(ω, z) = z.

Under the canonical identification p−1
1 {ω} ∼= Ĉ, each fiber p−1

1 {ω} is a Riemann surface

which is isomorphic to Ĉ .
For n ≥ 0 let

Σn
u := {1, . . ., u}n and Σ∗

u :=
∞⋃
n=0

Σn
u

respectively be the family of all words over the alphabet {1, 2, . . . , u} of length n and the
family of all finite words with the convention that {1, . . . , u}0 is the singleton consisting of
the empty word denoted in the sequel by ∅. For every τ ∈ Σ∗

u, we denote by |τ | the only
integer n ≥ 0 such that τ ∈ Σn

u. For every τ ∈ Σu we set |τ | = ∞. In addition, for every
τ = (τ1, τ2, . . .) ∈ Σ∗

u ∪ Σu and n ∈ N with n ≤ |τ |, we set

τ |n := (τ1, τ2, . . . , τn) ∈ Σ∗
u.

Furthermore, for every set Γ ⊂ Σ∗
u ∪ Σu, we define

Γ|n := {ω|n : ω ∈ Γ}.
For every τ ∈ Σ∗

u, we denote

τ̂ = τ ||τ |−1, τ∗ := τ|τ |,

and

(2.2) [τ ] := {ω ∈ Σu : ω||τ | = τ}.
We call [τ ] the cylinder generated by τ . Furthermore, for every ω ∈ Σ∗

u ∪ Σu and all
a, b ∈ N with a < b ≤ |ω|, we set

ωba := (ωa, . . . , ωb) ∈ Σ∗
u.

For any two words ω, τ ∈ Σ∗
u, we say that ω and τ are comparable if either

(1) |τ | ≤ |ω| and ω||τ | = τ ; equivalently ω ∈ [τ ],

or

(2) |ω| ≤ |τ | and τ ||ω| = ω; equivalently τ ∈ [ω].

We say that ω, τ are incomparable if they are not comparable. By τω ∈ Σ∗
u we denote

the concatenation of the words τ and ω. We may now rewrite formula (2.1) in the form.

(2.3) |ω, τ |ϑ = ϑ|ω∧τ |,

where ω∧τ is the longest initial common block of both ω and τ . For each ω = (ω1, . . . , ωn) ∈
Σ∗
u, let

fω := fωn ◦ · · · ◦ fω1 : Ĉ −→ Ĉ.
For each n ∈ N and (ω, z) ∈ Σu × Ĉ, we set

(f̃n)′(ω, z) := f ′
ω(z).
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For each ω ∈ Σu we define

Jω :=
{
z ∈ Ĉ : {fω}ω∈Σ∗

u
is not normal in any neighborhood of z

}
,

and we then set

J(f̃) :=
⋃
w∈Σu

{ω} × Jω,

where the closure is taken in the product space Σu × Ĉ. By its very definition, the set
J(f̃) is compact. Naturally, F (f̃) denotes the complement of J(f̃) in Σu× Ĉ. Furthermore,
setting

E(G) :=

{
z ∈ Ĉ : #

⋃
g∈G

g−1({z}) <∞

}
,

by Proposition 3.2 in [34], we have the following.

Proposition 2.1. If f = (f1, . . . , fu) ∈ Ratu is a u–tuple map and G = ⟨f1, . . ., fu⟩ is the
rational semigroup generated by {f1, . . . , fu}, then

(a) J(f̃) is completely invariant under f̃ , meaning that f̃−1(J(f̃)) = J(f̃) = f̃(J(f̃)).

(b) The map f̃ : J(f̃) −→ J(f̃) is open, meaning that it maps open sets onto open sets.

(c) If
#J(G) ≥ 3 and E(G) ⊂ F (G),

then the skew product map f̃ : J(f̃) −→ J(f̃) is topologically exact meaning that

for every non–empty open set U in J(f̃) there exists an integer n ≥ 0 such that

f̃n(U) = J(f̃).

In particular, the map f̃ : J(f̃) −→ J(f̃) is topologically transitive.

(d) J(f̃) is equal to the closure of the set of repelling periodic points of f̃ provided that

♯J(G) ≥ 3, where a periodic point (ω, z) of f̃ with period n is said to be repelling if

the absolute value of the multiplier |(f̃n)′(ω, z)| of fω at z is strictly larger than 1.

(e) Furthermore,

p2(J(f̃)) = J(G).

We now introduce further notation. A pair (c, j) ∈ Ĉ × {1, 2, . . . , u} is called critical

for the u–tuple map f if the map fj is not 1–to–1 on any open neighborhood of c in Ĉ.
If both c and fj(c) belong to C, and this will be almost always the case considered in our
manuscript, this means that

f ′
j(c) = 0.

Therefore, abusing slightly notation, we will always indicate a critical point by writing that
the derivative at this point is equal to 0. The set of all critical pairs of f will be denoted
by CP(f). Let Crit(f) be the union

Crit(f) :=
u⋃
j=1

Crit(fj),
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where Crit(fj) denotes the set of critical points of the map fj. For every c ∈ Crit(f) put

c+ = {fj(c) : (c, j) ∈ CP(f)}.
The set c+ is called the set of critical values of c. For any subset A of Crit(f) put

A+ = {c+ : c ∈ A}.
For each (c, j) ∈ CP(f) let q(c, j) be the local order of fj at c. We define the direct
postcritical set of G to be

G∗(Crit(f)+).

We further consider the set
G∗(Crit(f)+).

Note that this set does not depend on the choice of generators, and it is in fact equal to
the closure of the set {

g(c) : g ∈ G, g′(c) = 0
}
.

We denote it by PCV(G) and call it the postcritical set of G 1, i.e.

PCV(G) := G∗(Crit(f)+) =
{
g(c) : g ∈ G, g′(c) = 0

}
.

We also set

Crit∗(f) :=
u⋃
i=1

{
c ∈ Crit(fi) : fi(c) ∈ J(G)

}
.

Of course
Crit∗(f) ⊂ J(G) ∩ Crit(G),

but equality need not to hold. Let

Crit(f̃) :=
{
ξ ∈ Σu × Ĉ : f̃ ′(ξ) = 0

}
.

Of course
Crit(f̃) =

{
(ω, c) ∈ Σu × Ĉ : f ′

ω1
(c) = 0

}
.

Put
Crit∗(f̃) := J(f̃) ∩ Crit(f̃).

Note that

(2.4) Crit∗(f) = p2(Crit∗(f̃)).

We call
∞⋃
n=1

f̃n(Crit(f̃))

the direct postcritical set of f̃ , and its closure, i.e. the set

PCV(f̃) :=
∞⋃
n=1

f̃n(Crit(f̃)),

1Some authors call the direct postcritical set just postcritical and give no short name for PCV(G)
just calling it the closure of the postcritical set. Our choice of notation and terminology follows a well
established tradition and makes exposition simpler.
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the postcritical set of f̃ . We also define

PCV∗(f̃) := J(f̃) ∩ PCV(f̃) =
∞⋃
n=1

f̃n(Crit∗(f̃)).

Set

Sing(f̃) :=
⋃
n≥0

f̃−n(Crit(f̃))

and

Sing(f) :=
⋃
g∈G∗

g−1(Crit(f)).

Now we define and deal with holomorphic inverse branches of iterates of the skew product
map f̃ : Σu × Ĉ −→ Σu × Ĉ. We start with the following.

Lemma 2.2. For every integer n ≥ 1, we have that

f̃n(Crit(f̃n)) = Σu ×

 ⋃
τ∈Σn

u

fτ
(
Crit(fτ )

) .

Proof. Assume that (ω, z) ∈ f̃n(Crit(f̃n)). This means that there exists (γ, x) ∈ Crit(f̃n)
such that

(ω, z) = f̃n(γ, x).

Then,

z = fγ|n(x),

and

f ′
γ|n(x) = (f̃n)′(γ, x) = 0.

So, x ∈ Crit(fγ|n) and

z ∈ fγ|n(Crit(fγ|n)) ⊂
⋃
τ∈Σn

u

fτ (Crit(fτ )).

Thus,

(ω, z) ∈ Σu ×

 ⋃
τ∈Σn

u

fτ (Crit(fτ ))

 ,

and the inclusion

f̃n(Crit(f̃n)) ⊂ Σu ×

 ⋃
τ∈Σn

u

fτ (Crit(fτ ))


is proven.

So, assume now that

(ω, z) ∈ Σu ×

 ⋃
τ∈Σn

u

fτ (Crit(fτ ))

 .
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So, there exists τ ∈ Σn
u such that z ∈ fτ (Crit(fτ )). Hence, there exists x ∈ Crit(fτ ) such

that z = fτ (x). So, f
′
τ (x) = 0. Then,

f̃n(τω, x) = (ω, fτ (x)) = (ω, z),

and

(f̃n)′(τω, x) = f ′
τ (x) = 0.

So, (τω, x) ∈ Crit(f̃n), and, in consequence, (ω, z) ∈ f̃n(Crit(f̃n)). We have thus proved
the inclusion

Σu ×

 ⋃
τ∈Σn

u

fτ (Crit(fτ ))

 ⊂ f̃n(Crit(f̃n)).

Lemma 2.2 is thus proven. □

Denote by

DPCV(f̃) :=
∞⋃
n=1

f̃n(Crit(f̃)) = Σu ×

 ⋃
τ∈Σn

u

fτ
(
Crit(fτ )

)
the direct postcritical set of f̃ and by

DPCV(G) := G∗(Crit(f)+) =
⋃
τ∈Σ∗

u

fτ (Crit(fτ ))

the direct postcritical set of G. Then, as an immediate consequence of Lemma 2.2, we get
the following.

Lemma 2.3. DPCV(f̃) = Σu ×DPCV(G).

By applying the closures, we thus obtain:

Lemma 2.4. PCV(f̃) = Σu × PCV(G).

Fix τ ∈ Σ∗
u, x ∈ Ĉ, and n ∈ N. Suppose that x is not a critical point of fτ . If both x

and fτ (x) belong to C, this means that

f ′
τ (x) ̸= 0,

or equivalently:

(f̃ |τ |)′(ω, x) ̸= 0

for every ω ∈ [τ ]. Then if V ⊂ Ĉ is a sufficiently small (in the sense of diameter),
non–empty, open, connected, simply connected set containing fτ (x), more precisely if the
connected component of f−1

τ (V ) does not contain critical points of fτ , then there exists a
unique holomorphic inverse branch

f−1
τ,x : V −→ Ĉ

mapping fτ (x) to x. Furthermore, we denote by

(2.5) f̃−|τ |
τ,x : Σu × V −→ [τ ]× Ĉ
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the map defined by the formula

(2.6) f̃−|τ |
τ,x (ω, y) :=

(
τω, f−1

τ,x(y)
)
,

and we call it the holomorphic inverse branch of f̃ |τ | defined on Σu × V which maps
Σu × {fτ (x)} onto [τ ]× {x}.

Now keep τ ∈ Σ∗
u, and suppose that V ⊂ Ĉ is a non–empty, open, connected, simply

connected set such that

(2.7) V ∩ fτ (Crit(f τ )) = ∅.

Equivalently

(2.8) (Σu × V ) ∩ f̃ |τ |([τ ]× Crit(f τ )
)
= ∅.

Then, by the above, all holomorphic inverse branches of fτ are well defined on V . More
precisely, for every x ∈ f−1

τ (V ) there exists a unique holomorphic inverse branch

f−1
τ,x : V −→ Ĉ

mapping fτ (x) to x. The map f̃
−|τ |
τ,x : Σu × V −→ [τ ]× Ĉ has then the same meaning as in

(2.5) and (2.6).

Now fix an integer n ≥ 0 and suppose that V ⊂ Ĉ is a non–empty, open, connected,
simply connected set such that

V ∩
⋃
τ∈Σn

u

fτ
(
Crit(fτ )

)
= ∅.

By Lemma 2.2, this means that

(Σu × V ) ∩ f̃n(Crit(f̃n)) = ∅.

Then, by the above, for every τ ∈ Σn
u, all holomorphic inverse branches of fτ are well

defined on V . More precisely, for every x ∈ f−1
τ (V ) there exists a unique holomorphic

inverse branch

f−1
τ,x : V −→ Ĉ

mapping fτ (x) to x. As in the above, the map

f̃−n
τ,x : Σu × V −→ [τ ]× Ĉ

has then the same meaning as in (2.5) and (2.6). We denote by HIBn(V ) the family of all

such inverse branches f̃
−|τ |
τ,x : Σu × V −→ [τ ] × Ĉ. Fixing any point ξ ∈ V , this family is

equal to {
f̃−|τ |
τ,x : Σu × V −→ [τ ]× Ĉ

∣∣ τ ∈ Σn
u, x ∈ f−1

τ (ξ)
}
.

For every ρ ∈ HIBn(V ) for the sake of naturality we write ρ as

(2.9) f̃−n
ρ : Σu × V −→ [ρ̃]× Ĉ,

being given by the formula

(2.10) f̃−n
ρ (ω, z) = (ρ̃ω, f−1

ρ (z)) ∈ [ρ̃]× Ĉ,
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with a unique ρ̃ ∈ Σn
u and a unique f−1

ρ : V → Ĉ being a holomorphic inverse branch of fρ̃
defined on V . We set

(2.11) ∥ρ∥ := |ρ̃| = n.

Lastly, let V ⊂ Ĉ be a non–empty, open, connected, simply connected set such that

V ∩ PCV(G) = ∅.
By Lemma 2.3, this means that

(Σu × V ) ∩ PCV(f̃) = ∅.
Then, by the above, all the families HIBn(V ) are well defined and we denote

HIB(V ) :=
∞⋃
n=0

HIBn(V ).

Note that if W is any non–empty, open, connected, simply connected subset of V , then

HIB(W ) = {ρ|W : ρ ∈ HIB(V )}.
We end these preliminaries by mentioning the classical and celebrated distortion theorems

due to Koebe. We do so for the sake of completeness and since these will be an indispensable
and truly powerful tool for us throughout the sequel.

Theorem 2.5 (Koebe’s 1
4
–Theorem). If z ∈ C, r > 0 and H : B2(z, r) → C is an arbitrary

univalent analytic function, then

H(B2(z, r)) ⊃ B2(H(z), 4−1|H ′(z)|r).

Theorem 2.6 (Koebe’s Distortion Theorem, I). There exists a function k : [0, 1) → [1,∞)
such that for any z ∈ C, r > 0, t ∈ [0, 1) and any univalent analytic function H : B2(z, r) →
C we have that

sup
{
|H ′(w)| : w ∈ B2(z, tr)

}
≤ k(t) inf

{
|H ′(w)| : w ∈ B2(z, tr)

}
.

We put K = k(1/2).

The following is a straightforward consequence of these two distortion theorems.

Lemma 2.7. Suppose that D ⊂ C is an open set, z ∈ D and H : D → C is an analytic
map which has an analytic inverse H−1

z defined on B2(H(z), 2R) for some R > 0. Then
for every 0 ≤ r ≤ R,

B2(z,K
−1r|H ′(z)|−1) ⊂ H−1

z (B2(H(z), r)) ⊂ B2(z,Kr|H ′(z)|−1).

We also use the following more geometric version of Koebe’s Distortion Theorem involv-
ing moduli of annuli.

Theorem 2.8 (Koebe’s Distortion Theorem, II). There exists a function w : (0,+∞) →
[1,∞) such that for any two open topological disks Q1 ⊂ Q2 ⊂ C with Mod(Q2 \ Q1) ≥ t
and any univalent analytic function H : Q2 → C we have

sup{|H ′(ξ)| : ξ ∈ Q1} ≤ w(t) inf{|H ′(ξ)| : ξ ∈ Q1}.
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Finally, by
A ⪯ B

we mean that there exists a constant C ∈ (0,+∞) independent of appropriate, always
clearly indicated in the context, variables A and/or B such that

A ≤ CB.

Analogously, A ⪰ B. Also,
A ≍ B

if A ⪯ B and B ⪯ A.

Part 1. Ergodic Theory and Dynamics of Finitely Generated
*Semi–Hyperbolic Rational Semigroups

3. Basic Properties of
Semi–hyperbolic and *Semi–Hyperbolic

Rational Semigroups

In this section we define semi–hyperbolic and *semi–hyperbolic rational semigroups, and
we collect their dynamical properties, which will be needed in the sequel.

Definition 3.1. A rational semigroup G is called semi–hyperbolic if and only if there
exist an N ∈ N and a δ > 0 such that for each x ∈ J(G) and each g ∈ G,

deg
(
g : V → Bs(x, δ)

)
≤ N

for each connected component V of g−1(Bs(x, δ)).

For the record we recall that a rational semigroup G is called hyperbolic if and only if

PCV(G) ⊂ F (G).

It is straightforward to see that each hyperbolic rational semigroup is semi–hyperbolic.
The notion hyperbolicity is closely related to the concept of expanding rational semi-

groups and under mild technical assumptions expanding and hyperbolic semi–hyperbolic
rational semigroups coincide. This class will be explicitly studied only in Section 16,
HD(J(G)) versus Hausdorff Dimension of Fiber Julia Sets Jω, ω ∈ Σu.

From now on throughout the rest of the paper, we always assume the following.

Fundamental Assumption: If G is a rational semigroup, then the following three con-
ditions are assumed to hold.

• There exists an element g of G such that deg(g) ≥ 2.

• Each element of g ∈ Aut(Ĉ) ∩ G is loxodromic, meaning that the Möbius trans-
formation g has two fixed points for which the modulus of the multiplier of the
transformation (characteristic constant) is not equal to one.

• F (G) ̸= ∅. By a Möbius change of coordinates we therefore may and we do assume
that

∞ ∈ F (G).
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Then,

J(G) ⊂ C and J(f̃) ⊂ Σu × C.
The Fundamental Assumption is a mild standard hypothesis commonly assumed in the

theory of rational semigroups. It is actually indispensable to get started with this theory.
The interested reader is advised to consult the papers of the second name author of this
manuscript cited in our references to learn more about the nature and status of this as-
sumption. The fact that we may and we do assume that ∞ ∈ F (G) allows us to work

almost exclusively on the complex plane C rather than on Ĉ and to avoid spherical metric
and balls entirely. This is particularly convenient when we apply, which we do frequently,
the various versions of Koebe’s distortion theorems. If dealing with spherical distances and
derivatives, these theorems take on somewhat cumbersome form with the need of checking
“annoying” hypotheses.

Definition 3.2. Any semi–hyperbolic rational semigroup satisfying the Fundamental As-
sumption is called *semi–hyperbolic.

It is immediate from these definitions that both concepts of semi–hyperbolicity and
*semi–hyperbolicity are independent of any set generators of the rational semigroup con-
sidered.

The crucial tool indispensable in developing the theory of *semi–hyperbolic rational semi-
groups is given by the the following semigroup version of Mañé’s Theorem proved in [35].

Theorem 3.3. If G = ⟨f1, . . . , fu⟩ is a finitely generated rational semigroup satisfying the
Fundamental Assumption, then G is *semi–hyperbolic if and only if all of the following
conditions are satisfied.

(a) For each z ∈ J(G) there exists a neighborhood U of z in C such that for any sequence

{gn}∞n=1 in G, any domain V in Ĉ, and any point ζ ∈ U , the sequence {gn}∞n=1 does
not converge to ζ locally uniformly on V.

(b) If c ∈ Crit∗(f), then

distC
(
c,G∗(c+)

)
> 0.

Now the following characterization of *semi–hyperbolic semigroups, more in terms of the
skew product map f̃ : Σu × Ĉ −→ Σu × Ĉ, is immediate.

Theorem 3.4. If G = ⟨f1, . . . , fu⟩ is a finitely generated rational semigroup satisfying the
Fundamental Assumption, then G is *semi–hyperbolic if and only if all of the following
conditions are satisfied.

(a) For each z ∈ J(G) there exists a neighborhood U of z in C such that for any sequence

{gn}∞n=1 in G, any domain V in Ĉ, and any point ζ ∈ U , the sequence {gn}∞n=1 does
not converge to ζ locally uniformly on V.

(b) For each ξ ∈ Crit∗(f̃) we have that

distC
(
ξ, {f̃n(ξ) : n ≥ 1}

)
> 0.
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The second named author proved in [35], as Corollary 2.16, the following theorem which is
very important for us in the current paper.

Theorem 3.5 (Exponential Shrinking Property). Let G = ⟨f1, . . . , fu⟩ be a *semi–hyperbolic
finitely generated rational semigroup. Then there exist R > 0, C > 0, and α > 0 such that
if x ∈ J(G), ω ∈ Σ∗

u, and V is any connected component of f−1
ω (B2(x,R)), then

(a) V is simply connected

and

(b)

diamC ≤ Ce−α|ω|.

Remark 3.6. Note that this property, i.e. Exponential Shrinking, does not in fact depend
on the choice of finitely many generators. It is a property of finitely generated rational
semigroups themselves. Only α (and C too) may depend on the generators.

We have proved in [49] the following lemma. We provide here its simple independent proof
for the sake of completeness and convenience of the reader.

Lemma 3.7. If G = ⟨f1, . . . , fu⟩ is a finitely generated *semi–hyperbolic rational semi-
group, then

(a) G∗(Crit∗(f)) ∩ J(G) is a nowhere dense subset of J(G),

and

(b) PCV∗(f̃) is a nowhere dense subset of J(f̃).

Proof. Proving item (a), suppose for a contradiction the set G∗(Crit∗(f)) ∩ J(G) is not
nowhere dense in J(G). Since

G∗(Crit∗(f)) ∩ J(G) =
⋃

c∈Crit∗(f)

J(G) ∩G∗(c+),

since the set Crit∗(f) is finite, and since each constituent of the above union is closed, it
follows that there exists c ∈ Crit∗(f) such that

IntJ(G)

(
J(G) ∩G∗(c+)

)
̸= ∅.

It then follows from item (c) of Proposition 2.1 and forward G–invariance of the set G∗(c+)

that G∗(c+) ⊃ J(G). In particular

c ∈ G∗(c+),

contrary to item (b) of Theorem 3.3. Item (a) of our lemma is thus proved.

In order to prove its item (b) suppose for a contradiction that PCV∗(f̃) is not nowhere

dense in J(f̃).
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This means that PCV∗(f̃) has non–empty interior in J(f̃), and therefore, because of its

forward invariance and topological exactness of the map f̃ : J(f̃) → J(f̃), we conclude
that

PCV∗(f̃) = J(f̃).

Hence,

J(G) = p2(J(f̃)) = p2(PCV∗(f̃)) ⊂ G∗(Crit∗(f)) ∩ J(G),
contrary to, the already proved, item (a). Item (b) is thus proved and, simultaneously, the
whole Lemma 3.7. □

Following the common tradition, given a point (τ, z) ∈ Σu × Ĉ we denote by ω(τ, z) the

ω–limit set of (τ, z) with respect to the skew product map f̃ : Σu × Ĉ → Σu × Ĉ, i.e. the
set of all accumulation points of the sequence

(
f̃n(τ, z)

)∞
n=0

. For every (τ, z) ∈ J(f̃) put

Crit(τ, z) := Crit(f̃) ∩ ω(τ, z).
In [49] we proved the following whose proof we reproduce here for the sake of completeness
and its importance for the further development of the present manuscript. It is convenient
for the sake of this proof to introduce the following concept. If c ∈ Crit(G), then by

ωG(c+)

we denote the set of all accumulation points of the set G∗(c+). Of course

G∗(c+) = G∗(c+) ∪ ωG(c+).

Lemma 3.8. Let G = ⟨f1, . . . , fu⟩ be a finitely generated *semi–hyperbolic rational semi-

group. If (τ, z) ∈ J(f̃), then

p2(ω(τ, z)) ̸⊂ G∗
(
p2(Crit(τ, z))+

)
.

Proof. Suppose on the contrary that

(3.1) p2(ω(τ, z)) ⊂ G∗
(
p2(Crit(τ, z))+

)
.

Consequently, Crit(τ, z) ̸= ∅. Let (τ 1, c1) ∈ Crit(τ, z). This means that (τ 1, c1) ∈ ω(τ, z),
and it follows from (3.1) that there exists (τ 2, c2) ∈ Crit(τ, z) such that

either c1 ∈ ωG(c2+) or c1 = g1(c2)

for some g1 ∈ G of the form fω with f ′
ω1
(c2) = 0. Iterating this procedure we obtain an

infinite sequence ((τ j, cj))
∞
j=1 of points in Crit(τ, z) such that for every j ≥ 1

either cj ∈ ωG(cj+1+) or cj = gj(cj+1)

for some gj ∈ G of the form fρ with f
′
ρ1
(cj+1) = 0. Consider an arbitrary block

ck, ck+1, . . . , cl

such that
cj = gj(cj+1)
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for every k ≤ j ≤ l − 1, and suppose that

l − (k − 1) ≥ #(Crit(f) ∩ J(G)).
Then there are two indices k ≤ a < b ≤ l such that

ca = cb.

Hence,

ga ◦ ga+1 ◦ . . . ◦ gb−1(cb) = ca = cb and (ga ◦ ga+1 ◦ . . . ◦ gb−1)
′(cb) = 0.

This however contradicts our assumption that the Julia set, J(G), of G contains no su-
perstable fixed points. In consequence, the length of the block ck, ck+1, . . . , cl is bounded
above by #(Crit(f)∩ J(G)). Therefore, there exists an infinite sequence (jn)

∞
n=1 such that

cjn ∈ ωG(cjn+1+)

for all n ≥ 1. In conclusion, there would exist at least one point c ∈ Crit∗(f) such that

c ∈ ωG(c+),

contrary to Theorem 3.3 (b). This finishes the proof. □

The following proposition, also proved in [49], will be used many times in the current
paper. We therefore provide its proof here too.

Proposition 3.9. If G = ⟨f1, . . . , fu⟩ is a finitely generated *semi–hyperbolic rational

semigroup, then for each point (τ, z) ∈ J(f̃) \ Sing(f̃), there exist a number η(τ, z) > 0, an
increasing sequence (nj)

∞
j=1 of positive integers, and a point

(τ̂ , ẑ) ∈ ω(τ, z) \ p−1
2

(
G∗(p2(Crit(τ, z))+)

)
with the following two properties.

(a) limj→∞ f̃nj(τ, z) = (τ̂ , ẑ).

(b) The connected component of the set f−1
τ |nj

(
B2

(
fτ |nj

(τ, z), η(τ, z)
))

containing z con-

tains no critical points of the map fτ |nj
: Ĉ −→ Ĉ.

Proof. In view of Lemma 3.8 there exists a point (τ̂ , ẑ) ∈ ω(τ, z) such that

ẑ /∈ G∗(p2(Crit(τ, z))+).

Let

η :=
1

2
distC

(
ẑ, G∗(p2(Crit(τ, z))+)

)
.

Then there exists an infinite increasing sequence (nj)
∞
j=1 of positive integers such that

(3.2) lim
j→∞

f̃nj(τ, z) = (τ̂ , ẑ)

and

(3.3) fτ |nj
(z) /∈ B2

(
G∗(p2(Crit(τ, z))+), η

)
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for all j ≥ 1. We claim that there exists η(τ, z) > 0 such that for all j ≥ 1 large enough

Comp
(
z, fτ |nj

, η(τ, z)
)
∩ Crit(fτ |nj

) = ∅.

Indeed, otherwise we can find an increasing subsequence (ji)
∞
i=1 and a decreasing to zero

sequence of positive numbers ηi < η such that

Comp
(
z, fτ |nji

, ηi
)
∩ Crit(fτ |nji

) ̸= ∅.

Let c̃i ∈ Comp
(
z, fτ |nji

, ηi
)
∩ Crit(fτ |nji

). Then there exist 0 ≤ pi ≤ nji − 1 and

(3.4) ci ∈ Crit(fτpi+1)

such that ci = fτ |pi (c̃i). Since limi→∞ ηi = 0, it follows from Theorem 3.5 that limi→∞ c̃i = z.

Since (τ, z) /∈
⋃
n≥0 f̃

−n(Crit(f̃)), this implies that limi→∞ pi = +∞. But then, making use
of Theorem 3.5 again and of the formula (σpi(τ), ci) = fpi(τ, c̃i), we conclude that the set
of accumulation points of the sequence

((σpi(τ), ci))
∞
i=1

is contained in ω(τ, z). Fix (τ∞, c) to be one of these accumulation points. Since Crit(f̃)
is closed, we conclude that

(3.5) (τ∞, c) ∈ Crit(τ, z).

Since that set Crit(f) is finite, passing to a subsequence, we may assume without loss of
generality that (ci)

∞
i=1 is a constant sequence, so equal to c. Since c = fτ |pi (c̃i), we get∣∣∣∣fτ |nji

(z)− f
τ |

nji
pi+1

(c)

∣∣∣∣ = ∣∣∣fτ |nji
(z)− fτ |nji

(c̃i)
∣∣∣ < ηi < η.

But, looking at (3.4) and (3.5), we conclude that f
τ |

nji
pi+1

(c) ∈ G∗(Crit(τ, z)+). We have thus

arrived at a contradiction with (3.3), and the proof is finished. □

4. The Conformal and Invariant Measures mt and µt for f̃ : J(f̃) −→ J(f̃)

4.1. Conformal and Invariant Measures (and Topological Pressure) for f̃ : J(f̃) −→
J(f̃): Preliminaries.

In this section we rigorously recall, generalize, and extend, the thermodynamic concepts
introduced in [49]. Some of them have already been introduced and explored in [36], [37],
and [48].

Definition 4.1. Let G = ⟨f1, . . . , fu⟩ and let t ≥ 0. For all ξ ∈ J(f̃) \ PCV∗(f̃) define

Pξ(t) := lim sup
n→∞

1

n
log

∑
x∈f̃−n(ξ)

∣∣(f̃n)′(x)∣∣−t ∈ [−∞,+∞],

where, if x = (ω, a), then, we recall,
∣∣(f̃n)′(x)∣∣ denotes the norm of the derivative of

fωn ◦ · · · ◦ fω1 at the point a.
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The following proposition was proved in [49] as Lemma 7.3 and will be of crucial impor-
tance in the sequel. We provide its short and simple proof here for the sake of completeness
and for the convenience of the reader. Furthermore, we expose the proof in terms of the
skew product map f̃ : J(f̃) −→ J(f̃) rather than in terms of the semigroup G itself, as it
was done in [49].

Proposition 4.2. If G is a *semi–hyperbolic rational semigroup generated by a u–tuple
map f = (f1, . . . , fu) ∈ Ratu, then for each t ≥ 0, the function

J(f̃) \ PCV∗(f̃) ∋ ξ 7−→ Pξ(t) ∈ [−∞,+∞]

is constant. Denote this constant by P(t) and call it the topological pressure of t .

Proof. Because of Lemma 2.4 for every ξ ∈ J(f̃) \ PCV∗(f̃) there exists rξ > 0 such that

B2(p2(ξ), 2rξ) ∩ PCV(G) = ∅.

It then directly follows from Koebe’s Distortion Theorem that the function

γ 7−→ Pγ(t)

is constant on J(f̃) ∩
(
Σu × B2(p2(ξ), rξ)

)
. Now, fix ξ1, ξ2 ∈ J(f̃) \ PCV∗(f̃). By Proposi-

tion 2.1 (c) there exists an integer q ≥ 1 such that

f̃ q
(
J(f̃) ∩

(
Σu ×B2(p2(ξ1), rξ1))

)
∩
(
J(f̃) ∩

(
Σu ×B2(p2(ξ2), rξ2)

))
̸= ∅.

Fix then a point ρ ∈ J(f̃) ∩
(
Σu ×B2(p2(ξ1), rξ1)) such that

f̃ q(ρ) ∈ J(f̃) ∩
(
Σu ×B2(p2(ξ2), rξ2)

)
.

Then ∑
x∈f̃−(n+q)(f̃q(ρ))

∣∣(f̃n+q)′(x)∣∣−t ≥ |(f̃ q)′(ρ)|−t
∑

y∈f̃−n(ρ)

∣∣(f̃n)′(y)∣∣−t.
Therefore, Pf̃q(ρ)(t) ≥ Pρ(t). Hence, Pξ2(t) ≥ Pξ1(t). Exchanging the roles of ξ1 and ξ2, we

get Pξ1(t) ≥ Pξ2(t), and we are done. □

We want to emphasize that topological pressure does depend on the choice of generators
and not on the semigroup alone. Now, we shall prove the following basic properties of the
function

[0,+∞) ∋ t 7−→ P(t) ∈ [−∞,+∞].

Proposition 4.3. If G is a finitely generated *semi–hyperbolic rational semigroup generated
by a u–tuple map f = (f1, . . . , fu) ∈ Ratu, then the function t 7−→ P(t), t ≥ 0, has the
following properties.

(a) For every t ≥ 0 we have that P(t) ∈ (−∞,+∞) and P(0) ≥ log 2 > 0.

(b) The function [0,+∞) 7−→ P(t) is strictly decreasing and Lipschitz continuous. More
precisely:
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(c) If 0 ≤ s ≤ t < +∞, then

− log ∥f̃ ′∥∞(t− s) ≤ P(t)− P(s) ≤ −α(t− s),

where the constant α > 0 comes from the Exponential Shrinking Property (Theo-
rem 3.5).

(d) limt→+∞ P(t) = −∞.

Proof. The inequality

(4.1) log 2 ≤ P(0) < +∞
follows immediately from degree considerations. Assuming that P(s) ∈ R, the left–hand
side of item (c) follows immediately, while its right–hand side follows from the Exponential
Shrinking Property (Theorem 3.5) in conjunction with Koebe’s Distortion Theorem. Hav-
ing this and (4.1) we deduce that items (a) and (c) hold. Item (b) is a direct consequence
of (c) while item (d) is now an immediate consequence of the right–hand side of (c). □

It follows from items (a), (b), and (d) of this proposition that there exists a unique t ∈
[0,+∞), we denote it by hf , such that

(4.2) P(hf ) = 0.

We now recall the concept of t–conformal measures for the skew product map f̃ :
J(f̃) −→ J(f̃).

Definition 4.4. A Borel probability measure m on J(f̃) is called t–conformal for f̃ :

J(f̃) → J(f̃) if and only if

m(f̃(A)) = eP(t)
∫
A

|f̃ ′|t dm

whenever A ⊂ J(f̃) is a Borel set such that the restricted map f̃ |A is 1–to–1.

In order to discern it from “truly” conformal measures, i.e. hf–conformal measures (for

which the factor eP(t) disappears in the above displayed formula), any eP(t)|f̃ ′|t–conformal
measure will also be frequently called a generalized t–conformal measure. We have
proved in [49] the following fact of crucial importance for us in the current paper. We
provide its proof here for the sake of completeness, convenience of the reader, its crucial
importance, and because the construction of conformal measures given in this proof (coming
from [49]) will be needed later in the paper.

Proposition 4.5. If G is a finitely generated *semi–hyperbolic rational semigroup generated
by a u–tuple map f = (f1, . . . , fu) ∈ Ratu, then for every t ≥ 0 there exists an eP(t)|f̃ ′|t–
conformal measure mt for the skew product map f̃ : J(f̃) −→ J(f̃).

Proof. The construction of generalized t–conformal measures starts as follows. Fix ξ ∈
J(f̃) \ PCV(f̃). Observe that the critical parameter for the series

SPt(ξ, s) :=
∞∑
n=1

e−sn
∑

x∈f̃−n(ξ)

∣∣(f̃n)′(x)∣∣−t, s ≥ 0,
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is equal to the topological pressure P(t), i.e. SPt(ξ, s) = +∞ if s < P(t) and SPt(ξ, s) <

+∞ if s > P(t). In the latter case define a Borel probability measure νt,s on J(f̃) by the
following formula:

(4.3) νt,s(A) :=
1

SPt(ξ, s)

∞∑
n=1

e−sn
∑

x∈A∩f̃−n(ξ)

∣∣f̃ ′(x)
∣∣−t.

Now we want to take weak* limits as s↘ P(t). For this we need the concept of the Perron–

Frobenius operator. Given a function g : J(f̃) −→ C let Ltg : J(f̃) −→ C be defined by
the following formula:

(4.4) Ltg(y) =
∑

x∈f̃−1(y)

|f̃ ′(x)|−tg(x).

Ltg(y) is finite if and only if y /∈ Crit(f̃). Otherwise Ltg(y) is declared to be ∞. Although
Lt is not actually an operator since it does not preserves the class of finite valued functions,
it is still referred to as the Perron–Frobenius operator associated to the parameter t ≥ 0.
Iterating formula (4.4), we get for all integers n ≥ 1 that

Lnt g(y) =
∑

x∈f̃−n(y)

|(f̃n)′(x)|−tg(x).

For every σ–finite Borel measure m on J(f̃) let the σ–finite Borel measure L∗n
t m be given

by the formula

L∗n
t m(A) = m(Lnt 1A),

where A ⊂ J(f̃) is a Borel set and m(g) :=
∫
gdm. Notice that if (τ, ξ) ∈ J(f̃)\DPCV(f̃),

then for all Borel sets A ⊂ J(f̃) we have

L∗n
t δ(τ,ξ)(A) = δ(τ,ξ)(L

n
t 1A) = Lnt 1A(τ, ξ) =

∑
|ω|=n

∑
x∈A∩f−1

ω (ξ)

|f ′
ω(x)|−t ≤ Lnt 1(ξ) <∞.

In particular,

L∗n
t δ(τ,ξ)(J(f̃)) ≤ Lnt 1(ξ) < +∞.

Observing that the formula (4.3) can be now expressed in the form

(4.5) νt,s = SPt(ξ, s)
−1

∞∑
n=1

e−snL∗n
t δ(τ,ξ),

a direct straightforward calculation shows that

(4.6) e−sL∗
tνt,s = SPt(ξ, s)

−1

∞∑
n=1

e−s(n+1)L
∗(n+1)
t δ(τ,ξ) = νt,s − SPt(ξ, s)

−1
(
e−sL∗

t δ(τ,ξ)
)
.

If SPt
(
ξ,P(t)

)
= +∞), then lims↘P(t) Ss(ξ) = +∞ and it follows from the formula (4.6)

that any weak limit mt of νt,s when s ↘ P(t) is the required generalized t–conformal
measure. If SPt

(
ξ,P(t)

)
< +∞ then we apply the usual modifications involving slowly

varying functions whose details can be found for example in [6]. □
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We have proved in [49] the following. We will need it in the sequel and we provide its
short computational proof taken from [49].

Lemma 4.6. Let G be a finitely generated *semi–hyperbolic rational semigroup generated
by a u–tuple map f = (f1, . . . , fu) ∈ Ratu. Fix t ≥ 0. If s > P(t), then

νt,s(A) = e−s
∫
f̃(A)

∣∣(f̃ |−1
A )′(x)

∣∣tdνt,s(x)+{0 if A ∩ f̃−1(ξ) = ∅
e−sSPt(ξ, s)

−1(ξ)
∣∣f̃ ′(y)

∣∣−t if A ∩ f̃−1(ξ) = {y}

whenever A ⊂ J(f̃) is a Borel set such that the map f̃ |A is 1–to–1.

Proof. We calculate:

νt,s(A) =e
−sL∗

tνt,s(1A) + S−1
s (ξ)e−sL∗

t δ(τ,ξ)(1A)

=e−s
∫
Lt(1|A)dνt,s + e−sS−1

s (ξ)

∫
Lt(1|A)dδ(τ,ξ)

=e−s
∫ ∑

y∈f̃−1(x)

∣∣f̃ ′∣∣−t1A(y)dνt,s(x) + e−sS−1
s (ξ)Lt(1|A)(τ, ξ)

=e−s
∫
f̃(A)

∣∣(f̃ |−1
A )′(x)

∣∣tdν̃s(x) +{0 if A ∩ f̃−1(τ, ξ) = ∅
e−sS−1

s (ξ)
∣∣f̃ ′(y)

∣∣−t if A ∩ f̃−1(τ, ξ) = {y}.

□

4.2. Ergodic Theory of Conformal and Invariant Measures for f̃ : J(f̃) −→ J(f̃).

We begin this section with some abstract auxiliary facts about measures. Frequently,
in order to denote that a Borel measure µ is absolutely continuous with respect to ν, we
write µ ≺ ν. However, we do not use any special symbol to record the equivalence of
measures. We use some notations from [1]. Let (X,F , µ) be a σ–finite measure space and
let T : X → X be a measurable almost everywhere defined transformation. T is said to be
nonsingular if and only if for any A ∈ F ,

µ(T−1(A)) = 0 ⇔ µ(A) = 0.

The map T is said to be ergodic with respect to µ, or µ is said to be ergodic with
respect to T , if and only if either

µ(A) = 0 or µ(X \ A) = 0

whenever the measurable setA is T–invariant, meaning that T−1(A) = A. For a nonsingular
transformation T : X → X, the measure µ is said to be conservative with respect to
T or T is said to be conservative with respect to µ if and only if for every measurable set
A with µ(A) > 0,

µ

({
z ∈ A :

∞∑
n=0

1A ◦ T n(z) < +∞

})
= 0.
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Note that by [1, Proposition 1.2.2], for a nonsingular transformation T : X → X, µ is
ergodic and conservative with respect to T if and only if for any A ∈ F with µ(A) > 0,

µ

({
z ∈ X :

∞∑
n=0

1A ◦ T n(z) < +∞

})
= 0.

Finally, the measure µ is said to be T–invariant, or T is said to preserve the measure
µ if and only if µ ◦ T−1 = µ. Denote by M(T ) the collection of all T–invariant Borel
probability measures on X. It follows from Birkhoff’s Ergodic Theorem that every finite
ergodic T–invariant measure µ is conservative; for infinite measures this is no longer true.
Finally, two ergodic invariant measures defined on the same σ–algebra are either singular
or they coincide up to a multiplicative constant.

Definition 4.7. Suppose that (X,F , ν) is a probability space and T : X → X is a measur-
able map such that T (A) ∈ F whenever A ∈ F . The map T : X → X is said to be weakly
metrically exact provided that

lim sup
n→∞

µ(T n(A)) = 1

whenever A ∈ F and µ(A) > 0.

We need the following two facts about weak metrical exactness, the first being straightfor-
ward (see the argument in [1, page 15]), the latter more involved (see[25] and [16]).

Fact 4.8. If a nonsingular measurable transformation T : X → X of a probability space
(X,F , ν) is weakly metrically exact, then it is ergodic and conservative.

Fact 4.9. A measure–preserving transformation T : X → X of a probability space (X,F , µ)
is weakly metrically exact if and only if it is exact, which means that

(a)
lim
n→∞

µ(T n(A)) = 1

whenever A ∈ F and µ(A) > 0, or equivalently,

(b) The σ–algebra
⋂
n≥0 T

−n(F) consists of sets of measure 0 and 1 only.

Note that if T : X → X is exact, then the Rokhlin’s natural extension (T̃ , X̃, µ̃) of (T,X, µ)
is K–mixing.

We now pass to our *semi–hyperbolic semigroup G and investigate in detail generalized
conformal measures.

Definition 4.10. Let G be a finitely generated *semi–hyperbolic rational semigroup gener-
ated by a u–tuple map f = (f1, . . . , fu) ∈ Ratu. Then,

• A real number t ≥ 0 is called a parameter of continuity for the *semi–hyperbolic
semigroup G if and only if

mt(Crit(f̃)) = 0.

• The conformal measure mt is then called continuous.
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• The set of all parameters of continuity for G will be denoted by ∆G.

As an immediate consequence of this definition and generalized conformality of measures
mt, we get the following.

Observation 4.11. If G is a finitely generated *semi–hyperbolic semigroup generated by a
u–tuple map f = (f1, . . . , fu) ∈ Ratu and t ∈ ∆G, then

mt(Sing(f̃)) = 0.

Given a point (τ, z) ∈ J(f̃) \ Sing(f̃) let
(4.7)

Bj(τ, z) := f̃
−nj

τ |nj ,z

(
Σu ×B2

(
fτ |nj

(z),
1

4
η(τ, z)

))
= [τ |nj

]× f−1
τ |nj ,z

(
B2

(
fτ |nj

(z)
1

4
η(τ, z)

))
and

(4.8) B∗
j (τ, z) := Bj(τ, z)) \ Sing(f̃),

where η(τ, z) > 0 and nj := nj(τ, z) ≥ 1 are the integers produced in Proposition 3.9. We
now shall recall the concept of Vitali relations defined on the page 151 of Federer’s book
[8]. Let X be an arbitrary set. By a covering relation on X one means a subset of

{(x, S) : x ∈ S ⊂ X}.
If C is a covering relation on X and Z ⊂ X, one puts

C(Z) = {S ⊂ X : (x, S) ∈ C for some x ∈ Z}.
One then says that C is fine at x if

inf{diam(S) : (x, S) ∈ C} = 0.

If in addition X is a metric space and a Borel measure µ is given on X, then a covering
relation V on X is called a Vitali relation if

(a) All elements of V (X) are Borel sets,
(b) V is fine at each point of X,
(c) If C ⊂ V , Z ⊂ X and C is fine at each point of Z, then there exists a countable

disjoint subfamily F of C(Z) such that µ(Z \ ∪F) = 0.

Now, given (τ, z) ∈ J(f̃) \ Sing(f̃), let

B(τ,z) =
{(

(τ, z), B∗
j (τ, z)

)}∞
j=1

,

where the sets Bj(τ, z) are defined by formula (4.7). Let

B =
⋃

(τ,z)∈J(f̃)\Sing(f̃)

B(τ,z)

and, following notation from Federer’s book [8], let

B2 := B
(
J(f̃) \ Sing(f̃)

)
= {B∗

j (τ, z) : (τ, z) ∈ J(f̃) \ Sing(f̃), j ≥ 1}.
We shall prove the following.
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Lemma 4.12. If G is a finitely generated *semi–hyperbolic semigroup generated by a u–
tuple map f = (f1, . . . , fu) ∈ Ratu, then for every t ∈ ∆G the family B is a Vitali relation

for the measure mt on the set J(f̃) \ Sing(f̃).

Proof. Fix 1 < κ < e (a different notation for 1 < τ < +∞ appearing in Theorem 2.8.17

from [8]). Fix (τ, z) ∈ J(f̃) \ Sing(f̃). Since

(4.9) lim
j→∞

nj = +∞,

we have that

lim
j→∞

diamΣu×C(B
∗
j (τ, z)) = 0.

This means that the relation B is fine at the point (τ, z). Aiming to apply Theorem 2.8.17
from [8], we set

δ(B∗
j (ω, x)) = exp(−nj)

for every B∗
j (ω, x) ∈ B2. With the notation from page 144 in [8] (F = B2) we have

B̂∗
j (τ, z) =

⋃
B∗
j (τ, z),

where

B∗
j (τ, z) :=

{
B : B ∈ B2, B ∩B∗

j (τ, z) ̸= ∅, δ(B) ≤ κδ(B∗
j (τ, z))

}
.

Fix a B from the above family. Then there exists (ω, x) ∈ J(f̃) \ Sing(f̃) and an integer
i ≥ 1 such that

B = B∗
i (ω, x).

Since δ(Bi(ω, x)) ≤ κδ(Bj(τ, z)), we have that e
−ni ≤ κe−nj . Equivalently: nj ≤ ni+log κ.

Since both nj and ni are integers and since log κ < 1, this yields

(4.10) ni ≥ nj.

Since

(4.11) B∗
i (ω, x) ∩B∗

j (τ, z) ̸= ∅,

we have that [ω|ni
] ∩ [τ |nj

] ̸= ∅. In conjunction with (4.10) this yields

ω|nj
= τ |nj

.
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Then
(4.12)
B∗
i (ω, x) ∩B∗

j (τ, z) =

=

((
[τ |nj

]× f−1
τ |nj ,z

(
B2

(
fτ |nj

(z),
1

4
η(τ, z)

)))
\ Sing(f̃)

)
∩

∩
((

[τ |nj
σnj(ω)|ni−nj

]× f−1
τ |nj ,x

◦ f−1
σnj (ω)|ni−nj ,fτ |nj

(x)

(
B2

(
fω|ni

(x),
1

4
η(ω, x)

)))
\ Sing(f̃)

)
⊂

(
[τ |nj

]× f−1
τ |nj ,z

(
B2

(
fτ |nj

(z),
1

4
η(τ, z)

)
∩

∩ f−1
σnj (ω)|ni−nj ,fτ |nj

(x)

(
B2

(
fω|ni

(x),
1

4
η(ω, x)

))))
\ Sing(f̃).

Now, since B̂∗
j (τ, z) is a separable metrizable topological space and B∗

j (τ, z) is its cover
consisting of open sets, it follows from Lindelöf’s Theorem that there are countably many
points (ω(s), xs) ∈ J(f̃) \ Sing(f̃), s = 1, 2, . . ., along with positive integers is, s = 1, 2, . . .,
such that Bis(ω

(s), xs) ∈ B∗
j (τ, z) for every s ≥ 1 and

∞⋃
s=1

B∗
is(ω

(s), xs) = B̂∗
j (τ, z).

Define then the sets Fs, s = 1, 2, . . ., inductively as follows:

F1 :=
(
B2

(
fτ |nj

(z),
1

4
η(τ, z)

)
∩f−1

σnj (ω(1))|ni1
−nj ,fτ |nj

(x1)

(
B2

(
fω(1)|ni1

(x1),
1

4
η(ω(1), x1)

)))
\Sing(f̃)

and

Fs+1 :=
((
B2

(
fτ |nj

(z),
1

4
η(τ, z)

)
∩

∩ f−1
σnj (ω(s+1))|nis+1

−nj ,fτ |nj
(xs+1)

(
B2

(
fω(s+1)|nis+1

(xs+1),
1

4
η(ω(s+1), xs+1)

)))
\ Sing(f̃)

))
\

\ (F1 ∪ F2 ∪ . . . ∪ Fs).

By virtue of (4.12) we have that

B̂∗
j (τ, z) ⊂

∞⋃
s=1

[τ |nj
]× f−1

τ |nj ,z
(Fs) =

∞⋃
s=1

f̃
−nj

τ |nj ,z

(
Σu × Fs

)
,
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and, by the very definition of the sets Fs, the sets forming this union are mutually disjoint.
Using Koebe’s Distortion Theorem, we therefore get

mt(B̂
∗
j (τ, z)) ≤

∞∑
s=1

mt

(
f̃
−nj

τ |nj ,z

(
Σu × Fs

))
≤ Kte−P(t)nj

∣∣f ′
τ |nj

(z)
∣∣−t ∞∑

s=1

mt(Σu × Fs)

= Kte−P(t)nj
∣∣f ′
τ |nj

(z)
∣∣−tmt

(
Σu ×

∞⋃
s=1

Fs

)
≤ Kte−P(t)nj

∣∣f ′
τ |nj

(z)
∣∣−t

≤ K2t
mt

(
[τ |nj

]× f−1
τ |nj ,z

(
B2

(
fτ |nj

(z), 1
4
η(τ, z)

)))
mt

(
Σu ×B2

(
fτ |nj

(z), 1
4
η(τ, z)

))
= K2t

mt(B
∗
j (τ, z))

mt

(
Σu ×B2

(
fτ |nj

(z), 1
4
η(τ, z)

))
≤ K2tM(τ, z)−1mt(B

∗
j (τ, z)),

where
M(τ, z) := inf{mt ◦ p−1

2 (B2(ξ, η(τ, z)/4) : ξ ∈ J(G)} > 0

since J(G) is a compact set and mt ◦ p−1
2 is positive on non–empty open subsets of J(G).

Therefore,

lim
j→∞

(
δ
(
B∗
j (τ, z)

)
+
mt

(
B̂∗
j (τ, z)

)
mt

(
B∗
j (τ, z)

)) ≤ lim
j→∞

(e−nj +K2tM(τ, z)−1) = K2tM(τ, z)−1 < +∞.

Thus, all the hypothesis of Theorem 2.8.17 in [8], p. 151, are verified and the proof of our
lemma is complete. □

As an immediate consequence of this lemma and Theorem 2.9.11, p. 158 in [8] we get the
following.

Proposition 4.13. Let G be a finitely generated *semi–hyperbolic rational semigroup gen-
erated by a u–tuple map f = (f1, . . . , fu) ∈ Ratu. If t ∈ ∆G, then for every Borel set

A ⊂ J(f̃) \ Sing(f̃) with

At :=

{
(τ, z) ∈ A : lim

j→∞

mt(A ∩Bj(τ, z))

mt(Bj(τ, z))
= 1

}
,

then mt(At) = mt(A).

Now we are in position to prove the following.

Lemma 4.14. Let G be a finitely generated *semi–hyperbolic rational semigroup generated
by a u–tuple map f = (f1, . . . , fu) ∈ Ratu. If t ∈ ∆G, then every generalized t–conformal

measure ν for the skew product map f̃ : J(f̃) −→ J(f̃) is equivalent to mt.

Proof. Fix an integer v ≥ 1 and let

Iv := {(τ, z) ∈ J(f̃) \ Sing(f̃) : η(τ, z) ≥ 1/v},
where η(τ, z) > 0 is the number produced in Proposition 3.9. We may assume without
loss of generality that η(τ, z) ≤ 1. Let also (τ̂ , ẑ) and (nj)

∞
j=1 be the objects produced in
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this proposition. Fix (τ, z) ∈ Iv. Disregarding finitely many values of j, we may assume
without loss of generality that

|fτ |nj
(z)− ẑ| < 1

8
η(τ, z).

Keep Bj(τ, z) and B∗
j (τ, z) respectively given by formulas (4.7) and (4.8). By Koebe’s

Distortion Theorem and Proposition 3.9 we get that,

ν(Bj(τ, z)) = ν

(
f̃
−nj

τ |nj ,z

(
Σu ×B2

(
fτ |nj

(z),
1

4
η(τ, z)

)))
≍ e−P(t)nj |f ′

τ |nj
(z)|−tν

(
Σu ×B2

(
fτ |nj

(z),
1

4
η(τ, z)

))
= e−P(t)nj |f ′

τ |nj
(z)|−tν ◦ p−1

2

(
B2

(
fτ |nj

(z),
1

2
η(τ, z)

))
.

Hence,

ν(Bj(τ, z)) ⪯ e−P(t)nj |f ′
τ |nj

(z)|−t

and

ν(Bj(τ, z)) ⪰ e−P(t)nj |f ′
τ |nj

(z)|−tν ◦ p−1
2

(
B2

(
fτ |nj

(z),
1

4v

))
⪰ e−P(t)nj |f ′

τ |nj
(z)|−t inf

{
ν ◦ p−1

2 (B2(w, 1/(4v))) | w ∈ J(G)
}
> 0.

In conclusion

(4.13) M−1
v e−P(t)nj |f ′

τ |nj
(z)|−t ≤ ν(Bj(τ, z)),mt(Bj(τ, z)) ≤Mve

−P(t)nj |f ′
τ |nj

(z)|−t,

with some constant Mv ∈ (0,+∞) depending only on v. Now suppose that F ⊂ J(f̃) is an

arbitrary Borel set contained with mt(F ) > 0. Since t ∈ ∆G and since J(f̃) \ Sing(f̃) =⋃∞
v=1 Iv, there thus exists v ≥ 1 such that

mt(F ∩ Iv) > 0.

By regularity of mt there then exists a compact set E ⊂ F ∩ Iv such that

mt(E) > 0.

Fix also ε ∈ (0,mt(E)/2). By outer regularity of ν and compactness of E there now exists
δ > 0 such that

(4.14) ν(B(E, δ)) ≤ ν(E) + ε.

Of course the family{(
(τ, z), B∗

j (τ, z)
)
: (τ, z) ∈ E and B∗

j (τ, z) ⊂ B(E, δ/2)
}

is fine at each point of E. Therefore, because of Lemma 4.12, property (c) of the definition
of Vitali relations yields the existence of some countable set Y ⊂ E and some function
j : Y → N such that the countable family {Bj(y)(y)}y∈Y consists of mutually disjoint sets,

B∗
j(y)(y) ⊂ B(E, δ/2)
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for every y ∈ Y , and also

mt

(
E \

⋃
y∈Y

B∗
j(y)(y)

)
= 0.

But then also

mt

(
E \

⋃
y∈Y

Bj(y)(y)

)
= 0,

and

Bj(y)(y) ⊂ B(E, δ)

for every y ∈ Y , and, as the set J(f̃) \ Sing(f̃) is dense in J(f̃) and all the sets B∗
j (τ, z)

are open relative to J(f̃), the countable family {Bj(y)(y)}y∈Y consists of mutually disjoint
sets too. Therefore,

ν(F ) ≥ ν(E) ≥ ν(B(E, δ))− ε ≥ ν

(⋃
y∈Y

Bj(y)(y)

)
− ε

≥M−1
v

∑
(τ,z)∈Y

e−P(t)nj(τ,z)|f ′
τ |nj(τ,z)

(z)|−t − ε

≥M−2
v

∑
(τ,z)∈Y

mt

(
Bj(τ,z)(τ, z)

)
− ε

=M−2
v mt

(⋃
y∈Y

Bj(y)(y)

)
− ε

≥M−2
v mt(E)− ε.

Letting ε↘ 0, we thus get

ν(F ) ≥M−2
v mt(E) > 0.

This shows that

mt|J(f̃)\Sing(f̃) ≺ ν|J(f̃)\Sing(f̃).

Since in addition mt(Sing(f̃)) = 0 (as t ∈ ∆G), we thus get that

(4.15) mt ≺ ν.

By symmetry we also have that

mt|J(f̃)\Sing(f̃) ≍ ν|J(f̃)\Sing(f̃).

Thus, in order to complete the proof it suffices to show that

ν(Sing(f̃)) = 0.

To do this, suppose on the contrary that ν(Sing(f̃)) > 0. Since f̃ ′ vanishes on Crit(f̃), the
measure

ν0 = (ν(Sing(f̃)))−1ν|Sing(f̃),
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is generalized t–conformal for f̃ : J(f̃) −→ J(f̃). But then (4.15) would be true with ν

replaced by ν0. We would thus have mt(J(f̃) \ Sing(f̃)) = 0. Since mt(Sing(f̃)) = 0, we

would get mt(J(f̃)) = 0. This contradiction finishes the proof. □
Now, we shall prove the following.

Proposition 4.15. Let G be a finitely generated *semi–hyperbolic rational semigroup gen-
erated by a u–tuple map f = (f1, . . . , fu) ∈ Ratu. If t ∈ ∆G, then the measure mt is weakly

metrically exact for the skew product map f̃ : J(f̃) −→ J(f̃). In particular, it is ergodic
and conservative.

Proof. Fix a Borel set F ⊂ J(f̃) \Sing(f̃) with mt(F ) > 0. Proposition 4.13 there exists
at least one point (τ, z) ∈ Ft. Our first goal is to show that

(4.16) lim
j→∞

mt

(
f̃nj(F ) ∩ p−1

2 (B2(fτ |nj
(z), η/2))

)
mt

(
p−1
2

(
B2(fτ |nj

(z), η/2))
) = 1,

where, we recall η = η(τ, z) > 0 is the number produced in Proposition 3.9 and (nj)
∞
j=1 is

the corresponding sequence produced there. Indeed, suppose for the contrary that

κ =
1

2
lim inf
j→∞

mt

(
p−1
2

(
B2(fτ |nj

(z), η/2)) \ f̃nj(F )
)

mt

(
p−1
2 (B2(fτ |nj

(z), η/2))
) > 0.

Then, disregarding finitely many j’s, we may assume that

mt

(
p−1
2 (B2(fτ |nj

(z), η/2)) \ f̃nj(F )
)

mt

(
p−1
2 (B2(fτ |nj

(z), η/2))
) ≥ κ > 0

for all j ≥ 1 and some κ > 0. But

f̃
−nj

τ |nj ,z

(
p−1
2

(
B2(fτ |nj

(z), η/2)
)
\ f̃nj(F )

)
⊂
(
[τ |nj

]×B2

(
z,

1

2
Kη

∣∣∣f ′
τ |nj

(z)
∣∣∣−1
))

\ F

= Bj(τ, z) \ F

and

mt

(
f̃
−nj

τ |nj ,z

(
p−1
2 (B2(fτ |nj

(z), η/2)) \ fnj(F )
))

≥

≥ K−te−P(t)nj

∣∣∣f ′
τ |nj

(z)
∣∣∣−tmt

(
p−1
2 (B2(fτ |nj

(z), η/2)) \ fnj(F )
)

≥ κK−te−P(t)nj

∣∣∣f ′
τ |nj

(z)
∣∣∣−tmt

(
p−1
2 (B2(fτ |nj

(z), η/2))
)

= κK−he−P(t)nj

∣∣∣f ′
τ |nj

(z)
∣∣∣−tmt ◦ p−1

2

(
B2(fτ |nj

(z), η/2)
)

≥ κK−tQη/2e
−P(t)nj

∣∣∣f ′
τ |nj

(z)
∣∣∣−t ,

where

Qη/2 := inf
{
mt ◦ p−1

2 (B2(w, 1/η/2)) | w ∈ J(G)
}
> 0
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as supp(mt ◦ p−1
2 ) = J(G). Hence, making use of Koebe’s Distortion Theorem and the

generalized conformality of mt, we obtain, we obtain

mt(Bj(τ, z) \ F ) ≥ κK−tQη/2e
−P(t)nj

∣∣∣f ′
τ |nj

(z)
∣∣∣−t

≥ κK−2tQη/2mt(Bj(τ, z)).

Thus,
mt(Bj(τ, z) \ F )
mt(Bj(τ, z))

≥ κK−2tQη/2 > 0.

Letting j → ∞ this contradicts the fact that (τ, z) ∈ Ft and finishes the proof of (4.16). Now

since f̃ : J(f̃) → J(f̃) is topologically exact, there exists q ≥ 0 such that f̃ q(p−1
2 (B2(w, η/2))) ⊃

J(f̃) for all w ∈ J(G). It then easily follows from (4.16) and conformality of mt that

lim sup
k→∞

mt(f̃
k(F )) ≥ lim sup

j→∞
mt(f̃

q+nj(F )) = 1.

Since mt(Sing(f̃)) = 0 (as t ∈ ∆G), we are therefore done. □

As an immediate consequence of this proposition we get the following.

Corollary 4.16. Assume that G is a finitely generated *semi–hyperbolic rational semigroup
generated by a u–tuple map f = (f1, . . . , fu) ∈ Ratu. If t ∈ ∆G, then mt(Trans(f̃)) = 1,

where, we recall, Trans(f̃) is the set of transitive points of f̃ : J(f̃) −→ J(f̃), i.e. the set

of points z ∈ J(f̃) such that the set {f̃n(z) : n ≥ 0} is dense in J(f̃).

Corollary 4.17. Let G be a finitely generated *semi–hyperbolic rational semigroup gener-
ated by a u–tuple map f = (f1, . . . , fu) ∈ Ratu. If t ∈ ∆G, then mt is the only generalized

t–conformal measure on J(f̃) for the map f̃ : J(f̃) −→ J(f̃).

Proof. Let ν be an arbitrary generalized t–conformal measure on J(f̃) for the map

f̃ : J(f̃) −→ J(f̃). Since, by Lemma 4.14 the measure ν is absolutely continuous with
respect mt, it follows from Theorem 2.9.7 in [8], p. 155 and Lemma 4.12 that for mt–a.e.

(τ, z) ∈ J(f̃) \ Sing(f̃),

dν

dmt

(f̃(τ, z)) = lim
j→∞

ν(B∗
j (f̃(τ, z)))

mt(B∗
j (f̃(τ, z)))

and

lim
j→∞

ν(f̃(B∗
j (τ, z)))

mt(f̃(B∗
j (τ, z)))

= lim
j→∞

∫
B∗

j (τ,z)
|f̃ ′|t dν∫

B∗
j (τ,z)

|f̃ ′|t dmt

= lim
j→∞

ν(B∗
j (τ, z))

mt(B∗
j (τ, z))

=
dν

dmt

(τ, z).

But, a straightforward calculation shows that f̃(B∗
j (τ, z)) is equal to the set B∗

j (f̃(τ, z))

obtained with the redefined functions η(ξ) := η(f̃(ξ)) and the corresponding sequence
nj−1(ξ). Therefore by the same token as above

dν

dmt

(f̃(τ, z)) = lim
j→∞

ν(f̃(B∗
j (τ, z)))

mt(f̃(B∗
j (τ, z)))
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for mt–a.e. (τ, z) ∈ J(f̃) \ Sing(f̃). In consequence

dν

dmt

(f̃(τ, z)) =
dν

dmt

(τ, z)

for mt–a.e. (τ, z) ∈ J(f̃) \ Sing(f̃). Since, by Proposition 4.15, the measure mt is ergodic,
it follows that the Radon–Nikodym derivative dν

dmt
is mt–almost everywhere constant. Thus

ν = mt, and we are done. □

Now we pass to consider invariant measures absolutely continuous (and equivalent) to
generalized conformal measures mt. We first show their existence. Indeed, in order to prove
the existence of a Borel probability f̃–invariant measure on J(f̃) equivalent to mt, t ∈ ∆G,
we will use Marco Martens’s method which originated in [17]. This means that we shall

first produce a σ–finite f̃–invariant measure equivalent to mt (this is the Martens method)
and then we will prove this measure to be finite. The heart of the Martens method is the
following theorem which is a generalization of Proposition 2.6 from [17] proved by us in
[49] as Theorem 8.13. It is a generalization of Martens’s original result in the sense that
we neither assume our probability space (X,B,m) below to be a σ–compact metric space,
nor we assume that our map is conservative. Instead, we merely assume that item (6) in
Definition 4.18 holds.

Definition 4.18. Suppose (X,B,m) is a probability space. Suppose T : X → X is a
measurable mapping, such that T (A) ∈ B whenever A ∈ B, and such that the measure m is
quasi–invariant with respect to T , meaning that m ◦ T−1 ≺ m. Suppose further that there
exists a countable family {Xn}∞n=0 of subsets of X with the following properties.

(1) For all n ≥ 0, Xn ∈ B.
(2) m

(
X \

⋃∞
n=0Xn

)
= 0.

(3) For all integers m,n ≥ 0, there exists an integer j ≥ 0 such that m(Xm∩T−j(Xn)) >
0.

(4) For all j ≥ 0 there exists a Kj ≥ 1 such that for all A,B ∈ B with A,B ⊂ Xj and
for all n ≥ 0,

m(T−n(A))m(B) ≤ Kjm(A)m(T−n(B)).

(5)
∑∞

n=0m(T−n(X0)) = +∞.

(6)

lim
l→∞

m

(
T
( ∞⋃
j=l

Yj

))
= 0,

where Yj := Xj \
⋃
i<j Xi.

Then the map T : X −→ X is called a Martens map and {Xj}∞j=0 is called a Martens
cover.

Remark 4.19. Let us record the following observations.

(a) Of course, condition (2) follows from the stronger hypothesis that
⋃∞
n=0Xn = X.
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(b) condition (3) imposes that m(Xn) > 0 for all n ≥ 0.

(c) If T is conservative with respect to µ, then condition (5) is fulfilled.

(d) If the map T : X → X is finite–to–one, then condition (6) is satisfied. For, if T is
finite–to–one, then

⋂∞
l=1 T

(⋃∞
j=l Yj

)
= ∅.

Theorem 4.20. If (X,B,m) is a probability space and T : X −→ X is a Martens map
with a Martens cover {Xj}∞j=0, then

• There exists a σ–finite T–invariant measure µ on X equivalent to m.

• In addition, 0 < µ(Xj) < +∞ for each j ≥ 0.

The measure µ is constructed in the following way: Let lB : l∞ −→ R be a Banach limit.
For each A ∈ B, set

mn(A) :=

∑n
k=0m(T−k(A))∑n
k=0m(T−k(X0))

.

If A ∈ B and A ⊂ Yj with some j ≥ 0, then we obtain (mn(A))
∞
n=1 ∈ l∞. We set

µ(A) := lB((mn(A))
∞
n=1).

For a general measurable subset A ⊂ X, set

µ(A) :=
∞∑
j=0

µ(A ∩ Yj).

In addition, if for a measurable subset A ⊂ X, the sequence (mn(A))
∞
n=1 is bounded, then

we have the following formula:

(4.17) µ(A) = lB
(
(mn(A))

∞
n=1

)
− lim

l→∞
lB

(mn

(
A ∩

∞⋃
j=l

Yj

))∞

n=0

 .

In particular, if A ∈ B is contained in a finite union of sets Xj, j ≥ 0, then

µ(A) = lB
(
(mn(A))

∞
n=1

)
.

Furthermore, if the measure–preserving transformation T : X −→ X is ergodic (equiva-
lently with respect to the measure m or µ), then the T–invariant measure µ is unique up to
a multiplicative constant.

Now we are ready to prove the following.

Theorem 4.21. Let G be a finitely generated *semi–hyperbolic rational semigroup. If
t ∈ ∆G, then there exists a unique, up to a multiplicative constant, Borel σ–finite f̃–
invariant measure µt on J(f̃) which is absolutely continuous with respect to mt. In addition,
the measure µt is weakly metrically exact and equivalent to mt, in particular it is ergodic.



43

Proof. Since the topological support of mt is equal to the Julia set J(f̃) and since, by

Lemma 3.7, PCV(f̃) is a nowhere dense subset of J(f̃), we have that

(4.18) mt(PCV(f̃)) < 1.

Since the set PCV(f̃) is forward invariant under f̃ , it thus follows from ergodicity and
conservativity of mt (see Proposition 4.15) that

(4.19) mt(PCV(f̃)) = 0.

Now, because of Lemma 2.4, for every point (ω, z) ∈ J(f̃) \ PCV(f̃)) there exists a radius
r(ω,z) > 0 such that

Σu ×B2

(
z, r(ω,z)

)
⊂ Σu ×B2

(
z, 2r(ω,z)

)
⊂ J(f̃) \ PCV(f̃)).

Since J(f̃) \ PCV(f̃)) is a separable metrizable space, Lindelöf’s Theorem yields the exis-

tence of a countable set
{
(ω(j), zj)

}∞
j=0

⊂ J(f̃) \ PCV(f̃)) such that

(4.20)
∞⋃
j=0

Σu ×B2

(
z, r(ω(j),zj)

)
⊃ J(f̃) \ PCV(f̃)).

For every j ≥ 0 set

Xj := Σu ×B2

(
z, r(ω(j),zj)

)
.

Verifying the conditions of Definition 4.18 (with X := J(f̃), T := f̃ ,m := mt), we note

that f̃ is nonsingular because of generalized t–conformality of mt and since t ∈ ∆G. We
immediately see that condition (1) is satisfied, that (2) holds because of (4.18) and (4.20),
and that (3) holds because of generalized t–conformality of mt and topological exactness of

the map f̃ : J(f̃) → J(f̃). Condition (5) follows directly from ergodicity and conservativity

of the measure mt. Condition (6) follows since f̃ : J(f̃) → J(f̃) is finite–to–one (see
Remark 4.19).

Let us prove condition (4). For every j ≥ 0 put

Bj := B2

(
z, r(ω(j),zj)

)
and 2Bj := B2

(
z, 2r(ω(j),zj)

)
.
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Because of Koebe’s Distortion Theorem and generalized t–conformality of the measure mt,
we have

mt ◦ f̃−n(A) = mt

 ⋃
ρ∈HIBn(2Bj)

f̃−n
ρ (A)

 =
∑

ρ∈HIBn(2Bj)

mt

(
f̃−n
ρ (A)

)
≤

∑
ρ∈HIBn(2Bj)

Kte−P(t)n
∣∣(f̃−n

ρ )′(ω(j), zj)
∣∣tmt(A)

= K2tmt(A)

mt(B)

∑
ρ∈HIBn(2Bj)

K−te−P(t)n
∣∣(f−n

ρ )′(ω(j), zj)
∣∣tmt(B)

≤ K2tmt(A)

mt(B)

∑
ρ∈HIBn(2Bj)

mt

(
f̃−n
ρ (B)

)

= K2tmt(A)

mt(B)
mt

 ⋃
ρ∈HIBn(2Bj)

f̃−n
ρ (B)


= K2tmt ◦ f̃−n(B)

mt(A)

mt(B)
.

Hence,
mt ◦ f̃−n(A)

mt ◦ f̃−n(B)
≤ K2tmt(A)

mt(B)
,

and consequently, condition (4) of Definition 4.18 is satisfied. Therefore, Theorem 4.20

produces a Borel σ–finite f̃–invariant measure µt on J(f̃), equivalent to mt. The proof is
complete. □

Part 2. Ergodic Theory and Dynamics of Totally and Finely Non–Recurrent
Rational Semigroups

5. Totally Non–Recurrent and Finely Non–Recurrent Rational
Semigroups

In this short section we introduce various classes of rational semigroups with which we
will deal in subsequent sections, and we establish their most basic properties.

Definition 5.1. We say that a finitely generated rational semigroup G generated by a u–
tuple map f := (f1, . . . , fu) ∈ Ratu and satisfying the Fundamental Assumption is totally
non–recurrent (TNR) if and only if

(a) For each z ∈ J(G) there exists a neighborhood U of z in Ĉ (in fact in C) such

that for any sequence {gn}∞n=1 in G, any domain V in Ĉ and any point ζ ∈ U , the
sequence {gn}∞n=1 does not converge to ζ locally uniformly on V

and
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(b)
Crit∗(f) ∩ PCV(G) = ∅.

Remark 5.2. Note that if two u–tuple maps f and h generate the same rational semigroup
G, then

Crit∗(f) ⊂ G−1(Crit∗(h)) and Crit∗(h) ⊂ G−1(Crit∗(f)).

Since also the set PCV(G) is forward invariant under G, i.e. G(PCV(G)) ⊂ PCV(G), it
follows that item (b) of Definition 5.1 holds for f if and only if it holds for h. In conclusion,
the concept of being totally non–recurrent is independent of the choice of generators and
depends on the semigroup alone.

The following observations are immediate consequences of Theorem 3.3 and Theorem 3.4.

Observation 5.3. Every TNR rational semigroup is a finitely generated *semi–hyperbolic
semigroup.

Observation 5.4. Let f = (f1, . . . , fu) ∈ Ratu be a u–tuple map and let G = ⟨f1, . . . , fu⟩.
If G is *semi–hyperbolic and Crit∗(f) has at most one element, then G is a TNR rational
semigroup.

Now we shall provide a characterization of TNR semigroups more in terms of the skew
product map f̃ : Σu × Ĉ −→ Σu × Ĉ.

Proposition 5.5. A finitely generated rational semigroup G generated by a u–tuple map
f := (f1, . . . , fu) ∈ Ratu and satisfying the Fundamental Assumption is TNR if and only if
the following conditions are satisfied.

(a) For each z ∈ J(G) there exists a neighborhood U of z in Ĉ such that for any sequence

{gn}∞n=1 in G, any domain V in Ĉ and any point ζ ∈ U , the sequence {gn}∞n=1 does
not converge to ζ locally uniformly on V.

(b)

Crit∗(f̃) ∩ PCV(f̃) = ∅.

Proof. We are to show that conditions (b) of Definition 5.1 and (b) of Proposition 5.5 are
equivalent, and this follows immediately from Lemma 2.4. The proof is complete. □

Definition 5.6. A rational semigroup G is called C–F balanced if and only if

D(G) := distC
(
J(G),PCV(G) ∩ F (G)

)
> 0.

Remark 5.7. Of course the number D(G) depends only on the semigroup G and not on
any set of generators. The same is therefore true of the concept of being C–F balanced.

Assume that G is finitely generated and let f := (f1, . . . , fu) ∈ Ratu be a u–tuple map
generating G. Given a point c ∈ Crit∗(f) we define

Ξ(c) :=
{
ω ∈ Σ∗

u : f
′
ω1
(c) = 0, fω(c) ∈ F (G) and fω|k(c) ∈ J(G) for every 0 ≤ k ≤ |ω|−1

}
.

The following observation follows from Theorem 1.36 in [35].
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Observation 5.8. If G is a finitely generated *semi–hyperbolic rational semigroup gen-
erated by a u–tuple map f := (f1, . . . , fu) ∈ Ratu, then G is C–F balanced if and only
if

distC

J(G), F (G) ∩ ⋃
c∈Crit∗(f)

{fω(c) : ω ∈ Ξ(c)}

 > 0.

Definition 5.9. A finitely generated rational semigroup G generated by a u–tuple map
f := (f1, . . . , fu) ∈ Ratu is called J–F balanced if and only if

distC

(
J(G),

u⋃
j=1

fj(J(G)) ∩ F (G)

)
> 0.

Remark 5.10. It is easy to see that the concept of being J–F balanced depends only on the
semigroup G alone and not on any set of its generators.

Using again Theorem 1.36 in [35], we immediately have the following.

Observation 5.11. If G is a J–F balanced *semi–hyperbolic rational semigroup, then G is
C–F balanced.

Definition 5.12. A rational semigroup G generated by a u–tuple map f := (f1, . . . , fu) ∈
Ratu is said to be of finite type if the set Crit∗(f̃), i.e. the set of all critical points of f̃

lying in the Julia set J(f̃), is finite.

Remark 5.13. It is easy to see that the concept of being of finite type depends only on the
semigroup G alone and not on any set of its generators.

Remark 5.14. We would like to mention that the Nice Open Set Condition, the one as-
sumed in [49], treated at length in Section 13, and indispensable for the whole Part 3,
entails, see Lemma 13.11, the semigroup G to be of finite type.

Our ultimate definition for this part of our manuscript and being a standing assumption
in the next part as well is the following.

Definition 5.15. Any C–F balanced TNR rational semigroup of finite type is called finely
non–recurrent and is abbreviated as FNR.

6. Nice Sets (Families)

In this Section 6, we explore in detail one of the most important tools for us in the current
manuscript. It is commonly referred to as nice sets or nice families. It has been introduced
in [31] in the context of rational functions (cyclic semigroup), and extensively used, among
others in [28]. We adopt this concept to the setting of rational semigroups. We would
like to emphasize that the Nice Open Set Condition and Nice Sets (Families) are totally
independent concepts. In particular, the adjective “Nice” was independently introduced for
both concepts many years ago. Although it may be a little bit confusing for some readers,
we stick to the historical terminology to respect history and in order not confuse readers
even more by inventing yet new names. We think that in our current manuscript this is
the first time in the literature that both “nice” concepts are used simultaneously.
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The absolute first fact needed about nice sets and nice families is their existence. It is
by no means obvious and we devote the whole current section for this task. In the existing
proofs for ordinary conformal systems, i.e. cyclic semigroups, the concept of connectivity
of the phase space, usually C or Ĉ, plays a substantial role. In our present setting of the
skew product map

f̃ : Σu × Ĉ −→ Σu × Ĉ,
the phase space is “highly” not connected. In order to overcome this difficulty we define
the concept of connected families of arbitrary sets. These have sufficiently many properties
of ordinary connected sets, e.g. one can speak of connected components of any family of
sets, to allow for a proof of the existence of nice families. As a matter of fact, we do not
even use the topological concept of connected subsets of the Riemann sphere Ĉ.

Definition 6.1. We say that a family F of non–empty subsets of Σu × Ĉ is a con-
nected family if for any two elements D,H ∈ F there exist finitely many sets, call
them F1, F2, . . . , Fn such that

(a) F1 = D and Fn = H, and

(b) Fj ∩ Fj+1 ̸= ∅ for all j = 1, 2, . . . , n− 1.

From now on throughout this section we assume that f := (f1, . . . , fu) ∈ Ratu and G =
⟨f1, . . . , fu⟩. We record the following immediate observations.

Observation 6.2. If F is a connected family of subsets of Σu × Ĉ, then so is the family

f̃(F) := {f̃(F ) : F ∈ F}.

Observation 6.3. If F and H are two connected families of subsets of Σu×Ĉ and F∩H ̸= ∅
for some sets F ∈ F and H ∈ H, then the family F ∪H is also connected.

This latter observation enables us to speak about connected components of any given
family F of subsets of Σu × Ĉ. These are, by definition, maximal connected subfamilies of
F . These components are mutually disjoint but even more, the unions of all their elements
are mutually disjoint. In addition, the union of all connected components of F is equal to
F .

Let V ⊂ C be a non–empty, open, connected, simply connected set such that

V ∩ PCV(G) = ∅.
Given an integer n ≥ 0 we set

HIB≤n(V ) :=
n⋃
k=0

HIBk(V ) = {ρ ∈ HIB(V ) : ∥ρ∥ ≤ n}.

We also define
Pre(V ) :=

{
f̃−∥ρ∥
ρ (Σu × V ) : ρ ∈ HIB(V )

}
,

Pren(V ) :=
{
f̃−n
ρ (Σu × V ) : ρ ∈ HIBn(V )

}
,

Pre≤n(V ) :=
{
f̃−∥ρ∥
ρ (Σu × V ) : ρ ∈ HIB≤n(V )

}
.
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From now on throughout this section G is assumed to be a TNR rational semigroup
generated by a u–tuple map (f1, . . . , fu) ∈ Ratu. We can then take, and from now on fix,
an arbitrary

R∗(G) ∈
(
0,

1

16
min

{
distC

(
Crit∗(f),PCV(G)

)
,min

{
|c2−c1| : c1, c2 ∈ Crit(G), c1 ̸= c2

}})
so small as required in the Exponential Shrinking Property, i.e. in Theorem 3.5. Because
of this theorem 3.5, for every ε > 0 there exists δε ∈ (0, ε/4) such that

(6.1) diamC(W ) < ε

for every element g ∈ G, every ξ ∈ J(G), andW , any connected component of g−1(B2(ξ, δε)).
We shall prove the following.

Lemma 6.4. Let G be a TNR rational semigroup generated by a u–tuple map (f1 . . . , fu) ∈
Ratu. Fix R > 0. Fix any r ∈ (0, δR/4). Fix a finite set S ⊂ J(G) \ B2(PCV(G), 8R).

Suppose that f̃
−∥α∥
α (Σu ×B2(a, r)) and f̃

−∥β∥
β (Σu ×B2(b, r)) are two arbitrary elements of

Pre(S, r) :=
⋃
s∈S

Pre(B2(s, r))

such that

(6.2) f̃−∥α∥
α (Σu ×B2(a, 4r)) ∩ f̃−∥β∥

β (Σu ×B2(b, 4r)) ̸= ∅.

Assume without loss of generality that |β̃| ≥ |α̃|, with the “ ”̃ operation defined by formulas
(2.9)–(2.11). Then

(6.3) β = αγ,

where γ represents the holomorphic branch of f̃−(∥β∥−∥α∥) defined on Σu × B2(b, 4R), in
particular belonging to HIB(B2(b, 4R)), and sending any point (ω, z) ∈ Σu × B2(b, 4R) to

the point
(
β̃||β̃|−|α̃|ω, fα̃

(
f−1
β (z)

))
. Formula (6.3) more precisely means that

(6.4) f̃−∥γ∥
γ

(
Σu ×B2(b, 4r)

)
⊂ Σu ×B2(a, 2R)

and

(6.5) f̃
−∥β∥
β

∣∣
Σu×B2(b,4r)

= f̃−∥α∥
α ◦ f̃−∥γ∥

γ

∣∣
Σu×B2(b,4r)

.

Furthermore,

(a) If (6.2) holds (and (6.3) does then too), then we say that β is an extension of α or
that α is a restriction of β.

(b) Formula (6.3), i.e. (6.4) and (6.5) taken together, yields

(6.6) f̃−∥α∥
α (Σu ×B2(a, 2R)) ⊃ f̃

−∥β∥
β (Σu ×B2(b, 4r)).

Proof. All what we are to prove is that (6.2) entails (6.3). So assume that (6.2) holds.

Then [α̃]∩ [β̃] ̸= ∅ and (we assume that) |β̃| ≥ |α̃|. We thus conclude that β̃ is an extension
of α̃, which means that

β̃ = α̃β̃
∣∣|β̃|−|α̃|
|α̃|+1

.
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Formula (6.2) also gives

(6.7) f−1
α (B2(a, 4r)) ∩ f−1

β (B2(b, 4r)) ̸= ∅.
Therefore

(6.8) f−1
β = f−1

α∗ ◦ f−1
γ ,

where α∗ refers to the holomorphic branch of f−1
α̃ defined on f−1

γ (B2(b, 4r)) and sending

f−1
γ (b) to f−1

β (b). More precisely, it defines the map

Σu × f−1
γ (B2(b, 4r)) ∋ (ω, z) 7−→ f̃

−||α||
α∗ (ω, z) =

(
α̃ω, f−1

β

(
f
β̃

∣∣|β̃|−|α̃|

|α̃|+1

(z)

))
.

By applying fα̃ to (6.7), we get

B2(a, 4r) ∩ f−1
γ (B2(b, 4r)) ̸= ∅.

Due to our choice of r we have that

diamC
(
f−1
γ (B2(b, 4r))

)
< R.

Hence
B2(a, r) ∪ f−1

γ (B2(b, 4r)) ⊂ B2(a, 2R) ⊂ B2(a, 4R).

Therefore, f−1
α∗ extends uniquely to B2(a, 4R) as a holomorphic branch of f−1

α̃ ; we can thus
treat α∗ as an element of HIB(B2(a, 4R)). In view of (6.8) and (6.7) this yields

f−1
α

(
B2(a, 4R)

)
∩ f−1

α∗

(
B2(a, 4R)

)
⊃ f−1

α (B2(a, 4r)) ∩ f−1
α∗

(
f−1
γ (B2(b, 4r))

)
= f−1

α (B2(a, 4r)) ∩ f−1
α∗ ◦ f−1

γ (B2(b, 4r))

= f−1
α (B2(a, 4r)) ∩ f−1

β (B2(b, 4r)) ̸= ∅.
Thus α∗ = α and the proof of our lemma is complete. □

Definition 6.5. We call a set S ⊂ C aperiodic if

S ∩G(S) = ∅.

An immediate but important for us observation is this.

Observation 6.6. If G = ⟨f1, . . . , fu⟩ is a TNR rational semigroup, then Crit∗(f) is
aperiodic.

Definition 6.7. Let G = ⟨f1, . . . , fu⟩ be a TNR rational semigroup. Fix R > 0. Let

Crit∗(f) ⊂ S ⊂ J(G) \B2(PCV(G), 128K
2R)

be a finite aperiodic set. A collection U = {Us}s∈S of open subsets of Σu × C is called a

nice family for f̃ if the following conditions are satisfied.

(a) The sets Us, s ∈ S, are mutually disjoint,
(b) p2(Us) ⊂ B2(s, 2R) for each s ∈ S,
(c) For any a, b ∈ S and any ρ ∈ HIB(p2(Ub)) we have either that

Ua ∩ f̃−∥ρ∥
ρ (Ub) = ∅ or f̃−∥ρ∥

ρ (Ub) ⊂ Ua.

The main result of this section is the following.
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Theorem 6.8. Let G be a finitely generated TNR semigroup. Let f = (f1 . . . , fu) ∈ Ratu

be a u–tuple map generating G. Fix R ∈ (0, R∗(G)). Fix also κ ∈ (1, 2). Let

Crit∗(f) ⊂ S ⊂ J(G) \B2(PCV(G), 8R)

be a finite aperiodic set. Then for every r ∈ (0, R] small enough there exists

US(κ, r) = {Us(κ, r)}s∈S,

a nice family of sets for f̃ , associated to the set S, such that

(A)

Σu ×B2(s, r) ⊂ Us(κ, r) ⊂ Σu ×B2(s, κr)

for each s ∈ S.

(B) If a, b ∈ S, ρ ∈ HIB
(
p2(Ub(κ, r))

)
, and f̃

−∥ρ∥
ρ (Ub(κ, r)) ⊂ Ua(κ, r), then∣∣∣(f−1

ρ

)′
(z)
∣∣∣ ≤ 1

4

for all z ∈ B2(b, 2R) ⊃ p2
(
Ub(κ, r)

)
,

Remark 6.9. We would like to note right away that with r ∈ (0, R], condition (A) of
Theorem 6.8 alone entails conditions (a) and (b) of Definition 6.7.

Proof. Fix R ∈ (0, R∗(G)] arbitrary. Then, by Theorem 3.5 and by Koebe’s Distortion
Theorem there exists an integer N ≥ 1 so large that

(6.9)
∣∣∣(f−1

ρ

)′
(x)
∣∣∣ ≤ min

{
1

4
,
κ− 1

2κ

}
for all s ∈ S, all ρ ∈ HIB(B2(s, 4R)) with ∥ρ∥ ≥ N , and all x ∈ B2(s, 4R∗(G)). Now,
because the set S is aperiodic there exists r ∈ (0, R] so small that if a, b ∈ S, Id ̸= ρ ∈
HIB(B2(b, 4R)), and

f−1
ρ (B2(b, 2r)) ∩B2(a, 2r) ̸= ∅,

then

(6.10) diamC
(
f−1
ρ (B2(b, r))

)
< R and ∥ρ∥ ≥ N.

For every integer n ≥ 0 set

Pre≤n(S, r) : =
⋃
s∈S

Pre≤n(B2(s, r))

=
{
f̃−∥ρ∥
ρ

(
Σu ×B2(s, r)

)
: s ∈ S, ρ ∈ HIB(B2(s, 4R)), ∥ρ∥ ≤ n

}
.

Furthermore, for every s ∈ S denote by Nn(s) the (unique) connected component of the
set Pre≤n(S, r) containing Σu ×B2(s, r). Our first goal is to prove the following.

Lemma 6.10. For every integer n ≥ 0 and every s ∈ S, we have that⋃
Nn(s) ⊂ Σu ×B2(s, κr).
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Proof. For n = 0 this is immediate as N0(s) = {Σu × B2(s, r)}. Proceeding further by
induction suppose that our lemma holds for all s ∈ S and all 0 ≤ j ≤ n − 1 with some
n ≥ 1. We are to prove it for the integer n. Towards this aim, given s ∈ S, let M be an
arbitrary connected component of the family

Nn(s) \ {Σu ×B2(s
′, r)}s′∈S.

From now on throughout this proof we let k ≥ 0 to be the minimal length of an element
ρ ∈

⋃
a∈S HIB(B2(a, 4R)) such that

f̃−1
ρ

(
Σu ×B2(ξ, r)

)
∈ M

for some ξ ∈ S. By the very definition of k and M we have that k ≥ 1. Again by the
definition of k we have that

f̃k(M) ⊂ Pre≤n−k(S, r).

But

Σu ×B2(ξ, r) = f̃k
(
f̃−∥ρ∥
ρ (Σu ×B2(ξ, r))

)
∈ f̃k(M),

and, by Observation 6.2, the family f̃k(M(s)) is connected. Thus

f̃k(M) ⊂ Nn−k(ξ).

Hence, our inductive hypothesis yields

f̃k
(⋃

M
)
=
⋃

f̃k(M(s)) ⊂ Σu ×B2(ξ, κr).

Therefore,

(6.11)
⋃

M ⊂ f̃−k(Σu ×B2(ξ, κr)
)
=

⋃
α∈HIBk(B2(ξ,4R))

f̃−k
α

(
Σu ×B2(ξ, κr)

)
.

So, if f̃
−∥β∥
β (Σu × B2(b, r)) is an arbitrary element in M, then there must exist α ∈

HIBk(B2(ξ, 4R)) (remembering that κ < 2) such that

(6.12) f̃
−∥β∥
β

(
Σu ×B2(b, r)

)
∩ f̃−∥α∥

α

(
Σu ×B2(ξ, 2r)

)
̸= ∅.

Hence, according to Lemma 6.4 (keeping in mind that ||β|| ≥ k = ∥α∥),

(6.13) f̃
−∥β∥
β

∣∣
Σu×B2(b,4r)

= f̃−∥α∥
α ◦ f̃−∥γ∥

γ

∣∣
Σu×B2(b,4r)

with γ as specified in this lemma. Likewise if ω ∈ HIBk(B2(ξ, 4R)) is another, different
from α, element such that

f̃
−∥β∥
β

(
Σu ×B2(b, r))

)
∩ f̃−∥ω∥

ω

(
Σu ×B2(ξ, 2r)

)
̸= ∅,

then

(6.14) f̃
−||β∥
β

∣∣
Σu×B2(b,4r)

= f̃−∥ω∥
ω ◦ f̃−∥δ∥

δ

∣∣
Σu×B2(b,4r)

with δ as specified in this Lemma 6.4. It follows from (6.13) and (6.14) that α̃ = β̃|k = ω̃.
So,

f−1
α (B2(ξ, 4R)) ∩ f−1

ω (B2(ξ, 4R)) = ∅
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as α ̸= ω. But this contradicts (6.13) and (6.14), and shows that α is the only element of
HIBk(B2(ξ, 4R)) such that (6.12) holds. Hence,

(6.15) f̃
−∥β∥
β (Σu ×B2(b, r)) ⊂ f̃−∥α∥

α (Σu ×B2(ξ, κr)).

Therefore, since the family
{
f̃
−∥ρ∥
ρ (Σu × B2(ξ, κr)) : ρ ∈ HIBk(B2(ξ, 4R))} consists of

mutually disjoint sets and since the family M is connected, we conclude that there exists
a unique τ ∈ HIBk(B2(ξ, 4R)) such that

(6.16)
⋃

M ⊂ f̃−k
τ

(
Σu ×B2(ξ, κr)

)
.

Again, since M is a connected component of Nn(s) \ {Σu×B2(s
′, r)}s′∈S which is a proper

subset of Nn(s) (as it misses Σu×B2(s, r)), and since Nn(s) is connected, there must exist

f̃
−∥α∥
α (Σu ×B2(a, r)) ∈ M and s′ ∈ S such that

(6.17) f̃−∥α∥
α

(
Σu ×B2(a, r)

)
∩
(
Σu ×B2(s

′, r)
)
̸= ∅.

Looking at this and (6.16), and remembering that κ < 2, we see that

(6.18) f̃−k
τ

(
Σu ×B2(ξ, 2r)

)
∩
(
Σu ×B2(s

′, r)
)
⊃ f̃−k

τ (Σu ×B2(ξ, κr)
)
∩B2(s

′, r) ̸= ∅.
Hence, k = ∥τ∥ ≥ N by virtue of (6.10). Also, of course (6.18) yields

(6.19) f−1
τ (B2(p2(ξ), κr)) ∩B2(p2(s

′), r) ̸= ∅.
Combining this and (6.9), we get that

(6.20)
⋃

M ⊂ Σu ×B2

(
s′, r +

κ− 1

2κ
(2κr)

)
= Σu ×B2(s

′, κr).

Since Nn(s) is a union of all such components M along with some elements of {Σu ×
B2(a, r)}a∈S, and since κ > 1, we thus conclude that⋃

Nn(s) ⊂
⋃
a∈S

Σu ×B2(a, κr).

But since the sets Σu×B2(a, κr), a ∈ S, are mutually disjoint and since N (s) is a connected
family, there must exist b ∈ S such that⋃

Nn(s) ⊂ Σu ×B2(b, κr).

Since Σu ×B2(s, r) ⊂
⋃

Nn(s), we must have b = s, and in conclusion⋃
Nn(s) ⊂ Σu ×B2(s, κr).

The proof of Lemma 6.10 is thus complete. □

Now we can complete the proof of Theorem 6.8. We shall show that the family

US :=
{
Us = Us(κ, r) :=

⋃
n=0

⋃
Nn(s)

}
s∈S

has all the required properties, i.e. being a nice family of sets along with conditions (A)
and (B) required in Theorem 6.8.
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Firstly, Us(κ, r), s ∈ S, are all open subsets of Σu × Ĉ since all elements of Nn(s) are
open.

Secondly, for every n ≥ 0, Σu ×B2(s, r) ∈ Nn(s), so

(6.21) Σu ×B2(s, r) ⊂
⋃

Nn(s) ⊂ Us(κ, r)

for every s ∈ S.
Thirdly, it directly follows from Lemma 6.10 that

(6.22) Us(κ, r) ⊂ Σu ×B2(s, κr)

for all s ∈ S. Along with (6.21) this means that property (A) of Theorem 6.8 holds.
Therefore, by virtue of Remark 6.9 the properties (a) and (b) of Definition 6.7 (of a nice
family of sets) also hold. In addition, condition (B) of Theorem 6.8 follows immediately
from (6.9), the already proven property (b) of Definition 6.7, and the definition of r. We
thus are only left to show that item (c) of Definition 6.7 is satisfied. In order to prove this
item assume that

(6.23) f̃−k
α (Ub) ∩ Ua ̸= ∅

for some a, b ∈ S and some α ∈ HIB(p2(Ub)), where k = ∥α∥. Fix an arbitrary integer
n ≥ 0 such that

(6.24) Ua ∩ f̃−k
α

(⋃
Nn(b)

)
̸= ∅.

Now consider f̃−l
β (Σu × B2(ξ, r)), ξ ∈ S, l = ∥β∥ ≥ 1, an arbitrary element of Nn(b) such

that

Ua ∩ f̃−k
α

(
f̃−l
β

(
Σu ×B2(ξ, r)

))
̸= ∅.

But since
(
Nn(a)

)∞
n=0

is an ascending sequence of sets, there thus exists p ≥ k+ l such that

(6.25)
⋃

Np(a) ∩ f̃−k
α ◦ f̃−l

β

(
Σu ×B2(ξ, r)

)
̸= ∅.

Denote by αβ the only element of HIB(B2(b, 4R)) such that

f̃
−(k+l)
αβ |Σu×B2(ξ,r) = f̃−k

α ◦ f̃−l
β |Σu×B2(ξ,r).

But then (6.25) means that f̃
−(k+l)
αβ

(
Σu×B2(ξ, r)

)
intersects at least one element of Np(a),

and therefore f̃
−(k+l)
αβ

(
Σu ×B2(ξ, r)

)
∈ Np(a). Consequently,

f̃−k
α

(
f̃−l
β

(
Σu ×B2(ξ, r)

))
= f̃

−(k+l)
αβ

(
Σu ×B2(ξ, r)

)
⊂ Ua.

We thus have that

(6.26) f̃−k
α

(⋃
N ∗
n(a, b)

)
⊂ Ua,

where

N ∗
n(a, b) :=

{
Γ ∈ Nn(b) : Ua ∩ f̃−k

α (Γ) ̸= ∅
}
.

Now, if Γ1 ∈ N ∗
n(a, b) and Γ2 ∈ Nn(b) \ N ∗

n(a, b), then on the one hand f̃−k
α (Γ1) ⊂ Ua

and, on the other hand, f̃−k
α (Γ2) ∩ Ua = ∅. Hence, Γ1 ∩ Γ2 = ∅. Since however Nn(b) is
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a connected family, this implies that either N ∗
n(a, b) = ∅ or Nn(b) \ N ∗

n(a, b) = ∅. But by
(6.24), we have that N ∗

n(a, b) ̸= ∅, yielding N ∗
n(a, b) = Nn(b). Along with (6.26) this gives

(6.27) f̃−k
α

(⋃
Nn(b)

)
⊂ Ua.

Since by (6.23), formula (6.24) holds for all n ≥ 1 sufficiently large, and since
(
Nn(b)

)∞
n=0

is an ascending sequence of sets, formula (6.27) yields

f̃−k
α (Ub) ⊂ Ua.

The proof of property (c) of Definition 6.7 is complete. This simultaneously finishes the
proof of Theorem 6.8. □

The most important consequence of having a nice family of sets is that it gives rise to a
graph directed system in the sense of [21] which has a sufficient degree of conformality.
Namely, let

U :=
⋃
s∈S

Us,

and for every s ∈ S and any integer n ≥ 0 let

D∗
n(s) = D∗

n(G, s) :=
{
τ ∈ HIBn(p2(Us)) : f̃

k
(
f̃−n
τ (Us)

)
∩ U = ∅ for all 0 ≤ k ≤ n− 1

}
,

and let

Dn(s) = Dn(G, s) :=
{
τ ∈ HIBn(p2(Us)) : f̃

−∥τ∥
τ (Us) ∩ U ̸= ∅ and f̃ ◦ f̃−∥τ∥

τ ∈ D∗
n−1(s)

}
.

Finally let

Dn = Dn(G) :=
⋃
s∈S

Dn(s) and DU = DU(G) :=
∞⋃
n=1

Dn.

We will usually skip the indication of these sets on G since we only very rarely deal with
more than one rational semigroup at a time. This will be however the case for example in
Section 14, Multifractal Analysis of Invariant Measures µt, in the context of non–exceptional
rational semigroups.

We now note that for every element τ ∈ DU there are a unique element t(τ) ∈ S such that

τ ∈ HIB
(
p2(B(t(τ), 4R))

)
and a unique element i(τ) ∈ S such that f̃

−∥τ∥
τ (Ut(τ)) ⊂ Ui(τ).

For every element s ∈ S let

Xs := U s.

As an immediate consequence of Definition 6.7, Theorem 6.8 (particularly its part (B))

and topological exactness of the dynamical system f̃ : J(f̃) −→ J(f̃) (implying item (c)
below), we get the following.

Theorem 6.11. If G is a TNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu and U = {Us}s∈S is a nice family of sets for f̃ produced in Theorem 6.8, then the
family

SU = SU(G) :=
{
f̃−∥τ∥
τ : Xt(τ) −→ Xi(τ)

}
τ∈DU

forms a graph directed system (GDS) in the sense of [21]. Furthermore,
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(a) The corresponding incidence matrix A(U) = A(G,U) is then determined by the
condition that

Aτω(U) = 1

if and only if t(τ) = i(ω).

(b) The limit set JU of the system SU is contained in J(f̃) and contains U ∩ Trans(f̃),

where, we recall, Trans(f̃) is the set of transitive points of f̃ : J(f̃) −→ J(f̃), i.e.

the set of points z ∈ J(f̃) such that the set {f̃n(z) : n ≥ 0} is dense in J(f̃).

(c) The graph directed system SU is finitely primitive.

We denote by D∞
U the symbol space

(
DU
)∞
A(U)

generated by the matrix A(U); as in the case of

Σu its elements (infinite sequences) start with coordinates labeled by the integer 1. Likewise
D∗

U and Dn
U , n ∈ N, abbreviate respectively

(
DU
)∗
A(U)

and
(
DU
)n
A(U)

, n ∈ N.

In addition, we denote by ϕe, e ∈ DU , all the elements of SU .

7. The Behavior of the Absolutely Continuous Invariant Measures µt
Near Critical Points

This section is very technical and devoted to study the behavior of conformal measures
mt and their invariant versions µt near critical points of the skew product map

f̃ : Σu × Ĉ −→ Σu × Ĉ.

Its main outcome is Proposition 7.4 which gives a quantitative strengthening of quasi–
invariance of conformal measures mt. This is the first and only place where the hypothesis
of finite type of the semigroup G is explicitly needed; it demands that the set of critical
points of f̃ lying in the Julia set J(f̃) of f̃ is finite.

LetG be a finitely generated *semi–hyperbolic rational semigroup generated by (f1, . . . , fu) ∈
Ratu. Let V ̸= ∅ be an open subset of Σu × Ĉ containing Crit∗(f̃). Define

K(V ) :=
∞⋂
n=0

f̃−n(J(f̃) \ V ) =
{
z ∈ J(f̃) : f̃n(z) /∈ V ∀n ≥ 0

}
⊂ Σu × C.

Of course K(V ) is a closed subset of J(f̃),

(7.1) f̃(K(V )) ⊂ K(V ),

and

(7.2) K(V ) ∩ Crit(f̃) = ∅.

So, we can consider the dynamical system f̃ |K(V ) : K(V ) −→ K(V ). Because of (7.2) for

every t ∈ R the potential −t log |f̃ ′| : K(V ) → R is continuous, and because of Koebe’s
Distortion Theorem it is Hölder continuous. Because of Exponential Shrinking Property,
Theorem 3.5, and Koebe’s Distortion Theorem used again, we have the following.
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Lemma 7.1. Let G be a finitely generated *semi–hyperbolic rational semigroup generated
by (f1, . . . , fu) ∈ Ratu. If V ̸= ∅ is an open subset of Σu × Ĉ containing Crit∗(f̃), then

f̃ |K(V ) : K(V ) −→ K(V )

is an infinitesimally expanding map. More precisely, there exists an integer n ≥ 1 such that∣∣(f̃n)′(ξ)∣∣ ≥ 2

for every ξ ∈ K(V ). In addition, there exists R2 > 0 such that for every ξ ∈ K(V ) and

every integer k ≥ 0 there exists a unique continuous inverse branch f̃−k
ξ : B2(f̃

k(ξ), 2R2) →
Σu × C of f̃k sending f̃k(ξ) back to ξ.

Proof. Let R > 0 come from the Exponential Shrinking Property (Theorem 3.5). Fix
R1 ∈ (0, R] so small that

(7.3) B2(Crit∗(f̃), 2R1) ⊂ V

and

(7.4) B2(J(f̃), 2R1) ∩
(
PCV(f̃) \ PCV∗(f̃)

)
= ∅.

Now fix an integer q ≥ 1 so large that

(7.5) ϑq + Ce−αq < R1,

where both C and α come from the Exponential Shrinking Property (Theorem 3.5). Now
take R2 ∈ (0, R1/4) so small that

diamΣu×C([τ ]×W ) < R1

for every integer 0 ≤ n ≤ q, every τ ∈ Σn
u, every z ∈ J(G) and any connected componentW

of f−1
τ (B2(z, 2R2)). In conjunction with the Exponential Shrinking Property (Theorem 3.5)

and (7.5) this gives that

diamΣu×C([τ ]×W ) < R1

for every integer n ≥ 0, every τ ∈ Σn
u, every z ∈ J(G) and any connected component W of

f−1
τ (B2(z, 2R2)). Making also use of (7.3), (7.4), and the definition of K(V ), it thus follows
that if ξ = (ω, z) ∈ K(V ), then(

[ω|n]×W (ξ, n)
)
∩ Crit(f̃n) = ∅

for every integer n ≥ 0 and W (ξ, n), the connected component of f−1
ω|n

(
B2(z, 2R2)

)
contain-

ing z. Hence, the map

fω|n|W (ξ,n) : W (ξ, n) −→ B2(z, 2R2)

is a conformal homeomorphism. Thus Koebe’s Distortion Theorem applies to give∣∣(f̃n)′(ξ)∣∣ = ∣∣(fω|n)′(z)∣∣ ≥ K−1 R2

Ce−αn
=

R2

KC
eαn ≥ 2

for all n ≥ 1
α
log(2K/R2). The proof is complete. □

As an immediate consequence of this lemma, we get the following.
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Corollary 7.2. Let G be a finitely generated *semi–hyperbolic rational semigroup generated
by (f1, . . . , fu) ∈ Ratu. If V ̸= ∅ is an open subset of Σu × Ĉ containing Crit∗(f̃), then

f̃ |K(V ) : K(V ) −→ K(V )

is a distance expanding map with respect to the metric in the sense of [29]. This precisely
means that there exist η > 0 and an integer n ≥ 1 such that

∥f̃n(w), f̃n(z)∥ϑ ≥ 2∥w, z∥ϑ

whenever w, z ∈ K(V ) and ∥w, z∥ϑ ≤ η.

Since G is TNR there exists V , an open neighborhood of Crit∗(f̃), such that

V ∩ PCV∗(f̃) = ∅.

Hence,

PCV∗(f̃) ⊂ K(V ).

Therefore, as an immediate consequence of Lemma 7.1, we get the following.

Lemma 7.3. Let G be a C–F balanced TNR rational semigroup generated by (f1, . . . , fu) ∈
Ratu. Then there exist an integer b ≥ 1, and constants C > 0 and β > 1 such that∣∣(f̃ b)′(ξ)∣∣ ≥ 2

and ∣∣(f̃n)′(ξ)∣∣ ≥ Cβn

for every ξ ∈ PCV∗(f̃) and every integer n ≥ 0. In addition, there exists R2 > 0 such that

for every ξ ∈ PCV∗(f̃) and every integer n ≥ 0 there exists a unique continuous inverse

branch f̃−n
ξ : B2(ξ, 2R2) −→ Σu × C of f̃n, sending f̃n(ξ) back to ξ.

For every point ξ ∈ Crit(f̃) we put

χ(ξ) := lim
k→∞

1

k
log inf

n≥1

{∣∣(f̃k)′(f̃n(ξ))∣∣} and χf̃ := min

{
χ(ξ)

qξ
: ξ ∈ Crit∗(f̃)

}
,

where qξ is the order of the critical point p2(ξ) with respect to the holomorphic map fp1(ξ)1 .
Now we define

(7.6) ∆∗
G := {t ≥ 0 : P(t) > −χf̃ t}.

Although we will not really need for a long time to know that the set ∆∗
G is nonempty,

we remark already at the moment that this follows immediately from continuity of the
pressure function t 7−→ P(t) and is formally stated in Proposition 7.5 in a much stronger
form which sheds some notable light on the structure of the set ∆∗

G.
The main result of this section is the following technical proposition.
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Proposition 7.4. Let G = ⟨f1, f2, . . . , fu⟩ be a FNR rational semigroup. Then for every
b ∈ ∆∗

G there exist η > 0 and an integer l ≥ 1 such that (b − η, b + η) ⊂ ∆G, and if
t ∈ (b− η, b+ η) ∩∆∗

G, then

(7.7) mt(f̃
−1(A)) ≤ Cm

1/l
t (A)

for every Borel sets A ⊂ J(f̃) with some constant C > 0 independent of t.

Proof. For every c ∈ Crit∗(f) let

I(c) :=
{
i ∈ {1, 2 . . . , u} : c ∈ Jiω for some ω ∈ Σu and f ′

i(c) = 0
}
.

Fix i ∈ I(c). Let q ≥ 2 be the order of the critical point c with respect to the map fi.
Fix θ > 0 so small that there exists a constant Q ∈ [1,+∞) such that if f−1

i,c (B2(fi(c), θ))

denotes the connected component of f−1
i (B2(fi(c), θ)) containing c, then

(7.8) Q−1 ≤ |fi(z)− fi(c)|
|z − c|q

≤ Q, Q−1 ≤ |f ′
i(z)|

|z − c|q−1
≤ Q, Q−1 ≤ |f ′

i(z)|
|fi(z)− fi(c)|

q−1
q

≤ Q

for all z ∈ f−1
i,c (B2(fi(c), θ)). For every set A ⊂ B2(fi(c), θ) we put

f−1
i,c (A) := f−1

i (A) ∩ f−1
i,c (B2(fi(c), θ)).

Furthermore, for every set A ⊂ Σu ×B2(fi(c), θ), put

f̃−1
i,c (A) :=

{
(iω, z) ∈ Σu × Ĉ : (ω, fi(z)) ∈ A and z ∈ f−1

i,c (B2(fi(c), θ))
}
.

Now we take δ > 0 so small that 8Q2∥f̃ ′∥∞δ ≤ θ. We will in fact need δ > 0 to be even

smaller as specified later in the course of this proof. Fix ξ ∈ f̃−1(Crit(f̃)) arbitrary. Fix
also γ > P(t) arbitrary. We shall first prove that

(7.9) νt,γ(f̃
−1
i,c (A)) ⪯ ν

1/l
t,γ (A)

for every Borel set A ⊂ J(f̃)∩p−1
2 (B2(fi(c), δ)) and some integer l ≥ 1 independent of t, γ,

and A; the comparability constant of (7.9) does not depend on them either. To that end,
let

Γi(c) := {ω ∈ Σu : fi(c) ∈ Jω}.
Of course

Crit∗(f̃) =
⋃

b∈Crit∗(f)

⋃
j∈I(b)

{(jω, b) : ω ∈ Γj(b)}.

Since Crit∗(f̃) is finite, each set Γj(b), b ∈ Crit∗(f), j ∈ I(b), is finite. Therefore, there
exists an integer p ≥ 1 so large that the function Γi(c) ∋ ω 7−→ ω|p ∈ Σ∗

u is 1–to–1.
Equivalently, the family

{[ω|p] : ω ∈ Γi(c)}
consists of mutually disjoint sets. From now on throughout this section we fix one such
p ≥ 1 arbitrary. Note that then

(7.10)
(
Γi(c) ∩ [ω|p]

)∣∣
n
= {ω|n}

for all n ≥ p. Clearly, in order to show that (7.9) holds, it suffices to prove that

(7.11) νt,γ(f̃
−1
i,c (A)) ⪯ ν

1/l
t,γ (A)
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for every ω ∈ Γi(c) and for every Borel set A ⊂ J(f̃) ∩
(
[ω|p] × B2(fi(c), δ)

)
; in fact for

A ⊂ J(f̃) ∩
(
[ω|p] × B2(fi(c), δ)

)
\ {(ω, fi(c))} as νt,γ({iω, c}) = 0. Fix such respective ω

and A arbitrary. For every n ≥ 0 and every ω ∈ Γi(c) let

λn(ω) :=
∣∣(f̃n)′(ω, fi(c))∣∣ and λ̂n(ω) := max

{
λk(ω) : 0 ≤ k ≤ n

}
.

Because of Lemma 7.3, we have that

(7.12) λn(ω) ≤ λ̂n(ω) ⪯ λn(ω).

The structure of the proof consists of the following six steps (a), (b), (c), (d), (e), and
(f). First, we will prove that

(a)

νt,γ

(
[iω|n]×B2

(
c, (Qδλ−1

n (ω))1/q
))

⪯ λ−t/qn (ω)e−P(t)n

for all integers n ≥ 1,

and

(b)

[iτ ]× f−1
i,c

(
B2

(
fi(c), δλ̂

−1
n (ω)

))
⊂ F (f̃)

for all integers n ≥ p+ 1 and all τ ∈ Σn
u \ {ω|n} such that τ |p = ω|p.

(c) Having in mind the task of item (d) ahead, fixing an integer s ≥ p + 1, we will
partition the ball B2(fi(c), δ) into suitable annuli and define the stopping time

k := sup
{
n ≥ 0 : νt,γ

(
A ∩

(
[ω|p]× A(fi(c); δλ̂

−1
sn (ω), δ)

))
≤ λ̂−tsn(ω)e

−P(t)sn
}
.

Of course 0 belongs to the set whose supremum is being taken above to define k
and we will show that k is a finite number. Then combining this along with (a) and
(b), we will be able to prove that

(d)

νt,γ(f̃
−1
i,c (A)) ⪯ λ−tsk (ω)e

−P(t)sk.

Finally, we will prove the following two facts which will finish the proof of our proposition.

(e)

λ
−t/q
sk (ω)e−P(t)sk ≤

(
λ−tsk (ω)e

−P(t)sk
)1/l

for some l > 0 and every s ≥ 1 sufficiently large.

(f)

λ−tsk (ω)e
−P(t)sk ⪯ νt,γ

(
A ∩

(
[ω|p]× A(fi(c); δλ̂

−1
s(k+1)(ω), δ)

))
(≤ νt,γ(A)).
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Proof of (a). Fix an integer n ≥ 1. Assume δ > 0 to be so small that 8Q2δ < R2, where
R2 > 0 comes from Lemma 7.3. It then follows from this lemma that for every integer
n ≥ 0 there exists a unique continuous inverse branch

f̃−n
(ω,fi(c))

: B
(
f̃n(ω, fi(c)), 8Q

2δ
)
−→ Σu × C

sending f̃n(ω, fi(c)) back to (ω, fi(c)). Also because of this same lemma there exists an
integer s ≥ 1 so large that

(7.13) λj+s(ω) > λj(ω)

for all integers j ≥ 0. We furthermore require this integer s ≥ 1 to be so large that if
τ ∈ Σu and ρ ∈ Σ∗

u, then

(7.14) ρB1(τ, 8Q
2δ
)
⊃ [ρ|j+s],

where j = |ρ|. Of course, it suffices to prove the inequality required in (a) for all integers
n ≥ s. Due to our choice of ξ and δ, the upper part of Lemma 4.6 is then applicable to the
inverse branch

f̃
−(n−s)
(ω,fi(c))

: B
(
f̃n−s(ω, fi(c)), 8Q

2δ
)
−→ Σu × C.

Applying also to it 1
4
–Koebe’s Distortion Theorem, making use of both (7.13) and (7.14),

and then applying Koebe’s Distortion Theorem, we get first

f̃
−(n−s)
(ω,fi(c))

(
B
(
f̃n−s(ω, fi(c)), 4Q

2δ)
))

⊃ [ω|n]×B2

(
fi(c), Q

2δλ−1
n (ω)

)
,

and then

(7.15)

νt,γ
(
[ω|n]×B2

(
fi(c), Q

2δλ−1
n (ω)

))
≤ νt,γ

(
f̃
−(n−s)
(ω,fi(c))

(
B
(
f̃n−s(ω, fi(c)), 4Q

2δ)
))

≤ Ktλ−tn−s(ω)e
−γn

≤ Kt∥f̃ ′∥st∞λ−tn (ω)e−γn

≤ Kt∥f̃ ′∥st∞λ−tn (ω)e−P(t)n.
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Using this and (7.8), keeping in mind (7.13), and writing uniquely n = n∗s+r, 0 ≤ r ≤ s−1,
we obtain

νt,γ

(
[(iω)|n+1]×B2

(
c, (Qδλ−1

n (ω))1/q
))

=

=
∞∑

j=n∗

νt,γ

((
[(iω)|js+r+1] \ [(iω)|(j+1)s+r+1]

)
× A

(
c; (Qδλ−1

(j+1)s+r(ω))
1/q, (Qδλ−1

js+r(ω))
1/q
)))

=
∞∑

j=n∗

νt,γ

(
[(iω)|js+r+1]× A

(
c; (Qδλ−1

(j+1)s+r(ω))
1/q, (Qδλ−1

js+r(ω))
1/q
)))

≤
∞∑

j=n∗

νt,γ

(
[(iω)|js+r+1]× f−1

i,c

(
A
(
fi(c); δλ

−1
(j+1)s+r(ω), Q

2δλ−1
js+r(ω)

)))

⪯
∞∑

j=n∗

λ
(1− 1

q
)t

js+r (ω)e−γνt,γ

(
[ω|js+r]× A

(
fi(c); δλ

−1
(j+1)s+r(ω), Q

2δλ−1
js+r(ω)

))
≤ e−γ

∞∑
j=n∗

λ
(1− 1

q
)t

js+r (ω)νt,γ

(
[ω|js+r]×B2

(
fi(c), Q

2δλ−1
js+r(ω)

))
⪯

∞∑
j=n∗

λ
(1− 1

q
)t

js+r (ω)λ−tjs+r(ω)e
−γ(js+r)

=
∞∑

j=n∗

λ
−t/q
js+r(ω)e

−γ(js+r)

≤
∞∑

j=n∗

λ
−t/q
js+r(ω)e

−P(t)(js+r)

≍ λ−t/qn (ω)e−P(t)n

(
1 +

∞∑
j=n∗+1

(
λjs+r(ω)

λn∗s+r(ω)

)−t/q

e−P(t)s(j−n∗)

)
.

Hence, all we are left to do in order to prove (a) is to show that the sum in the above
parentheses is uniformly bounded above. Of course it is enough to do this for all n ≥ 1
large enough. Since b ∈ ∆∗

G, we have that

χ(iω, c) > −q(iω,c)
P(b)

b
.

Since, by Lemma 7.4 in [49], the function t 7−→ P(t)/t is continuous, there thus exist κ > 0,
η1 > 0, and some integer s ≥ 1 so large that

1

j
log
∣∣(f̃ j)′(f̃n(iω, c))∣∣ ≥ −qP(t)

t
+ κ
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for all t ∈ (b− η1, b+ η1), all j ≥ s, and all n ≥ 1, and where we have abbreviated q(iω,c) by
q. Thus for every j ≥ n∗ + 1, we have

log

(
λjs+r(ω)

λn∗s+r(ω)

)
=

j−1∑
p=n∗

(
log λs(p+1)+r(ω)− log λsp+r(ω)

)
=

j−1∑
p=n∗

log

(
λs(p+1)+r(ω)

λsp+r(ω)

)

=

j−1∑
p=n∗

log
∣∣(f̃ s)′(f̃ sp+r(iω, c))∣∣

≥
(
−qP(t)

t
+ κ

)
s(j − n∗).

Therefore,(
λjs+r(ω)

λn∗s+r(ω)

)−t/q

e−P(t)s(j−n∗) ≤ exp

(
−(−qP(t) + tκ)

s(j − n∗)

q
− P(t)s(j − n∗)

)
= exp

(
−κst

q
(j − n∗)

)
.

Hence,
∞∑

j=n∗+1

(
λjs+r(ω)

λn∗s+r(ω)

)−t/q

e−P(t)s(j−n∗) ≤
∞∑
j=1

exp

(
−κst

q
j

)
< +∞,

and the proof of item (a) is complete. □

Proof of (b). In order to prove it, note that fτ (fi(c)) ∈ F (G). Since τ ̸= ω|n we have
that |ω ∧ τ | ≤ n− 1, and recall that l := |ω ∧ τ | ≥ p. Then fiω|l(c) ∈ J(G), and by virtue
of the formula

J(G) = ∪ρ∈ΣuJρ

along with (7.10), we get that fiω|lτl+1
(c) ∈ F (G). Now we take δ > 0 so small that

4∥f̃ ′∥∞δ < D(G), where D(G) is the number coming from Definition 5.6 of C–F balanced
semigroups. We then have that

B2

(
fiω|lτl+1

(c), 4∥f̃ ′∥∞δ
)
⊂ F (G).

Since fiω|l(c) ∈ PCV(G) ∩ J(G) and G is a FNR semigroup, we will have both that

fiω|l(c) /∈ B2(Crit(G), 4∥f̃ ′∥∞δ
)
by taking δ > 0 small enough, depending on the gener-

ators of G only, and that fτl+1
|W is 1–to–1, where W is the unique connected component

of f−1
τl+1

(
B2

(
fiω|lτl+1

(c), 4∥f̃ ′∥∞δ
))

containing fiω|l(c). So,

f−1
ω|lτl+1,fi(c)

:= f−1
ω|l,fi(c) ◦

(
fτl+1

|W
)−1

: B2

(
fiω|lτl+1

(c), 4∥f̃ ′∥∞δ
)
−→ C

is a unique holomorphic branch of fω|lτl+1
defined on B2

(
fiω|lτl+1

(c), 4∥f̃ ′∥∞δ
)
and sending

fω|lτl+1
(c) to fi(c),

[ω|lτl+1]× f−1
ω|lτl+1,fi(c)

(
B2

(
fiω|lτl+1

(c), 4∥f̃ ′∥∞δ
))

⊂ F (f̃),
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and, by the 1
4
Koebe’s Distortion Theorem,

f−1
ω|lτl+1,fi(c)

(
B2

(
fiω|lτl+1

(c), 4∥f̃ ′∥∞δ
))

⊃ B2

(
fi(c), λ

−1
l (ω)|f ′

τl+1
(fiω|l(c))|

−1∥f̃ ′∥∞δ
))

⊃ B2

((
fi(c), δλ

−1
l (ω)

))
⊃ B2

(
fi(c), δλ̂

−1
n (ω)

))
.

Therefore,

[iω|lτl+1]× f−1
i,c

(
B2

(
fi(c), δλ̂

−1
n (ω)

))
⊂ F (f̃).

Since also

[iτ ]× f−1
i,c

(
B2

(
fi(c), δλ̂

−1
n (ω)

))
⊂ [iω|lτl+1]× f−1

i,c

(
B2

(
fi(c), δλ̂

−1
n (ω)

))
,

item (b) is therefore proved. □

Proof of (c). Keep s ≥ p+ 1 as determined in the above proof of item (a). Since

lim
n→∞

νt,γ

(
A∩

(
[ω|p]×A(fi(c); δλ̂−1

sn (ω), δ)
))

= νt,γ

(
A∩

(
[ω|p]×B2(fi(c), δ)

))
= νt,γ(A) > 0,

in order to see that the stopping time k is finite, it is sufficient to show that

(7.16) lim
n→∞

λ−tsn(ω)e
−P(t)sn = 0.

If P(t) ≥ 0, this is immediate as limn→∞ λn(ω) = +∞. If P(t) < 0, then the inequality
tχ(iω,c) > −qP(t), holding since t ∈ ∆∗

G, implies that

t log
∣∣(f̃n)′(f̃(iω, c))∣∣ > −nqP(t)

for all n ≥ 1 large enough. Hence

λ−tn (ω)e−P(t)n < eP(t)(q−1)n.

Since q ≥ 2, formula (7.16) thus follows. The proof of item (c) is complete. □

Proof of (d). If k = 0, the required inequality is trivial as its right–hand side is equal to
1. So, we may, and we do, assume that k ≥ 1. Then applying (a), (b), and (c) we estimate
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as follows.

νt,γ(f̃
−1
i,c (A)) =

= νt,γ

(
f̃−1
i,c

(
A ∩

(
[ω|sk]×B2(fi(c), δλ̂

−1
sk (ω))

))
∪

∪ f̃−1
i,c

( ⋃
τ∈
(
[ω|p]|sk∩(Σsk

u \{ω|sk})
)
(
A ∩

(
[τ ]×B2(fi(c), δλ̂

−1
sk (ω))

)))
∪

∪ f̃−1
i,c

(
A ∩

(
[ω|p]× A(fi(c); δλ̂

−1
sk (ω), δ)

)))
= νt,γ

(
f̃−1
i,c

(
A ∩

(
[ω|sk]×B2(fi(c), δλ̂

−1
sk (ω))

)))
+

+
∑

τ∈
(
[ω|p]|sk∩(Σsk

u \{ω|sk})
) νt,γ

(
f̃−1
i,c

(
A ∩

(
[τ ]×B2(fi(c), δλ̂

−1
sk (ω))

)))
+

+ νt,γ

(
f̃−1
i,c

(
A ∩

(
[ω|p]× A(fi(c); δλ̂

−1
sk (ω), δ)

)))
= νt,γ

(
f̃−1
i,c

(
A ∩

(
[ω|sk]×B2(fi(c), δλ̂

−1
sk (ω))

)))
+

+ νt,γ

(
f̃−1
i,c

(
A ∩

(
[ω|p]× A(fi(c); δλ̂

−1
sk (ω), δ)

)))
⪯ νt,γ

((
[iω|sk]×B2

(
c, (Qδλ̂−1

sk (ω))
1/q
)))

+

+
(
δλ̂−1

sk (ω)
)( 1

q
−1)t

e−γνt,γ

(
A ∩

(
[ω|p]× A(fi(c); δλ̂

−1
sk (ω), δ)

))
≤ νt,γ

((
[iω|sk]×B2

(
c, (Qδλ−1

sk (ω))
1/q
)))

+

+
(
δλ̂−1

sk (ω)
)( 1

q
−1)t

e−P(t)e−P(t)skλ̂−tsk (ω)

⪯ λ
−t/q
sk (ω)e−P(t)sk + λ̂

−t/q
sk (ω)e−P(t)sk

≍ λ
−t/q
sk (ω)e−P(t)sk.

The proof of item (d) is thus complete. □

Proof of (e). If k = 0, then both sides of the required inequality are equal to 1 and we
are then done. So, we assume now that k ≥ 1. Starting the proof we again recall that

1

n
log
∣∣(f̃n)′(ω, fi(c))∣∣ ≥ −qP(t)

t
+ κ

for all ω ∈ Γi(c) and all n ≥ s. Hence, if we take l ≥ q + 1 so large that

P(b)q(1− q)

b(l − q)
< κ/2.
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It then follows from the continuity of the function t 7−→ P(t)/t, holding because of Propo-
sition 4.3 (b), that there exists η ∈ (0, η1] such that

P(t)q(1− q)

t(l − q)
< κ

for all t ∈ (b− η, b+ η). This in turn implies that for such parameters t and all n ≥ s, we
have

(l − q)
log λn(ω)

n
≥
(
−qP(t)

t
+ κ

)
(l − q) ≥ qP(t)

t
(1− l).

An elementary rearrangement then gives

λ−t/qn (ω)e−P(t)n ≤
(
λ−tn (ω)e−P(t)n

)1/l
.

Hence,

λ
−t/q
sk (ω)e−P(t)sk ≤

(
λ−tsk (ω)e

−P(t)sk
)1/l

if s ≥ p is taken to be large enough. Thus item (e) is proved. □

Proof of (f). The finiteness of k ≥ 0 and formula (7.12) yield

νt,γ

(
A ∩

(
[ω|p]× A(fi(c); δλ̂

−1
s(k+1)(ω), δ)

))
≥ λ̂−ts(k+1)(ω)e

−P(t)s(k+1)

⪰ λ−ts(k+1)(ω)e
−P(t)s(k+1)

≥ e−P(t)s∥f̃ ′∥−st∞ λ−tsk (ω)e
−P(t)sk.

The proof of item (f) is thus complete. □

In conclusion, the conjunction of (d), (e), and (f), completes the proof of (7.11). Hence,
(7.9) follows. Because the semigroup G is of finite type, we thus have that

(7.17) νt,γ(f̃
−1(A)) ≤ Cν

1/l
t,γ (A)

for every γ > P(t), every Borel set A ⊂ J(f̃) and some constant C independent of t
and γ. Since mt is a weak* limit of the measures νt,γ when γ ↘ P(t), with the help of
standard consideration involving outer and inner regularity of measures, the formula (7.7)
of Proposition 7.4 follows. Also, by the weak* convergence argument we conclude from
(7.15) that

mt

(
[ω|n]×B2

(
fi(c), Q

2δλ−1
n (ω)

))
≤ Ktλ−tn (ω)e−P(t)n

for every integer n ≥ p. As t ∈ ∆∗
G, this formula along with (7.16), yield mt(ω, fi(c)) = 0.

This in turn, in conjunction with formula (7.7) entails mt(iω, c) = 0. Hence, t ∈ ∆G, and
the proof of Proposition 7.4 is complete. □

The following proposition enlightens the structure of the sets ∆G and ∆∗
G.

Proposition 7.5. If G is a FNR rational semigroup generated by a u–tuple map f =
(f1, f2, . . . , fu) ∈ Ratu, then ∆∗

G is an open subset of [0,+∞) and there exists η > 0 such
that

[0, hf + η) ⊂ ∆∗
G ⊂ ∆G.



66 JASON ATNIP, HIROKI SUMI, AND MARIUSZ URBAŃSKI

Proof. The inclusion ∆∗
G ⊂ ∆G and openness of ∆∗

G in [0,+∞) both follow directly from
Proposition 7.4, while the inclusion ∆∗

G ⊃ [0, hf + η) with some η > 0 is an immediate
consequence of the definition of ∆∗

G and continuity of the pressure function [0,+∞) ∋ t 7−→
R proved in Proposition 4.3 (b). □

8. Small Pressure PΞ
V (t)

Let G be a finitely generated *semi–hyperbolic rational semigroup generated by a u–tuple
map f = (f1, . . . , fu) ∈ Ratu. Let V ⊂ Σu × Ĉ be a non–empty open neighborhood of

Crit∗(f̃). Let Ξ be a non–empty finite subset of K(V ). For every t ≥ 0 we define

(8.1) PΞ
V (t) := lim sup

n→∞

1

n
log

∑
ξ∈
(
f̃ |K(V )

)−n

(Ξ)

∣∣(f̃n)′(ξ)∣∣−t.
The key technical result of this section is the following.

Lemma 8.1. Let G be a finitely generated *semi–hyperbolic rational semigroup generated
by a u–tuple map (f1, . . . , fu) ∈ Ratu. Let t ∈ ∆G. If V is an open neighborhood of Crit∗(f̃)

such that V ∩ J(f̃) ̸= ∅, and Ξ is a non–empty finite subset of K(V ), then

PΞ
V (t) < P(t).

Proof. Note that the map f̃ |K(V ) : K(V ) → K(V ) has no critical points and all its points
of non–openness, i.e. points ξ ∈ K(V ) that have no local base of topology (consisting of

open sets relative to K(V )) whose images under f̃ |K(V ) are also open relative to K(V ) , is

contained in ∂V , the boundary of V in Σu × Ĉ. Defining the sets

En :=
(
f̃ |K(V )

)−n
(Ξ), n ≥ 0,

and applying to them Lemmas 8.2.6 and 8.2.7 of [16] with the function ϕ := −t log
∣∣(f̃n)′(ξ)∣∣,

we conclude that there existsmΞ
V,t, a Borel probability measure on K(V ), with the following

properties:

(a)

mΞ
V,t(f̃(A)) ≥ eP

Ξ
V (t)

∫
A

|f̃ ′(ξ)
∣∣t dmΞ

V,t

for every Borel set A ⊂ K(V ) such that the map f̃ |A is 1–to–1,

and

(b)

mΞ
V,t(f̃(A)) = eP

Ξ
V (t)

∫
A

|f̃ ′(ξ)
∣∣t dmΞ

V,t

if in addition A ∩ ∂V = ∅.
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Now, seeking contradiction suppose that

PΞ
V (t) = P(t).

Fix a point ξ = (τ, z) ∈ K(V ) arbitrary. Applying formula (a) above consecutively, we
would obtain that

(8.2) mΞ
V,t(B

∗
j (τ, z)) ≤ Kt exp

(
−PΞ

V (t)nj(ξ)
)∣∣(f̃nj(ξ)

)′
(ξ)
∣∣−t,

where the sets B∗
j (τ, z) and integers nj(ξ), j ≥ 1, are defined by formulas (4.8) and (4.7).

We also know that

(8.3) mt(B
∗
j (τ, z)) ≥ C−1

t exp
(
−P(t)nj(ξ)

)∣∣(f̃nj(ξ)
)′
(ξ)
∣∣−t

with some constant Ct ≥ 1. Therefore,

(8.4) mΞ
V,t(B

∗
j (τ, z)) ≤ KtCtmt(B

∗
j (τ, z)).

Now, the same proof (with mt replaced by mΞ
V,t) as that of Lemma 4.12, gives us that the

family B restricted to K(V ) is a Vitali relation for the measure mΞ
V,t on the set K(V ) ⊂

J(f̃) \ Sing(f̃). In conjunction with (8.4) this yields the measure mΞ
V,t to be absolutely

continuous with respect to mt, even more we see that
dmΞ

V,t

dmt
≤ KtCt. But the set K(V ),

and all its forward iterates under f̃ , are disjoint from V . Hence, K(V ) ∩ Trans(f̃) =

∅, where, we recall, Trans(f̃) is the set of transitive points of f̃ : J(f̃) −→ J(f̃). By
virtue of Corollary 4.16 this entails mt(K(V )) = 0. Thus also mΞ

V,t(K(V )) = 0, and this
contradiction finishes the proof. □

Remark 8.2. The proofs of Lemmas 8.2.6 and 8.2.7 from [16] are rather minor improve-
ments of those from Section 3 in [5].

From now on throughout this section we takeG to be a FNR rational semigroup generated
by a u–tuple map (f1, . . . , fu) ∈ Ratu. Fix R ∈ (0, R∗(f̃)). Let Crit∗(f̃) ⊂ S ⊂ J(f̃) \
B2(PCV(f̃), 8R) be an arbitrary finite aperiodic set. Let U = {Us}s∈S be a nice family of
sets, the existence of which is guaranteed by Theorem 6.8. Recall that

U =
⋃
s∈S

Us.

We now also recall that for every s ∈ S and every n ≥ 1 we have denoted:

D∗
n(s) :=

{
τ ∈ HIBn(p2(Us)) : f̃

k
(
f̃−n
τ (Us)

)
∩ U = ∅ for all 0 ≤ k ≤ n− 1

}
.

We put

D∗
n(S) :=

⋃
s∈S

D∗
n(s).

Recall that

Xs = U s

for every s ∈ S. We shall prove the following.
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Lemma 8.3. Let G be a FNR rational semigroup generated by (f1, . . . , fu) ∈ Ratu. If
t ∈ ∆∗

G and US = {Us}s∈S is a nice family of sets, produced in Theorem 6.8, then there
exist γ > 0 and a finite set Ξ ⊂ K(B2(S, γ)) such that for every ε > 0 there exists CU(ε) > 0
such that for every integer n ≥ 1 we have that

mt

(⋃
s∈S

⋃
τ∈D∗

n(s)

f̃−n
τ (Xs)

)
≤ CU(ε) exp

(
(PΞ

B2(S,γ)
(t)− P(t) + ε)n

)
with the number P(t)− PΞ

B2(S,γ)
(t) being positive.

Proof. Since periodic points of f̃ : J(f̃) −→ J(f̃) are dense in J(f̃), for every s ∈ S there

exists ξs, a periodic point of f̃ belonging to Us \ S, whose forward orbit under f̃ is disjoint
from S. Then there exists γ > 0 so small that

(8.5) B2(S, γ) ⊂ U

and

B2(S, γ) ∩
∞⋃
n=0

f̃n({ξs : s ∈ S}) = ∅.

This latter formula is equivalent to saying that

Ξ := {ξs : s ∈ S} ⊂ K(B2(S, γ)),

which in the conjunction with (8.5), gives that⋃{
f̃−n
τ (ξs) : s ∈ S, τ ∈ D∗

n(s)
}
⊂ K(B2(S, γ))

for every integer n ≥ 0. It therefore follows from the definition of PΞ
B2(S,γ)

(t) that

1

n
log
∑
s∈S

∑
τ∈D∗

n(s)

∣∣∣(f̃−n
τ

)′
(ξs)
∣∣∣t ≤ 1

n
log

∑
ξ∈
(
f̃ |K(V )

)−n

(Ξ)

∣∣(f̃n)′(ξ)∣∣−t ≤ PΞ
B2(S,γ)

(t) +
ε

2

for all n ≥ 1 large enough. Invoking Koebe’s Distortion Theorem, we further see that for
all n ≥ 1 large enough, say n ≥ N , we have

1

n
log
∑
s∈S

∑
τ∈D∗

n(s)

∥∥∥(f̃−n
τ

)′∣∣∣
Xs

∥∥∥t
∞

≤ PΞ
B2(S,γ)

(t) + ε.

Equivalently, for all n ≥ N :

1

n
log
∑
s∈S

∑
τ∈D∗

n(s)

∥∥∥(f̃−n
τ

)′∣∣∣
Xs

∥∥∥t
∞
e−P(t)n ≤ PΞ

B2(S,γ)
(t)− P(t) + ε,

and note that the number P(t)− PΞ
B2(S,γ)

(t) is positive because of Lemma 8.1. But

mt

(
f̃−n
τ (Xs)

)
≤
∥∥∥(f̃−n

τ

)′∣∣∣
Xs

∥∥∥t
∞
e−P(t)n,

whence ∑
s∈S

∑
τ∈D∗

n(s)

mt

(
f̃−n
τ (Xs)

)
≤ exp

(
(PΞ

B2(S,γ)
(t)− P(t) + ε)n

)
.
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Therefore, our lemma follows with appropriate constant CU(ε) > 0 determined by the
values of the above sum for ns ranging from 1 up to N − 1. □

As an immediate consequence of this lemma and Proposition 7.4 we get the following.

Proposition 8.4. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. If U = {Us}s∈S is a nice family of sets produced in Theorem 6.8, and

SU =
{
f̃−∥τ∥
τ : Xt(τ) −→ Xi(τ)

}
τ∈DU

is the corresponding graph directed system, then there exist γ > 0 and a finite set Ξ ⊂
K(B2(S, γ)) such that for every b ∈ ∆∗

G there exists η > 0 such that for every t ∈ ∆∗
G ∩

(b− η, b+ η) and every ε > 0

mt

(⋃
s∈S

⋃
τ∈Dn(s)

f̃−n
τ (Xs)

)
≤ Cε exp

((
PΞ
B2(S,γ)

(t)− P(t) + ε

l

)
n

)
for every integer n ≥ 1 and some constant Cε ∈ (0,+∞) depending on ε. Also,

P(t)− PΞ
B2(S,γ)

(t) > 0.

9. Symbol Space Thermodynamic Formalism Associated to Nice Families;
Real Analyticity of the Original Pressure P(t)

This section brings up the full fledged fruits of the existence of nice families. It forms
a symbolic representation (subshift of finite type with a countable infinite alphabet) of
the map generated by a nice family and develops the thermodynamic formalism of the
potentials ζt,s resulting from those of the form −t log |f̃ ′| and the “first return time” ∥τ1∥.

Throughout this section G is a FNR rational semigroup generated by a u–tuple map
(f1, . . . , fu) ∈ Ratu. Let

U = {Us}s∈S
be a nice family of sets coming from Theorem 6.8. Let SU be the corresponding graph
directed system described in Theorem 6.11. Let

πU : D∞
U −→ Σu × Ĉ

be the canonical projection from D∞
U to Σu× Ĉ, determined by the system SU ; see [21] for

details. We recall (see also [21]) that JU , the limit set of SU , is defined as πU(D∞
U ).

Given two real numbers t, s ≥ 0 we define the function ζt,s : D∞
U −→ R by the following

formula:

ζt,s(τ) := −t log
∣∣(f̃ ∥τ1∥

)′
(πU(σ(τ)))

∣∣− s∥τ1∥.
The functions ζt,s, t, s ≥ 0, will be frequently referred to as potentials. Let dϑ be the
metric defined on D∞

U by the formula

dϑ, (α, β) := ϑmin{n≥0:αn+1 ̸=βn+1}.

Because of Property (B) of Theorem 6.8, we immediately get the following.
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Lemma 9.1. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. If U = {Us}s∈S is a nice family of sets produced in Theorem 6.8, and SU =

{
f̃
−∥τ∥
τ :

Xt(τ) −→ Xi(τ)

}
τ∈DU

is the corresponding graph directed system, then the projection map

πU : D∞
U −→ JU

is Lipschitz continuous if D∞
U is endowed with the metric dϑ.

Applying Koebe’s Distortion Theorem, this lemma yields the following.

Proposition 9.2. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. If U = {Us}s∈S is a nice family of sets produced in Theorem 6.8, and SU =

{
f̃
−∥τ∥
τ :

Xt(τ) −→ Xi(τ)

}
τ∈DU

is the corresponding graph directed system, then for all t, s ≥ 0 the

function
ζt,s : D∞

U −→ R
is Lipschitz continuous.

Let P(t, s) be the topological pressure of the potential ζt,s : D∞
U −→ R with respect to the

shift map σ : D∞
U −→ D∞

U . Given any function g : D∞
U −→ R and any integer n ≥ 1, let

Sn(g) :=
n−1∑
j=0

g ◦ σj

be the nth Birkhoff sum of g with respect to the dynamical system σ : D∞
U −→ D∞

U . If∑
e∈DU

∥ϕ′
e∥t∞e−s∥e∥ < +∞,

then we call the function ζt,s summable; we then also call the parameter (t, s) summable.
Denote by Ω(U) the set of all summable parameters (t, s) ∈ [0,+∞) × [0,+∞). Invoking
Proposition 9.2, by virtue of Corollary 2.7.5 (a), (b), and then (c) in [21], we respectively
obtain the following two theorems.

Theorem 9.3. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. Let U = {Us}s∈S be a nice family of set produced in Theorem 6.8 and let SU ={
f̃
−∥τ∥
τ : Xt(τ) −→ Xi(τ)

}
τ∈DU

the corresponding graph directed system.

If (t, s) ∈ Ω(U), then there exists a unique Borel probability measure m̃t,s on D∞
U such

that

m̃t,s(eF ) = e−P(t,s)

∫
F

Aeω1(U)
∣∣ϕ′
e(πU(ω))

∣∣te−s∥e∥ dm̃t,s(ω)

for every e ∈ DU and every Borel set F ⊂ D∞
U . We then have a stronger property than the

displayed formula above, namely

m̃t,s(τF ) = e−P(t,s)|τ |
∫
F

Aτkω1(U)
∣∣ϕ′
τ (πU(ω))

∣∣te−s|||τ ||| dm̃t,s(ω)

for every τ ∈ D∗
U and every Borel set F ⊂ D∞

U , where k = |τ |, and

|||τ ||| :=
k∑
j=0

∥τj∥.
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Theorem 9.4. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. Let U = {Us}s∈S be a nice family of sets produced in Theorem 6.8, and let SU ={
f̃
−∥τ∥
τ : Xt(τ) −→ Xi(τ)

}
τ∈DU

be the corresponding graph directed system.

If (t, s) ∈ Ω(U), then there exists a unique σ–invariant Gibbs state µ̃t,s for the potential
ζt,s : D∞

U −→ R with respect to the shift map σ : D∞
U −→ D∞

U . This means that µ̃t,s is
σ–invariant and at least one (equivalently all) of the following hold:

(a)

C−1 ≤ µ̃t,s([τ |n])∣∣ϕ′
τ |n(πU(τ))

∣∣te−s|||τ |n||| ≤ C

with some constant C ≥ 1, all integers n ≥ 1, and all τ ∈ D∞
U .

(b)

C−1 ≤ m̃t,s([τ |n])∥∥ϕ′
τ |n

∥∥t
∞e

−s|||τ |n|||
≤ C

with some constant C ≥ 1, all integers n ≥ 1, and all τ ∈ D∞
U .

(c) µ̃t,s is absolutely continuous with respect to m̃t,s.

(d) µ̃t,s is equivalent to m̃t,s.

(e) µ̃t,s is equivalent to m̃t,s and the Radon–Nikodym derivative dµ̃t,s
dm̃t,s

is a log bounded

Hölder continuous function.

In addition, the measure µ̃t,s is ergodic with respect to the shift map σ : D∞
U −→ D∞

U .

Now we intend to establish some relationships between the measures mt and m̃t,s. We
first obtain a straightforward (by now) fact about the formers. Indeed, as an immediate

consequence of Corollary 4.16, of the fact that supp(mt) = J(f̃), and of the fact that

JU ⊃ (U ∩ Trans(f̃)) (see Theorem 6.11), we get the following.

Lemma 9.5. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. Let U = {Us}s∈S be a nice family of sets produced in Theorem 6.8, and let SU ={
f̃
−∥τ∥
τ : Xt(τ) → Xi(τ)

}
τ∈DU

be the corresponding graph directed system. If t ∈ ∆G, then

mt(JU) > 0; furthermore

mt

(
Us ∩ JU

)
> 0

for all s ∈ S.

The announced link between the measures mt and m̃t,s is given by the following.

Proposition 9.6. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. Let U = {Us}s∈S be a nice family of sets produced in Theorem 6.8, and let SU ={
f̃
−||τ ||
τ : Xt(τ) −→ Xi(τ)

}
τ∈DU

be the corresponding graph directed system.

If t ∈ ∆G, then (t,P(t)) ∈ Ω(U) and

(9.1) P(t,P(t)) = 0.
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Furthermore,

(9.2) m̃t,P(t)([τ ]) ≍ mt

(
ϕτ (Ut(τ))

)
≍ mt

(
ϕτ (Xt(τ))

)
for all τ ∈ D∗

U .

Proof. Taking ε > 0 small enough, it immediately follows from Proposition 8.4 that
(t,P(t)) ∈ Ω(U). By the very definition of both measures mt and m̃t,P(t), along with
Koebe’s Distortion Theorem, we have that

mt

(
ϕτ (Ut(τ))

)
=

∫
Ut(τ)

e−P(t)|||τ ||||ϕ′
τ (z)|t dmt(z) ≍ e−P(t)|||τ |||||ϕ′

τ ||t∞mt(Ut(τ))

≍ e−P(t)|||τ |||||ϕ′
τ ||t∞

= eP(t,P (t))|||τ |||(e−P(t,P (t))|||τ |||e−P(t)|||τ |||||ϕ′
τ ||t∞

)
≍ eP(t,P (t))|||τ |||m̃t,P(t)([τ ]).

Also, the same formula holds with U replaced everywhere by X. Therefore, if on the one
hand P(t,P(t)) > 0, then by applying the standard covering argument with sets of the form
[τ ] and Ut(τ) with |||τ ||| diverging to +∞, we would conclude that m̃t,P(t)

(
D∞

U
)
= 0, which

is a contradiction. If on the other hand, P(t,P(t)) < 0, then by the same token mt(JU) = 0,
which contradicts Lemma 9.5. Thus P(t,P(t)) = 0, and so formula (9.2) is also proved. □

From now on we denote

m̃t := m̃t,P(t) and µ̃t := µ̃t,P(t).

Lemma 9.7. Let G be a FNR rational semigroup type generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. Let U = {Us}s∈S be a nice family of sets produced in Theorem 6.8 and let SU ={
f̃
−∥τ∥
τ : Xt(τ) −→ Xi(τ)

}
τ∈DU

the corresponding graph directed system.

If b ∈ ∆∗
G, then there exists δ > 0 such that

∆∗
G ∩

(
(b− δ, b+ δ)× (P(b)− δ,P(b) + δ)

)
⊂ Ω(U).

Proof. Of course it suffices to show that

∆∗
G ∩

(
(b− δ, b]× (P(b)− δ,P(b)]

)
⊂ Ω(U)

for some δ > 0. Fix a finite set S along with η > 0, γ > 0 and a finite set Ξ ⊂ K(B2(S, γ)),
all four of them coming from Proposition 8.4. Fix ε > 0. It follows from Proposition 8.4
and the generalized conformality of mt that, for t ≤ b and P(b)− δ ≤ s ≤ P(b) with t ∈ ∆∗

G
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and δ > 0 to be determined in the course of the proof, we have∑
τ∈Dn

U

∥ϕ′
τ∥t∞e−s∥τ∥ =

∑
τ∈Dn

U

∥ϕ′
τ∥t∞e−P(t)∥τ∥e(P(t)−s)n = e(P(t)−s)n

∑
τ∈Dn

U

||ϕ′
τ ||t∞e−P(t)||τ ||

≍ e(P(t)−s)n
∑
τ∈Dn

U

mt

( ⋃
τ∈Dn

U

ϕτ
(
Xt(τ)

))
= e(P(t)−s)nmt

( ⋃
a∈S

⋃
τ∈Dn(a)

ϕτ (Xa)
)

≤ Cεe
(P(t)−s)n exp

((
PΞ
B2(S,γ)

(t)− P(t) + ε

l

)
n

)
= Cε exp

((
P(t)− s+ l−1(PΞ

B2(S,γ)
(t)− P(t) + ε)

)
n
)

≤ Cε exp
((

P(t)− P(b) + δ + l−1(PΞ
B2(S,γ)

(t)− P(t) + ε)
)
n
)

for every integer n ≥ 1. Since the function [0,+∞) ∋ t 7−→ PΞ
B2(S,γ)

(t) ∈ R is continuous
and since, by Proposition 4.3 (b), the function [0,+∞) ∋ t 7−→ P(t) is also continuous,
taking δ > 0 sufficiently small we will have both

|P(t)− P(b)| < ε/2 and
∣∣PΞ

B2(S,γ)
(t)− PΞ

B2(S,γ)
(b)
∣∣ < ε/2.

Therefore, ∑
τ∈Dn

U

∥ϕ′
τ∥t∞e−s∥τ∥ ≤ exp

((
ε+ δ + l−1(PΞ

B2(S,γ)
(t)− P(t) + 2ε)

)
n
)
.

Since, by Lemma 8.1, PΞ
B2(S,γ)

(b) − P(b) < 0, taking both δ > 0 and ε > 0 small enough,

we will have ε+ δ + l−1(PΞ
B2(S,γ)

(t)− P(t) + 2ε) < −β for some β > 0. Hence,∑
τ∈Dn

U

∥ϕ′
τ∥t∞e−s∥τ∥ ≤ e−βn.

Thus ∑
n≥1

∑
τ∈Dn

U

∥ϕ′
τ∥t∞e−s∥τ∥ ⪯

∑
n≥1

e−βn < +∞.

The proof is complete. □

As an immediate consequence of this lemma, formula (4.2), and Proposition 9.6, we get
the following.

Corollary 9.8. Assume that G is a FNR rational semigroup generated by a u–tuple map

f = (f1, . . . , fu) ∈ Ratu. If U = {Us}s∈S is a nice family of sets, and SU =
{
f̃
−∥τ∥
τ :

Xt(τ) −→ Xi(τ)

}
τ∈DU

is the corresponding graph directed system, then there exists δ > 0

such that
(hf − δ, hf ) ⊂ Ω(U),

and for all t ∈ (hf − δ, hf ),
0 < P(t, 0) < +∞.
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By analogy to the terminology of [21], this would mean in its language that the system SU
is strongly regular.

One of our main results, the last one in this section, is the following.

Theorem 9.9. If G be a FNR rational semigroup type generated by a u–tuple map (f1, . . . , fu) ∈
Ratu, then the topological pressure function

P : ∆∗
G −→ R

is real–analytic.

Proof. Using Lemma 9.7, the definition of ∆∗
G, and applying Theorem 2.6.12 of [21], we

see that for each γ ∈ ∆∗
G there exists δ > 0 such that the function P is real–analytic on

(γ − δ, γ + δ) × (P(γ) − δ,P(γ) + δ) in both variables t and s. In order to prove that P
is real–analytic on (γ − δ, γ + δ), we thus may, and we will, employ the Implicit Function
Theorem to show that P is the unique real–analytic function which satisfies P(t,P(t)) = 0
for all t ∈ (γ− δ, γ + δ). Since the equality P(t,P(t)) = 0 holds because of Proposition 9.6,
it is thus sufficient to prove that for all t ∈ (γ − δ, γ + δ) we have that

(9.3)
∂P(t, s)

∂s

∣∣∣
(t,P(t))

< 0.

But by Proposition 2.6.13 of [21] we have

(9.4)
∂P(t, s)

∂s

∣∣∣
(t,P(t))

= −
∫
D∞

U

∥ω1∥ dµ̃t(ω) < 0,

which completes the proof of Theorem 9.9. □

10. Invariant Measures: µt versus µ̃t ◦ π−1
U ; Finiteness of µt

In this section we link the measures m̃t and µ̃t of the previous section, living on the
symbol space, with the conformal and invariant measures mt and µt living on the Julia set
J(f̃). This link is given by Lemma 10.7. We translate here many results of the previous

sections, expressed in the symbolic language, to the one of the actual map f̃ . We eventually
prove here, see Theorem 10.13, that all of the measures µt, t ∈ ∆∗

G, are finite, and thus
probability measures after normalization.

Throughout this section G is again a FNR rational semigroup generated by a u–tuple
map (f1, . . . , fu) ∈ Ratu. As in previous sections let

U = {Us}s∈S
be a nice family of sets coming from Theorem 6.8 and let SU be the corresponding graph
directed system described in Theorem 6.11. Given t ∈ ∆∗

G let

(10.1) µ̂t := µ̃t ◦ π−1
U .

We start with the following.
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Lemma 10.1. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. Let U = {Us}s∈S be a nice family of sets produced in Theorem 6.8 and let

SU =
{
f̃−∥τ∥
τ : Xt(τ) −→ Xi(τ)

}
τ∈DU

,

the corresponding graph directed system.
If t ∈ ∆∗

G, then

µ̂t

( ∞⋂
n=1

⋃
τ∈Dn

U

ϕτ
(
Ut(τ)

))
= 1.

Proof. Since U ∩J(f̃) is a non–empty open set relative to J(f̃) and since Trans(f̃) is dense

in J(f̃), we have that U ∩Trans(f̃) ̸= ∅. It then follows from Theorem 6.11 (b) that there
exists at least one point ξ ∈ JU ∩ U . Then ξ = πU(τ) for some τ ∈ D∞

U . Since U is open,
there thus exists an integer n ≥ 1 such that πU([τ |n]) ⊂ U . Equivalently, [τ |n] ⊂ π−1

U (U).
Hence,

(10.2) µ̃t ◦ π−1
U (U) ≥ µ̃t([τ |n]) > 0.

But by item (c) of Definition 6.7 and by the definition of nice sets, we have that if ω ∈
π−1
U (U), e ∈ DU and Aeω1(U) = 1, then

πU(eω) = ϕe(πU(ω)) ∈ ϕe(Ut(e)) ⊂ Ui(e) ⊂ U.

Therefore, eω ∈ π−1
U (U). Hence,

σ−1
(
π−1
U (U)

)
⊂ π−1

U (U).

Since the measure µ̂t is ergodic with respect to the shift map σ, it follows from this and
from (10.2) that

(10.3) µ̃t
(
π−1
U (U)

)
= 1.

Now fix an arbitrary integer n ≥ 1 and fix an ω ∈ σ−n(π−1
U (U)

)
. This means that

(10.4) πU(σ
n(ω)) ∈ U.

Then

(10.5) πU(ω) = ϕω|n
(
πU(σ

n(ω))
)
∈ ϕω|n(Xt(ω)) = ϕω|n(U t(ω)).

So, since the sets U s, s ∈ S are mutually disjoint, we conclude from (10.4) and (10.5) that

πU(σ
n(ω)) ∈ Ut(ω).

Combining this with the first part of (10.5) we conclude that πU(ω) ∈ ϕω|n(Ut(ω)). Thus

πU(ω) ∈
⋃
τ∈Dn

U

ϕτ
(
Ut(τ)

)
.

Equivalently,

ω ∈ π−1
U

( ⋃
τ∈Dn

U

ϕτ
(
Ut(τ)

))
.
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Thus we have proved that

(10.6) σ−n(π−1
U (U)

)
⊂ π−1

U

( ⋃
τ∈Dn

U

ϕτ
(
Ut(τ)

))
.

Combining this along with (10.3) and shift invariance of the measure µt, we conclude that

µ̂t

( ⋃
τ∈Dn

U

ϕτ
(
Ut(τ)

))
≥ µ̃t

(
σ−n(π−1

U (U)
))

= µ̃t
(
π−1
U (U)

)
= 1.

Thus,

µ̂t

( ∞⋂
n=1

⋃
τ∈Dn

U

ϕτ
(
Ut(τ)

))
= 1.

and the proof is complete. □

Keep the setting of Lemma 10.1. In particular t ∈ ∆∗
G.

Let JU(∞) be the set of all those points ξ ∈ JU for which there exists infinitely many

integers n ≥ 1 such that f̃n(ξ) ∈ JU .

Let also U(∞) be the set of all those points ξ ∈ U for which there exists infinitely many

integers n ≥ 1 such that f̃n(ξ) ∈ U .

The Poincaré Recurrence Theorem asserts that

µt(JU(∞)) = µt(JU).

For all points ξ ∈ JU(∞) there is a well defined first return time to JU(∞), equal also

to the first entrance time to JU , and defined as the least n ≥ 1 such that f̃n(ξ) ∈ JU(∞).

Denote this n by NJU (ξ). The first return map f̃JU : JU(∞) −→ JU(∞) is then defined
as

f̃JU (ξ) = f̃NJU (ξ)(ξ).

Now we shall prove the following. Of course in the above considerations JU could have
been replaced by any measurable subset of Σu × C.

Lemma 10.2. If G is a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu, then

J◦
U :=

∞⋂
n=1

⋃
τ∈Dn

U

ϕτ
(
Ut(τ)

)
= U(∞) ⊂ JU ⊂ U

and
µt
(
J◦
U
)
= µt(U) = µt(U) = µt(JU) > 0.

Proof. Of course
J◦
U ⊂ U(∞) ⊂ JU ⊂ U.

We will now prove the inclusion opposite to the first one, i.e. U(∞) ⊂ J◦
U . For this end

it suffices to show that if ξ ∈ U(∞) and f̃n(ξ) ∈ U for some n ≥ 0, then f̃n(ξ) ∈ U . So
assume that

ξ ∈ U(∞) and f̃n(ξ) ∈ U.
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Then, there exists an integer q > n such that f̃ q(ξ) ∈ U . Hence, there exists s ∈ S such

that f̃ q(ξ) ∈ Us. Let f̃
−(q−n)
ξ be the unique continuous inverse branch of f̃ q−n defined on

Us and sending f̃ q(ξ) back to f̃n(ξ). Then f̃
−(q−n)
ξ = ϕω with some ω ∈ D∗

U . Since U is a

nice family, this implies that f̃n(ξ) ∈ ϕω(Us) ⊂ Ui(ω) ⊂ U . Thus

ξ ∈
∞⋂
n=1

⋃
τ∈Dn

U

ϕτ
(
Ut(τ)

)
.

So, the first formula of our lemma is established.

Passing to the second formula of our lemma, note that its first two equality signs are
now immediate. Note also that

0 < µt(U) = µt(U(∞)) ≤ µt(JU) ≤ µt(U).

Thus, in order to conclude the proof, it suffices to show that

µt(U \ U) = 0.

But, since U is the union of all members of some nice family, U ∩
⋃∞
n=0 f̃

n(U \ U) = ∅.
Hence, (U \ U) ∩ Trans(f̃) = ∅, and therefore, µt(U \ U) = 0 by virtue of Corollary 4.16
and Theorem 4.21. The proof is complete. □

As an immediate consequence of this lemma, we get the following.

Corollary 10.3. If G is a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu, then for every ξ ∈ J◦

U the set{
n ≥ 0 : f̃n(ξ) ∈ J◦

U
}

is infinite.

Since, by virtue of Theorem 4.21, the measures mt and µt are equivalent, as an immediate
consequence of Lemma 10.2 we get the following.

Corollary 10.4. If G is a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu, then

mt

(
J◦
U
)
= mt(U) = mt(U) = mt(JU) > 0.

Let
D◦

U := π−1
U
(
J◦
U
)
.

As an immediate consequence of Lemma 10.1 and Lemma 10.2 we get the following.

Corollary 10.5. If G is a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu, then

(a) π−1
U (ξ) is a singleton in D◦

U for every ξ ∈ J◦
U ,

(b) The map πU
∣∣
D◦

U
: D◦

U −→ J◦
U is bijective,

(c) µ̃t
(
D◦

U
)
= µ̂t

(
J◦
U
)
= 1.
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The following is an immediate consequence of Corollary 10.5.

Corollary 10.6. If G is a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu, then

(a) For every τ ∈ D∗
U we have that

f̃JU ◦ ϕτ
∣∣
J◦
U∩Ut(τ)

= Id
∣∣
J◦
U∩Ut(τ)

,

(b) The following diagram commutes

D◦
U

σ
−−−−−−−−→ D◦

U

πU

y yπU
J◦
U

f̃JU−−−−−−−−→ J◦
U .

Now we are in position to prove the following.

Lemma 10.7. If G is a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu, then

µ̂t =
µt

µt(JU)

∣∣∣∣
JU

.

Proof. Put

m◦
t :=

mt

mt(JU)

∣∣∣∣
JU

, µ◦
t :=

µt
µt(JU)

∣∣∣∣
JU

and also

m̃◦
t := m◦

t ◦ πU
∣∣
D◦

U
, µ̃◦

t := µ◦
t ◦ πU

∣∣
D◦

U
,

where the latter two are well defined since, by virtue of Corollary 10.5 (b), the map πU
∣∣
D◦

U
is 1–to–1. It then follows from formula (9.2) of Proposition 9.6 and from Corollary 10.4
that

m̃t([τ ]) ≍ mt

(
ϕτ (Ut(τ))

)
= mt(JU)m

◦
t

(
J◦
U ∩ ϕτ (Ut(τ))

)
= mt(JU) m̃

◦
t ([τ ]),

for every τ ∈ D∗
U . Therefore, m̃t ≍ m̃◦

t . Hence

µ̃t ≍ µ̃◦
t .

Hence

(10.7) µ̂t = µ̃t ◦ π−1
U ≍ µ̃◦

t ◦ π−1
U ≤ µ◦

t .

Now, on the one hand, µ◦
t is f̃U–invariant because of its definition and since µt is f̃–

invariant. On the other hand, µ̂t = µ̃t ◦ π−1
U is f̃U–invariant because of shift invariance of

µ̃t and because of item (b) of Corollary 10.6. Since in addition µ◦
t is ergodic with respect

to f̃U (as µt is ergodic with respect to f̃), it follows from (10.7) that µ̂t = µ◦
t . The proof is

complete. □
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As an immediate consequence of this lemma, formula (9.2) of Proposition 9.6, item (e) of
Theorem 9.4, and Proposition 8.4, we get the following.

Proposition 10.8. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. If U = {Us}s∈S is a nice family of sets produced in Theorem 6.8 and SU =

{
f̃
−∥τ∥
τ :

Xt(τ) −→ Xi(τ)

}
τ∈DU

is the corresponding graph directed system, then there exist γ > 0 and

a finite set Ξ ⊂ K(B2(S, γ)) such that for every b ∈ ∆∗
G there exists η > 0 such that for

every t ∈ ∆∗
G ∩ (b− η, b+ η) and every ε > 0

µt

(⋃
s∈S

⋃
τ∈Dn(s)

f̃−n
τ (Xs)

)
≤ C ′

ε exp

((
PΞ
B2(S,γ)

(t)− P(t) + ε

l

)
n

)

and

m̃t

( ⋃
τ∈Dn

[τ ]
)
≤ C ′

ε exp

((
PΞ
B2(S,γ)

(t)− P(t) + ε

l

)
n

)
for every integer n ≥ 1 and some constant C ′

ε ∈ (0,+∞) depending on ε. Also,

P(t)− PΞ
B2(S,γ)

(t) > 0.

In terms of return time, an equivalent reformulation of this proposition with regard to
measure µt is the following.

Proposition 10.9. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. If U = {Us}s∈S is a nice family of sets produced in Theorem 6.8 and SU =

{
f̃
−∥τ∥
τ :

Xt(τ) −→ Xi(τ)

}
τ∈DU

is the corresponding graph directed system, then there exist γ > 0 and

a finite set Ξ ⊂ K(B2(S, γ)) such that for every b ∈ ∆∗
G there exists η > 0 such that for

every t ∈ ∆∗
G ∩ (b− η, b+ η) and every ε > 0

µt

({
ξ ∈ JU : NJU (ξ) = n

})
≤ C ′

ε exp

((
PΞ
B2(S,γ)

(t)− P(t) + ε

l

)
n

)
for every integer n ≥ 1 and some constant C ′

ε ∈ (0,+∞) depending on ε. Also,

P(t)− PΞ
B2(S,γ)

(t) > 0.

An immediate consequence of Proposition 10.8 and Proposition 10.9 along with item (e) of
Theorem 9.4, is the following.

Proposition 10.10. Let G be a FNR rational semigroup generated by a u–tuple map
(f1, . . . , fu) ∈ Ratu. If U = {Us}s∈S is a nice family of sets produced in Theorem 6.8, and

SU =
{
f̃
−∥τ∥
τ : Xt(τ) −→ Xi(τ)

}
τ∈DU

is the corresponding graph directed system, then there

exist γ > 0 and a finite set Ξ ⊂ K(B2(S, γ)) such that for every b ∈ ∆∗
G there exists η > 0
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such that for every t ∈ ∆∗
G ∩ (b− η, b+ η) and every ε ∈ (0,P(t)− PΞ

B2(S,γ)
(t))

µt

({
ξ ∈ JU : NJU (ξ) ≥ n

})
≤ C ′′

ε exp

((
PΞ
B2(S,γ)

(t)− P(t) + ε

l

)
n

)
,

m̃t

( ⋃
k≥n

⋃
τ∈Dk

[τ ]
)
≤ C ′′

ε exp

((
PΞ
B2(S,γ)

(t)− P(t) + ε

l

)
n

)
, and

µ̃t

( ⋃
k≥n

⋃
τ∈Dk

[τ ]
)
≤ C ′′

ε exp

((
PΞ
B2(S,γ)

(t)− P(t) + ε

l

)
n

)

for every integer n ≥ 1 and some constant C ′′
ε ∈ (0,+∞) depending on ε. Also,

P(t)− PΞ
B2(S,γ)

(t) > 0.

An immediate consequence of this proposition is the following.

Corollary 10.11. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. If U = {Us}s∈S is a nice family of sets and t ∈ ∆∗

G, then for every p > 0 we have

∫
JU

Np
JU
(ξ) dµt(ξ) < +∞.

Now we can also prove the following.

Lemma 10.12. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. If U = {Us}s∈S is a nice family of sets and t ∈ ∆∗

G, then the function log ζ1,0 :
D∞

U −→ (−∞, 0) is integrable with respect to the measure µ̃t. Furthermore, all its positive
moments are finite. More precisely:

0 < χµ̃t :=

∫
D∞

U

log
∣∣(f̃ ∥τ1∥

)′
(πU(σ(τ)))

∣∣ dµ̃t(τ) < +∞

and (note that the integrand of the above integral is, by Theorem 6.8, everywhere positive)

∫
D∞

U

logp
∣∣(f̃ ∥τ1∥

)′
(πU(σ(τ)))

∣∣ dµ̃t(τ) < +∞

for every p > 0.
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Proof. Taking ε > 0 small enough and applying Proposition 10.10, we get that∫
D∞

U

logp
∣∣(f̃ ∥τ1∥

)′
(πU(σ(τ)))

∣∣ dµ̃t(τ) ≤ ∑
e∈:DU

sup

(
log
∣∣(f̃ ∥e∥)′

∣∣∣∣∣
Xt(e)

)p
µ̃t([e])

=
∞∑
n=1

∑
e∈:Dn

sup

(
log
∣∣(f̃ ∥e∥)′

∣∣∣∣∣
Xt(e)

)p
µ̃t([e])

≤
∞∑
n=1

∑
e∈:Dn

sup
(
log
(
∥f̃ ′∥n∞

))p
µ̃t([e])

≤ log ∥f̃ ′∥p∞
∞∑
n=1

np
∑
e∈:Dn

µ̃t([e])

≤ log ∥f̃ ′∥p∞C ′′
ε

∞∑
n=1

np exp

((
PΞ
B2(S,γ)

(t)− P(t) + ε

l

)
n

)
< +∞.

The inequality χµ̃t > 0 follows immediately from item (B) of Theorem 6.8. □

In turn, as an immediate consequence of the last two results, i.e. Corollary 10.11 and
Lemma 10.12 along with Kac’s Lemma, we get the following.

Theorem 10.13. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. If t ∈ ∆∗

G, then the measure µt is finite. From now on we normalize this measure so

that it becomes a probability measure. Furthermore, the function J(f̃) ∋ z 7−→ log |f̃ ′(z)| ∈
R is integrable with respect to the measure µt and

χµt :=

∫
J(f̃)

log |f̃ ′| dµt ∈ (0,+∞).

This number, i.e. χµt, is commonly called the Lyapunov exponent of the dynamical

system (f̃ , µt).

Now, as a complement of Theorem 9.9, we can prove the following.

Theorem 10.14. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. If t ∈ ∆∗

G, then

(10.8) P′(t) = −χµt < 0,

and

(10.9) P′′(t) = σ2
µt

(
−t log |f̃ ′|

)
≥ 0,

where

σ2
µt

(
−t log |f̃ ′|

)
:= lim

n→∞

1

n

∫
J(f̃)

S2
n

(
−t log |f̃ ′|+ χµt

)
dµt,

is commonly called the asymptotic variance of the function −t log |f̃ ′| with respect to

the dynamical system (f̃ , µt).
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Proof. Because of Lemma 10.7, formula (10.1), the definition of the measure µ̃t, and Propo-
sitions 2.6.13 from [21] along with Kac’s Lemma, by differentiating formula (9.1) of Propo-
sition 9.6, we get that

0 =
∂P(t, s)

∂t

∣∣∣
(t,P(t))

+
∂P(t, s)

∂s

∣∣∣
(t,P(t))

P′(t) = −χµ̃t − P′(t)

∫
D∞

U

∥ω1∥dµ̃t(ω)

= −χµ̂t − P′(t)

∫
JU

NJU dµ̂t

= −χµ̂t −
P′(t)

µt
(
JU
) .

Therefore, using the refined version of Kac’s Lemma, we get

P′(t) = −µt
(
JU
)
χµ̃t = −χµt < 0,

where the last inequality follows from Theorem 10.13. Passing to the second derivative of
P(t), by employing Propositions 2.6.14 from [21], we calculate that

P′′(t) = σ2
µt(−t log |f̃

′|) ≥ 0,

which finishes the proof. □

11. Variational Principle:
The Invariant Measures µt are the Unique Equilibrium States

Throughout this section we always assume that G = ⟨f1, . . . , fu⟩ is a FNR rational
semigroup. Our main goal in this section is to prove a variational principle for the potentials
−t log |f̃ ′|, t ∈ ∆∗

G, and the dynamical system f̃ : J(f̃) −→ J(f̃), and to show that the
measures µt are the only equilibrium states for these potentials. We start with the
following technical auxiliary result.

Lemma 11.1. Let G = ⟨f1, . . . , fu⟩ be a FNR rational semigroup. If 0 < r < s, then there

exists a finite set Ξ ⊂ K
(
B(Crit∗(f̃), r)

)
such that

P

(
f̃ |
K
(
B(Crit∗(f̃),s)

),−t log |f̃ ′|
)

≤ PΞ

B
(
Crit∗(f̃),r

)(t) < P(t)

for every t ∈ ∆G.

Proof. For the ease of notation, for every u > 0, put

Bu := B(Crit∗(f̃), u), Ku := K(Bu),(11.1)

Pu(t) := P
(
f̃ |Ku ,−t log |f̃ ′|

)
, and PΞ

u(t) := PΞ
Bu
(t).(11.2)

Let R2 > 0 be the constant produced in Lemma 7.1 for the set V = Br. Let Ξ ⊂ Kr be a
finite (R2/4)–spanning set for the set Kr. Let n ≥ 1 be the integer produced in Lemma 7.1
for V = Br. In view of this lemma and Corollary 7.2, we may assume R2 > 0 to be so
small that

∥f̃−nj
ξ (x), f̃−nj

ξ (y)∥ϑ ≤ 2−j∥x, y∥θ(11.3)
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for all ξ ∈ Kr, all j ≥ 0, and all x, y ∈ B(f̃ j(ξ), 2R2), where f̃
−k
ξ : B(f̃k(ξ), 2R2) −→ Σu×C,

k ≥ 0, are the inverse branches of f̃k produced in Lemma 7.1. Let ε ∈ (0, R2/4) and fix an
integer q ≥ 1 so large that

2−qR2 < ε.(11.4)

Fix an integer k ≥ 1. Let Fε ⊂ Ks be a maximal (k, ε)–separated set for the dynamical

system f̃n : Ks → Ks. Then for every x ∈ Fε there exists an element x̂ ∈ Ξ such that

f̃n(q+k)(x) ∈ B(x̂, R2/4).

Let

x̃ := f̃−n(q+k)
x (x̂)

where f̃−n
x : B

(
f̃n(q+k)(x), 2R2

)
−→ Σu × C is the inverse branch of f̃kn produced in

Lemma 7.1 ξ = f̃n(q+k)(x). Then∣∣∣∣(f̃nk)′ (x̃)∣∣∣∣ ≤ K2

∣∣∣∣(f̃nk)′ (x)∣∣∣∣ .
Equivalently, ∣∣∣∣(f̃nk)′ (x)∣∣∣∣−1

≤ K2

∣∣∣∣(f̃nk)′ (x̃)∣∣∣∣−1

.

Therefore,

Pε(k, t) : =
1

k
log
∑
x∈Fε

∣∣∣∣(f̃nk)′ (x)∣∣∣∣−t ≤ 2 logK

k
+

1

k
log
∑
x∈Fε

∣∣∣∣(f̃nk)′ (x̃)∣∣∣∣−t
≤ 2 logK

k
+
qn

k
log ∥f̃ ′∥∞ + n

1

nk
log
∑
x∈Fε

∣∣∣∣(f̃n(q+k))′ (x̃)∣∣∣∣−t .(11.5)

We now claim that the function

Fε ∋ x 7−→ x̃ ∈ J(f̃)(11.6)

is 1–to–1. Indeed, suppose that x, y ∈ Fε and x̃ = ỹ. Then also x̂ = f̃n(q+k)(x̃) =

f̃n(q+k)(ỹ) = ŷ, and

x = f̃−n(q+k)
z (f̃n(q+k)(x)), y = f̃−n(q+k)

z (f̃ zn(q+k)(y)),

where z := x̃ = ỹ. Since also

∥f̃n(q+k)(x), f̃n(q+k)(y)∥ϑ ≤ ∥f̃n(q+k)(x), x̂∥ϑ + ∥ŷ, f̃n(q+k)(y)∥ϑ ≤ R2

4
+
R2

4
=
R2

2
,

we conclude from (11.3) and (11.4) that

∥f̃nj(x), f̃nj(y)∥ϑ ≤ 2j−(q+k)∥f̃n(q+k)(x), f̃n(q+k)(y)∥ϑ
≤ 2−q∥f̃n(q+k)(x), f̃n(q+k)(y)∥ϑ
< 2−qR2 < ε,



84 JASON ATNIP, HIROKI SUMI, AND MARIUSZ URBAŃSKI

for all j = 0, 1, . . . , k. Since the set Fε is (k, ε)–separated with respect to the map f̃ |Kr :
Kr → Kr, we thus conclude that x = y, and injectivity of the map from (11.6) is established.
Having this and using also Lemma 8.1, we can continue (11.5) as

Pε(t) := lim
k→∞

Pε(k, t) ≤ n lim
k→∞

1

nk
log

∑
y∈f̃−n(q+k)(Ξ)

∣∣∣∣(f̃n(q+k))′ (y)∣∣∣∣−t ≤ nPΞ
Bs
(t) < nP(t).

Hence,

Ps(t) =
1

n
P
(
f̃ |nKs

,−t log |(f̃n)′|
)
=

1

n
lim
ε→0

Pε(t) ≤ PΞ
Bs
(t) < P(t).

□

Recall that M(f̃) denotes the set of all f̃–invariant Borel probability measures and for

µ ∈ M(f̃) we let hµ(f̃) denote the Kolmogorov-Sinai entropy of f̃ with respect to the
measure µ. We shall now prove the following which is the main and only theorem of this
section.

Theorem 11.2. If G = ⟨f1, . . . , fu⟩ is a FNR rational semigroup and t ∈ ∆∗
G, then the

integrals
∫
J(f̃)

log |f̃ ′|dµ, µ ∈M(f̃), are well defined and

(11.7) −t
∫
J(f̃)

log |f̃ ′|dµ > −∞.

sup

{
hµ(f̃)− t

∫
J(f̃)

log |f̃ ′|dµ : µ ∈M(f̃)

}
=

= sup

{
hµ(f̃)− t

∫
J(f̃)

log |f̃ ′|dµ : µ ∈Me(f̃)

}
= P(t),

and

hµt(f̃)− t

∫
J(f̃)

log |f̃ ′|dµt = P(t),

while

hµ(f̃)− t

∫
J(f̃)

log |f̃ ′|dµ < P(t)

for every measure µ ∈M(f̃) different from µt.

Proof. First, note that since

log |f̃ ′(ω, z)| ≤ log ∥f̃ ′∥∞
for all (ω, z) ∈ J(f̃), all the integrals

∫
J(f̃)

log |f̃ ′|dµ, µ ∈M(f̃), are well defined and formula

(11.7) follows. Hence, all the sums

hµ(f̃)− t

∫
J(f̃)

log |f̃ ′|dµ, µ ∈M(f̃),



85

are well–defined. Using the definitions of the measures µ̃t and µ̂t, Corollary 10.5, Corol-
lary 10.6, Lemma 10.7, Abramov’s Formula, and (the refined version of) Kac’s Formula,
we get

hµt(f̃)− µt(t log |f̃ ′|) = µt(JU)
(
hµ̂t(f̃JU )− µ̂t

(
t log |f̃ ′

JU
|
))

= µt(JU) (hµ̃t(σ) + µ̃t(ζt,0))

= µt(JU)

(
hµ̃t(σ) + µ̃t(ζt,P(t)) + P(t)

∫
D∞

U

∥τ1∥dµ̃(τ)

)
.

Now using Proposition 9.6, Theorem 2.2.9 of [21] (for the potential ζt,P(t)), Corollaries 10.5,
10.6 again, and the ordinary version of Kac’s Lemma, along with Lemma 10.7, we further
get

hµt(f̃)− µt(t log |f̃ ′|) = µt(JU) (P(t,P(t)) + P(t)µ̂t(NJU ))

= µt(JU)P(t)
1

µt(JU)

= P(t).(11.8)

Now, let µ ∈Me(f̃) be arbitrary. Since f(PCV(f̃)) ⊂ PCV(f̃)), we have that either

µ(PCV(f̃)) = 1 or µ(PCV(f̃)) = 0.

Consider first the case where
µ(PCV(f̃)) = 1.

Since PCV(f̃) is a compact set, since f̃(PCV(f̃)) ⊂ PCV(f̃) again, and since PCV(f̃) ⊂ Ks

(see (11.1)) for every s > 0 small enough, we conclude from Lemma 11.1 and the ordinary
Variational Principle that

hµt(f̃)− µt(t log |f̃ ′|) ≤ P
(
f̃ |Ks ,−t log |f̃ ′|

)
< P(t).(11.9)

Now, suppose in turn that
µ(PCV(f̃)) = 0.

Then, taking R ∈ (0, R∗(f̃)) sufficiently small, we will find a finite aperiodic set

Crit∗(f̃) ⊂ S ⊂ J(f̃)\B(PCV(f̃), 8R)

such that
S ∩ supp(µ) ̸= ∅.

Hence, if US is a nice set produced in Theorem 6.8, then

µ(U) > 0.(11.10)

Having this, the same proof as that of Lemma 10.2, gives that

µ(J◦
US
) > 0.

Let

µ̂ :=
µ

µ(J◦
US
)

∣∣∣
J◦
US

(11.11)
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be the corresponding conditional measure on J◦
US
. Because of Corollary 10.5, there exists

a unique probability measure µ̃ on D∞
U such that

µ̂ = µ̃ ◦ π−1
US

(11.12)

and πUS
: D∞

U → J◦
US

is a measure–theoretic isomorphism. Since

µ̂(NJUS
) =

1

µ(JUS
)
,

it follows from the very first two claims of Theorem 11.2 and the refined version of Kac’s
Lemma that µ̃(ζt,0) and µ̃(ζt,P(t)) are both well–defined and larger than −∞. Therefore,
using Theorem 2.1.7 in [21], Proposition 9.6, and also Abramov’s formula, we get that

hµ(f̃)− µ(t log |f̃ ′|) = µ(JUS
)
(
hµ̂(f̃ |JUS

)− µ̂(t log |f̃ ′
US
|
)
= µ(JUS

) (hµ̃(σ)− µ̃(ζt,0))

= µ(JUS
)

(
hµ̃(σ)− µ̃(ζt,P(t)) + P(t)

∫
D∞

U

∥τ1∥dµ̃(τ)

)

≤ µ(JUS
)P(t)

∫
D∞

U

∥τ1∥dµ̃(τ) = µ(JUS
)P(t)

1

µ(JUS
)

(11.13)

= P(t).

Now, assume in addition that

hµ(f̃)− µ(t log |f̃ ′|) = P(t).

It then follows from the above formula that

hµ̃(σ)− µ̃(ζt,P(t)) = 0.

Hence, invoking Proposition 9.6 and Theorem 2.2.9 of [21], we get that µ̃ = µ̃t. Therefore,
applying (11.12) and formula (10.1), we get

µ̂ = µ̃ ◦ π−1
US

= µ̃t ◦ π−1
US

= µ̂t.

Finally, applying Lemma 10.7 and formula (11.11), we obtain

µ = µt.

Along with formulas (11.8), (11.9), and (11.13), this completes the proof of Theorem 11.2.
□

12. Decay of Correlations,
Central Limit Theorems, the Law of Iterated Logarithm:

the Method of Lai–Sang Young Towers

12.1. Stochastic Laws on the Symbol Space for the Shift Map Generated by Nice
Families. In this subsection, making use of the link with the symbolic thermodynamic
formalism of Section 9, we embed the symbol space D∞

U , along with the shift map acting
on it, into an abstract Young tower (see [57] and [58]) as its first return map, and we prove
the fundamental stochastic laws such as the Law of Iterated Logarithm, the Central Limit
Theorem, and exponential decay of correlations, in such an abstract setting.
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Let T : X → X be a measurable dynamical system preserving a probability measure
µ on X. We say that a µ–integrable function g : X → R with

∫
X
g dµ = 0, satisfies the

Central Limit Theorem with respect to the measure µ if there exists σ > 0 such that

1√
n

n−1∑
j=0

g ◦ T j −−−−→
n→∞

N (0, σ)

in distribution determined by µ. N (0, σ) is here the normal (Gaussian) distribution with
0 mean and variance σ. More precisely, for every t ∈ R,

lim
n→∞

µ

({
x ∈ X :

1√
n
Sng(x) ≤ t

}
=

1

σ
√
2π

∫ t

−∞
exp
(
−u2/2σ2

)
du.

We say the function g satisfies the Law of Iterated Logarithm if there exists a positive
number Ag such that

lim sup
n→∞

Sng(x)√
n log log n

= Ag.

for µ–a.e. x ∈ X.
Another important stochastic feature of a dynamical system is the rate of decay of

correlations it yields. Let ψ1 and ψ2 be real square µ–integrable functions on X. For every
positive integer n, the nth correlation of the pair ψ1, ψ2 is the number

(12.1) Cn(ψ1, ψ2) :=

∫
X

ψ1 · (ψ2 ◦ T n) dµ−
∫
X

ψ1 dµϕ

∫
X

ψ2 dµ,

provided the above integrals exist. Notice that, due to the T–invariance of µ, we can also
write

Cn(ψ1, ψ2) =

∫
X

(
ψ1 − µ(ψ1)

)(
(ψ2 − µ(ψ2)) ◦ T n

)
dµ.

Finally, we say that two functions g, h : X −→ R are homologous or, perhaps more ade-
quately, cohomologous, in a class G of real–valued functions defined on X if and only if
there exists a function k ∈ G such that

(12.2) h− g = k − k ◦ T.

As an immediate consequence of results from [23] and [50], both for the Law of Iterated
Logarithm (LIL), Theorem 3.1 in [10] (Central Limit Theorem, CLT), Theorem 1.3 in [11]
(exponential decay of correlations), (comp. [10], [57], and [57]), and Proposition 10.10, we
get the following.

Theorem 12.1. Let T : X → X be a measurable dynamical system. Let G be a FNR
rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈ Ratu. Let U be a nice family

of sets for f̃ . Assume the following.

• X contains D∞
U as it measurable subset such that

⋃
n≥0 T

n(D∞
U ) = X.

• The first return map of T from D∞
U to D∞

U is equal to the shift map σ : D∞
U −→ D∞

U .
• The corresponding first return time is equal to ∥ω1∥ for every ω ∈ D∞

U .

If t ∈ ∆∗
G, then
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(a) There exists a unique T–invariant probability measure νt on X which conditioned on
D∞

U coincides with µ̃t. In addition, νt is ergodic with respect to the map T : X → X.

For every function g : X → R, let ĝ : D∞
U → R be defined by the following formula:

ĝ(ω) :=

∥ω1∥−1∑
j=0

g(T j(ω)).

Assume that ĝ ∈ L2(µ̃t) and that ĝ : D∞
U → R is Hölder continuous. Assume in addition

that ψ : X → R is a bounded measurable function. Then we have the following:

(b)

|Cn(ψ, g)| =
∣∣∣∣∫
X

(ψ ◦ T n)g dνt −
∫
ψ dνt

∫
X

g dνt

∣∣∣∣ = O(θn)

for some θ ∈ (0, 1).

(c) The Central Limit Theorem holds for the function g : X → R with respect to the
dynamical system (T, νt) provided that g is not cohomologous to a constant in L2(νt).

(d) The Law of Iterated Logarithm holds for the function g : X → R with respect to
the dynamical system (T, νt) provided that g is not cohomologous to a constant in
L2(νt).

We shall now describe a canonical way, known as a Young tower (see [57] and [58]), of
embedding D∞

U into a larger space X and to construct an appropriate map T : X → X so
that all the hypotheses of the above theorem are satisfied. Let

D̂∞
U := {(ω, n) ∈ D∞

U × N ∪ {0} : 0 ≤ n < ∥ω1∥}

where each point ω ∈ D∞
U is identified with (ω, 0) ∈ D̂∞

U . We refer to D̂∞
U as the tower

induced by D∞
U . The map T acts on D̂∞

U as follows.

(12.3) T (ω, n) :=

{
(ω, n+ 1) if n+ 1 < ∥ω1∥
(σ(ω), 0) if n+ 1 = ∥ω1∥

.

As an immediate consequence of Theorem 12.1 we get the following.

Theorem 12.2. Let G be a FNR rational semigroup generated by a u–tuple map f =
(f1, . . . , fu) ∈ Ratu. Let U be a nice family of sets for f̃ . Let T : D̂∞

U → D̂∞
U be defined by

formula (12.3). Fix t ∈ ∆∗(G). Then

(a) There exists a unique T–invariant probability measure νt on D̂∞
U which conditioned

on D∞
U coincides with µ̃t.

For every function g : D̂∞
U → R let ĝ : D∞

U → R be defined by the following formula:

ĝ(ω) :=

∥ω1∥−1∑
j=0

g(T j(ω)).
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Assume that ĝ ∈ L2(µ̃t) and that ĝ : D∞
U → R is Hölder continuous. Assume in addition

that ψ : D̂∞
U → R is a bounded measurable function. Then

(b)

|Cn(ψ, g)| =

∣∣∣∣∣
∫
D̂∞

U

(ψ ◦ T n)g dνt −
∫
D̂∞

U

ψ dνt

∫
D̂∞

U

g dνt

∣∣∣∣∣ = O(θn)

for some θ ∈ (0, 1).

(c) The Central Limit Theorem holds for the function g : D̂∞
U → R with respect to

the dynamical system (T, νt) provided that g is not cohomologous to a constant in
L2(νt).

(d) The Law of Iterated Logarithm holds for the function g : D̂∞
U → R with respect to

the dynamical system (T, νt) provided that g is not cohomologous to a constant in
L2(νt).

12.2. Stochastic Laws for the Dynamical System (f̃ : J(f̃) −→ J(f̃), µt). In this
subsection, making use of the previous section, via the natural projection from the abstract
Young tower to the Julia set J(f̃), we prove in Theorem 12.6 the fundamental stochastic

laws for dynamical systems (f̃ , µt), t ∈ ∆∗
G, such as the Law of Iterated Logarithm, the

Central Limit Theorem, and exponential decay of correlations.

So, we pass to the actual dynamics of f̃ on J(f̃). Consider H : D̂∞
U → C, the natural

projection from the tower D̂∞
U to the complex plane C, given by the formula

H(ω, n) = f̃n(πU(ω)).

Then

(12.4) H ◦ T = f̃ ◦H.
Consequently, we immediately get the following.

Proposition 12.3. Let G be a FNR rational semigroup generated by a u–tuple map f =
(f1, . . . , fu) ∈ Ratu. Let U be a nice family of sets for f̃ .
If νt is the measure produced in Theorem 12.2 (a), then the Borel probability measure

νt ◦H−1

on J(f̃) is f̃–invariant.

In order to proceed further we will need the following lemma from abstract ergodic theory.
Its proof is standard and can be found in many textbooks on ergodic theory.

Lemma 12.4. If T : X → X is a measurable map preserving a probability measure µ and
if g ∈ L2(µ), then the following two statements are equivalent.

(a) The function g is a coboundary, i.e. g = u− u ◦ T for some u ∈ L2(µ).

(b) The sequence (Sng)
∞
n=1 is bounded in the Hilbert space L2(µ).

We are now in position to prove the following.
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Theorem 12.5. Let G be a FNR rational semigroup generated by a u–tuple map (f1, . . . , fu) ∈
Ratu. Let U be a nice family of sets for f̃ . If t ∈ ∆∗

G and νt is the corresponding proba-

bility measure produced in Theorem 12.2 (a), then for the dynamical system (f̃ : J(f̃) −→
J(f̃), νt ◦H−1) the following hold.

(a) Fix s ∈ (0, 1] and a bounded function g : J(f̃) → R which is Hölder continuous

with the exponent s. Then for every bounded measurable function ψ : J(f̃) → R,
we have that∣∣∣∣ ∫
J(f̃)

ψ ◦ f̃n · g d(νt ◦H−1)−
∫
J(f̃)

g d(νt ◦H−1)

∫
J(f̃)

ψ d(νt ◦H−1)

∣∣∣∣ = O(θn)

for some θ ∈ (0, 1) depending on s.

(b) The Central Limit Theorem holds for every Hölder continuous function g : J(f̃) →
R that is not cohomologous to a constant in L2(νt ◦H−1), i.e. for which there is no
square integrable function η for which g = const + η ◦ f − η. More precisely, there
exists σ > 0 such that

1√
n

n−1∑
j=0

g ◦ f̃ j −−−−→
n→∞

N (0, σ)

in distribution with respect to the measure νt ◦H−1.

(c) The Law of Iterated Logarithm holds for every Hölder continuous function g :

J(f̃) → R that is not cohomologous to a constant in L2(νt ◦H−1). This, we recall,
means that there exists a real positive constant Ag such that such that νt ◦ H−1

almost everywhere

lim sup
n→∞

Sng − n
∫
g d(νt ◦H−1)√

n log log n
= Ag.

Proof. We aim to employ Theorem 12.2. Let g : J(f̃) → R and ψ : J(f̃) → R be as in
the hypotheses of our theorem. Define the functions

g̃ := g ◦H : D̂∞
U −→ R and ψ̃ := ψ ◦H : D̂∞

U −→ R.
In order to apply Theorem 12.2, all what we need to do is to check the hypotheses of
this theorem pertaining to the functions ψ̃ and g̃. For ψ̃ this is immediate: of course this
function is measurable and bounded. We shall prove the following.

Claim 1: The function ˆ̃g : D∞
U → R is Hölder continuous.

Indeed, consider two arbitrary points ω, τ ∈ D∞
U with ω1 = τ1. Put γ := ω1 = τ1 and

l := ∥γ∥. Put also β := ω ∧ τ and n := |β|. In particular, β = γσ(β) and ∥σ(β)∥ ≥ n− 1.
For every 0 ≤ k ≤ l − 1, we have that

(12.5)

|g̃(T k(τ, 0))− g̃(T k(ω, 0))| = |g̃(τ, k)− g̃(ω, k)| = |g ◦H(τ, k)− g ◦H(ω, k)|
= |g(f̃k(πU(τ)))− g(f̃k(πU(ω)))|
= |g(f̃k(πU(τ)))− g(f̃k(πU(ω)))|
≤ Hg∥f̃k(πU(τ)), fk(πU(ω))∥sϑ,
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where Hg is the Hölder constant of g. Moreover,

f̃k(πU(ω)), f̃
k(πU(τ)) ∈ f̃k(ϕγσ(β)(Wt(γ))) = ϕσk(γ)σ(β)(Wt(γ)),

where the last two σs denote two different shift maps with obvious meanings. Therefore,
because of Theorem 3.5 (Exponential Shrinking Property), we have that

∥f̃k(πU(τ)), fk(πU(ω))∥ϑ ≤ diamΣu×C
(
ϕσk(γ)σ(β)(Wt(β))

)
≤ max

{
ϑ∥σk(γ)σ(β)∥, exp

(
−α(∥σk(γ)σ(β)∥)

)}
= exp

(
−ι(∥σk(γ)σ(β)∥)

)
= exp

(
−ι
(
(l − k) + ∥σ(β∥

))
≤ e−1 exp(−ι(l − k)))e−ιn,

where α ∈ (0,+∞) comes from Theorem 3.5 and

ι := min{α,− log ϑ} ∈ (0,+∞).

Hence,
|g̃(T k(τ, 0))− g̃(T k(ω, 0))| ⪯ exp(−sι(l − k)))e−sιn.

Finally,

|ˆ̃g(ω)− ˆ̃g(τ)| =

∣∣∣∣∣
l−1∑
k=0

(
g̃(T k(τ, 0))− g̃(T k(ω, 0))

)∣∣∣∣∣ ≤
l−1∑
k=0

∣∣g̃(T k(τ, 0))− g̃(T k(ω, 0))
∣∣

⪯
l−1∑
k=0

exp(−ι(l − k)))e−sιn

≍ e−sιn.

So, the function ˆ̃g : D∞
U → R is Hölder continuous, and the proof of Claim 1 is complete.

Claim 2: The function ˆ̃g : D∞
U → R is square integrable with respect to the measure µ̃t.

Indeed, for every ω ∈ D∞
U we have that |ˆ̃g(ω)| ≤ ∥g̃∥∞∥ · ∥ω1|| ≤ ∥g∥∞∥ω1∥. Hence,

|ˆ̃g(ω)|2 ≤ ∥g∥2∞∥ω1∥2.
Therefore, invoking Proposition 10.10, we can estimate as follows.∫

D∞
U

|ˆ̃g|2 dµ̃t =
∞∑
n=1

∫
⋃

∥e∥=n[e]

|ˆ̃g|2 dµ̃t ≤ ∥g∥2∞
∞∑
n=1

n2µ̃t

( ⋃
e∈Dn

[e]
)

⪯ ∥g∥2∞
∞∑
n=1

n2e−ηn

< +∞,

with some constant η > 0 resulting from Proposition 8.4. The proof of Claim 2 is complete.
□

Claim 3: The function g̃ : D̂∞
U → R is not cohomologous to a constant in L2(νt).
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Indeed, assume without loss of generality that νt(g) = 0. By virtue of Lemma 12.4

the fact that g : J(f̃) → R is not a coboundary in L2(νt ◦ H−1) equivalently means
that the sequence

(
Sn(g)

)∞
n=1

is not uniformly bounded in L2(νt ◦ H−1). But obviously

∥Sn(g̃)∥L2(νt) = ∥Sn(g)∥L2(νt◦H−1). So, the sequence
(
Sn(g̃)

)∞
n=0

is not uniformly bounded

in L2(νt). Thus, by Lemma 12.4 again, g̃ is not a coboundary in L2(νt).

Having these two claims, all items, (a), (b), and (c), now follow immediately from Theo-
rem 12.2 and formula (12.4). The proof is finished. □

By making use Proposition 10.7, as a fairly easy consequence of Theorem 12.5, we get the
following main result of this section.

Theorem 12.6. Let G be a FNR rational semigroup generated by a u–tuple map f =
(f1, . . . , fu) ∈ Ratu. If t ∈ ∆∗

G, then for the dynamical system (f̃ : J(f̃) −→ J(f̃), µt) the
following hold.

(a) Fix s ∈ (0, 1] and a bounded function g : J(f̃) → R which is Hölder continuous with

the exponent α. Then for every bounded measurable function ψ : J(f̃) → R, we
have that ∣∣∣∣ ∫

J(f̃)

ψ ◦ f̃n · g dµt −
∫
J(f̃)

g dµt

∫
J(f̃)

ψ dµt

∣∣∣∣ = O(θn)

for some θ ∈ (0, 1) depending on s.

(b) The Central Limit Theorem holds for every Hölder continuous function g : J(f̃) →
R that is not cohomologous to a constant in L2(µt), i.e. for which there is no square
integrable function η for which g = const + η ◦ f − η. More precisely, there exists
σ > 0 such that

1√
n

n−1∑
j=0

g ◦ f̃ j −−−−→
n→∞

N (0, σ)

in distribution with respect to the measure µt.

(c) The Law of Iterated Logarithm holds for every Hölder continuous function g :

J(f̃) → R that is not cohomologous to a constant in L2(µt). This, we recall, means
that there exists a real positive constant Ag such that µt almost everywhere

lim sup
n→∞

Sng − n
∫
g dµt√

n log log n
= Ag.

Proof. Using in turn Proposition 10.7, formula (10.1) defining = µ̂t, the fact that H|D∞
U
=

πU , and Theorem 12.2 (a), we get

(12.6) (µt)JU = µ̂t =
(
µ̃t ◦ π−1

U
)
JU

=
(
µ̃t ◦H−1

)
JU

=
((
νt
)
D∞

U
◦H−1

)
JU

≺≺
(
νt ◦H−1

)
JU
.

But, by virtue of Theorem 12.2, the measure νt is ergodic with respect to the map T :
D̂∞

U → D̂∞
U , defined by formula (12.3). So, the measure νt ◦H−1 is ergodic with respect to

the map f̃ : J(f̃) −→ J(f̃). As µt is also ergodic with respect to this map, both measures

(µt)JU and
(
νt ◦H−1

)
JU

are ergodic with respect to the first return map of f̃ from JU to JU .

Therefore, by virtue of (12.6), they coincide. Hence, µt and νt ◦H−1 are not singular with
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respect to each other. Since both are ergodic, these must be thus equal, i.e. µt = νt ◦H−1.
Theorem 12.6 now directly follows from Theorem 12.5. The proof is complete. □

Part 3. Geometry of Finely Non–Recurrent Rational Semigroups Satisfying
the Nice Open Set Condition

Part 3 of our paper is devoted to the study of the finer fractal and geometrical properties
of the fiber Julia sets Jω and the global Julia set J(G).

13. Nice Open Set Condition (for any Rational Semigroup)

The notion of the Open Set Condition was introduced by Hutchinson in [15] in the
context of finite alphabet iterated function systems consisting of contracting similarities.
It was later adopted in [20] to the setting of countable alphabet iterated function systems
consisting of contracting conformal maps, and has commonly been used in the theory of
iterated function systems since the work of Hutchinson. A version of the open set condition
for expanding rational semigroups was introduced in [36]. In the paper [49] we defined the
Open Set Condition in the context of (loosely meaning) non–recurrent rational semigroups.
Unlike [36], in [49] we had to allow critical points of G to lie in the Julia set J(G). This
makes the whole situation more complex and demanding, and forced us in [49] to strengthen
the Open Set Condition a little bit. We named such modified condition the Nice Open
Set Condition. We would like to emphasize that the Nice Open Set Condition and Nice
Sets (Families) are totally independent concepts. In particular, the adjective “Nice” was
independently introduced for both of them many years ago. Although it may be a little
bit confusing for some readers, we stick to the historical terminology to respect history and
in order not to confuse readers even more by inventing yet new names. We think that in
our current manuscript this is the first time in the literature that both “nice” concepts are
used simultaneously.

We proved in [49] several of its crucial properties and used it heavily therein. In the
present section we reprove, with essentially new proofs, its properties that we will need and
use throughout the end of the manuscript. We also prove some new results.

Motivated by [49], we adopt the following definition.

Definition 13.1. Let f = (f1, . . . , fu) ∈ Ratu be a u–tuple map and let G = ⟨f1, . . . , fu⟩.
We say that G (or f) satisfies the Open Set Condition if there exists a non–empty open

subset U of Ĉ with the following two properties:

(osc1)

f−1
1 (U) ∪ f−1

2 (U) ∪ . . . f−1
u (U) ⊂ U,

(osc2)

f−1
i (U) ∩ f−1

j (U) = ∅
whenever i ̸= j.

Moreover, we say that G (or f) satisfies the Nice Open Set Condition if, in addition,
U ⊂ C and the following condition is satisfied.
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(osc3) ∃(α ∈ (0, 1)) ∀(0 < r ≤ 1) ∀(x ∈ U)

l2(U ∩B2(x, r)) ≥ αl2(B2(x, r)),

where l2 denotes 2–dimensional Lebesgue measure on C.

Remark 13.2. Condition (osc3) is not needed if our semigroup G is expanding (see [36] or
note that our proofs would use only (osc1) and (osc2) under this assumption). Condition
(osc3) is satisfied in the theory of conformal infinite iterated function systems (see [20],
comp. [21]), where it follows from the open set condition and the cone condition. Moreover,
condition (osc3) holds for example if the boundary of U is smooth enough; piecewise smooth
with no exterior cusps suffices. Furthermore, (osc3) holds if U is a John domain (see [2]).

As an immediate consequence of Definition 13.1, we get the following.

Lemma 13.3. If a u–tuple map f = (f1, . . . , fu) ∈ Ratu and G = ⟨f1, . . . , fu⟩ satisfy the

Open Set Condition, and if U ⊂ Ĉ is an open set which witnesses this condition, then

J(G) ⊂ U.

Proof. This is obvious if U = Ĉ. So, suppose that

(13.1) U ̸= Ĉ.

It follows immediately from Definition 13.1 that

G∗(Ĉ \ U) ⊂ Ĉ \ U.

Since, by (13.1), Ĉ \ U contains at least three points, it follows from Montel’s Theorem

that G∗ is normal on Ĉ \U . This means that Ĉ \U ⊂ F (G), whence J(G) ⊂ U and we are
done. □

The following consequence of Definition 13.1 is immediate.

Lemma 13.4. If a u–tuple map f = (f1, . . . , fu) ∈ Ratu and G = ⟨f1, . . . , fu⟩ satisfy the
Open Set Condition, and if ω, τ ∈ Σ∗

u are two incomparable words, then

f−1
ω (U) ∩ f−1

τ (U) = ∅.

Further auxiliary, but necessary for us, consequences of Definition 13.1, proved in [49],
are these.

Lemma 13.5. Let f = (f1, . . . , fu) ∈ Ratu be a u–tuple map and let G = ⟨f1, . . . , fu⟩.
Assume that f and G satisfy the Nice Open Set Condition with some open set U ⊂ C.
Then, there exist β1 > 0, η ∈ (0, 1/8], and κ1 > 0 such that

l2
(
f−1
j (U) ∩Bs(x, r)

)
≥ κ1r

2

for each j = 1, . . . , u, for each x ∈ f−1
j (U) \ Crit(fj), and for each

r ∈
(
0,min

{
β1, η distC

(
x,Crit(fj)

)})
.
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Proof. Let δ > 0 and η ∈ (0, 1/8] be so small that for every j ∈ {1, 2, . . . , u}, every
c ∈ Crit(fj), and every z ∈ B2(c, δ)\{c} the map

fj|Bs(z,8η|z−c|) : B2(z, 8η|z − c|) −→ Ĉ
is 1–to–1. Let

γ := min
{
β1, η dist(x,Crit(fj))

}
.

Let β1 ∈ (0, 1] be so small that for every z ∈ B2(U, 16β1)\B2(Crit(G), δ) and every j ∈
{1, . . . , u}, the map

fj|B2(z,8β1) : B2(z, 8β1) −→ Ĉ
is 1–to–1 and

4β1max
{
∥f ′

j∥∞ : j ∈ {1, . . . , u}
}
≤ 1.(13.2)

Suppose now that

x ∈ f−j(U)\Crit(fj).(13.3)

Then, the inverse map

f−1
j,x :=

(
fj|B2(x,4γ)

)−1
: fj(B2(x, 4γ)) −→ B2(x, 4γ)

is well defined, holomorphic, and, because of the 1
4
–Koebe’s Distortion Theorem,

fj(B2(x, 8γ)) ⊃ B2(fj(x), 2|f ′
j(x)|γ).

Hence, it follows from the standard Koebe’s Distortion Theorem, applied this time to
the map f−1

j , together with condition (osc3) of Definition 13.1, and (13.2) that for every
r ∈ (0, γ), we have that

l2
(
f−1
j (U) ∩Bs(x, r)

)
≥ l2

(
f−1
j,x

(
U ∩Bs(fj(x), K

−1|f ′
j(x)|r)

))
≥ K−2|f ′

j,x(x)|−2l2
(
U ∩B2(fj(x), K

−1|f ′
j(x)|r)

)
≥ K−2α|f ′

j,x(x)|−2l2
(
B2(fj(x), K

−1|f ′
j(x)|r)

)
= π2K−2αr2.(13.4)

So, the proof is completed by taking κ1 := π2K−2α.
□

Lemma 13.6. Let f = (f1, . . . , fu) ∈ (Rat)u be a u–tuple map and let G = ⟨f1, . . . , fu⟩.
Assume that f and G satisfy the Nice Open Set Condition with some open set U ⊂ C.
Then there exist two constants β2 > 0 and κ2 > 0, such that

l2
(
f−1
j (U) ∩Bs(c, r)

)
≥ κ2r

2

for all j ∈ {1, . . . , u}, all points c ∈ Crit(fj) ∩ f−1
j (U), and all radii r ∈ (0, β2).

Proof. Denote the order of the critical point c of fj by q. Let β2 > 0 be so small that

A−1
j,c |z − c|q ≤ |fj(z)− fj(c)| ≤ Aj,c|z − c|q

and
A−1
j,c |z − c|q−1 ≤ |f ′

j(z)| ≤ Aj,c|z − c|q−1



96 JASON ATNIP, HIROKI SUMI, AND MARIUSZ URBAŃSKI

for some constant Aj,c ≥ 1, depending on j and c, and all z ∈ B2(c, β2). Then,

fj(B2(c, r)) ⊃ B2(fj(c), A
−1
j,c r

q)

for all r ∈ (0, β2). Since also

fj
(
f−1
j (U) ∩B2(c, r)

)
= U ∩ fj(B2(c, r)),

using (osc3), we thus get that

l2
(
fj
(
f−1
j (U) ∩B2(c, r)

))
= l2 (U ∩ fj(B2(c, r))) ≥ l2

(
U ∩B2(fj(c), A

−1
j,c r

q)
)

≥ αl2
(
B2(fj(c), A

−1
j,c r

q)
)

= παA−2
j,c r

2q.(13.5)

But also,

l2
(
fj
(
f−1
j (U) ∩B2(c, r)

))
≤
∫
f−1
j (U)∩B2(c,r)

|f ′
j(z)|2 dl2(z)

≤ A2
j,c

∫
f−1
j (U)∩B2(c,r)

|z − c|2(q−1) dl2(z)

≤ A2
j,cr

2(q−1)l2
(
f−1
j (U ∩B2(c, r))

)
.

Combining this with (13.5), we get

l2
(
f−1
j (U) ∩B2(c, r)

)
≥ παA−4

j,c r
2.

Since there are only finitely many (precisely u) maps fj and since each map fj has only
finitely many critical points, we complete the proof by taking

κ2 := παmin
{
A−4
j,c : j ∈ {1, . . . , u}, c ∈ Crit(fj)

}
.

□

Combining Lemma 13.5 and Lemma 13.6, we obtain the following lemma.

Lemma 13.7. Let G = ⟨f1, . . . , fu⟩ be a rational semigroup satisfying the Nice Open Set
Condition witnessed by some open set U ⊂ C. Then, for every β > 0 there exists κβ > 0
such that for each j = 1, . . . , u, for each x ∈ f−1

j (U), and for each radius r ∈ (0, β], we
have that

l2
(
f−1
j (U) ∩Bs(x, r)

)
≥ κβr

2.

Proof. As in the proofs of the two preceding lemmas, we again work with Euclidean balls
and distances.

It suffices to deal with r ∈ (0,min{β1, β2}). Fix j ∈ {1, . . . , u}. Because of Lemma 13.5,
we need only consider the case when

r ∈ (min{β1, η · dist(x,Crit(fj))},min{β1, β2}) ,
with η ∈ (0, 1/8] coming from Lemma 13.5. Consider two cases. Assume first that

r ≥ 2dist(x,Crit(fj)).

Then there exists a point c ∈ Crit(fj) such that |x− c| ≤ r/2. Hence,

B2(x, r) ⊃ B2(c, r/2).
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It therefore follows from Lemma 13.6 that

l2
(
B2(x, r) ∩ f−1

j (U)
)
≥ l2

(
B2(c, r/2) ∩ f−1

j (U)
)
≥ rκ2/4.

Now assume that

r < 2dist(x,Crit(fj)).

Then, by Lemma 13.5, we get that

l2
(
B2(x, r) ∩ f−1

j (U)
)
≥ l2

(
B2(x, 1/2min{β1, η · dist(x,Crit(fj))}) ∩ f−1

j (U)
)

≥ κ1 (1/2min{β1, η · dist(x,Crit(fj))})2

≥ κ1
4

(ηr
2

)2
=
κ1η

2

16
r2.

We are done. □

For every family F ⊂ Σ∗
u let

F̂ = {τ̂ : τ ∈ F} and F∗ = {τ∗ : τ ∈ F}.

Definition 13.8. Let G = ⟨f1, . . . , fu⟩ be a rational semigroup satisfying the Nice Open
Set Condition witnessed by some open set U . Fix a number M > 0, a number a > 0, and
V , an open subset of Σu. A family F ⊂ Σ∗

u is called (M,a, V )–essential for the pair (x, r)
provided that the following conditions are satisfied.

(ess0) For every τ ∈ F ,

distC
(
fτ̂ (x), f

−1
τ∗ (U)

)
≤ 1

2
Rτ .

(ess1) For every τ ∈ F there exist a number Rτ with 0 < Rτ < a and f−1
τ̂ ,x : B2(fτ̂ (x), 2Rτ ) −→

C, an analytic branch of f−1
τ̂ sending fτ̂ (x) to x, such that

M−1Rτ ≤ |f ′
τ̂ (x)|r ≤

1

4
Rτ .

(ess2) The family F consists of mutually incomparable words.

(ess3)
⋃
τ∈F [τ ] = V .

If V = Σu, the family F is simply called (M,a)–essential for the pair (x, r).

We shall prove the following.

Proposition 13.9. Let G = ⟨f1, . . . , fu⟩ be a rational semigroup satisfying the Nice Open
Set Condition witnessed by some open set U . Then, for every number M > 0 and for
every a > 0 there exists an integer #(M,a) ≥ 1 such that if V is an open subset of Σu,
x ∈ J(G), r ∈ (0, 1], and F ⊂ Σ∗

u is an (M,a, V )–essential family for (x, r), then we have
the following:
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(a)

B2(x, r) ⊂ f−1
τ̂ ,x

(
B2(fτ̂ (x), Rτ )

)
⊂
⋃
γ∈F

f−1
γ̂,x

(
B2(fγ̂(x), Rγ)

)
⊂ B2(x,KMr)

for all τ ∈ F ,
(b)

J(f̃) ∩ (V ×B2(x, r)) ⊂
⋃
τ∈F

f̃
−|τ̂ |
τ̂ ,x

(
p−1
2 (B2(fτ̂ (x), Rτ ))

)
=
⋃
τ∈F

[τ ]× f−1
τ̂ ,x

(
B2(fτ̂ (x), Rτ )

)
,

(c) #F ≤ #(M,a).

Proof. Item (a) follows immediately from Theorem 2.5 (1
4
–Koebe’s Distortion Theorem),

and Theorem 2.6. The equality part in item (b) is obvious. In order to prove the inclusion

take (ω, z) ∈ J(f̃) ∩ (V × B2(x, r)). By item (ess3) of Definition 13.8 there exists τ ∈ F
such that ω ∈ [τ ]. But then, by the first in item (a), (ω, z) ∈ [τ ]× f−1

τ̂ ,x

(
B2(fτ̂ (x), Rτ )

)
, and

item (b) is entirely proved. Let us deal with item (c). By item (osc2) of Definition 13.1,

{f−1
τ̂ ,x((fτ∗|B2(fτ̂ (x),Rτ ))

−1(U))}τ∈F

is a family of mutually disjoint sets. Hence, using also (a), we get

(13.6)
∑
τ∈F

l2
(
f−1
τ̂ ,x((fτ∗|B2(fτ̂ (x),Rτ ))

−1(U))
)
≤ l2(B2(x,KMr)) = Cπ(KM)2r2,

where C > 0 is a constant independent of r,M , and a. Let La := ξmin{(T/a)2, 1}, where
ξ and T come from Lemma 13.7. By Lemma 13.7, we obtain that for each j = 1, . . . , u ,

for each y ∈ f−1
j (U), and for each 0 ≤ b ≤ a,

(13.7) l2(B2(y, b) ∩ f−1
j (U)) ≥ κab

2.

By (ess0) there exists a point z ∈ f−1
τ∗ (U)) such that |fτ̂ (x)− z| ≤ Rτ/2. Then

B2

(
fτ̂ (x), Rτ

)
⊃ B2(z,Rτ/2).

It follows from this, Theorem 2.6, (13.7), and (ess1) that for all τ ∈ F , we have

l2
(
f−1
τ̂ ,x((fτ∗|B2(fτ̂ (x),Rτ ))

−1(U))
)
≥ K−2|f ′

τ̂ (x)|−2l2((fτ∗ |B2(fτ̂ (x),Rτ ))
−1(U))

= K−2|f ′
τ (x)|−2l2(B2(fτ̂ (x), Rτ ) ∩ f−1

τ∗ (U))

≥ K−2|f ′
τ (x)|−2l2

(
B2(z, Rτ/2) ∩ f−1

τ∗ (U)
)

≥ (2K)−2|fτ̂ (x)|−2κaR
2
τ

≥ 4K−21κar
2.

Combining this with (13.6) we get that

#F ≤ (4κa)
−1πCK4M2.

We are done. □
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Remark 13.10. Because of Lemma 13.3, if

distC
(
fτ̂ (x), f

−1
τ∗ (J(G))

)
≤ 1

2
Rτ ,

then condition (ess0) holds.

The following lemma sheds some additional light on the nature of the Nice Open Set
Condition.

Lemma 13.11. If f = (f1, . . . , fu) ∈ Ratu is a u–tuple map such that the rational semi-
group G = ⟨f1, . . . , fu⟩ is TNR and satisfies the Nice Open Set Condition, then the semi-

group G is of finite type, i.e. the set Crit∗(f̃) is also finite. In particular, if in addition G
is C–F balanced, then it is a FNR rational semigroup.

Proof. Fix c ∈ Crit(f) and i ∈ {1, . . . , u} such that fi(c) ∈ J(G) and f ′
i(c) = 0. Since G is

a TNR rational semigroup, there exists R ∈ (0, 1) such that

B2(fω(fi(c)), 2R) ∩ PCV(G) = ∅
for all ω ∈ Σ∗

u such that fω(fi(c)) ∈ J(G). In particular, there exists a unique holomorphic
branch

f−1
ω,i : B2(fω(fi(c)), 2R) −→ C

of f−1
ω mapping fω(fi(c)) to fi(c). Fix now an integer n ≥ 1 and consider the set

Σn(c, i) = {ω ∈ {1, 2, . . . , u}n : fω(fi(c)) ∈ J(G)} .
Let

γn := min
{
1,min{K−1R|f ′

ω(fi(c))|−1 : ω ∈ Σn(c, i)}
}
.

Then for every ω ∈ Σn(c, i), we have that

Krn|f ′
ω(fi(c))| ≤ R.

So, using Koebe’s Distortion Theorem, we get that

f−1
ω

(
U ∩B2(fω(fi(c)), K

−1rn|f ′
ω(fi(c))|)

)
⊂ f−1

ω

(
B2(fω(fi(c)), K

−1rn|f ′
ω(fi(c))|)

)
⊂ B2(fi(c), γn),

and, invoking also condition (osc3) of Definition 13.1, Lemma 13.3, and the fact that
fω(fi(c)) ∈ J(G), we also get that

l2
(
f−1
ω

(
U ∩B2(fω(fi(c)), K

−1rn|f ′
ω(fi(c))|)

))
≥ K−2|f ′

ω(fi(c))|−2l2
(
U ∩B2(fω(fi(c)), K

−1rn|f ′
ω(fi(c))|)

)
≥ K−2α|f ′

ω(fi(c))|−2l2
(
B2(fω(fi(c)), K

−1rn|f ′
ω(fi(c))|)

)
= πK−4αr2n = αK−4l2(B2(fi(c), γn)).

Since by condition (osc2) of Definition 13.1, all of the sets

f−1
ω

(
U ∩B2(fω(fi(c)), K

−1rn|f ′
ω(fi(c))|)

)
, ω ∈ Σn(c, i)

are mutually disjoint, we conclude that

#Σn(c, i) ≤ K4α−1.
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Hence, the set

Crit∗(f̃) =
⋃

(c,i)∈CP(f)

{
(ω, c) ∈ Crit∗(f̃) : ω1 = i

}
is finite as it is a finite union of finite sets. The proof is complete. □

14. Hausdorff Dimension of Invariant Measures µt
and

Multifractal Analysis of Lyapunov Exponents

Throughout this section, we assume that f = (f1, . . . , fu) ∈ Ratu and G = ⟨f1, . . . , fu⟩ is
a finely non–recurrent rational semigroup satisfying the Nice Open Set Condition, which we
continue to abbreviate as NOSC-FNR. Let G be a FNR rational semigroup. We fix t ∈ ∆∗

G.
Our goal in this section is to analyze fractal properties of Gibbs/equilibrium measure µt
(and mt) and to provide a full account of multifractal analysis of Lyapunov exponents.
We first recall some notions and results from geometric measure theory which will be

used in this and the following sections. Let µ be a Borel probability measure on a metric
space X. The Hausdorff dimension of µ, denoted HD(µ), is defined to be

HD(µ) := inf{HD(Y ) : µ(Y ) = 1} = sup{HD(Y ) : µ(X \ Y ) = 0}.
Furthermore, the lower and upper pointwise dimensions of µ at a point x ∈ X are
respectively defined by

dµ(x) = lim inf
r→0

log µ(B(x, r))

log r
and dµ(x) = lim sup

r→0

log µ(B(x, r))

log r
.

Needless to say that if X = C is the complex plane, then we always use the standard
Euclidean metric. Just for the record, if we used the spherical metric on C we would
always get the same values for Hausdorff dimensions of sets and measures. Likewise for
box dimensions of bounded sets.

The proof of the following theorem can be found for example in [29], [16], and [25].

Theorem 14.1. If µ is a Borel probability measure on a metric space X, then

HD(µ) = ess sup(dµ).

In particular, if there exists some θ ≥ 0 such that dµ(x) = θ for µ–a.e. x ∈ X, then
HD(µ) = θ.

We first prove the following preparatory result which is also interesting on its own.

Theorem 14.2. If G is a NOSC-FNR rational semigroup and t ∈ ∆∗
G, then

HD(µt ◦ p−1
2 ) =

hµt(f̃)

χµt
= t+

P(t)

χµt
.

Proof. By Birkhoff’s Ergodic Theorem there exists a measurable set Γ ⊂ J(f̃) such that
µt(Γ) = 1 and

lim
n→∞

1

n
log |(f̃n)′(w, z)| = χµt :=

∫
J(f̃)

log |f̃ ′| dµt.(14.1)
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Fix (ω, z) ∈ Γ\Sing(f̃). Put η := η(ω, z) > 0 coming from Proposition 3.9. Let (nj)
∞
j=1 be

the increasing sequence of integers also coming from Proposition 3.9. Let

f̃
−nj

ω|nj ,z
: p−1

2

(
B2

(
fω|nj

(z), η
))

−→ Σu × C

be the holomorphic inverse branch of f̃nj resulting also from Proposition 3.9 which sends
f̃nj(ω, z) to (ω, z). By Koebe’s Distortion Theorem we have

B2

(
z,

1

2
K
∣∣∣f ′
ω|nj

(z)
∣∣∣−1

η

)
⊃ f−1

ω|nj ,z

(
B2

(
fω|nj

(z), η/2
))

.

So, by conformality of mt and Koebe’s Distortion Theorem again, putting

rj :=
1

2
K
∣∣∣f ′
ω|nj

(z)
∣∣∣−1

η,

we get that

mt ◦ p−1
2 (B2(z, rj)) ≥ mt

(
f̃
−nj

ω|nj ,z

(
p−1
2

(
B2

(
fω|nj

(z), η/2
))))

=

∫
p−1
2 (B2(fω |nj (z),η/2))

e−P(t)nj

∣∣∣∣(f̃−nj

ω|nj

)′∣∣∣∣t dmt

≥ K−te−P(t)nj

∣∣∣∣(f̃nj

ω|nj

)′
(ω, z)

∣∣∣∣−tmt ◦ p−1
2

(
B2

(
fω|nj

(z), η/2
))

≥ K−tMt(η/2)e
−P(t)nj

∣∣∣∣(f̃nj

ω|nj

)′
(ω, z)

∣∣∣∣−t
= 2(K2q)−t(η/2)Mt(η/2)e

−P(t)njrtj,

where

Mt(r) := inf{mt ◦ p−1
2 (B2(x, r)) : x ∈ J(G)}

is positive since supp(mt ◦ p−1
2 ) = J(G). Therefore, using also (14.1), we get

lim inf
r→0

logmt ◦ p−1
2 (B2(z, r))

log r
≤ lim inf

j→∞

logmt ◦ p−1
2 (B2(z, rj))

log rj

≤ lim inf
j→∞

log (2(K2η)−tMt(η/2))− P(t)nj + t log rj
log rj

= t− P(t) lim
j→∞

nj
log rj

= t+
P(t)

χµt
.(14.2)

Hence, invoking Theorem 14.1, we see that

HD
(
mt ◦ p−1

2

)
≤ t+

P(t)

χµt
.(14.3)
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For the opposite inequality fix a point ξ ∈ J(f̃)\PCV(f̃). Fix any number

H ∈
(
0,

dist(p2(ξ),PCV(G))

2(2K + 1)H

)
,(14.4)

which is positive because of Lemma 2.4. For every (ω, z) ∈ J(f̃) let (nk(ω, z))
∞
k=1 be the

increasing sequence of all visits of (ω, z) to B(ξ, R), i.e.

f̃nk(ω,z)(ω, z) ∈ B(ξ,H).(14.5)

Fix an arbitrary measurable set Z ⊂ J(f̃) with µt(Z) = 1. By Birkhoff’s Ergodic Theorem
there exists a measurable set Y ⊂ Z such that µt(Y ) = 1,

lim
k→∞

nk+1(ω, z)

nk(ω, z)
= 1, and lim

n→∞

1

n
log |(f̃n)′(ω, z)| = χµt(14.6)

for all (ω, z) ∈ Y . Fix ε > 0. By Egorov’s Theorem there exists an integer Nε ≥ 1 and a
measurable set Yε ⊂ Y such that mt(Yε) ≥ 1− ε,

nk+1(τ, y)

nk(τ, y)
≤ 1 + ε, and χµt − ε ≤ 1

n
log
∣∣∣(f̃n)′(τ, y)∣∣∣ ≤ χµt + ε(14.7)

for all (τ, y) ∈ Yε and all nk(τ, y), n ≥ Nε. Let

mt,ε := mt|Yε .

Fix y ∈ p2(Yε) and r > 0. Then, for every ω ∈ p1
(
Yε ∩ p−1

2 (B2(y, r))
)
fix an element

xω ∈ B2(y, r) such that

(ω, xω) ∈ Yε ∩ p−1
2 (B2(y, r)).(14.8)

Since for every j ≥ 0 ∣∣f ′
ω|nj

(xω)
∣∣ ≤ ∥f ′∥nj

∞ ,

if

r ≤ 1

8
H∥f ′∥−Nε

∞ ,

then there exists a largest integer k := k(ω; r) ≥ 1 such that

1

4
H
∣∣f ′
ω|nk

(xω)
∣∣−1 ≥ 2r,(14.9)

and

nk ≥ Nε,(14.10)

where we have abbreviated

nk := nk(ω;r)(ω, xω).

Immediately we have

1

4
H
∣∣f ′
ω|nk+1

(xω)
∣∣−1

< 2r.(14.11)

Let

F̂(y; r) :=
{
ω|nk+1 : ω ∈ p1

(
Yε ∩ p−1

2 (B2(y, r))
)}
,
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and for every ω ∈ p1
(
Yε ∩ p−1

2 (B2(y, r)) let

(14.12) Rω|nk+1 := 16Kr
∣∣∣f ′
ω|nk

(xω)
∣∣∣ ≤ 2KH,

with the convention that if ω|nk(ω,r)+1 = τ |nk(τ,r+1, then we arbitrarily choose either xω or

xτ with the inequality part following from (14.9). Let F(y, r) be the maximal subfamily

of F̂(y; r) consisting of mutually incomparable words. We aim to check that this family
satisfies the conditions of Definition 13.8 with appropriate numbers M , a, and an open set
V . Indeed, it satisfies (ess2) by its very definition. It also satisfies (ess3) if we set

V :=
⋃

ϱ∈F(y,r)

[ϱ] ⊃ p1
(
Yε ∩ p−1

2 (B2(y, r))
)
.(14.13)

Now we aim to prove conditions (ess0) and (ess1). It follows from (14.4), (14.5), the
definition of xω, and (14.12) that

dist
(
fω|nk

(xω),PCV(G)
)
≥ distC

(
p2(ξ),PCV(G)

)
−
∣∣fω|nk

(xω)− p2(ξ)
∣∣

≥ 4H −H

= 3H ≥ 16r
∣∣∣f ′
ω|nk

(xω)
∣∣∣ .

Therefore, the unique holomorphic branch

f−1
ω|nk

,xω
: B2

(
fω|nk

(xω), 16r
∣∣∣f ′
ω|nk

(xω)
∣∣∣ ) −→ C

of f−1
ω|nk

sending fω|nk
(xω) to xω is well defined. It therefore follows from Koebe’s 1

4
–

Distortion Theorem and (14.8) that

f−1
ω|nk

,xω
: B2

(
fω|nk

(xω), 4r
∣∣∣f ′
ω|nk

(xω)
∣∣∣ ) ⊃ B2(xω, r) ∋ y.

Hence,

(14.14) fω|nk
(y) ∈ B2

(
fω|nk

(xω), 4r
∣∣∣f ′
ω|nk

(xω)
∣∣∣ ) ⊂ B2

(
fω|nk

(xω),
1

4K
Rω|nk+1

)
.

Since also

fω|nk
(xω) ∈ f−1

ωnk+1

(
fω|nk+1

(xω)
)
⊂ f−1

ωnk+1
(J(G)),

using Remark 13.10, we conclude that condition (ess0) holds.
Now, passing to proving condition (ess1), note that because of (14.14), (14.5), (14.12),

and the definition of xω, for every z ∈ B2

(
fω|nk

(y), 2Rω|nk+1

)
, we get that

|z − p2(ξ)| < 2Rω|nk+1 +
∣∣fω|nk

(y)− fω|nk
(xω)

∣∣+ ∣∣fω|nk
(xω)− p2(ξ)

∣∣+ 1

4K
Rω|nk+1

≤ 2Rω|nk+1 +
1

4K
Rω|nk+1 +H

≤ 4KH +H +H

= 2(2K + 1)H.



104 JASON ATNIP, HIROKI SUMI, AND MARIUSZ URBAŃSKI

Hence, using also (14.4), we get that

distC(z,PCV(G)) ≥ distC
(
p2(ξ),PCV(G)

)
− |z − p2(ξ)|

≥ distC
(
p2(ξ),PCV(G)

)
− 2(2K + 1)H

> 0.

Therefore, the unique holomorphic branch

f−1
ω|nk

,y : B2

(
fω|nk

(y), 2Rω|nk+1

)
−→ C

of f−1
ω|nk

sending fω|nk
(y) to y is well defined. Also, by invoking (14.12), we obtain

(16K)−1Rω|nk+1 ≤
∣∣∣f ′
ω|nk

(xω)
∣∣∣ 4 ≤ 1

4
Rω|nk+1 ≤

1

2
KH ≤ KH,

which yields condition (ess1). In conclusion, the conditions (ess0)–(ess3) of Definition 13.8
are satisfied with withM = 16K and a = KH. For every ϱ ∈ F(y, r) fix an element ϱ̃ ∈ Σu

such that xϱ = xρ̃ and

ϱ̃|nk(ϱ̃,xϱ,r)(ϱ̃,xϱ)+1 = ϱ.

We claim that ⋃
ϱ∈F(y,r)

[ϱ]× f−1
ϱ̃,xϱ

(B2(fϱ̃(xϱ), Rϱ)) ⊃ Yε ∩ p−1
2 (B2(y, r)).(14.15)

Indeed, fix (β, x) ∈ Yε ∩ p−1
2 (B2(y, r)). It then follows from (14.13) that there exists

ϱ ∈ F(y, r) such that

β ∈ [ϱ].(14.16)

Now, ϱ = ϱ̃|nk(ϱ̃,xϱ,r)(ϱ̃,xϱ)+1. It follows from the Koebe’e 1
4
–Distortion Theorem that

f−1
ϱ̃,xϱ

(B2(fϱ̃(xϱ), Rϱ)) = f−1
ϱ̃|nk(ϱ̃,xϱ,r)

(ϱ̃,xϱ),xϱ

(
B2

(
fϱ̃|nk(ϱ̃,xϱ,r)

(ϱ̃,xϱ)
(xϱ), 16Kr

∣∣∣f ′
ϱ̃|ϱ(ϱ̃,xϱ,r)

(xϱ)
∣∣∣−1
))

⊃ B2(xϱ, 4r)

⊃ B2(x, r) ∋ x.

Along with (14.16), this implies that

(β, x) ∈
⋃

ϱ∈F(y,r)

[ϱ]× f−1
ϱ̃,xϱ

(B2(fϱ̃(xϱ), Rϱ)),

and formula (14.15) is proved.
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It now follows from (14.15), conformality of the measuremt, Koebe’s Distortion Theorem
again, and (14.11), that

mt,ε(p
−1
s (B2(y, r))) = mt(Yε ∩ p−1

2 (B2(y, r))) ≤

(14.17)

≤ mt

 ⋃
ϱ∈F(y,r)

[ϱ]× f−1
ϱ̃,xϱ

(B2(fϱ̃(xϱ), Rϱ))


=

∑
ϱ∈F(y,r)

mt

(
[ϱ]× f−1

ϱ̃,xϱ
(B2(fϱ̃(xϱ), Rϱ))

)
=

∑
ϱ∈F(y,r)

mt(Σu × (B2(fϱ̃(xϱ), Rϱ)))

∫
e−P(t)(|ϱ|−1)|(f−1

ϱ̃,xϱ
)′|tdmt

≤ Kt
∑

ϱ∈F(y,r)

mt

(
Σu × (B2(fϱ̃(xϱ), Rϱ))

)∣∣f ′
ϱ̃|nk(ϱ̃,xϱ,r)

(ϱ̃,xϱ)
(xρ)

∣∣−t exp (−P(t)nk(ϱ̃,xϱ,r)(ϱ̃, xϱ)
)

≤ (8KH−1)trt
∑

ϱ∈F(y,r)

exp
(
−P(t)nk(ϱ̃,xϱ,r)(ϱ̃, xϱ)

)
.

Now, denoting ñk = nk(ϱ̃,xϱ,r)(ϱ̃, xϱ), it follows from (14.7)–(14.11) that

ñk ≤
log
∣∣∣f ′
ϱ̃|ñk

(xϱ)
∣∣∣

χµt − ε
≤ log(R/8)− log r

χµt − ε
(14.18)

and

ñk ≥ (1 + ε)−1ñk+1 ≥ (1 + ε)−1
log
∣∣f ′
ϱ̃|ñk+1

(xϱ)
∣∣

χµt + ε
≥ (1 + ε)−1 log(R/8)− log r

χµt + ε
.(14.19)

Making use of Proposition 13.9 (c) and inserting (14.18) or (14.19) into (14.17), respectively
if P(t) ≤ 0 or if P(t) ≥ 0, we get that

(14.20) lim inf
r→0

log(mt,ε(p
−1
s (B2(y, r))))

log r
≥

{
t+ P(t)

χµt−ε
if P(t) ≤ 0

t+ P(t)
χµt+ε

1
1+ε

if P(t) ≥ 0
.

Hence, invoking Theorem 14.1, we get that

(14.21) HD(Z) ≥ HD(Y ) ≥ HD(mt,ε) ≥

{
t+ P(t)

χµt−ε
if P(t) ≤ 0

t+ P(t)
χµt+ε

1
1+ε

if P(t) ≥ 0
.

In either case, letting ε→ 0, we get that

HD(Z) ≥ t+
P(t)

χµt
.

Therefore,

HD(µt ◦ p−1
2 ) = t+

P(t)

χµt
.
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This proves the “left–hand” side of Theorem 14.2. By making use of Theorem 11.2, i.e.
the Variational Principle, we get

t+
P(t)

χµt
= t+

hµt − tχµt
χµt

=
hµt
χµt

,

and Theorem 14.2 is entirely proved. □

As an immediate consequence of this theorem and the Variational Principle (Theo-
rem 11.2), we get the following.

Corollary 14.3. If G is a NOSC-FNR rational semigroup, then

HD(µh ◦ p−1
2 ) = h = HD(J(G)) and HD(µt ◦ p−1

2 ) < h

if t ̸= h.

Proof. The first part of this corollary immediately follows from Theorem 14.2 by substitut-
ing h for t and remembering that P(h) = 0. For the second part, suppose that

HD(µt ◦ p−1
2 ) = h

for some t ∈ ∆∗
G. It then follows from Theorem 14.2 that

hµt(f̃)− hχµt = 0 = P(h).

So, by virtue of Theorem 11.2, applied with t = h, we conclude that µt = µh. The proof is
complete. □

Now, passing to actual multifractal analysis, fix t ≥ 0. Our first result is the following.

Lemma 14.4. Let G be a NOSC-FNR rational semigroup. If t ∈ ∆∗
G, then for every

q ∈ [0, 1] there exists a unique Tt(q) ≥ 0 such that

P(Tt(q) + qt) = qP(t).

Proof. Because of Proposition 7.5, also qt ∈ ∆∗
G. So, by Theorem 11.2, i.e. the Variational

Principle, we have

P
(
qt) ≥ hµt − qtχµt ≥ q (hµt − tχµt) = qP(t).

So, employing Proposition 4.3 (b) and (d), the lemma immediately follows from the Inter-
mediate Value Theorem. □

We denote

(14.22) µt,q := µTt(q)+qt and mt,q := mTt(q)+qt.

We further denote

αt(q) := t+
P(t)

χµt,q
.(14.23)

Now, for every point (ω, z) ∈ J(f̃), we denote

χ(ω, z) = lim sup
n→∞

1

n
log |(f̃n)′(ω, z)| and χ(ω, z) = lim inf

n→∞

1

n
log |(f̃n)′(ω, z)|



107

and call them respectively the upper and lower Lyapunov exponents at the point
(ω, z). If χ(ω, z) = χ(ω, z), we denote the common value by χ(ω, z) and call it the Lya-
punov exponent at (ω, z). Given χ ≥ 0, we denote

K(χ) :=
{
(ω, z) ∈ J(f̃) : χ(ω, z) = χ(ω, z) = χ

}
.

We now shall prove the key statement of the main result of this section.

Lemma 14.5. Let G be a NOSC-FNR rational semigroup. If t ∈ ∆∗
G, then for every

q ∈ [0, 1],

HD(p2(K(χµt,q))) = Tt(q) + qαt(q).

Proof. By Birkhoff’s Ergodic Theorem there exists a measurable set X ⊂ J(f̃) such that
µt,q(X) = 1 and

χ(ω, z) =

∫
J(f̃)

log |f̃ ′|dµt,q = χµt,q

for all (ω, z) ∈ X. Hence, X ⊂ K(χµt,q), and applying Theorem 14.2 and Lemma 14.4
along with (14.23), we get

HD(p2(K(χµt,q))) ≥ HD(p2(X)) ≥ HD(µt,q ◦ p−1
2 )

= Tt(q) + qt+
P(Tt(q) + qt)

χµt,q
= Tt(q) + qt+

qP(t)

χµt,q
(14.24)

= Tt(q) + q

(
t+

P(t)

χµt,q

)
= Tt(q) + qαt(q).(14.25)

The proof of the opposite inequality is almost the same as the proof of the “≤” inequality
of Theorem 14.2. However, since it does not formally follow from this theorem, we therefore
present it here in full.

We start by fixing (ω, z) ∈ K(χµt,q)\Sing(f̃). Put η := η(ω, z) > 0 coming from Proposi-
tion 3.9. Let (nj)

∞
j=1 be an increasing sequence of integers also coming from this Proposition.

Let

f̃
−nj

ω|nj ,z
: p−1

2 (B2(fω|nj
(z), η)) −→ Σu × C

be the holomorphic inverse branch of f̃nj resulting also from Proposition 3.9 which sends
f̃nj(ω, z) to (ω, z). By Koebe’s Distortion Theorem

B2

(
z,

1

2
K
∣∣∣f ′
ω|nj

(z)
∣∣∣−1

η

)
⊃ f−1

ω|nj ,z

(
B2

(
fω|nj

(z),
η

2

))
.

So, by conformality of mt and Koebe’s Distortion Theorem again, we get with

rj =
1

2
K
∣∣∣f ′
ω|nj

(z)
∣∣∣−1

η
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that

mt,q ◦ p−1
2 (B2(z, rj)) ≥

≥ mt

(
f̃
−nj

ω|nj ,z

(
p−1
2

(
B2

(
fω|nj

(z),
η

2

))))
=

∫
p−1
2 (B2(fω |nj (z),η))

e−qP (t)nj

∣∣∣∣(f̃−nj

ω|nj ,z

)′∣∣∣∣−(Tt(q)+qt)

dmt,q

≥ K−(Tt(q)+qt)e−qP (t)nj

∣∣∣∣(f̃nj

ω|nj

)′
(ω, z)

∣∣∣∣−(Tt(q)+qt)

mt,q ◦ p−1
2

(
B2

(
fω|nj

(z), η/2
))

≥ K−(Tt(q)+qt)Mt,q(η/2)e
−qP (t)nj

∣∣∣∣(f̃nj

ω|nj

)′
(ω, z)

∣∣∣∣−(Tt(q)+qt)

= 2(K2q)−(Tt(q)+qt)Mt,q(η/2)e
−qP(t)njr

Tt(q)+qt
j ,

where

Mt,q(r) := inf
{
mt,q ◦ p−1

2 (B2(x, r)) : x ∈ J(G)
}

is positive since supp(mt,q ◦ p−1
2 ) = J(G). Therefore, using also the fact that (ω, z) ∈

K(χµt,q), we get

lim inf
r→0

logmt,q ◦ p−1
2 (B2(z, r))

log r
≤(14.26)

≤ lim inf
j→∞

logmt,q ◦ p−1
2 (B2(z, rj))

log rj

≤ lim inf
j→∞

log
(
2(K2η)−(Tt(q)+qt)Mt,q(η/2)

)
− qP(t)nj + (Tt(q) + qt) log rj

log rj

= Tt(q) + qt− qP(t) lim
j→∞

nj
log rj

= Tt(q) + qt+
qP(t)

χµt,q
(14.27)

= Tt(q) + q

(
t+

P(t)

χµt,q

)
(14.28)

= Tt(q) + qαt(q).

Therefore,

HD(p2(K(χµt,q))) ≤ Tt(q) + qαt(q).

Along with (14.25), this completes the proof of Lemma 14.5. □

Let us prove the following auxiliary result.

Lemma 14.6. Let G be a NOSC-FNR rational semigroup. If t ∈ ∆∗
G and q ∈ [0, 1], then

Tt(q) + qt ∈ ∆∗
G.

Proof. Consider two cases. First assume that t ≤ hf . Then P(t) ≥ 0, whence qP(t) ≥
0. Since also P(Tt(q) + qt) = qP(t), and, by Proposition 4.3 (b), the function s 7−→
P(s) is strictly decreasing, we have that Tt(q) + qt ≤ hf . Thus Tt(q) + qt ∈ ∆∗

G by
Proposition 7.5. Assume thus that t ≥ hf . Then P(t) ≤ 0, and hence qP(t) ≥ P(t). So,
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applying Proposition 4.3 (b) again, we see that Tt(q) + qt ≤ t. Thus, Tt(q) + qt ∈ ∆∗
G by

Proposition 7.5 again. □

Now, we will show that the function Tt(q) depends in a real–analytic way on both q and t.

Lemma 14.7. If G is a NOSC-FNR rational semigroup, then the two functions

∆∗
G × [0, 1] ∋ (t, q) 7−→ Tt(q) ∈ R and ∆∗

G × [0, 1] ∋ (t, q) 7−→ χµt,q ∈ R
are real–analytic with respect to both variables t and q.

Proof. Consider the following function of three variables

[0,+∞)×∆∗
G × [0, 1] ∋ (s, t, q) 7−→ P(s+ qt) ∈ R.

Because of Lemma 14.6 the derivative ∂P
∂s
|(Tt(q),t,q) is well defined and by Theorem 10.14,

∂P

∂s

∣∣∣
Tt(q),t,q

= −χµt,q .(14.29)

Since χµt,q > 0, it therefore follows from Theorem 9.9 and the Implicit Function Theorem
that both functions

∆∗
G ∋ t 7−→ Tt(q) and [0, 1] ∋ q 7−→ Tu(q), (u ∈ ∆∗

G),

are real–analytic. Of course the function (t, q) 7−→ χµt,q is real–analytic immediately from
Theorem 9.9 and formula (14.29). □

Keep t ∈ ∆∗
G fixed. Let

Dt(f̃) :=
{
χµt,q : q ∈ [0, 1]

}
.

We call the parameter t exceptional if Dt(f̃) is a singleton. Otherwise, we call it non–
exceptional. Since the function [0, 1] ∋ q 7−→ χµt,q ∈ (0,+∞) is real–analytic, Tt(0) = hf
and Tt(1) = 0, it follows that Dt(f̃) is a closed interval containing χµhf and χµt . It is clear

from Lemma 14.5 that if t is non–exceptional, then the multifractal analysis is non–trivial.
We shall explore this issue now in greater detail. We shall prove the following.

Proposition 14.8. If G is a NOSC-FNR rational semigroup, then the following are equiv-
alent.

(a) ∆∗
G\{hf} contains at least one exceptional parameter.

(b) All elements of ∆∗
G\{hf} are exceptional.

(c) The set D(f̃) := {χµt : t ∈ ∆∗
G} is a singleton.

(d) There exist t, s ∈ ∆∗
G with s ̸= t such that χµs = χµt.

(e) The function [0,+∞) ∋ t 7−→ P(t) ∈ R is affine, i.e. there are α, β ∈ R such that
P(t) = αt+ β.

(f) The set {µt : t ∈ ∆∗
G} is a singleton.
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(g) There exist t, s ∈ ∆∗
G with s ̸= t such that µs = µt.

Proof. Of course (f) =⇒ (c) =⇒ (b) and (b) =⇒ (a). As for every t ∈ ∆∗
G\{hf},

Γt := {Tt(q) + qt : q ∈ [0, 1]}

contains a (non–degenerate) interval between t and hf , so we have that (a) =⇒ (d). In
order to prove (d) =⇒ (e) assume without loss of generality that s < t. Then by (10.9)
and (10.8), we have that

χµs ≥ χµu ≥ χµt = χµs

for every u ∈ [s, t]. So, χµu = χµs . Applying (10.8) again, it thus follows from Theorem 9.9
that the function ∆∗

G ∋ t 7−→ P′(t) ∈ R is constant. This precisely means that the function
∆∗
G ∋ t 7−→ P

(
t) ∈ R is affine and (e) is proved. Now, if (e) holds, then it follows from

(10.8) again that D(f̃) is a singleton, meaning that (c) holds. We have thus proved that
conditions (a)–(e) are mutually equivalent and (f) entails all of them.

Now, we shall prove the next implication, namely that conditions (a)-(e) yield (f). Be-
cause of Theorem 11.2 and condition (e), we have for every t ∈ ∆∗

G that

hµt − tχ = αt+ β,

where χ is the only element of D(f̃), which is a singleton by (c). Applying Theorem 14.2,
we then get for every t ∈ ∆∗

G that

HD(µt ◦ p−1
2 ) =

hµt
χ

= t+
α

χ
t+

β

χ
=

(
1 +

α

χ

)
t+

β

χ
.(14.30)

But, taking in (e), t = 0, we get by Theorem 11.2 that

β = P(0) = h⊤(f̃) > 0,(14.31)

where h⊤(f̃) denotes the topological entropy, and taking t = h, we get

α = −β
h
.

Substituting this to (14.30), we get

HD(µt ◦ p−1
2 ) =

(
1− β

χh

)
t+

β

χ
.(14.32)

Substituting here t = h or applying Corollary 14.3, we get that

HD(µh ◦ p−1
2 ) = h.(14.33)

Then from (14.30), (14.31), and from the ordinary Variational Principle for topological
entropy, we obtain

χh = hµh ≤ h⊤(f̃) = β.(14.34)

Now, if χh < β, then it would follow from (14.32) that

d

dt

(
HD(µt ◦ p−1

2 )
)
= 1− β

χh
< 0.
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This would imply that for all t ∈ [0, h),

HD(µt ◦ p−1
2 ) > HD(µh ◦ p−1

2 ) = h = HD(J(G)).

Along with (14.34), this contradiction implies that

χh = β.

Substituting this to (14.32), we get that

HD(µt ◦ p−1
2 ) =

β

χ
= h

for every t ∈ ∆∗
G. So, by applying Corollary 14.3, we get that µt = µh for every t ∈ ∆∗

G,
meaning that (f) holds. Thus all conditions (a)–(f) are equivalent. Of course (f) implies (g)
and (g) implies (d). The proof of Proposition 14.8 is complete. □

If either one of the conditions (a)–(g) from Proposition 14.8 holds then we call the

semigroup G and the skew product map f̃ : Σu × Ĉ −→ Σu × Ĉ exceptional. Otherwise,
we call it non–exceptional. As an immediate consequence of Lemma 14.5, Lemma 14.7,
Theorem 9.9, Proposition 14.8, and the fact that

(14.35)
∂

∂q
(Tt(q) + qt) = −P(t)

χµt,q

{
< 0 if t < hf
> 0 if t > hf ,

for all q ∈ [0, 1], we get the following main result of this section.

Theorem 14.9. If G is a non–exceptional NOSC-FNR rational semigroup, then for every
t ∈ ∆∗

G\{hf}, the set Dt(f̃) is a non–degenerate interval with endpoints χµhf and χµt, and

the function
Dt(f̃) ∋ χ 7−→ HD(p2(K(χ))) ∈ [0, 2]

is real–analytic.

The class of non–exceptional semigroups is huge. This will be fully evidenced from
Theorem 14.14 and Proposition 14.15. The first step in this direction is the following
proposition which is also a complement of Proposition 14.8. Recall that the (co)homology
of two functions was defined in formula (12.2). Denote by Ñ : D∞

U → N the function
defined by

Ñ(τ) = ∥τ1∥.
Proposition 14.10. If G is a non–exceptional NOSC-FNR rational semigroup, then the
following are equivalent.

(a) G is exceptional.

(b) The set {µ̃t : t ∈ ∆G} is a singleton.

(c) There exist s, t ∈ ∆∗
G such that s ̸= t and µ̃s = µ̃t.

(d) All functions ζt,P(t), t ∈ ∆∗
G, are cohomologous to each other in the class of Hölder

continuous real–valued bounded functions defined on D∞
U .
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(e) All functions ζt,P(t), t ∈ ∆∗
G, are cohomologous to each other in the class of contin-

uous real–valued bounded functions defined on D∞
U .

(f) There are s, t ∈ ∆∗
G such that s ̸= t and ζs,P(s) is cohomologous to ζt,P(t) in the class

of Hölder continuous real–valued bounded continuous functions defined on D∞
U .

(g) There are s, t ∈ ∆∗
G such that s ̸= t and ζs,P(s) is cohomologous to ζt,P(t) in the class

of continuous real–valued bounded continuous functions defined on D∞
U .

(h) There exists γ ∈ R such that the function ζ := ζ1,0 : D∞
U −→ R and γÑ : D∞

U −→ R
are cohomologous in the class of Hölder continuous real–valued bounded functions
defined on D∞

U .

(i) There exists γ ∈ R such that the function ζ := ζ1,0 : D∞
U −→ R and γÑ : D∞

U −→ R
are cohomologous in the class of continuous real–valued bounded functions defined
on D∞

U .

Proof. The following implications are obvious:

(d) =⇒ (e) =⇒ (g) =⇒ (i), (d) =⇒ (f) =⇒ (h) =⇒ (i), and (b) =⇒ (c).

In order to complete the proof we shall establish the following implications:

(i) =⇒ (a) =⇒ (b) =⇒ (d) and (c) =⇒ (a).

Having this we will be done. First, assume that (i) holds. This means that there exists a
bounded continuous function u : D∞

U → R such that

ζ = γÑ + u− u ◦ σ.
Then, given any s, t ∈ ∆∗

G, we have

ζt,P(t) = (γt− P
(
t))Ñ + tu− tu ◦ σ and ζs,P(s) = (γs− P(s))Ñ + su− tu ◦ σ.

Hence,

ζt,P (t) = ζt,P(t) +
(
γ(t− s) + P(s)− P(t)

)
Ñ + (t− s)u− (t− s)u ◦ σ.

Thus,

P
(
σ, ζt,P(t) + (γ(t− s) + P(s)− P(t))Ñ + (t− s)u− (t− s)u ◦ σ

)
= P

(
σ, ζt,P(t)

)
= 0.

Therefore, as P(σ, ζs,P (s)) = 0, we get(
γ(t− s) + P(s)−P(t)

) ∫
D∞

U

Ñdµ̃s =

= hµ̃t(σ) +

∫
D∞

U

ζs,P(s)dµ̃+ (γ(t− s) + P(s)− P(t))

∫
D∞

U

Ñdµ̃s

≤ P(σ, ζs,P(s) + (γ(t− s) + P(s)− P(t))Ñ)

= 0.
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Since ∫
D∞

U

Ñ dµ̃s ≥ 0,

we have

γ(t− s) + P(s)− P(t) ≤ 0.

Exchanging the roles of s and t, we also get

γ(s− t) + P(t)− P(s) ≤ 0.

Hence,

P(t)− P(s) = γ(t− s).

This means that condition (e) of Proposition 14.8 holds, i.e. the semigroup G is exceptional.
This in turn means that condition (a) of Proposition 14.10 holds, so the implication (i) =⇒
(a) is established.

Now, for proving the implication (a) =⇒ (b), assume that (a) holds. Then, because of
Proposition 14.8 and Lemma 10.7, the set {µt : t ∈ ∆∗

G} is a singleton. By formula (10.1)
this means that the set {µ̃t◦π−1

U : t ∈ ∆∗
G} is a singleton. Finally, because of Corollary 10.5,

this implies that the set {µ̃t : t ∈ ∆G} is a singleton, meaning that (b) holds.
By Theorem 2.2.7 in [21], condition (b) of our present proposition is equivalent (keeping

in mind that P(σ, ζs,P(s)) = P(σ, ζt,P(t)) = 0) to (d), in particular, it entails (d).
For the second implication, assume that (c) holds. Then, by formula (10.1), we have

that µ̂s = µ̂t. So, by Lemma 10.7, the two measures µs and µt are mutually singular.
Since, by Theorem 4.21 both measures µs and µt are ergodic, they are equal. Because of
Proposition 14.8 (see its item (g)), the item (a) of Proposition 14.10 is established, and
thus we are done. □

We shall now prove that exceptional rational semigroups are exceptional indeed, i.e. we
will almost fully classify all of them and we will show that they form a very small sub–
collection of all rational semigroups. We need some preparation. Keep G, a NOSC-FNR
rational semigroup. Let

U =
{
Us : s ∈ Crit∗(f̃)

}
,

be a nice family produced in Theorem 6.8. Define the entrance time to the set J◦
U (defined

in Lemma 10.2),

N̂ : J(f̃) −→ N0 ∪ {∞} = {0, 1, 2, . . . ,∞},

by declaring that N̂(ξ) is the least element k of N0 ∪ {∞} such that

f̃k(ξ) ∈ J◦
U .

Further define

J◦,+
U :=

{
z ∈ J(f̃) : N̂(z) ∈ N0

}
.

Now define the entrance map f̃+ : J◦,+
U −→ J◦

U as

f̃+(ξ) = f̃ N̂(ξ)(ξ).(14.36)
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By its very definition the set J◦,+
U , is backward invariant, i.e.

∞⋃
k=0

f̃−k(J◦,+
U ) ⊂ J◦,+

U(14.37)

and
∞⋃
k=0

f̃−k(J◦,+
U ) ⊂ J◦,+

U .(14.38)

We first shall prove the following.

Lemma 14.11. If G is an exceptional NOSC-FNR rational semigroup, then there exist a
constant γ ∈ R and a Borel measurable function u+ : J◦,+

U −→ R such that

(a) − log |f̃ ′| = γ + u+ − u+ ◦ f everywhere on J◦,+
U ,

(b) If ξ ∈ J◦,+
U \PCV(f̃), then there exists Γ ⊂ Σu × C, an open neighborhood of ξ in

Σu × C, such that the function u+|Γ∩J◦,+
U

is bounded.

Proof. Let

U =
{
Us : s ∈ Crit∗(f̃)

}
,

a nice family produced in Theorem 6.8. Since G is exceptional, by Proposition 14.10 (i)
there exists a bounded continuous function u : D∞

U −→ R such that

ζ = γÑ + u− u ◦ σ.(14.39)

Since ζ < 0 everywhere in D∞
U , the integral of ζ against any f̃–invariant measure is negative.

Since also the integral of u−u◦σ against any (at least one suffices) such measure vanishes,
and since Ñ ≥ 1 everywhere in D∞

U , we conclude that

γ < 0.(14.40)

Now we define the function u+ : J◦,+
U −→ R by

u+(ξ) = u
(
π−1
U
(
f̃+(ξ)

))
− log

∣∣f̃ ′
+(ξ)

∣∣− γN̂(ξ),(14.41)

where π−1
U
(
f̃+(ξ)

)
is a singleton because of Corollary 10.5. By virtue of Lemma 10.2,

(14.42) f̃(J◦,+
U ) ⊂ J◦,+

U .

To prove (a) let ξ ∈ J◦,+
U . We consider two cases. First assume that

ξ ̸∈ J◦
U .

Then N̂(ξ) = 0 and, because of item (b) of Corollary 10.6,

N̂(f̃(ξ)) = Ñ(π−1
U (ξ))− 1 and f̃+(f̃(ξ)) = f̃ |JU (ξ).
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Inserting this into (14.41) and using (14.39), along with item (b) of Corollary 10.6,

u+(f̃(ξ)) = u
(
π−1
U (f̃+(f̃(ξ)))

)
− log |f̃ ′

+(f̃(ξ))| − γ(Ñ(π−1
U (ξ))− 1)

= u
(
π−1
U (f̃JU (ξ))

)
− log

∣∣∣∣(f̃ Ñ(π−1
U (ξ))

)′
(ξ)

∣∣∣∣+ log |f̃ ′(ξ)| − γÑ(π−1
U (ξ)) + γ

= u
(
π−1
U (f̃JU (ξ))

)
+ u(π−1

U (ξ))− u
(
σ(π−1

U (ξ))
)
+ log |f̃ ′(ξ)|+ γ

= u(π−1
U (ξ)) + log |f̃ ′(ξ)|

= u+(π−1
U (ξ)) + log |f̃ ′(ξ)|+ γ,

where the equality

u+(π−1
U (ξ)) = u(π−1

U (ξ))(14.43)

follows from the fact that N̂(ξ) = 0 and formula (14.41). The proof of (a) is thus complete.
Now to prove (b) we first note that if a point x ∈ U ∩ J◦,+

U , then x ∈ J◦
U . It thus follows

from (14.43) that

u+|J◦,+
U ∩U = u|J◦,+

U ∩U(14.44)

is bounded. Because of (14.37) and (14.38), and since the map f̃ : J(f̃) −→ J(f̃) is

topologically exact, we see that for every ξ ∈ J◦,+
U \PCV(f̃) there exists j ≥ 0 and

x ∈
(
U ∩ f̃−j(ξ) ∩ J◦,+

U

)
\Crit(f̃ j).

Since Crit(f̃) is a closed set, there this exists an open set W ⊂ U such that

x ∈ W ⊂ W ⊂ Ĉ\Crit(f̃ j).
Then the function

W ∋ z 7−→ log |(f̃ j)′(z)| ∈ R
is bounded. Hence, by iterating (a) (this is possible in view of (14.42)), which gives that

u+ ◦ f j = γj + u+ + log |(f̃ j)′|,

we get, with the use of (14.44), that the set u+(f̃ j(W ∩ J◦,+
U )) is bounded. But

f̃ j(W ∩ J◦,+
U ) = f̃ j(W ) ∩ J◦,+

U

since the set J◦,+
U is, by (14.37), backward f̃–invariant, and, by (14.42), forward f̃–invariant.

In addition, the set f̃ j(W ) is open asW ⊂ Σu×C is open and the map f̃ : Σu×Ĉ −→ Σu×Ĉ
is open. Finally,

ξ = f̃ j(x) ∈ f̃ j(W ).

So, setting Γ := f̃ j(W ) finishes the proof of (b). □

As a fairly easy consequence of this lemma we get the following.

Theorem 14.12. If G is an exceptional NOSC-FNR rational semigroup, then for every
non–empty set D ⊂ {1, 2, . . . , u} the corresponding rational semigroup F = ⟨fj : j ∈ D⟩ is
exceptional.
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Proof. Since J(F ) is closed and backward invariant under F . i.e.⋃
g∈F

g−1(J(F )) ⊂ J(F ),

there exists R ∈ (0, R∗(G)) such that⋃
g∈F

g−1 (B2(Crit∗(F ), 4R))
⋂

B2(Crit∗(f)\Crit∗(F, 4R)) = ∅.

Let U be a nice family for the semigroup G = ⟨f1, . . . fu⟩ induced by the aperiodic set S =
Crit∗(f) with some arbitrary number κ ∈ (1, 2) and r ∈ (0, R] according to Theorem 6.8.
Then

UF := {Us}s∈Crit∗(F )

is a nice family for the semigroup F = ⟨fj : j ∈ D⟩. Furthermore,

DU(F ) =
⋃

s∈Crit∗(F )

∞⋃
n=1

{τ ∈ Dn(G, s) : τ̃ ∈ Dn}

= {τ ∈ DU(G) : τ̃ ∈ Σ∗
u and t(τ), i(τ) ∈ Crit∗(F )} ⊂ DU(G)

and
SUF

(F ) =
{
f̃−∥τ∥
τ : Xt(τ) −→ Xi(τ)

}
τ∈DU (F )

⊂ SU(G).

In addition,
A(F,UF ) = A(G,U)|DU (F )×D̃U (F )

and
D∞

UF
(F ) ⊂ D∞

U (G).

In particular, the subshift σ : D∞
UF
(F ) −→ D∞

UF
(F ) is a subsystem of the subshift σ :

D∞
U (G) −→ D∞

U (G) and

ζ
(F )
1,0 = ζ

(G)
1,0 |D∞

UF
(F ),(14.45)

where ζ
(F )
1,0 and ζ

(G)
1,0 respectively denote the ζ1,0 functions associated to the semigroups F

and G. Likewise,

ÑF = ÑG|D∞
UF

(F ).(14.46)

Since G is exceptional, it follows from item (i) of Proposition 14.10 that with some γ ∈ R
the functions ζ

(G)
1,0 : D∞

U −→ R and γÑG : D∞
U (G) −→ R are cohomologous in the class

of continuous real–valued bounded functions defined on D∞
U (G). We therefore conclude

from (14.45) and (14.46) that the functions ζ
(F )
1,0 and γÑF are cohomologous in the class of

continuous real–valued bounded functions defined on D∞
U (F ). The proof of Theorem 14.12

is thus complete by applying item (i) of Proposition 14.10 again. □

In order to formulate and to prove our main result about exceptional rational semigroups
we need the concept of parabolic orbifolds. The notion of an orbifold which we will uti-
lize was introduced by William Thurston in [51] and [52]. It is very useful to study the
dynamics of some rational functions. It was in particular used by Anna Zdunik in [59] to

classify all exceptional (in her sense) rational functions of the Riemann sphere Ĉ. Our brief
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introduction to (parabolic) orbifolds closely follows hers from [59] and we will substantially
rely on some results from [59] to prove our Theorem 14.14. We consider only orbifolds

homeomorphic to the Riemann sphere Ĉ. Such an orbifold is the sphere Ĉ with a collec-
tion of distinguished, mutually distinct, points x1, x2, . . . , xk ∈ Ĉ and integers (including
+∞) ν(x1), ν(x2), . . . , ν(xk) ≥ 2 ascribed to them. It is denoted by(

Ĉ;x1, x2, . . . , xk; ν(x1), ν(x2), . . . , ν(xk)
)
.

Two orbifolds(
Ĉ;x1, x2, . . . , xk; ν(x1), ν(x2), . . . , ν(xk)

)
and

(
Ĉ; y1, y2, . . . , yl; ν(y1), ν(y2), . . . , ν(yl)

)
are considered equivalent if and only if k = l and

ν(x1) = ν(y1), ν(x2) = ν(y2), . . . , ν(xk) = ν(yl).

We then refer to an orbifold simply by listing some numbers

ν1, ν2, . . . , νk ∈ {2, 3, . . .} ∪ {+∞}.
William Thurston introduced in [51] and [52] the notion of Euler characteristic of a (general)

orbifold. In our context of the Riemann sphere Ĉ, it is given by the following formula

χ
(
Ĉ; ν1, ν2, . . . , νk

)
= 2−

k∑
j=1

(
1− 1

νj

)
.

An orbifold
(
Ĉ; ν1, ν2, . . . , νk

)
is called parabolic if and only if its Euler characteristic is

equal to 0. It is easy to list all parabolic orbifolds associated to the Riemann sphere Ĉ.
These are(

Ĉ; 2, 2, 2, 2
)
,
(
Ĉ; 3, 3, 3

)
,
(
Ĉ; 2, 4, 4

)
,
(
Ĉ; 2, 3, 6

)
,
(
Ĉ; 2, 2,+∞

)
,
(
Ĉ; +∞,+∞

)
.

A rational function f : Ĉ −→ Ĉ is called critically finite if and only if the forward
trajectory of each of its critical points is finite, in other words, if and only if each critical
point of f is either periodic or eventually periodic. There is a natural way of ascribing an
orbifold to such a critically finite map f . The (finite) set of distinguished points is given
by the direct postcritical set of f , i.e. the set{

fk(c) : c ∈ Crit(f) and k ≥ 1
}
.

The numbers ν(fk(c)) are required to satisfy the relation that ν(fk+1(c)) is an integral
multiple of ν(fk(c)). There is exactly one minimal (in an obvious sense) way of choosing
these numbers. We would like to bring up (see [59]) the following fact.

Fact 14.13. We have the following.

(1) The orbifold
(
Ĉ; +∞,+∞

)
corresponds, up to a conjugacy by a Möbius map, to

rational functions of the form

Ĉ ∋ z 7−→ zd ∈ Ĉ

where d is an integer with |d| ≥ 2.
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(2) The orbifold
(
Ĉ; 2, 2,+∞

)
corresponds, up to a conjugacy by a Möbius map, to

±Tchebyschev’s polynomials.

(3) These two above are the only classes of critically finite rational functions on the

Riemann sphere Ĉ yielding parabolic orbifolds and whose Julia sets are different (so

nowhere dense) from Ĉ.

Now, we shall prove the following main result about exceptional rational semigroups.

Theorem 14.14. If G is an exceptional NOSC-FNR rational semigroup, then each element
of G is a critically finite rational function with parabolic orbifold.

Proof. Fix an element of G. It is of the form

fτ : Ĉ → Ĉ, τ ∈ Σ∗
u.

By our hypotheses and Theorem 14.14, the rational semigroup ⟨g⟩ generated by g is ex-
ceptional. Since ⟨g⟩ has exactly one generator, the corresponding skew product map g̃ is

canonically identified with the map g : Ĉ → Ĉ itself. So, Lemma 14.11, applied to the
semigroup ⟨g⟩, tells us that there exist a constant γ ∈ R and a Borel measurable function
u+ : J◦,+

U → R such that

− log |g′| = γ + u+ − u+ ◦ g(14.47)

everywhere on J◦,+
U (⟨g⟩). In addition, the function u+ is given by the formula (14.41). Let

µ0 be the measure of maximal entropy for g : J(g) → J(g). By Poincaré’s Recurrence
Theorem and ergodicity of µ0, we have that

µ0(J
◦,+
U (⟨g⟩)) = 1.

Since the function u : D∞
U (⟨g⟩) → R is measurable and bounded, the first summand

J◦,+
U ∋ ξ 7−→ u(π−1

U (f̃+(ξ))) ∈ R

in the formula (14.41) defining u+, is bounded, thus belongs to L2(µ0). The other two

terms ξ 7−→ −γÑ(ξ) and ξ 7−→ − log |f̃ ′
+(ξ)| and belong to L2(µ0) respectively because of

Corollary 10.11 and Lemma 10.12, both applied with p = 2. In conclusion,

u+ ∈ L2(µ0).(14.48)

Now we can integrate (14.47) against µ0 to get that

γ = −
∫

log |g′|dµ0 = −χµ0(g).

Therefore,

hµ0(g)

χµ0(g)
log |g′| = hµ0(g)

χµ0(g)
=

log deg(g)

χµ0(g)
(χµ0(g) + u+ ◦ g − u+)

= log deg(g) +

(
log deg(g)

χµ0(g)
u+
)
◦ g − log deg(g)

χµ0(g)
u+.
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Equivalently,

log deg(g)

χµ0(g)
log |g′| − log deg(g) =

(
log deg(g)

χµ0(g)
u+
)
◦ g − log deg(g)

χµ0(g)
u+,

and
log deg(g)

χµ0(g)
u+ ∈ L2(µ0)

by virtue of (14.48). Since the number α of [59] is equal to

log deg(g)

χµ0(g)
,

the equation (H) from page 634 of [59] is satisfied by our function g. It therefore follows
from Corollary on page 637 (in Section 5) of [59], the (last) Corollary of Section 7 on
page 644 in [59], and from Proposition 8 on page 645 (in Section 8) of [59] that g is a
critically finite rational function with parabolic orbifold. The proof is complete. □

It is evident from Theorem 14.14 that critical points of exceptional rational semigroups
are very special. We shall now prove it without invoking the theory of orbifolds and quite
deep results of [59]. We call a critical point (ω, c) ∈ J(f̃) exceptional if for every integer
n ≥ 1

f̃−n(f̃n(ω, c)) ⊂ Crit(f̃n) ∪ PCV(f̃).

We shall prove the following.

Proposition 14.15. If G is an exceptional NOSC-FNR rational semigroup containing
some non–exceptional critical points in J(f̃), then G is non–exceptional.

Proof. Seeking contradiction, suppose that G is exceptional. Keep

U =
{
Us : s ∈ Crit∗(f̃)

}
,

a nice family produced in Theorem 6.8. Now, passing to the last step of the proof of
Proposition 14.15, let c ∈ J(f̃) be a non–exceptional point of f̃ . This means that there
exists an integer n ≥ 1 such that

f̃−n(f̃n(ω, c)) ̸⊂ Crit(f̃n) ∪ PCV(f̃).

This in turn means that there exists a point

ξ ∈ J(f̃)\
(
Crit(f̃n) ∪ PCV(f̃)

)
(14.49)

such that

f̃n(ξ) = c.(14.50)

Since c ∈ J(f̃) ∩ U , since Trans(f̃), the set of transitive points of f̃ , is dense in J(f̃), and

since Trans(f̃) ∩ U ⊂ J◦
U ⊂ J◦,+

U , we conclude that c ∈ J◦,+
U . Since f̃ is a FNR map, we

thus have that

c ∈ J◦,+
U \PCV(f̃).(14.51)
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So, by (14.38), (14.49), and (14.50), also

ξ ∈ J◦,+
U \PCV(f̃).(14.52)

Let then Γc and Γξ be the open neighborhoods respectively of c and ξ produced in Lemma 14.11.
By (14.49), (14.51), and (14.38)

w := f̃n(ξ) = f̃n(c) ∈ J◦,+
U .

So, there exists (zk)
∞
k=1, a sequence in f̃n(Γc) ∩ f̃n(Γξ) ∩ J◦,+

U such that

lim
k→∞

zk = w.

Then, there exist (xk)
∞
k=1 and (yk)

∞
k=1, two sequences respectively of points in Γc and Γξ,

such that

f̃n(xk) = zk = f̃n(yk)

for all k ≥ 1,

lim
k→∞

xk = c, and lim
k→∞

yk = ξ.(14.53)

Then by (14.38), xk, yk ∈ J◦,+
U for all k ≥ 1 and equation (b) of Lemma 14.11, iterated n

times, gives

log |(f̃n)′(xk)| = u+(zk)− u+(xk)− γn

and

log |(f̃n)′(yk)| = u+(zk)− u+(yk)− γn

for every k ≥ 1. So,

log |(f̃n)′(xk)| = log |(f̃n)′(yk)|+ u+(yk)− u+(xk)

for every k ≥ 1. But, the sequences (u+(yk))
∞
k=1 and (u+(xk))

∞
k=1 are both bounded because

of item (b) of Lemma 14.11 while, because of (14.49) and the right–hand side of (14.53),
there exists q ≥ 1 such that the sequence(

log |(f̃n)′(yk)|
)∞
k=q

is bounded. Thus, the sequence (
log |(f̃n)′(xk)|

)∞
k=q

is also bounded. This however is a contradiction since by the left–hand side of (14.53),

lim
k→∞

log |(f̃n)′(xk)| = −∞.

We are done. □
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15. Measures mt ◦ p−1
2 and µt ◦ p−1

2

versus
Hausdorff Measures Htκ and H

tκ exp
(
c
√

log(1/t) log3(1/t)
)

In this section we will establish relationships between the Gibbs/equilibrium measures
µt and generalized Hausdorff measures, for example corresponding to gauge functions of
the form

(0, ε) ∋ u 7−→ uHD(µt) exp

(
s

√
log

1

u
log3

1

u

)
, s > 0,

where log3(x) = log
(
log(log(x))

)
and, more generally, for every integer q ≥ 1, logq(x) is the

qth iterate of the logarithm applied to x. The general strategy is to work with the GDS
SU of Theorem 6.11 rather than the skew product map f̃ : Σu × Ĉ −→ Σu × Ĉ itself and
it is based on [55], comp. also Section 4.8 of [21]. We start with an appropriate stochastic
law which is an extension of the Law of the Iterated Logarithm.

Definition 15.1. A monotone increasing function ψ : [1,+∞) −→ [0,+∞) is said to
belong to the lower class if∫ ∞

1

ψ(u)

u
exp

(
−1

2
ψ2(u)

)
dµ < +∞

and to the upper class if∫ ∞

1

ψ(u)

u
exp

(
−1

2
ψ2(u)

)
dµ = +∞.

Recall that given an integer q ≥ 1 and u > 0 large enough, we mean by logq(u) the qth
iteration of the logarithm applied to u; for example:

log1(u) = log(u), log2(u) = log(log(u)), log3(u) = log
(
log(log(u))

)
.

In what follows, in the proofs, we will need the following lemma providing suitable im-
provements of lower and upper functions. This lemma has been proved in [7] as Lemma 4.3
and was repeated, with proof, in [55] as Lemma 6.1. We provide here its formulation and
a short proof for the sake of completeness and convenience of the reader.

Lemma 15.2. Let η, χ > 0 and let ρ : [(χ + η)−1,∞) −→ R+ belong to the upper (lower)
class. Let

θ : [(χ+ η)−1,∞) −→ R+

be a function such that
lim
t→∞

ρ(t)θ(t) = 0.

Then there exists respective upper and lower class functions

ρ+ : [1,∞) → R+ and ρ− : [1,∞) → R+

such that

(a) ρ(t(χ+ η)) + θ(t(χ+ η)) ≤ ρ+(t),
and
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(b) ρ(t(χ− η))− θ(t(χ− η)) ≥ ρ−(t)

for all t ≥ 1.

Proof. Since limt→∞ ρ(t)θ(t) = 0, there exists a constant M such that

(ρ(t) + θ(t))2 ≤ ρ(t)2 +M.

Let ρ belong to the upper class. Then the function t 7−→ ρ(t/(χ + η)) also belongs to the
upper class. Hence, we may assume that χ+ η = 1. Define

ρ+(t)
2 := inf

{
u(t)2 : u is non–decreasing and u(t) ≥ ρ(t) + θ(t)

}
.

Then ρ+(t) ≥ ρ(t) + θ(t) for t ≥ 1 and ρ+ is non–decreasing. Since ρ+(t)
2 ≤ ρ(t)2 +M , we

also get∫ ∞

1

ρ+(t)

t
exp
(
−(1/2)ρ2+(t))dt ≥ exp(−M/2)

∫ ∞

1

ρ+(t)

t
exp
(
−(1/2)ρ2(t))dt = +∞.

The proof in the case of a function of the lower class is similar. □

As an immediate consequence of Theorem 5.2 and Lemma 5.3 of [55] (comp. Theo-
rem 2.5.5 and Lemma 2.5.6 in [21]) along with Proposition 9.2, Corollary 10.11, and the
inequality(

t log

∣∣∣∣(f̃ ||τ1||
)′ (

πU(σ(τ))
)∣∣∣∣)α((f̃ ||τ1||

)′
(πU(σ(τ)))

)−t

≤
∣∣∣∣(f̃ ∥τ1∥

)′ (
πU(σ(τ))

)∣∣∣∣−t′
holding for all t′ < t, α ≥ 0, and ∥τ1∥ (depending on t′) large enough (the last two properties
yielding finite moments required in Lemma 5.3 of [55] or Lemma 2.5.6 of [21]), we get the
following.

Theorem 15.3. If G is a FNR rational semigroup and U is a nice family of sets, then for
all t ∈ ∆∗

G and all α, β ∈ R

µ̃t

({
τ ∈ D∞

U :
n−1∑
j=0

(αζ + βNζ) ◦ σj(τ)− µ̃t(αζ + βNζ)

> σt(αζ + βNζ)ψ(n)
√
n for infinitely many n

})
=

{
0 if ψ : [1,+∞) → (0,+∞) belongs to the lower class

1 if ψ : [1,+∞) → (0,+∞) belongs to the upper class,

where ζ : D∞
U −→ R is given by

ζ(τ) := log

∣∣∣∣(f̃ ||τ1||
)′ (

πU(σ(τ))
)∣∣∣∣ ,

Nζ := ∥τ1∥, and, with k := αζ + βNζ, the non–negative number

σ2
t (k) :=

∫
D∞

U

(k − µ̃t(k))
2 dµ̃t + 2

∞∑
n=1

∫
D∞

U

(k − µ̃t(k))(k ◦ σn − µ̃t(k)) dµ̃t
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is assumed to be positive.

Define k∗ : J(f̃) → R by the formula,

k∗(ω, z) := α log |f̃ ′(ω, z)|+ βNζ(ω, z).

Further define:

σ2
t (k

∗) :=

∫
J(f̃)

(
k∗ − µt(k

∗)
)2
dµt + 2

∞∑
n=1

∫
J(f̃)

(
k∗ − µ̃t(k

∗)
)(
k∗ ◦ f̃n − µ̃t(k

∗)
)
dµt

and

χµt :=

∫
J(f̃)

log |f̃ ′|dµt and χµ̃t :=

∫
D∞

U

ζdµ̃t.(15.1)

Then it follows from Lemma 10.7 and (a generalization of) Kac’s Lemma that

σ2
t (k)

χµ̃t
=
σ2
t (k

∗)

χµt
.(15.2)

Put
χ̃t := χµ̃t and σ̃2

t := σ2
t ((κt − t)ζ − P (t)Nζ(ξ)) .

The main technical result of this section is the following.

Lemma 15.4. Let G be a NOSC-FNR rational semigroup. Assume that t ∈ ∆∗
G and

σ̃2
t > 0. If a slowly growing function ψ belongs to the upper class, then

lim sup
r→0

mt ◦ p−1
2 (B2(x, r))

rHD(µt◦p−1
2 ) exp

(
σ̃tχ

−1/2
µt ψ

(
log 1

r

)√
log 1

r

) = +∞(15.3)

for µt ◦ p−1
2 –a.e. x ∈ J(G).

If, on the other hand, ψ belongs to the lower class, then for every ε > 0 there exists a
measurable set J̃ε ⊂ J(f̃) with µt(J̃ε) ≥ 1− ε and a constant rε ∈ (0, 1] such that

mt

(
J̃ε ∩ p−1

2 (B2(x, r))
)

rHD(µt◦p−1
2 ) exp

(
σ̃tχ

−1/2
µt ψ

(
log 1

r

)√
log 1

r

) ≤ ε(15.4)

for all x ∈ p2(J̃ε) and all r ∈ (0, rε].

Proof. We shall prove the first formula (15.3). Fix x = p2(πU(ξ)), where ξ ∈ D∞
U (then

ξ ∈ J(G)) and for every integer n ≥ 1 set

rn := diam
(
p2(ϕξ|n

(
Xt(ξn))

))
.

Then
B2(x, rn) ⊃ p2

(
(ϕξ|n(Xt(ξn))|),

and so,

mt ◦ p−1
2 (B2(x, rn)) ≥ mt

(
ϕξ|n
(
Xt(ξn)

))
=

∫
Xt(ξn)

e−P(t)Nζ(ξ)|ϕ′
ξ|n|

t dmt

≥ Q−1K−t exp
(
(−tSnζ − P(n)Nζ)(ξ)

)
(15.5)
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where K ≥ 1 is the Koebe’s Distortion Constant and

Q := min{mt(Xs) : s ∈ S} > 0.

Put
κt := HD(µt ◦ p−1

2 ).

Using (15.5) and denoting by Sn, n ≥ 1, the Birkhoff sum corresponding to the dynamical
system σ : D∞

U → D∞
U , we get

mt ◦ p−1
2 (B2(x, rn))

rκtn exp
(
σ̃tχ̃

−1/2
t ψ

(
log 1

rn

)√
log 1

rn

) ≥
Q−1K−t exp

(
(−tSnζ − P(t)Nζ)(ξ)

)
rκtn exp

(
σ̃tχ̃

−1/2
t ψ

(
log 1

rn

)√
log 1

rn

)

≥
Q−1K−t exp

(
(−tSnζ − P(t)Nζ)(ξ)

)
Kκt exp

(
−κtSnζ(ξ)

)
exp

(
σ̃tχ̃

−1/2
t ψ

(
log 1

rn

)√
log 1

rn

)
(15.6)

=
(
QKt+κt

)−1
exp

(
Sn
(
(κt − t)ζ − P(t)Nζ

)
(ξ)
)
exp

(
−σ̃tχ̃−1/2

t ψ

(
log

1

rn

)√
log

1

rn

)
=
(
QKt+κt

)−1
exp

(
Sn
(
(κt − t)ζ − P(t)Nζ

)
(ξ)− σ̃tχ̃

−1/2
t ψ

(
log

1

rn

)√
log

1

rn

)
.

Now, we estimate log(1/rn) from above. By definition, we have

log
1

rn
≤ logK + logD + Snζ(ξ).(15.7)

Now, Birkhoff’s Ergodic Theorem asserts that for µ̃t–a.e. ξ ∈ D∞
U ,

lim
n→∞

1

n
Snζ(ξ) =

∫
D∞

U

ζ dµ̃t = χ̃t.(15.8)

Hence, there exists a measurable set Y1 ⊂ D∞
U such that µ̃t(Y1) = 1 and for every η > 0

and every ξ ∈ Y1 there exists n′
1(ξ, η) ≥ 1 such that

Snζ(ξ) ≤
(
χ̃t +

1

2
η

)
n

for all n ≥ n′
1(ξ, η). Combining this with (15.7), we see that there exists n1(ξ, η) ≥ n′

1(ξη)
such that

log
1

rn
≤ (χ̃t + η)n(15.9)

for all n ≥ n1(ξ, η). In fact, in what follows, we will need a better estimate on log(1/rn).

Indeed, since the function u 7−→ 3
√
u log2 u belongs to the lower class, by (15.7) and

Theorem 15.3, there exists a measurable set Y2 ⊂ Y1 such that µ̃t(Y2) = 1 and

log
1

rn
≤ χ̃tn+ 3(σ2

t (ζ) + 1)

√
n log2 n(15.10)

for every integer n ≥ 1 large enough, say n ≥ n2(ξ) ≥ n1(ξ, η). As a matter of fact, we just
derived (15.10) assuming that σ2

t (ξ) > 0. If however σ2
t (ξ) = 0, then by an appropriate



125

theorem from [21] (or [30]) ξ is cohomologous to a constant in the class of bounded Hölder

continuous functions on D∞
U , and then the factor 3(σ2

t (ζ)+1)
√
n log2 n can be replaced by a

constant (so, much better) in (15.10). One would like to apply Theorem 15.3 to inequality
(15.6) to conclude the proof. However, neither (15.9) nor even (15.10) are sufficiently
strong for such an argument. What we need is to make use of Lemma 15.2. So, consider
the function

θ(u) := ψ(u)


√√√√

1 +
3(σ2

t (ξ) + 1)

χ̃t

√
log2 ((χ̃t + η)−1u)

(χ̃t + η)−1u
− 1

+ (χ̃t + η)
1
4u−

1
4 .

Since θ > 0 and since ψ is a slowly growing function, we have that

lim
u→∞

ψ(u)θ(u) = 0.

Therefore, by Lemma 15.2, there exists ψ+, a function in the upper class, such that

ψ+(u) ≥ ψ((χ̃t + η)u) + θ((χ̃t + η)u).(15.11)

By Theorem 11.2, i.e. the Variational Principle, we have that

∫
D∞

U

(
(κt − t)ζ − P(t)Nζ

)
dµ̃t = (κt − t)χ̃t − P(t)

1

µt(JU)
=

1

µt(JU)

(
(κt − t)χµt − P(t)

)
=

1

µt(JU)

((
hµt
χµt

− t

)
χµt − P(t)

)
=

1

µt(JU)

(
hµt − tχµt − P(t)

)
= 0.(15.12)

Hence, inserting this and (15.11) to Theorem 15.3, and using (15.9), (15.10), and the fact
that ψ is monotone increasing, we obtain for infinitely many u that

Sn
(
(κt − t)ζ − P(t)

)
(ξ)− σ̃tχ̃

−1/2
t ψ(log 1/rn)

√
1/rn ≥

≥ σ̃t
√
nψ+(n)− σ̃tχ̃

−1/2
t ψ

(
(χ̃t + η)n

)
χ̃
1/2
t

√
n

√√√√
1 +

3(σ2
t (ζ) + 1)

χ̃t

√
log2 n

n

≥ σ̃t
√
nn−1/4 = σ̃tn

1/4.
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Inserting this to (15.6), we get

(15.13)

lim sup
r→0

mt ◦ p−1
2 (B2(x, r))

rκt exp
(
σ̃tχ̃

−1/2
t ψ

(
log(1/r)

)√
log(1/r)

)
≥ lim sup

n→∞

mt ◦ p−1
2 (B2(x, rn))

rκtn exp
(
σ̃tχ̃

−1/2
t ψ

(
log(1/rn)

)√
log(1/rn)

)
≥
(
QKt+κt

)−1
lim sup
n→∞

exp
(
σ̃tn

1/4
)

= +∞.

Since, by Theorem 4.21, the measures µt ◦ p−1
2 and mt ◦ p−1

2 are equivalent, formula (15.3)
of Lemma 15.4 results from (15.13) for µt ◦ p−1

2 –a.e. x ∈ J(G).
We now pass to the proof of (15.4). For ever ξ ∈ D∞

U and every radius r > 0 let
n = n(ξ, r) ≥ 0 be the first integer such that

diamC
(
p2
(
ϕξ|n+1

(
Xt(ξn+1)

)))
< r.(15.14)

Of course

lim
r→∞

n(ξ, r) = +∞,(15.15)

and therefore there exists r1(ω) > 0 such that for all r ∈ (0, r1(ω)), we have n(ξ, r) ≥ 2; so

diamC
(
p2
(
ϕξ|n

(
Xt(ξn)

)))
≥ r.(15.16)

Hence,

r
∣∣∣f ′
ξ̃|n

(
p2(πU(ξ))

)∣∣∣ ≤ KdiamΣu×C
(
Xt(ξn)

)
≤ 2KR,

where R > 0 comes from Definition 6.7. So, fix r ∈ (0, r1(ω)). It then follows from the
definition 6.7 of nice families that

(15.17) distC
(
fξ̃|n
(
p2
(
πU(σ

n(ξ)))
)
,PCV(G)

)
≥ 64Kr

∣∣∣f ′
ξ̃|n

(
p2(πU(ξ))

)∣∣∣
and, consequently, the holomorphic inverse branch

f−1

ξ̃|n
: B2

(
fξ̃|n
(
p2
(
πU(σ

n(ξ)))
)
, 16Kr

∣∣∣f ′
ξ̃|n

(
p2(πU(ξ))

)∣∣∣) −→ C

sending fξ̃|n
(
p2(πU(σ

n(ξ)))
)
to p2

(
πU(σ

n(ξ))
)
is well defined, whence

mt

(
[ξ̃|n]× f−1

ξ̃|n

(
B2

(
fξ̃|n
(
p2(πU(σ

n(ξ)))
)
, 8r
∣∣∣f ′
ξ̃|n

(
p2(πU(ξ))

)∣∣∣)))
⪯
∣∣ϕ′
ξ|n(πU(σ

n(ξ)))
∣∣t e−P(t)nmt

(
Σu × f−1

ξ̃|n

(
B2

(
fξ̃|n
(
p2
(
πU(σ

n(ξ))
))
, 8r
∣∣∣f ′
ξ̃|n(p2

(
πU(ξ))

)∣∣∣))
≤ exp(−tSnζ(ξ)− P(t)n).
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Hence
(15.18)

mt

(
[ξ̃|n]× f−1

ξ̃|n

(
B2

(
fξ̃|n (p2 (πU(σ

n(ξ)))) , 8r
∣∣∣f ′
ξ̃|n

(p2(πU(ξ)))
∣∣∣)))

rκt exp
(
σ̃tχ̃

−1/2
t ψ(log(1/rn))

√
log(1/rn)

)
⪯ exp (−tSnζ(ξ)− P (t)n)

diamκt
(
p2
(
ϕξ|n

(
χt(ξn)

)))
exp

(
σ̃tχ̃

−1/2
t ψ(log(1/r))

√
log(1/r)

)
⪯ exp (−tSnζ(ξ)− P (t)n)∣∣ϕξ|′n+1(πU (σn+1(ξ)))

∣∣κt exp(σ̃tχ̃−1/2
t ψ(log(1/r))

√
log(1/r)

)
= exp

((
(κt − t)Snζ − P(t)Nζ

)
(ξ)− σ̃tχ̃

−1/2
t ψ(log(1/r))

√
log(1/r) + κtζ(σ

n+1(ξ))
)
.

Now, because (15.8) there exists a measurable set Y2 ⊂ D∞
U such that µ̃t(Y2) = 1 and for

every η > 0 and every ξ ∈ Y2 there exists n′
2(ξ, η) ≥ 1 such that

Skζ(ξ) ≥
(
χ̃t −

1

2
η

)
k

for all k ≥ n′
2(ξ, η). Combining this with (15.16), we see that

log(1/r) ≥ − logD + Snζ(ξ) ≥ − logD +

(
χ̃t −

1

2
η

)
n,

whenever ξ ∈ Y2 and n = n(ξ, r) ≥ n′
2(ξ, η). Hence, there exists n2(ξ, η) ≥ n′

2(ξ, η) such
that

log(1/r) ≥ (χ̃t − η)n(15.19)

whenever ξ ∈ Y2 and n = n(ξ, r) ≥ n2(ξ, η). As in the proof of (15.3), we will need a

better estimate on log(1/rn). Indeed, since the function u 7−→ 3
√
u log2 u belongs to the

lower class, by (15.7) and Theorem 15.3, there exists a measurable set Y3 ⊂ Y2 such that
µ̃t(Y3) = 1 and

log
1

r
≥ χ̃tn− 3σt(ξ)

√
n log2 n(15.20)

if the integer n ≥ 1 is large enough, say n ≥ n3(ξ) ≥ n2(ξ, η). As a matter of fact we
just derived (15.20) assuming that σ2

t (ξ) > 0. If however σ2
t = 0, then by an appropriate

theorem from [21] (or [30]) ξ is cohomologous to a constant in the class of bounded Hölder

continuous functions on D∞
U , and then the 2(σ2

t (ξ) + 1)
√
n log2 n term can be replaced by

a constant (so, much better) in (15.10). Now again, as in the proof of formula (15.3), we
consider an appropriate function θ. It is now defined by

θ(u) := ψ(u)

1−

√√√√
1− 3σt(ζ)

χ̃t

√
log2 ((χ̃t − η)−1u)

(χ̃t − η)−1u

+(χ̃t−η)
1
4u−

1
4 +(χ̃t−η)

1
8u−

1
8ψ

3
4 (u).
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Since θ > 0 and since ψ is a slowly growing function, we have that

lim
u→∞

ψ(u)θ(u) = 0.

Therefore, by Lemma 15.2, there exists ψ−, a function in the lower class such that

ψ−(u) ≤ ψ((χ̃t − η)u)− θ((χ̃t − η)u).(15.21)

Using (15.12), (15.19), and (15.20), it follows from Theorem 15.3 that

(κt − t)Sn
(
ζ−P(t)Nζ

)
(ξ)− σ̃tχ̃

−1/2
t ψ(log 1/r)

√
log 1/r ≤

≤ σ̃t
√
nψ−(n)− σ̃tχ̃

−1/2
t ψ((χ̃t − η)n)χ̃

1/2
t

√
n

√√√√
1− 3σt(ξ)

χ̃t

√
log2 n

n
(15.22)

for µ̃t–a.e. ξ ∈ D∞
U and all n ≥ 1 large enough, say for all ξ ∈ Y4 ⊂ Y3 with µ̃t(Y4) = 1 and

all n ≥ n4(ξ) ≥ n3(ξ). We also need to take care of the term κtζ(σ
n+1(ξ)) appearing at the

end of (15.18). Since the function |ζ| has all moments, in particular since∫
|ζ|3dµ̃t < +∞,

it follows from Tchebyshev’s Inequality that

µ̃t

({
ξ ∈ D∞

U : κt|ζ(ξ)| ≥ σ̃tψ
3/4
(
(χ̃t − η)k

)
k3/8

})
≤ σ̃−3

t ψ−1/4((χ̃t − η)k)k−9/8

∫
D∞

U

|ζ|3dµ̃t.

Since the measure µ̃t is σ–invariant, we therefore obtain

∞∑
k=1

µ̃t

({
ξ ∈ D∞

U :κt|ζ(σk+1(ξ))| ≥ σ̃tψ
3/4
(
(χ̃t − η)k

)
k3/8

})
≤

≤ σ̃−3
t

∞∑
k=1

ψ−1/4
(
(χ̃t − η)k

)
µ̃t(|ζ|3)k−9/8

≤ σ̃−3
t ψ−1/4

(
(χ̃t − η)

)
µ̃t(|ζ|3)

∞∑
k=1

k−9/8

< +∞.

Therefore, in view of the Borel–Cantelli Lemma there exists a measurable set Y5 ⊂ Y4 such
that µ̃t(Y5) = 1 and for all ξ ∈ Y5 there exists an integer n5(ξ) ≥ n4(ξ) such that

κt|ζ(σk+1(ξ))| ≤ σ̃tψ
3/4((χ̃t − η)k)k3/8
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for all integers k ≥ n5(ξ). Along with (15.22) and (15.21), this yields(
(κt−t)Snζ − P(t)Nζ

)
(ξ)− σ̃tχ̃

−1/2
t ψ(log(1/r))

√
log(1/r) + κtζ|(σn+1(ξ))|

≤ σ̃t
√
nψ−(n)− σ̃tχ̃

−1/2
t ψ((χ̃t − η)n)χ̃

1/2
t

√
n

√√√√
1− 3σt(ξ)

χ̃t

√
log2 n

n
+

+ σ̃tψ
3/4((χ̃t − η)n)n3/8

≤ σ̃t
√
n

ψ((χ̃t − η)n)− θ((χ̃t − η)n)− ψ((χ̃t − η)n)

√√√√
1− 3σt(ξ)

χ̃t

√
log2 n

n


+ σ̃tψ

3/4((χ̃t − η)n)n3/8

= σ̃tψ
3/4((χ̃t − η)n)n3/8 − σ̃t

√
nn−1/4 − σ̃t

√
nψ3/4((χ̃t − η)n)n1/8

= −σ̃tn1/4

for all ξ ∈ Y5 and n = n(ξ, r) ≥ n5(ξ). Inserting this to (15.18), we get that

mt

(
[ξ̃|n]× f−1

ξ̃|n

(
B2

(
fξ̃|n
(
p2
(
πU(σ

n(ξ))
))
, 8r
∣∣∣f ′
ξ̃|n

(
p2(πU(ξ))

)∣∣∣)))
rκt exp

(
σ̃tχ̃

−1/2
t ψ(log(1/rn))

√
log(1/rn)

) ≤ exp
(
−σ̃tn1/4(ξ, r)

)(15.23)

for every ξ ∈ Y5 and every r > 0 so small that n(ξ, r) ≥ n5(ξ) (see also (15.15)). Now, fix
ε ∈ (0, 1) and take k ≥ 1 so large that

µ̃t
(
Z ′
ε := Y5 ∩ n−1

5 ({0, 1, . . . , k})
)
≥ 1− ε

2
and

exp
(
−σ̃tk1/4

)
≤ ε

#(16K2, a)
,(15.24)

where a is given by the formula

a := 32K2R,(15.25)

with, we recall, R > 0 comes from Definition 6.7 and #(16K2, a) comes from Proposi-
tion 13.9. By (15.15) there exists r(ε) > 0 so small that

µ̃t
(
Zε := {ξ ∈ Z ′

ε : n(ξ, r(ε)) ≥ k}
)
≥ 1− ε.(15.26)

Fix r ∈ (0, r(ε)]. Our goal now is to apply Proposition 13.9. For every x ∈ p2(πU(Zε)), we
define

F0(x, r) :=
{
ξ̃|n(ξ,r)+1 : ξ ∈ Zε ∩ (p2 ◦ πU)−1(B2(x, r))

}
.

Furthermore, we take F(x, r) to be a family of mutually incomparable elements of F0(x, r)
such that ⋃

τ∈F(x,r)

[τ ] =
⋃

τ∈F0(x,r)

[τ ].(15.27)
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This is the largest family of mutually incomparable words in F0(x, r). For every τ ∈ F(x, r)
fix τ+ ∈ Zε ∩ (p2 ◦ πU)−1(B2(x, r)) such that

τ̃+||τ | = τ.(15.28)

Define
Rτ := 16Kr

∣∣f ′
τ̂ (p2(πU(τ

+)))
∣∣.

The condition (ess2) is obviously satisfied by the definition of F(x, r). We now deal with
condition (ess0). Keeping τ ∈ F(x, r), it follows from 1

4
–Koebe’s Distortion Theorem that

f−1
τ̂

(
B2

(
fτ̂ (p2 ◦ πU(τ+)), 4r

∣∣f ′
τ̂ (p2(πU(τ

+)))
∣∣)) ⊃ B2(p2 ◦ πU(τ+), r).

Hence,

(15.29) x ∈ f−1
τ̂

(
B2

(
fτ̂ (p2 ◦ πU(τ+)), 4r

∣∣f ′
τ̂ (p2(πU(τ

+)))
∣∣)).

Consequently,

fτ̂ (x) ∈ B2

(
fτ̂ (p2 ◦ πU(τ+)), 4r

∣∣f ′
τ̂ (p2(πU(τ

+)))
∣∣) = B2

(
fτ̂ (p2 ◦ πU(τ+)), (4K)−1Rτ

)
.

But
fτ̂ (p2 ◦ πU(τ+)) ∈ f−1

τ∗ (p2 ◦ πU(τ+)) ∈ f−1
τ∗ (J(G)).

Thus,

dist
(
fτ̂ (x), f

−1
τ∗ (J(G))

)
≤ 1

2
Rτ ,

and, consequently, (ess0) holds because of Remark 13.10. It follows from (15.17) that

dist
(
fτ̂ (x),PCV(G)

)
≥ dist

(
fτ̂ (p2 ◦ πU(τ+)),PCV(G)

)
−
∣∣fτ̂ (x)− fτ̂ (p2 ◦ πU(τ+))

∣∣
≥ 64Kr

∣∣f ′
τ̂ (p2(πU(τ

+)))
∣∣− 4r

∣∣f ′
τ̂ (p2(πU(τ

+)))
∣∣

= 60Kr
∣∣f ′
τ̂ (p2(πU(τ

+)))
∣∣

> 2Rτ .

Hence, a unique analytic branch f−1
τ̂ ,x : B2(fτ̂ (x), 2Rτ ) −→ C of f−1

τ̂ sending fτ̂ (x) to x
exists. It also follows from (15.29) that

K−1 ≤
∣∣f ′
τ̂ (x)

∣∣∣∣f ′
τ̂ (p2(πU(τ

+)))
∣∣ ≤ K.

Therefore,
1

16K2
≤
∣∣f ′
τ̂ (x)

∣∣r
Rτ

≤ 1

16
.

In conclusion, condition (ess1) of Definition 13.8 is satisfied with M = 16K2 and, by
(15.27), with a given by (15.25). So, F(x, r) is (16K2, a, V )–essential for (x, r) with

V :=
⋃

τ∈F(x,r)

[τ ].

In consequence, Proposition 13.9 applies, and, in particular, its item (c) yields

#F(x, r) ≤ #(16K2, a).(15.30)
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We want to show that

πU
(
Zε ∩ (p2 ◦ πU)−1(B2(x, r))

)
⊂

⊂
⋃

τ∈F(x,r)

[τ̂ ]× f−1
τ̂

(
B2

(
p2
(
πU(σ

|τ̂ |(τ+))
)
, 8r
∣∣f ′
τ̂ (p2(πU(τ

+)))
∣∣) ).(15.31)

Indeed, let ξ ∈ Zε ∩ (p2 ◦ πU)−1(B2(x, r)). By (15.27) there exists ξ′ ∈ Zε ∩ (p2 ◦
πU)

−1(B2(x, r)) such that

ξ′|n(ξ′,r)+1 ∈ F(x, r),

n(ξ, r) ≥ n(ξ′, r),(15.32)

and

ξ|n(ξ′,r)+1 = ξ′|n(ξ′,r)+1.(15.33)

Denoting n(ξ′, r) by n and ξ′|n(ξ′,r)+1 by γ, it follows from the 1
4
–Koebe’s Distortion Theorem

that

f−1
γ̂

(
B2

(
p2
(
πU(σ

|γ̂|(γ+)
)
, 8r
∣∣f ′
γ̂(p2(πU(γ

+)))
∣∣)) ⊃ B2

(
p2(πU(γ

+)), 2r
)
∋ p2(πU(ξ)).

Since, also by (15.33) and (15.32),

p1(πU(ξ)) = ξ̃ ∈ [ξ̃|n(ξ,r)] ⊂ [ξ′|n(ξ′,r)] = [γ̂],

we conclude that (15.31) holds. This formula, along with (15.23), (15.24), (15.26), and
(15.30), gives

mt (πU (Zε ∩ (p2 ◦ πU)−1(B2(x, r))))

rκt exp
(
σ̃tχ̃

−1/2
t ψ

(
log(1/r)

)√
log(1/r)

) ≤ ε.

But

πU
(
Zε ∩ (p2 ◦ πU)−1(B2(x, r))

)
= πU(Zε) ∩ p−1

2 (B2(x, r)),

so

mt

(
πU(Zε) ∩ p−1

2 (B2(x, r))
)

rκt exp
(
σ̃tχ̃

−1/2
t ψ

(
log(1/r)

)√
log(1/r)

) ≤ ε.(15.34)

Since, also by (15.26),

µt(πU(Zε)) ≥ µ̃t(Zε) ≥ 1− ε,

formula (15.4) of Lemma 15.4 follows by setting J̃ε := πU(Zε). The proof is now complete.
□

Let (X, ϱ) is a metric space. Given also a monotone increasing function g : [0,+∞) −→
(0,+∞), let for every subset A of X, Hg(A) be the corresponding (generalized) Hausdorff
measure of A. We recall that it is defined as the infimum over all δ > 0 of the numbers
H(δ)
g (A), where H(δ)

g (A) is defined as the infimum of all countable sums

∞∑
k=1

g(diam(Ak)),
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where {Ak}∞k=1 are countable covers of A with diam(Ak) ≤ δ for each k ≥ 1. It is worth to
note that also

Hg(A) = lim
δ↘0

H(δ)
g (A)

and that the function Hg restricted to the Borel subsets of X is a measure with values in
[0,+∞].

Given ψ : [0,+∞) −→ (0,+∞) and t ∈ ∆∗
G, let

ψ̃t : (1,+∞) −→ (0,+∞)

be given by the formula

ψ̃t(u) := uHD(µt◦p−1
2 ) exp

(
σ̃tχ

−1/2
µt ψ

(
log(1/u)

)√
log(1/u)

)
,

The proof of the following, main result of this section, is now fairly standard.

Theorem 15.5. Let G be a NOSC-FNR rational semigroup. Assume that t ∈ ∆∗
G and

σ̃t > 0. If ψ : [0,+∞) → (0,+∞) is a slowly growing function, then

(a) If ψ is in the upper class, then the measures µt ◦ p−1
2 and Hψ̃t

on J(G) are mutually
singular,

(b) If ψ is in the lower class, then µt ◦ p−1
2 is absolutely continuous with respect to

Hψ̃t
on C̃. Moreover, Hψ̃t

(E) = +∞ whenever E ⊂ J(G) is a Borel set such that

µt ◦ p−1
2 (E) > 0.

Proof. To prove item (a), first fix ε ∈ (0, 1). By formula (15.3) of Lemma 15.4 and by
Egorov’s Theorem for every integer n ≥ 1 there exists a Borel set En(ε) ⊂ J(G) such that

µt ◦ p−1
2 (En(ε)) > 1− ε2−n(15.35)

and for every x ∈ En(ε) there exists a closed ball Bn(x) contained in X with diam(Bn(x)) <
1/n and

mt ◦ p−1
2 (Bn(x)) ≥ nψ̃(diam(Bn(x))).

Let b(2) be the constant from Besicovič’s Theorem corresponding to dimension 2. Applying
this theorem to the cover {Bn(x) : x ∈ En(ε)} of En(ε), we get a countable set S ⊂ En(ε)
such that ⋃

x∈S

Bn(x) ⊃ En(ε)

and S can be represented as a disjoint union S1 ∪ S2 ∪ · · · ∪ Sb(2) such that for every
1 ≤ k ≤ b(2), the family {Bn(x) : x ∈ Sk} consists of mutually disjoint sets. Then

Hψ̃t
(En(ε), 1/n) ≤

∑
x∈S

ψ̃t
(
diam(Bn(x))

)
≤ 1

n

∑
x∈S

mt ◦ p−1
2 (Bn(x))

=
1

n

b(2)∑
k=1

∑
x∈Sk

mt ◦ p−1
2 (Bn(x)) =

1

n

b(2)∑
k=1

mt ◦ p−1
2

( ⋃
x∈Sk

Bn(x)

)

≤ b(2)

n
.
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So, if

Eε :=
∞⋂
n=1

En(ε),

then

Hψ̃t
(En(ε)) = 0 and µt ◦ p−1

2 (En(ε)) ≥ 1− ε.

Hence, setting

E :=
∞⋃
ℓ=1

E1/ℓ,

we have Hψ̃t
(E) = 0 and µt ◦ p−1

2 (E) = 1. Thus, item (a) is proved.
Now to prove item (b) put

η :=
1

2
mt ◦ p−1

2 (E) > 0,

as by Theorem 4.21, the measuresmt◦p−1
2 and µt◦p−1

2 are equivalent. Fix κ > 0 arbitrarily.
Using Theorem 4.21 again, it follows from Lemma 15.4 that there exists ε ∈ (0, κ) such
that mt(J̃ε) ≥ 1− η. Then

mt(J̃ε ∩ p−1
2 (E)) ≥ mt ◦ p−1

2 (E)− η = η.(15.36)

Fix δ ∈ (0, r(ε)), where r(ε) > 0 also comes from Lemma 15.4. Consider an arbitrary set
S ⊂ E ∩ p2(J̃ε) and for every x ∈ S an arbitrary radius r(x) ∈ (0, δ] such that⋃

x∈S

B2(x, r(x)) ⊃ E ∩ p2(J̃ε).

We then get from formula (15.4) of Lemma 15.4, the choice of ε, and (15.3) that∑
x∈S

ψ̃t(r(x)) ≥
1

ε

∑
x∈S

mt

(
J̃ε ∩ p−1

2

(
B2(x, r(x))

))
≥ 1

ε
mt

(
J̃ε ∩

(⋃
x∈S

p−1
2

(
B2(x, r(x))

)))

≥ 1

ε
mt

(
J̃ε ∩ p−1

2

(⋃
x∈S

B2

(
x, r(x)

)))
≥ 1

ε
mt

(
J̃ε ∩ p−1

2

(
E ∩ p2(J̃ε)

))
≥ 1

ε
mt

(
J̃ε ∩ p−1

2 (E)
)
≥ η

κ
.

Hence,

Hψ̃t
(E ∩ p2(J̃ε), δ) ≥ A

η

κ
,

where A ∈ (0,+∞) is some universal constant, see [18] or [30] for example. Therefore,

Hψ̃t
(E) ≥ Hψ̃t

(E ∩ p2(J̃ε)) ≥ A
η

κ
.

Since κ > 0 is arbitrary, this gives that Hψ̃t
(E) = +∞, finishing the proof of item (b) and

of the whole Theorem 15.5. □
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Good examples of lower and upper class functions are ones of the form

ℓc(u) = c

√
log2 u, c > 0.

Indeed, if 0 ≤ c ≤ 2, then ℓc belongs to the upper class, and if c > 2, then ℓc belongs to the
lower class. Therefore, as an immediate consequence of Theorem 15.5, we get the following.

Corollary 15.6. Let G be a NOSC-FNR rational semigroup. Assume that t ∈ ∆∗
G and

σ̃t > 0. We have the following.

(a) If 0 ≤ c ≤ 2, then µt ◦ p−1
2 and H(ℓ̃c)t

on J(G) are mutually singular. In particular,

the measures µt ◦ p−1
2 and H

tHD(µt◦p
−1
2 ) are mutually singular.

(b) If c > 2, then µt ◦ p−1
2 is absolutely continuous with respect to H(ℓ̃c)t

on J(G).

Moreover, H(ℓ̃c)t
(E) = +∞ whenever E ⊂ J(G) is a Borel set such that µt◦p−1

2 (E) >
0.

16. HD(J(G)) versus Hausdorff Dimension of Fiber Julia Sets Jω, ω ∈ Σu

In this section our goal is to relate the global Hausdorff dimension HD(J(G)) with the
Hausdorff dimension of the fibers HD(Jω). We will show that for our systems, i.e. C–F
balanced TNR rational semigroups of finite type satisfying the Nice Open Set Condition,

HD(J(G)) > HD(Jω)

for every ω ∈ Σu. If in addition our semigroup is expanding, then

sup{HD(Jω) : ω ∈ Σu} < HD(J(G)).

The concept expanding rational semigroups is well rooted in this theory for at least two
decades. We recall its definition here.

Definition 16.1. A rational semigroups is called expanding (along fibers) if and only
if there exists an integer n ≥ 1 such that∣∣(f̃n)′(ξ)∣∣ ≥ 2

for all ξ ∈ J(f̃).
Equivalently, there are two constants C > 0 and λ > 1 such that∣∣(f̃n)′(ξ)∣∣ ≥ cλn

for all ξ ∈ J(f̃) and all integers n ≥ 0.

For more information about expanding rational functions the reader is advised to consult
relevant papers of the second author.

First we shall prove the following auxiliary result.

Lemma 16.2. Let G be a NOSC-FNR rational semigroup generated by a u–tuple map
f = (f1, . . . , fu) ∈ Ratu. If V ⊂ Σu × Ĉ is a non–empty neighborhood of Crit∗(f̃), then

HD(p2(K(V ))) < h = HD(J(G)).
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Proof. Have R2 > 0 coming from Lemma 7.1. Since the set K(V ) is compact there exists
a finite set Ξ ⊂ K(V ) such that ⋃

ξ∈Ξ

B(ξ, R2) ⊃ K(V ).

Let

PΞ
V (t) := lim inf

n→∞

1

n
log
∑
ξ∈Ξ

∑
x∈K(V )∩f̃−n(ξ)

∣∣∣(f̃n)′(x)∣∣∣−t .(16.1)

Then by convexity, the function R ∋ t 7−→ PΞ
V (t) ∈ R is continuous, and it follows from

Lemma 8.1 that there exists t ∈ (0, h) such that

PΞ
V (t) < 0.(16.2)

By Lemma 8.1, for every ξ ∈ Ξ, every integer n ≥ 1, and every x ∈ f̃−n(ξ) ∩K(V ) there

exists a unique holomorphic branch f̃−n
x : B(ξ, 2R2) −→ Σu×C which sends ξ to x. It now

follows from (16.1) and (16.2) that

lim inf
n→∞

1

n
log
∑
ξ∈Ξ

∑
x∈K(V )∩f̃−n(ξ)

diamt
(
p2(f̃

−n
x (B(ξ, R2)))

)
= PΞ

V (t) < 0.

Therefore,

lim inf
n→∞

∑
ξ∈Ξ

∑
x∈K(V )∩f̃−n(ξ)

diamt
(
p2(f̃

−n
x (B(ξ, R2)))

)
= 0.

Since also ⋃
ξ∈Ξ

⋃
x∈K(V )∩f̃−n(ξ)

p2
(
f̃−n
x (B(ξ, R2))

)
⊃ K(V ),

we thus conclude that Ht(p2(K(V ))) = 0. Hence,

HD(p2(K(V ))) ≤ t < h,

and the proof is complete. □

Now we shall prove the following theorem which is one of the main results of our man-
uscript, probably the top one. It solves a long standing problem about the size relation
between global and fiberwise Julia sets of a rational semigroup.

Theorem 16.3. If G is a NOSC-FNR rational semigroup generated by a u–tuple map
f = (f1, . . . , fu) ∈ Ratu, then

HD(Jω) < h = HD(J(G))

for every ω ∈ Σu. If in addition, G is expanding, then

sup
{
HD(Jω) : ω ∈ Σu

}
< h = HD(J(G)).
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Proof. Fix U = {Us}s∈S, an arbitrary nice family for f . For every ρ ∈ Σ∗
u ∪ Σu, let

[ρ]∼ := {ω ∈ D∞
U : ω̃|[ρ] = ρ}.

Still for every integer n ≥ 0 and also for every τ ∈ Σu, we have

Jτ (U) : = p2(πU([τ ]
∼)) ⊂ p2 ◦ πU

(⋃
{[ω|n] : ω ∈ [τ |n]∼}

)
(16.3)

= p2 ◦ πU
(⋃

{[ω] : ω ∈ Dn
U and ω̃|n = τ |n}

)
⊂
⋃{

p2(ϕω(Xt(ω))) : ω ∈ [τ |n]∼|n
}
.(16.4)

Now, fixing for every s ∈ X, ξs ∈ D∞
U such that πU(ξs) ∈ Us ⊂ Xs, we have∑

ω∈[τ |n]∼|n

diamh(p2(ϕω(Xt(ω)))) ≍
∑

ω∈[τ |n]∼|n

∣∣ϕ′
ω(πU(ξt(ω)))

∣∣h =∑
s∈S

Lnh(1[τ |n]∼)(ξs),(16.5)

where Lh : Cb(D∞
U ) → Cb(D∞

U ) is the Perron–Frobenius (transfer) operator corre-
sponding to the potential

ζh,P(h) = ζh,0 : D∞
U −→ R.

This operator is given by the formula

Lh(g)(ξ) =
∑
e∈DU

Ae,ξ1
(U)=1

eζh,0(eξ)g(eξ) =
∑
e∈DU

Ae,ξ1
(U)=1

|ϕ′
e(πU(ξ))|hg(eξ).(16.6)

We want to show that the functions Lh(1[τ |n]∼), n ≥ 1, converge to zero uniformly expo-
nentially fast. For this we want to use the existence of a spectral gap for the operator Lh.
For the operator Lh acting on the Banach space of bounded Hölder continuous functions
from D∞

U to R, this was proved in [21]. This is however not sufficient for us as the Hölder
norms of the characteristic functions of cylinders increase to infinity (even exponentially
fast) with the length of the cylinder. We therefore turn our attention to a more sophis-
ticated Banach space and apply the results of [27]. We proceed slightly more generally
than is really needed for the sake of arguments of this section. Namely except restricting
ourselves to the parameter h, we fix, and we deal with, any parameter

t ∈ ∆∗
G.

Given a function g ∈ L1(µ̃t) and an integer m ≥ 0, we define the oscillation function
oscm(g) : D∞

U −→ [0,∞) by the following formula:

(16.7) oscm(g)(ω) := ess sup{|g(α)− g(β)| : α, β ∈ [ω|m]}

and

osc0(g) := ess sup(g)− ess inf(g).

We further define:

(16.8) |g|t,θ := sup
m≥0

{θ−m∥oscm(g)∥1},
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where ∥ · ∥ denotes the L1–norm with respect to the measure µ̃t. The announced, non–
standard (it even depends on the dynamics – via µ̃t) Banach space is defined as follows:

Bθ(t) :=
{
g ∈ L1(µ̃t) : |g|θ < +∞

}
and we denote

(16.9) ∥g∥t,θ := ∥g∥1 + |g|t,θ.
Of course Bθ(t) is a vector space and the function

(16.10) Bθ(t) ∋ g 7−→ ∥g∥t,θ
is a norm on Bθ(t). This is the non–standard Banach space we will be working with now.

A direct observation shows that for every τ ∈ Σu and every integer n ≥ 0, we have:

(16.11) osck(1[τ |n]∼)(ω) =


0 if k ≥ n

0 if k < n and ω̃|k ̸= τ |k
1 if k < n and ω̃|k = τ |k.

Therefore,

(16.12)

∫
D∞

U

osck(1[τ |n]∼)(ω)dµ̃t(ω) =

{
0 if k ≥ n

µ̃t([τ |k]∼) if k < n.

Thus ∣∣1[τ |n]∼∣∣t,θ = max
{
θ−kµ̃t([τ |k]∼) : 0 ≤ k < n

}
.(16.13)

We want to show that this number is uniformly bounded above. For this, we need a good
upper estimate on µ̃t([τ |k]∼). We will prove it now.

Claim 1: We have that

lim
k→∞

max
{
ω ∈ Σk

u : µ̃t([ω]
∼)
}
= 0.

Proof. For every ω ∈ Σu we have [ω]∼ ⊂ π−1
U ({ω} × Jω), whence, by Lemma 10.7, we get

that

µ̃t([ω]
∼) ≤ µ̃t

(
π−1
U ({ω} × Jω(U))

)
= µt

(
{ω} × Jω(U)

)
≤ µt

(
{ω} × Jω

)
.(16.14)

Now, if ω is not eventually periodic, then the sets {f̃n({ω}×Jω)}∞n=0 are mutually disjoint.
Since also

µt

(
f̃n+1 ({ω} × Jω)

)
≥ µt

(
f̃n ({ω} × Jω)

)
and since µt(J(f̃)) = 1 < +∞, we conclude that

µt({ω} × Jω) = 0.(16.15)

If ω is eventually periodic, then σq(ω) with some q ≥ 0 is periodic, and if µt ({ω} × Jω) > 0,
then by (16.15),

µt
(
{σq(ω)} × Jσq(ω)

)
= µt

(
f̃ q ({ω} × Jω)

)
> 0.
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So, if p ≥ 1 is a period of σq(ω), then

µt

(
p−1⋃
j=0

f̃
(
{σq(ω)} × Jσq(ω)

))
> 0,

and

f̃

(
p−1⋃
j=0

f̃ j
(
{σq(ω)} × Jσq(ω)

))
=

p−1⋃
j=0

f̃ j
(
{σq(ω)} × Jσq(ω)

)
.

Hence, the ergodicity of the measure µt yields

µt

(
p−1⋃
j=0

f̃ j
(
{σq(ω)} × Jσq(ω)

))
= 1.(16.16)

But,
p−1⋃
j=0

f̃
(
{σq(ω)} × Jσq(ω)

)
is a closed proper subset of J(f̃). So, (16.16) contradicts the fact that supp(µt) = J(f̃),

i.e. that µ̃t is a positive on non–empty open subsets of J(f̃). In consequence,

µt ({ω} × Jω) = 0.

Along with (16.15) and (16.14) this implies that

µ̃t([ω]
∼) = 0.(16.17)

Now seeking a contradiction, suppose that Claim 1 fails, i.e. that

η :=
1

2
lim sup
k→∞

max
{
µ̃t([ω]

∼) : ω ∈ Σk
u

}
∈ (0, 1/2).

Then for every k ≥ 0, the family

Fk :=
{
ω ∈ Σk

u : µ̃t([ω]
∼) > η

}
is not empty and for every ω ∈ Σk+1

u , ω|k ∈ Σk
u. This means that the families (Fk)k≥0 form

a tree rooted at F0 = {∅}. Since this tree is finitely branched, the number of branches
outgoing from each vertex being (uniformly) bounded above by u, it follows from König’s
Lemma that there exists ω ∈ Σu such that ω|k ∈ Fk for all k ≥ 0. Hence,

µ̃t([ω|k]∼) > η

for all k ≥ 0. Thus,

µ̃t([ω]
∼) = lim

k→∞
µ̃t([ω|k]∼) ≥ η,

contrary to (16.17). Thus, Claim 1 is proved. □

Now we shall prove a substantial strengthening of Claim 1.

Claim 2: There exist two constants At > 0 and αt ∈ (0, 1) such that for every k ≥ 0

max
{
µ̃t([ω]

∼) : ω ∈ Σk
u

}
≤ Atα

k
t .
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Proof. It directly follows from Theorem 9.4 (a) that there exists a constant B ≥ 1 such
that

µ̃t([γξ]) ≤ Bµ̃t([γ])µ̃t([ξ])(16.18)

for all γ, ξ ∈ D∞
U . By Claim 1 there exists q ≥ 1 so large that

β := max
{
µ̃t([ω]

∼) : ω ∈ Σq
u

}
< B−1.

Put

s := Bβ < 1.

We shall show by induction that

βk := max
{
µ̃t([ω]

∼) : ω ∈ Σqk
u

}
≤ sk(16.19)

for every k ≥ 0. Indeed for k = 0, we have 1=1. So, suppose that (16.19) holds for some

k ≥ 0. Using (16.18), we then get for every ω ∈ Σ
q(k+1)
u that

µ̃t([ω]
∼) = µ̃t

(⋃{
γξ : γ ∈ [ω|qk]∼, ξ ∈ [σqk(ω)]∼, γξ ∈ Dq(k+1)

U

})
=
∑
∗

µ̃t([γξ]) ≤ B
∑
∗

µ̃t([γ])µt([ξ])

≤ Bµ̃t([ξ])
∑

γ∈[ω|qk]∼
µ̃t([γ])

∑
ξ∈[σqk(ω)]∼

= Bµ̃t([ω|qk]∼)µ̃t([σqk(ω)]∼)

≤ Bskβ = sk+1,

where
∑
∗

indicates the summation over the set

{
γξ : γ ∈ [ω|qk]∼, ξ ∈ [σqk(ω)]∼, γξ ∈ Dq(k+1)

U

}
.

So, βk+1 ≤ sk+1, and formula (16.19) is proved. This formula directly entails Claim 2. □

As indicated in [27], for the results of this paper one can take θ ∈ (0, 1) as close to 1 as
one wishes. We take an arbitrary

θ ∈ (αt, 1).

It then follows from 16.13 and Claim 2 that∣∣1[τ |n]∼∣∣t,θ ≤ At(16.20)

for every τ ∈ Σu and every integer n ≥ 0. Now we want to apply some results from [27];
for this, strictly speaking, we need to consider the normalized operator

Lh,0 :=
1

ρh
Lh ◦ ρh.(16.21)

It formally follows from Proposition 2.4.2 (Fundamental Perturbative Result) of [27], with
the sequence Un = ∅ for all n ≥ 1, (in fact it is much easier than the full fledged Proposition
2.4.2) that

Lnh,0g := µ̃h(g) + ∆n
hg,(16.22)
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for all n ≥ 0 and all g ∈ Bθ(h), where
∥∆n

hg∥∞ ≤ ∥∆n
hg∥h,θ ≤ Chκ

n
h∥g∥h,θ

for all n ≥ 0 with some constants Ch ∈ (0,+∞) and κh ∈ (0, 1). Fix τ ∈ Σu arbitrarily.
It directly follows from (16.20)–(16.22), Theorem 9.4 (e), and Claim 2 that with some
constant D ∈ [1,+∞), we have for every integer n ≥ 1 that

∥Lnh(1[τ |n]∼)∥∞ ≤ µ̃h([τ |n]∼) + ∥∆n
h1[τ |n]∼∥∞ ≤ Ahα

n
h + Chκ

n
hAh

≤ Ah(1 + Ch)max(αnh, κ
n
h).(16.23)

We now want some generalizations of formulas (16.5) and (16.6).

Keep τ ∈ Σu fixed. For every t ∈ ∆∗
G, let

Pτ (t) := lim inf
n→∞

1

n
log ∥Lnt (1[τ |n]∼)∥∞.

Invoking the last assertion of Corollary 9.8 and making use of the convexity argument, we
conclude that the function

(h− δ, h) ∋ t 7−→ Pτ (t) ∈ R
is convex, thus continuous. Since also by (16.23),

Pτ (h) ≤ logmax(αh, κh) < 0,(16.24)

it thus follows that there exists α ∈ (h− δ, h) such that

Pτ (α) < 0.(16.25)

Since formula (16.5) holds with h replaced by any t ≥ 0, in particular by α, and Lh replaced
by Lt, the Perron–Frobenius operator corresponding to the potential ζt,0 : D∞

U −→ R, we
conclude, using (16.25), that

lim inf
n→∞

1

n
log

∑
ω∈[τ |n]∼|n

diamα(p2(ϕω(Xt(ω)))) ≤ Pτ (α) < 0.

Therefore,

lim inf
n→∞

∑
ω∈[τ |n]∼|n

diamα
(
p2(ϕω(Xt(ω)))

)
= 0.

Hence, invoking also (16.3), we conclude that Hα(ϕω(Xt(ω))) = 0. Thus,

HD(Jτ (U)) ≤ α < h.(16.26)

Now we pass to the second step of the proof. Since the map f̃ : J(f̃) −→ J(f̃) is topologi-
cally exact, there exists an integer q ≥ 1 such that

f̃ q(Us) ⊃ J(f̃)(16.27)

for all s ∈ S. The key technical part of the second step is the following.

Claim 3: Keeping τ ∈ Σu, we have for every integer n ≥ q that

Jσn(τ)(U) ⊂
⋃
ω∈Σq

u

fωτ |nq+1
(Jωσq(τ)(U)).
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Proof. Fix s ∈ S and n ≥ q. Take an arbitrary ξ ∈ [σn(τ)]∼. Then, by the definition of

the system SU , there exists ρ = f̃
−(n−q)
ρ : B(Xi(τn+1), R) −→ Σu ×C, a holomorphic inverse

branch of f̃n−q such that

ρ̃ = τ |nq+1.(16.28)

By (16.27) there exists z ∈ Us such that

f̃ q(z) = f̃−(n−q)
ρ (πU(ξ)).

By the definition of the system SU again, there exists

γ = f̃−q
γ : f̃−(n−q)

ρ

(
B(Xi(τn+1), R)

)
−→ Σu × C,

a holomorphic inverse branch of f̃ q such that f̃−q
γ (f̃ q(z)) = z. But, as z ∈ Us, we then have

that
f̃−q
γ ◦ f̃−(n−q)

ρ (Xi(τn+1)) ∩ Us ̸= ∅.
But then, by the definition of nice sets and the system ζ for the final time, γρ ∈ D∗

U . Hence,

γρξ ∈ D∞
U .

In addition,

γ̃ ∈ Σq
u.(16.29)

Therefore, using (16.28) and the choice of ξ, we obtain

p2 ◦ πU(ξ) = p2 ◦ πU(σ|γρ|(γρξ))

= fγ̃ρ̃(p2 ◦ πU(γρξ)) ∈ fγ̃ρ̃(p2 ◦ πU([γ̃σq(τ)]∼)) = fγ̃ρ̃(Jγ̃σq(τ)(U)).
Invoking (16.28) again, and also (16.29), we conclude that

p2 ◦ πU(ξ) ∈
⋃
ω∈Σq

u

fωτ |nq+1
(Jωσq(τ)(U)).

Claim 3 is thus proved. □

Since the collection {ωτ |nq+1 : ω ∈ Σq
u} is finite, as an immediate consequence of Claim 3

and (16.26), we get that

sup
{
HD(Jσn(τ)(U)) : n ≥ 0

}
< h.(16.30)

Now observe that each point z ∈ Us such that f̃n(z) ∈ Us for infinitely many n ≥ 0, belongs
in fact to JU . So, for each point x of

Jτ\
∞⋃
n=0

f−1
τ |n

(
Jσn(τ)(U)

)
there are only finitely many integers n ≥ 0 such that f̃n(τ, x) ∈ Us. Therefore,

Jτ\
∞⋃
n=0

f−1
τ |n

(
Jσn(τ)(U)

)
⊂

∞⋃
k=0

f−1
τ |k

(
p2(K(Us))

)
.

Hence, combining Lemma 16.2 and (16.30), we conclude that

HD(Jτ ) < h.
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So, the first part of Theorem 16.3 is proved.

Now, we pass to the expanding case. Then the dynamical system f̃ : J(f̃) −→ J(f̃)
admits (finite!) Markov partitions with arbitrarily small diameters. In the language of the
present paper it means that there exists a nice family (in fact nice sets with arbitrarily
small diameters) U = {Us}s∈S such that⋃

s∈S

Us ⊃ J(f̃),

the alphabet DU of the corresponding GDMS SU is finite, and all elements ϕe of SU are
holomorphic inverse branches of generating maps fj, j = 1, . . . , u. Moreover, for every
τ ∈ Σu,

Jτ = Jτ (U).
Having t ≥ 0, τ ∈ Σu, and n ≥ 1, we put

Pτ (t, n) :=
1

n
log ∥Lnh(1[τ |n]∼)∥∞.

But in the current expanding case,

∥Lnh(1[τ |n]∼)∥∞ =
∑

ξ∈[τ |n]∼
|ϕ′
ξ(xτ (n))|t

for some xτ (n) ∈ J(f̃). So, then

P′
τ (t, n) =

1

n
·
∑

ξ∈[τ |n]∼ |ϕ′
ξ(xτ (n))|t log |ϕ′

ξ(xτ (n))|t∑
ξ∈[τ |n]∼ |ϕ′

ξ(xτ (n))|t
,

and in our special case there exists χ > 0 such that

|ϕ′
ξ(x)| ≥ exp(−χ|ξ|)

for every ξ ∈ D∗
U and every x ∈ Xt(ξ). This entails

P′
τ (t, n) ≥ −χt.

So, denoting HD(Jτ ) by hτ , we get for every n ≥ 1 that

Pτ (h, n)− Pτ (hτ , n) ≥ −χ(h− hτ ).

Therefore,

h− hτ ≥
Pτ (hτ , n)− Pτ (h, n)

χ
.

Hence, noting also that Pτ (hτ ) ≥ 0, using (16.24), and taking the limit as n → ∞, we
obtain

h− hτ ≥
1

χ

(
Pτ (hτ )− Pτ (h)

)
≥ −Pτ (h)

χ
≥ − 1

χ
logmax{αh, κh} > 0.

The proof of the second part of Theorem 16.3 is complete, and we are done. □
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17. Examples

In this section, we describe some examples of finely non–recurrent rational semigroups
satisfying the Nice Open Set Condition, i.e. being NOSC-FNR.

Example 17.1 ([49], comp. [35, 37]). Let

f1(z) := z2 + 2 and f2(z) := z2 − 2.

Let f = (f1, f2) and
G := ⟨f1, f2⟩.

In addition, let
U := {z ∈ C : |z| < 2}.

Then, G is semi–hyperbolic but not hyperbolic (so, not expanding) ([35, Example 5.8]).
Since Crit∗(f) = {0} is a singleton, it follows from Observation 5.4 that G is a TNR
semigroup. Moreover, G satisfies the Nice Open Set Condition with U. Since

J(G) ⊂ f−1
1 (U) ∪ f−1

2 (U) ⫋ U,

[37, Theorem 1.25] implies that J(G) is porous and HD(J(G)) < 2. It is also easy to see
that the u–tuple map f is C–F balanced. It follows from Lemma 13.11 that G is of finite
type. Thus, G is a finely non–recurrent rational semigroups satisfying the Nice Open Set
Condition, i.e. NOSC-FNR. In addition, by Theorem 1.1 we have that

hf = HD(J(G)) = PD(J(G)) = BD(J(G)).

Furthermore (see Figure 2),
f−1
1 (U) ∩ f−1

2 (U) ̸= ∅.

Figure 2. The Julia set of ⟨f1, f2⟩, where f1(z) = z2 + 2, f2(z) = z2 − 2.
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Example 17.2. Let

f1(z) := z2 + 2, f2(z) := z2 − 2, and f3(z) := z2.

Let f = (f1, f2, f3) and
G := ⟨f1, f2, f3⟩.

In addition, let
U := {z ∈ C : |z| < 2}.

Using the same reasoning as in Example 17.1, we obtain the same results for J(G) as in
Example 17.1. Figure 3 shows the Julia set J(G).

Figure 3. The Julia set of ⟨f1, f2, f3⟩, where f1(z) = z2+2, f2(z) = z2− 2,
and f3(z) = z2.

Example 17.3. A large class of examples is provided by the following.

Proposition 17.4 ([49], comp. [40, 43]). Assume the following.

• Let f1 be a semi–hyperbolic polynomial with deg(f1) ≥ 2 such that J(f1) is connected.

• Let K(f1) be the filled–in Julia set of f1 and suppose that Int(K(f1)) ̸= ∅.
• Let b ∈ Int(K(f1)) be a point.

• Let d be a positive integer such that d ≥ 2.

• Suppose that (deg(f1), d) ̸= (2, 2).

Then, there exists a real number c > 0 such that for each λ ∈ {λ ∈ C : 0 < |λ| < c}, setting
fλ := (fλ,1, fλ,2) = (f1, λ(z − b)d + b) and Gλ := ⟨f1, fλ,2⟩,

we have the following.

(1) Gλ is *semi–hyperbolic.
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(2) fλ satisfies the Nice Open Set Condition with an open set Uλ.

(3) J(Gλ) is porous.

(4) HD(J(Gλ)) = hfλ < 2.

(5) PCV(Gλ) \ {∞} is bounded in C.
(6) Gλ is C–F balanced.

(7) If, in addition, f1 is totally non–recurrent TNR, then so is Gλ, and it is of finite
type, thus finely non–recurrent and, moreover, NOSC-FNR.

Proof. We will closely follow the exposition from [49]. Conjugating f1 by a Möbius trans-
formation, we may assume that b = 0 and that the coefficient of the highest degree term
of f1 is equal to 1.

Let r > 0 be a real number such that B2(0, r) ⊂ IntK(f1). We set d1 := deg(f1). Let
α > 0 be a number. Since d ≥ 2 and (d, d1) ̸= (2, 2), it is easy to see that

( r
α

) 1
d
> 2

(
2

(
1

α

) 1
d−1

) 1
d1

if and only if

(17.1) logα <
d(d− 1)d1
d+ d1 − d1d

(
log 2− 1

d1
log

1

2
− 1

d
log r

)
.

We set

(17.2) c0 := exp

(
d(d− 1)d1
d+ d1 − d1d

(
log 2− 1

d1
log

1

2
− 1

d
log r

))
∈ (0,∞).

Let 0 < c < c0 be a number required to be sufficiently small later in the proof and let
λ ∈ C be a number with 0 < |λ| < c. Put

fλ,2(z) := λzd.

Then, we have

K(fλ,2) =

{
z ∈ C : |z| ≤

(
1

|λ|

) 1
d−1

}
and

f−1
λ,2

(
{z ∈ C : |z| = r}

)
=

{
z ∈ C : |z| =

(
r

|λ|

) 1
d

}
.

Let

Dλ := B2

(
0, 2

(
1

|λ|

) 1
d−1

)
.

Since

f1(z) = zd1(1 + o(1)) as z −→ ∞,
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it follows that if 0 < c < c0 is small enough, then for every λ ∈ C with 0 < |λ| < c, we
have that

f−1
1 (Dλ) ⊂

z ∈ C : |z| ≤ 2

(
2

(
1

|λ|

) 1
d−1

) 1
d1

 .

This implies that

(17.3) f−1
1 (Dλ) ⊂ f−1

λ,2

(
{z ∈ C : |z| < r}

)
.

Hence, setting
Uλ := Int(K(fλ,2)) \K(f1),

we will have
f−1
1 (Uλ) ∪ f−1

λ,2(Uλ) ⊂ Uλ and f−1
1 (Uλ) ∩ f−1

λ,2(Uλ) = ∅.

Furthermore, since f1 is semi–hyperbolic, we get that Ĉ \K(f1) is a John domain by [2].
Hence, Uλ satisfies (osc3). Therefore, Gλ satisfies the Nice Open Set Condition witnessed
by Uλ.

We have
J(Gλ) ⊂ Uλ ⊂ K(fλ,2) \ Int(K(f1)).

In particular,

Int(K(f1)) ∪ (Ĉ \K(fλ,2)) ⊂ F (Gλ).

Furthermore, (17.3) implies that fλ,2(K(f1)) ⊂ Int(K(f1)). Thus, we have

PCV(Gλ) \ {∞} =
⋃
g∈G∗

λ

g
(
CritV∗(f1) ∪ CritV∗(fλ,2)

)
⊂ K(f1),

where CritV∗(·) denotes the set of all critical values in C. Hence, PCV(Gλ)\{∞} is bounded
in C.

Since f1 is semi–hyperbolic, there exist an N ∈ N and a δ1 > 0 such that for each
x ∈ J(f1) and for each n ∈ N,

deg
(
fn1 : V −→ B2(x, δ1)

)
≤ N

for each connected component V of f−n
1 (B2(x, δ1). Also, f

−1
λ,2(J(f1)) ∩K(f1) = ∅, and so

f−1
λ,2(J(f1)) ⊂ Ĉ \ PCV(Gλ).

It follows from the above that there exists a 0 < δ2 < δ1 such that for each x ∈ J(f1) and
each g ∈ Gλ,

deg
(
g : V −→ B2(x, δ2)

)
≤ N

for each connected component V of g−1(B2(x, δ2)). Since PCV(Gλ) \ {∞} ⊂ K(f1) again,
we obtain that there exists a number 0 < δ3 < δ2 such that for each x ∈ J(Gλ) and each
g ∈ Gλ,

deg
(
g : V −→ B2(x, δ3)

)
≤ N

for each connected component V of g−1(B2(x, δ3)). Thus, Gλ is semi–hyperbolic.
Since J(Gλ) ⊂ f−1

1 (Uλ) ∪ f−1
λ,2(Uλ) ⫋ Uλ, [37] implies that J(Gλ) is porous and

HD(J(Gλ)) < 2.
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Figure 4. The Julia set of ⟨f 2
1 , f

2
2 ⟩, where f1(z) = z2 − 1, f2(z) = z2/4.

Also, by Theorem 1.1, we have that

hfλ = HD(J(Gλ)).

Finally, it is easy to see that item (7) holds, and we are done.
□

Figure 4 shows the Julia set of semigroup generated by second iterate of each of the maps
z 7→ z2 − 1 and z 7→ z2/4, which satisfies the hypotheses of Proposition 17.4.
Figure 5 shows the Julia set of semigroup generated by the maps z 7→ z2−1 and z 7→ z3/2,

which satisfies the hypotheses of Proposition 17.4.
Figure 6 shows the Julia set of semigroup generated by the maps z 7→ z2−1 and z 7→ iz4,

which satisfies the hypotheses of Proposition 17.4.

Part 4. Appendices

Appendix A. Absolutely Continuous σ–Finite Invariant Measures:
Martens Method

In this appendix we state again Theorem 4.20 and provide its full proof. As we have
already explained in the paragraph preceding Definition 4.18, we do this (provide the proof)
for the sake of completeness, the importance of Theorem 4.20 for our overall approach, and
since there is no published proof of this theorem in such large generality (see [16] and [25]).

Theorem A.1. If (X,B,m) is a probability space and T : X −→ X is a Martens map with
a Martens cover {Xj}∞j=0, then we have the following.

• There exists a σ–finite T–invariant measure µ on X equivalent to m.



148 JASON ATNIP, HIROKI SUMI, AND MARIUSZ URBAŃSKI

Figure 5. The Julia set of ⟨f1, f2⟩, where f1(z) = z2 − 1, f2(z) = z3/2.

Figure 6. The Julia set of ⟨f1, f2⟩, where f1(z) = z2 − 1, f2(z) = iz4.

• In addition, 0 < µ(Xj) < +∞ for each j ≥ 0.

The measure µ is constructed in the following way: Let lB : l∞ −→ R be a Banach limit.
For each A ∈ B, set

mn(A) :=

∑n
k=0m(T−k(A))∑n
k=0m(T−k(X0))

.

If A ∈ B and A ⊂ Yj with some j ≥ 0, then we obtain (mn(A))
∞
n=1 ∈ l∞. We set

µ(A) := lB((mn(A))
∞
n=1).
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For a general measurable subset A ⊂ X, set

µ(A) :=
∞∑
j=0

µ(A ∩ Yj).

In addition, if for a measurable subset A ⊂ X, the sequence (mn(A))
∞
n=1 is bounded, then

we have the following formula:

(A.1) µ(A) = lB
(
(mn(A))

∞
n=1

)
− lim

l→∞
lB

(mn

(
A ∩

∞⋃
j=l

Yj

))∞

n=0

 .

In particular, if A ∈ B is contained in a finite union of sets Xj, j ≥ 0, then

µ(A) = lB
(
(mn(A))

∞
n=1

)
.

Furthermore, if the measure–preserving transformation T : X −→ X is ergodic (equiva-
lently with respect to the measure m or µ), then the T–invariant measure µ is unique up to
a multiplicative constant.

The proof of this theorem will consist of several lemmas. We start with the following.

Lemma A.2. Let (Z,F) be a measurable space such that:

(a) Z =
∞⋃
j=0

Zj for some mutually disjoint sets Zj ∈ F ,

and

(b) νj is a finite measure on Zj for each j ≥ 0.

Then the set function ν : F → [0,∞] defined by

ν(F ) :=
∞∑
j=0

νj(F ∩ Zj)

is a σ–finite measure on Z.

Proof. Clearly, ν(∅) = 0. Let F ∈ F and let {Fn}∞n=1 be a partition of F into sets in F .
Then

ν(F ) =
∞∑
j=0

νj(F ∩ Zj) =
∞∑
j=0

νj

( ∞⋃
n=1

(Fn ∩ Zj)
)

=
∞∑
j=0

∞∑
n=1

νj(Fn ∩ Zj) =
∞∑
n=1

∞∑
j=0

νj(Fn ∩ Zj)

=
∞∑
n=1

ν(Fn),

where the order of summation could be changed since all terms involved are non–negative.
Thus, ν is a measure. Moreover, by definition, Z =

⋃∞
j=0 Zj and ν(Zj) = νj(Zj) < ∞ for

all j ≥ 0. Therefore ν is σ–finite. □
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From this point on, all lemmas rely on the same main hypotheses as Theorem 4.20.

Lemma A.3. For all n, j ≥ 0 and all A,B ∈ A with A ∪B ⊂ Xj, we have

mn(A)m(B) ≤ Kjm(A)mn(B).

Proof. This follows directly from the definition of mn and condition (4) of Definition 4.18.
□

Lemma A.4. For every j ≥ 0, we have (mn(Xj))
∞
n=1 ∈ l∞ and µ(Yj) ≤ µ(Xj) <∞.

Proof. Fix j ≥ 0. By virtue of condition (3) of Definition 4.18, there exists q ≥ 0 such that
m(Xj ∩ T−q(X0)) > 0. By Lemma A.3 and the definition of mn, for all n ≥ 0 we have that

mn(Yj) ≤ mn(Xj) ≤ Kj
m(Xj)

m
(
Xj ∩ T−q(X0)

)mn

(
Xj ∩ T−q(X0)

)
≤ Kj

m(Xj)

m
(
Xj ∩ T−q(X0)

)mn(T
−q(X0))

= Kj
m(Xj)

m
(
Xj ∩ T−q(X0)

)∑n+q
k=0m(T−k(X0))∑n
k=0m(T−k(X0))

= Kj
m(Xj)

m
(
Xj ∩ T−q(X0)

) [1 + ∑n+q
k=n+1m(T−k(X0))∑n
k=0m(T−k(X0))

]

≤ Kj
m(Xj)

m
(
Xj ∩ T−q(X0)

) [1 + q

m(X0)

]
.(A.2)

Consequently, (mn(Xj))
∞
n=1 ∈ l∞, and standard properties of a Banach limit yield that

µ(Yj) ≤ Kj
m(Xj)

m
(
Xj ∩ T−q(X0)

) [1 + q

m(X0)

]
<∞.

Since Xj =
⋃j
i=0 Yi and the Y s are mutually disjoint, we deduce that

µ(Yj) ≤
j∑
i=0

µ(Xj ∩ Yi) =
∞∑
i=0

µ(Xj ∩ Yi) =: µ(Xj) ≤
j∑
i=0

µ(Yi) <∞.

□

Now, for every j ≥ 0, set
µj := µ|Yj .

Lemma A.5. For every j ≥ 0 such that µ(Yj) > 0 and for every measurable set A ⊂ Yj,
we have

K−1
j

µ(Yj)

m(Yj)
m(A) ≤ µj(A) ≤ Kj

µ(Yj)

m(Yj)
m(A).

Proof. This follows from the definition of the measure µ and by settingB = Yj in Lemma A.3
and using the standard properties of a Banach limit. □

Lemma A.6. For each j ≥ 0, µj is a finite measure on Yj.
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Proof. Let j ≥ 0. Assume without loss of generality that µj(Yj) > 0. Let A ⊂ Yj be
a measurable set and (Ak)

∞
k=1 a countable measurable partition of A. Using termwise

operations on sequences, for every l ∈ N we have(
∞∑
k=1

mn(Ak)

)∞

n=1

−
l∑

k=1

(mn(Ak))
∞
n=1 =

(
∞∑
k=1

mn(Ak)

)∞

n=1

−

(
l∑

k=1

mn(Ak)

)∞

n=1

=

(
∞∑

k=l+1

mn(Ak)

)∞

n=1

.

It therefore follows from Lemma A.3 (with A = Ak and B = Yj) that∥∥∥∥∥
(

∞∑
k=1

mn(Ak)

)∞

n=1

−
l∑

k=1

(mn(Ak))
∞
n=1

∥∥∥∥∥
∞

=

∥∥∥∥∥
(

∞∑
k=l+1

mn(Ak)

)∞

n=1

∥∥∥∥∥
∞

≤

∥∥∥∥∥ Kj

m(Yj)

(
mn(Yj)

∞∑
k=l+1

m(Ak)

)∞

n=1

∥∥∥∥∥
∞

=
Kj

m(Yj)

∥∥∥∥∥
(
mn(Yj)

∞∑
k=l+1

m(Ak)

)∞

n=1

∥∥∥∥∥
∞

.

Since (mn(Yj))
∞
n=1 ∈ l∞ by Lemma A.4 and since liml→∞

∑∞
k=l+1m(Ak) = 0, we conclude

that

lim
l→∞

∥∥∥∥∥
(

∞∑
k=1

mn(Ak)

)∞

n=1

−
l∑

k=1

(mn(Ak))
∞
n=1

∥∥∥∥∥
∞

= 0.

This means that (
∞∑
k=1

mn(Ak)

)∞

n=1

=
∞∑
k=1

(mn(Ak))
∞
n=1

in l∞. Hence, using the continuity of the Banach limit lB : l∞ → R, we get

µ(A) = lB
(
(mn(A))

∞
n=1

)
= lB

((
mn

( ∞⋃
k=1

Ak

))∞

n=1

)
= lB

(( ∞∑
k=1

mn(Ak)
)∞
n=1

)

=
∞∑
k=1

lB
(
(mn(Ak))

∞
n=1

)
=

∞∑
k=1

µ(Ak).

So µj is countably additive. Also, µj(∅) = 0. Thus µj is a measure. By Lemma A.4, µj is
finite. □

Combining Lemmas A.2, A.4, A.5, and A.6, and condition (2) of Definition 4.18, we get
the following.

Lemma A.7. µ is a σ–finite measure on X equivalent tom. Moreover, µ(Yj) ≤ µ(Xj) <∞
and µ(Xj) > 0 for all j ≥ 0.

Lemma A.8. Formula (4.17) holds.
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Proof. Fix A ∈ A such that (mn(A))
∞
n=1 ∈ l∞. Then for every l ∈ N we have

lB ((mn(A))
∞
n=1) =lB

(
l∑

j=0

(mn(A ∩ Yj))∞n=1

)
+ lB

((
mn

( ∞⋃
j=l+1

A ∩ Yj
))∞

n=1

)

=
l∑

j=0

lB

(
(mn(A ∩ Yj))∞n=1

)
+ lB

((
mn

(
A ∩

∞⋃
j=l+1

Yj

))∞
n=1

)
.

Letting l → ∞, we obtain that

lB
(
(mn(A))

∞
n=1

)
=

∞∑
j=0

lB
(
(mn(A ∩ Yj))∞n=1

)
+ lim

l→∞
lB

((
mn

(
A ∩

∞⋃
j=l+1

Yj

))∞
n=1

)
=

∞∑
j=0

µ(A ∩ Yj) + lim
l→∞

lB

((
mn

(
A ∩

∞⋃
j=l

Yj

))∞
n=1

)
=µ(A) + lim

l→∞
lB

((
mn

(
A ∩

∞⋃
j=l

Yj

))∞
n=1

)
.

This establishes formula (4.17). In particular, if A ⊂
⋃k
j=0Xj for some k ∈ N, then

A∩
⋃∞
j=l Yj ⊂

(⋃k
j=0Xj

)
∩
(
X\
⋃
i<lXi

)
= ∅ for all l > k. In that case, the equation above

reduces to

lB
(
(mn(A))

∞
n=1

)
= µ(A).

□

Lemma A.9. The σ–finite measure µ is T–invariant.

Proof. Let i ≥ 0 be such that m(Yi) > 0. Fix a measurable set A ⊂ Yi. By definition,
µ(A) = lB

(
(mn(A))

∞
n=1

)
. Furthermore, for all n ≥ 0 notice that

∣∣mn(T
−1(A))−mn(A)

∣∣ = ∣∣m(T−(n+1)(A))−m(A)
∣∣∑n

k=0m(T−k(X0))
≤ 1∑n

k=0m(T−k(X0))
.

Thus, (mn(T
−1(A)))∞n=1 ∈ l∞ because (mn(A))

∞
n=1 ∈ l∞. Moreover, by condition (5) of

Definition 4.18, it follows from the above and the standard properties of a Banach limit
that

lB
(
(mn(T

−1(A)))∞n=1

)
= lB

(
(mn(A))

∞
n=1

)
= µ(A).
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Keep A a measurable subset of Yi. Fix l ∈ N. We then have

mn

(
T−1(A) ∩

∞⋃
j=l

Yj

)
=

∑n
k=0m

(
T−k(T−1(A) ∩

⋃∞
j=l Yj

))∑n
k=0m(T−k(X0))

≤
∑n

k=0m
(
T−(k+1)

(
A ∩ T (

⋃∞
j=l Yj)

))∑n
k=0m(T−k(X0))

≤ mn+1

(
A ∩ T

(∞⋃
j=l

Yj

))
·
∑n+1

k=0 m(T−k(X0))∑n
k=0m(T−k(X0))

≤ Ki
mn+1(Yi)

m(Yi)
·m
(
A ∩ T

(∞⋃
j=l

Yj

))
·
∑n+1

k=0 m(T−k(X0))∑n
k=0m(T−k(X0))

,

where the last inequality sign holds by Lemma A.3 since A ⊂ Yi. When n → ∞, the last
quotient on the right–hand side approaches 1. Therefore

0 ≤ lB

((
mn

(
T−1(A) ∩

∞⋃
j=l

Yj

))∞
n=1

)
≤ Ki

µ(Yi)

m(Yi)
m

(
T
(∞⋃
j=l

Yj

))
.

Hence, by virtue of condition (6) of Definition 4.18,

0 ≤ lim
l→∞

lB

((
mn

(
T−1(A) ∩

∞⋃
j=l

Yj

))∞

n=1

)
≤ Ki

µ(Yi)

m(Yi)
lim
l→∞

m

(
T
(∞⋃
j=l

Yj

))
= 0.

So

lim
l→∞

lB

((
mn

(
T−1(A) ∩

∞⋃
j=l

Yj

))∞

n=1

)
= 0.

It thus follows from Lemma A.8 that

µ(T−1(A)) = lB
(
(mn(T

−1(A)))∞n=1

)
= lB

(
(mn(A))

∞
n=1

)
= µ(A).

For an arbitrary A ∈ A, write A =
⋃∞
j=0A ∩ Yj and observe that

µ(T−1(A)) = µ
( ∞⋃
j=0

T−1(A ∩ Yj)
)
=

∞∑
j=0

µ
(
T−1(A ∩ Yj)

)
=

∞∑
j=0

µ(A ∩ Yj) = µ(A).

We are done. □

Proof of Theorem 4.20: Combining Lemmas A.4, A.7, A.8, and A.9, we obtain the
full statement of Theorem 4.20 except its last assertion. This last assertion however holds
because of the following well known theorem:

Theorem A.10. Let T : (X,A) −→ (X,A) be a measurable transformation and m a
σ–finite quasi–T–invariant measure. If T is ergodic and conservative with respect to m
then, up to a positive multiplicative constant, there exists at most one non–zero σ–finite
T–invariant measure µ which is absolutely continuous with respect to m.

□
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Remark A.11. In the course of the proof of Theorem 4.20 we have shown that

0 < inf{mn(A) : n ∈ N} ≤ sup{mn(A) : n ∈ N} < +∞
for all j ≥ 0 and all measurable sets A ⊂ Xj such that m(A) > 0.

Appendix B. Corrected Proofs of Lemma 7.9 and lemma 7.10 from [49]

The formulations and proofs of Lemma 7.9 and Lemma 7.10 from [49] were not entirely
correct. Although we do not rely on them in our current manuscript, we take now the
opportunity to provide their corrected formulations and proofs based on the progress we
have made in the current manuscript. For the convenience of the reader we formulate first
Proposition 5.3 from [49], which is one of the main ingredients in the proof of Lemma B.2
but has not been formulated in our current manuscript yet. We also use other results,
definition, and notation from [49], but since [49] is published and easily accessible we do
not explain or copy them here.

Proposition B.1 (Proposition 5.3 in [49]). Fix θ ∈ (0,min{1, γ}). For all (τ, z) ∈ J(f̃)
and r > 0 there exists a minimal integer s = s(θ, (τ, z), r) ≥ 0 with the following properties
(a) and (b).

(a) |(f̃ s)′(τ, z)| ≠ 0.

(b) Either r|(f̃ s)′(τ, z)| > ∥f̃ ′∥−1
∞ or there exists c ∈ Crit(fτs+1) such that

fτs+1(c) ∈ J(G) and |fτ |s(z)− c| ≤ θr|f ′
τ |s(z)|.

In addition, for this s, we have

(c) θr|f ′
τ |s(z)| ≤ θ < γ and

Comp
(
z, fτ |s , (KA

2
f )

−12−#Crit(f)θr|f ′
τ |s(z)|

)
∩ Crit(fτ |s) = ∅.

Lemma B.2 (Lemma 7.9 in [49]). Suppose that Γ is a closed subset of J(G) such that
g(Γ)∩J(G) ⊂ Γ for each g ∈ G, and that m̃ is a Borel probability nearly upper t–conformal

measure on J(f̃) respective to Γ.
Fix i ∈ {0, 1, . . . , p} and suppose that for every critical point c ∈ Si(f) ∩ Γ the measure

m̃|Σ(c)×Ĉ ◦ p−1
2 is upper t–estimable at c.

Then the measure m is uniformly upper t–estimable at all points z ∈ Ji(G) ∩ Γ.

Proof. Since Γ is a closed set and Crit(f) is finite, the number ∆ = distC(Γ,Crit(f) \ Γ) is
positive (if Crit(f) \ Γ = ∅ then we put ∆ = ∞). Fix θ ∈ (0,min{1, γ}) so small that

(B.1) θ∥f̃ ′∥−1
∞ < min{∆, ρ}.

Put
α = θ(KA2

f )
−12−#Crit(f).

Let z ∈ Ji(G) ∩ Γ. Fix τ ∈ Σu such that (τ, z) ∈ J(f̃), i.e. τ ∈ p1(J(f̃) ∩ p−1
2 (z)). Assume

r ∈ (0, Rf ] to be sufficiently small. Let

s(τ, r) := s(θ, (τ, z), 8α−1r) ≥ 0
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be the integer produced in Proposition B.1. Set

Rτ |s(τ,r)+1
:= 4r|f ′

τ |s(τ,r)(z)|.

It then follows from Proposition B.1 that the family

F(z, r) =
{
τ |s(τ,r)+1 : τ ∈ p1(J(f̃) ∩ p−1

2 (z))
}

is (4, γ, V )-essential for the pair (z, r), where

V :=
⋃{

[τ |s(τ,r)+1] : τ ∈ p1(J(f̃) ∩ p−1
2 (z))

}
.

Keep

τ ∈ p1(J(f̃) ∩ p−1
2 (z)) and s = s(τ, r).

Suppose that the first alternative of (b) in Proposition B.1 holds. Then 8α−1r|f ′
τ |s(z)| >

∥f̃ ′∥−1
∞ . So, using Koebe’s Distortion Theorem, and assuming that θ is small enough, we

get from the nearly upper t–conformality of m̃ respective to Γ that

(B.2)

m̃
(
f̃−s
τ |s,z([τs+1]×B2(fτ |s(z), Rτ |s+1))

)
≤ m̃

(
f̃−s
τ |s,z(p

−1
2 (B2(fτ |s(z), Rτ |s+1)))

)
≤ Kt|f ′

τ |s(z)|
−tm̃p−1

2

(
B2(fτ |s(z), Rτ |s+1))

)
≤ Kt|f ′

τ |s(z)|
−t

≤ (8Kα−1∥f̃ ′∥∞)trt.

Now suppose that

8α−1r|f ′
τ |s(z)| ≤ ∥f̃ ′∥−1

∞ .

This implies that the second alternative of (b) in Proposition B.1 holds. Let c ∈ Crit(fτs+1)
come from item (b) of this proposition. In particular,

fτs+1(c) ∈ J(G).

Since z ∈ Ji(G) (and θ∥f̃ ′∥−1
∞ < ρ, where ρ was defined in [49]), it follows from the formula

(16) in [49] and from Proposition B.1 that c ∈ Si(f). Since 8α−1r|f ′
τ |s(z)| ≤ ∥f̃ ′∥−1

∞ , it

follows from Proposition B.1(b) and (B.1) that

|fτ |s(z)− c| ≤ θ||f̃ ′||−1 < ∆.

Because of the definition of z and τ , we have that fτ |s(z) ∈ J(G). Since also fτ |s ∈ G, we
thus obtain that fτ |s(z) ∈ Γ. In conclusion, c ∈ Γ. Hence, making use of Proposition B.1(b),
(c), as well as Koebe’s Distortion Theorem, nearly upper t–conformality of m̃, and our t-
upper estimability assumption, and assuming θ is small enough, we get with some universal
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constant C1 that

m̃
(
f̃−s
τ |s,z([τs+1]×B2(fτ |s(z), Rτ |s+1))

)
≤ Kt|f ′

τ |s(z)|
−tm̃

(
[τs+1]×B2(fτ |s(z), Rτ |s+1)

)
≤ Kt|f ′

τ |s(z)|
−tm̃|Σ(c)×Ĉ ◦ p−1

2

(
B2(fτ |s(z), Rτ |s+1)

)
≤ Kt|f ′

τ |s(z)|
−tm̃|Σ(c)×Ĉ ◦ p−1

2

(
B2(c, Rτ |s+1 + 8θα−1r|f ′

τ |s(z)|)
)

≤ Kt|f ′
τ |s(z)|

−tm̃|Σ(c)×Ĉ ◦ p−1
2

(
B2(c, 4(1 + 2θα−1)r|f ′

τ |s(z)|)
)

≤ Kt|f ′
τ |s(z)|

−tC1

(
4(1 + 2θα−1)r|f ′

τ |s(z)|
)t

= C1(4K(1 + 2θα−1))trt.

Combining this with (B.2) and applying Proposition 13.9, we get that

(B.3) m(B2(z, r)) ≤ #4,4C1max{8Kα−1∥f̃ ′∥∞, 4K(1 + 2θα−1)}trt.
We are done. □

Lemma B.3 (Lemma 7.10 in [49]). There are two functions (R, S) 7→ R∗ and L 7→ L̂ with
the following property.

• Suppose that Γ is a closed subset of J(G) such that

g(Γ) ∩ J(G) ⊂ Γ

for each g ∈ G, and that m̃ is a Borel probability nearly upper t–conformal measure
on J(f̃) respective to Γ with nearly upper conformality radius S.

• Fix i ∈ {0, 1, . . . , p} and suppose that the measure m|Ji(G) is uniformly upper t–
estimable at all points z ∈ Ji(G)∩ Γ with the corresponding estimability constant L
and estimability radius R.

• Then the measure m̃|Σ(c)×Ĉ ◦ p−1
2

∣∣
Ji(G)

is t–upper estimable, with upper estimability

constant L̂ and radius R∗ at every point c ∈ Cri+1(f) such that⋃
|ω|=l

fω(c+) ∩ J(G) ⊂ Γ.

Proof. Fix c ∈ Cri+1(f) such that
⋃

|ω|=l fω(c+) ⊂ Γ and also j ∈ {0, 1, . . . , u} such that

f ′
j(c) = 0. Consider an arbitrary τ ∈ Σu such that τ1 = j and (τ, c) ∈ J(f̃). In view of
Lemma 4.8 in [49], we get that

fτ |l+1
(c) ∈ Ji(G) ∩ Γ.

Let R > 0 (sufficiently small) be the radius resulting from uniform t–upper estimability at
all points of Ji(G)∩Γ. Let Dτ |l+1

(c) be the connected component of f−1
τ |l+1

(B2(fτ |l+1
(c), R))

containing c. Set

ντ |l+1
= m̃|[τ |l+1]×Ĉ ◦ p−1

2

∣∣
Dτ |l+1(c)

∩Ji(G)∩f−1
τ |l+1

(J(G))
.
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Applying nearly upper t–conformality of m̃ for every Borel set A ⊂ Dτ |l+1
(c) \ {c} such

that fτ |l+1
|A is injective we get that

m(fτ |l+1
(A)) = m̃(Σu × fτ |l+1

(A))) = m̃(f̃ l+1([τ |l+1]× A)) ≥
∫
A

|f ′
τ |l+1

(x)|tdντ |l+1
(x).

It therefore follows from Lemma 2.10 and item (c) of Definition 7.8 in [49] that the mea-
sure ντ |l+1

is upper t-estimable at c with upper estimability constant L0 and radius R0

independent of m̃ (but possibly R0 depends on (R, S) and L0 depends on L). Let

F =
{
τ |l+1 : (τ, c) ∈ J(f̃) and f ′

τ1
(c) = 0

}
.

Let
Dc :=

⋂
ω∈F

Dω(c) ∩ Ji(G) ∩ f−1
τ |l+1

(J(G)).

Since #F ≤ ul+1 and since

m̃|Σ(c)×Ĉ ◦ p−1
2 |Dc =

∑
ω∈F

νω|Dc ,

we conclude that the measure m̃|Σ(c)×Ĉ ◦ p−1
2

∣∣
Ji(G)

is t–upper estimable at the point c with

upper estimability constant L̂ and radius R∗ independent of m̃. We are done. □

Appendix C. Definitions of Classes of Rational Semigroups Used
and Relations Between Them

Definition C.1 (Definition C.1). A rational semigroups is called expanding (along
fibers) if and only if there exists an integer n ≥ 1 such that∣∣(f̃n)′(ξ)∣∣ ≥ 2

for all ξ ∈ J(f̃).
Equivalently, there are two constants C > 0 and λ > 1 such that∣∣(f̃n)′(ξ)∣∣ ≥ cλn

for all ξ ∈ J(f̃) and all integers n ≥ 0.

Definition C.2 (Definition ). A rational semigroup G is called hyperbolic if and only if

PCV(G) ⊂ F (G).

Definition C.3 (Definition 3.1). A rational semigroup G is called semi–hyperbolic if
and only if there exist an N ∈ N and a δ > 0 such that for each x ∈ J(G) and each g ∈ G,

deg
(
g : V −→ Bs(x, δ)

)
≤ N

for each connected component V of g−1(Bs(x, δ)).

From now on all classes of rational semigroups considered in this appendix, including the
two above, are assumed to satisfy the following condition.

Fundamental Assumption: If G is a rational semigroup, then the following three con-
ditions are assumed to hold.
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• There exists an element g of G such that deg(g) ≥ 2.

• Each element of Aut(Ĉ) ∩G is loxodromic.

• F (G) ̸= ∅.

Definition C.4 (Definition 3.2). A rational semigroup G is called *semi–hyperbolic if
and only if it is semi–hyperbolic and, we repeat, it satisfies the Fundamental Assumption.

Definition C.5 (Definition 5.1). We say that a finitely generated rational semigroup G
generated by a u–tuple map f := (f1, . . . , fu) ∈ Ratu and satisfying the Fundamental As-
sumption is totally non–recurrent (TNR) if and only if

(a) For each z ∈ J(G) there exists a neighborhood U of z in Ĉ (in fact in C) such

that for any sequence {gn}∞n=1 in G, any domain V in Ĉ and any point ζ ∈ U , the
sequence {gn}∞n=1 does not converge to ζ locally uniformly on V

and

(b)

Crit∗(f) ∩ PCV(G) = ∅.

Observation C.6 (Observation 5.3). Every TNR rational semigroup is *semi–hyperbolic.

Definition C.7 (Definition 5.6). A rational semigroup G is called C–F balanced if

D(G) := dist
(
J(G),PCV(G) ∩ F (G)

)
> 0.

Definition C.8 (Definition 5.12). A finitely generated rational semigroup G generated by
a u–tuple map f := (f1, . . . , fu) ∈ Ratu is said to be of finite type if and only if the set

Crit∗(f̃), i.e. the set of all critical points of f̃ lying in the Julia set J(f̃), is finite.

Definition C.9 (Definition 5.15). Any C–F balanced TNR rational semigroup of finite type
is called finely non–recurrent, abbreviated as FNR. If in addition this group satisfies the
Nice Open Set Condition, then it is referred to as NOSC-FNR.

Observation C.10 (Lemma 13.11). Any TNR rational semigroup that satisfies the Nice
Open Set Condition is of finite type, whence it is a NOSC-FNR semigroup.

We now summarize the inclusions holding between various classes of rational semigroups.

Fact C.11.

semi− hyperbolic ⊃ ∗semi− hyperbolic ⊃ TNR ⊃ FNR ⊃ NOSC− FNR

and

FNR ⊃ expanding = hyperbolic ⊃ hyperbolic satisfying the Open Set Condition

⊃ hyperbolic satisfying the Nice Open Set Condition
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Appendix D. Open Problems

In this short section we formulate several problems which are somehow related to the
content of our manuscript.

In the context of single rational functions the ones satisfying the Exponential Shrinking
Property (ESP) can be also characterized (see [28]) as Topological Collet–Eckmann (TCE)
rational maps. The concept of Topological Collet–Eckmann maps easily extends to the
theory of rational semigroups, especially when expressed in terms of the skew product map
f̃ : J(f̃) −→ J(f̃). Our first problem is the following.

Problem D.1. Under which hypotheses Topological Collet–Eckmann rational semigroups
coincide with those satisfying the Exponential Shrinking Property?

Our second problem concerns this class of rational semigroups.

Problem D.2. Which results of our manuscript would extend to the class of ESP/TCE
rational semigroups? Perhaps with some additional mild hypotheses, definitely milder than
ours?

One could be guided by our current manuscript, paper [28], and some other papers by
Przytycki and Rivera–Letelier, but one would actually have to start the theory of the class
of ESP/TCE from scratch. This would be a kind of titanic work but we conjecture that
most of our results, perhaps some of them in a weaker or largely modified form, would go
through.

On a different note:

Problem D.3. Do there exist non–trivial, i.e. satisfying the standard hypotheses, rational
semigroups for which some fiber Julia sets have the same Hausdorff dimension as the global
Julia set?

It is an immediate consequence of ergodicity that for any Borel probability shift–invariant
ergodic measure µ on the symbolic space Σu, µ–almost all fiber Julia sets have the same
Hausdorff dimension. But we ask the following.

Problem D.4. Do there exist non–trivial, i.e. satisfying the standard hypotheses, rational
semigroups for which all the fiber Julia sets have the same Hausdorff dimension?

Having all the results, main and technical, of Section 14, Hausdorff Dimension of Invari-
ant Measures µt and Multifractal Analysis of Lyapunov Exponents, we are very confident
that the following is true.

Conjecture D.5. In the context of Section 14 one can perform the multifractal analysis
of the level sets of the function

J(G) ∋ x 7−→ dµt◦p−1
2
(x) ∈ [0, 2]

analogously as done in [26]; see also the relevant references therein.

Our last problem concerns Diophantine properties of the measures µt ◦ p−1
2 , t ∈ ∆∗

G.
More precisely, we feel confident to state the following.
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Conjecture D.6. All the measures µt ◦ p−1
2 , t ∈ ∆∗

G, are quasi–decaying, in the sense of
[3] and [4] for all NOSC-FNR rational semigroups; consequently, these are extremal in the
sense of Diophantine analysis.
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[25] S. Munday, M. Roy, M. Urbański, Non–Invertible Dynamical Systems, Volume 1: Ergodic Theory -
Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps,
Series “De Gruyter Expositions in Mathematics”, De Gruyter (2022).



162 JASON ATNIP, HIROKI SUMI, AND MARIUSZ URBAŃSKI
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[47] H. Sumi and M. Urbański, The equilibrium states for semigroups of rational maps, Monatsh. Math.,
156 (2009), no. 4, 371–390.
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Ñ , 111
µ̃t, 72
µ̃t,s, 71

f̃+ : J◦,+
U −→ J◦

U , 113
m̃t, 72
m̃t,s, 70
αt(q), 106
≺, 31
DU , 54

164



INDEX 165

D∗
U , 55

D∞
U , 55

Dn
U , 55

D◦
U , 77

Dn, 54
Dn(s), 54
D∗
n(S), 67

D∗
n(s), 54

Lh, 136
Lt, 140
SU , 54
χ(ω, z), 107
χ(ξ), 57
χµt , 81

N̂(ξ), 113

D̂∞
U , 88

µ̂t, 74
τ̂ , 15
N (0, σ), 87
µt, 42
µt,q, 106
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ω ∧ τ , 15
ωba, 15
σ : Σu −→ Σu, 14
||·, ·||ϑ, 14
Γ|n, 15
τ̂ , 15
Σu, 13
Σ∗
u, 15

Σn
u, 15

τ |n, 15
τ∗, 15
|τ | , 15

topological pressure, 28
P (t), 28
Pξ(t), 27
SPt(ξ, s), 30
PΞ
V (t), 135

P(t, s), 70
PΞ
V (t), 66

topologically exact, 16
totally non–recurrent (TNR), 44

upper class, 121

Vitali relation, 33

weakly metrically exact, 32

Young tower, 88
D̂∞

U , 88
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