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ABSTRACT. We study Smale skew product endomorphisms (introduced in [30]) now over
countable graph directed Markov systems, and we prove the exact dimensionality of con-
ditional measures in fibers, and then the global exact dimensionality of the equilibrium
measure itself. Our results apply to large classes of systems and have many applications.
They apply for instance to natural extensions of graph-directed Markov systems. Another
application is to skew products over parabolic systems. We give also applications in ergodic
number theory, for example to the continued fraction expansion, and the backward frac-
tions expansion. In the end we obtain a general formula for the Hausdorff (and pointwise)
dimension of equilibrium measures with respect to the induced maps of natural extensions
Ts of B-maps T, for arbitrary g > 1.
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1. INTRODUCTION

In this paper we extend our study from [30] and now define and investigate Smale skew
product endomorphisms over graph—directed Markov systems with countable alphabets. In
this case the limit set of the system may be non-compact and, due to the fact that the
alphabet is countable, the situation is different than in the finite case.

First, in Section 2 we recall several notions and results about Smale skew product endo-
morphisms from [30], necessary in the current paper.

Then, in Section 3 we extend the notion of Smale endomorphism to graph-directed
Markov systems and prove the exact dimensionality of the conditional measures in fibers
for equilibrium states of summable Holder continuous potentials. Afterwards we show that
this implies the global exact dimensionality of the equilibrium measure itself on the skew
product. These results are contained in Theorem 3.5 and its Corollaries.

In Subsection 3.1 we apply our results to study skew products with conformal parabolic
graph-directed Markov systems in the base. This applies to many classes of examples, such
as in Subsection 3.2 to backward continued fractions (see for eg [2]).

Next, an important application of our results is given in Section 4 to natural extensions
of graph-directed Markov systems, and of iterated function systems. These natural exten-
sions are shown to be Smale skew products in fact. We prove the exact dimensionality
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of conditional measures in their fibers, and then the exact dimensionality of the global
equilibrium state.

Applications of our results are given next in Section 5 for generalized Liiroth systems
and their inverse limits.

Then in Section 6 we apply our results to equilibrium measures for inverse limits of -
maps for arbitrary § > 1. The natural extensions of S-maps have complicated structures
if 5 > 1 is arbitrary (see [9]). We give a general formula for the pointwise (and Hausdorff)
dimension of equilibrium measures with respect to induced maps for natural extensions
of S-maps, first for the case of golden mean § = %5 in Theorem 6.1 (and similarly for
pseudo-golden mean numbers), and then for the more difficult case of arbitrary numbers
£ > 1 in Theorem 6.4.

We recall that the notion of Smale skew products and the exact dimensionality of their
equilibrium measures was used in [30], in order to extend the Doeblin-Lenstra Conjecture,
about the approximation coefficients,

_Pn

an
of the continued fraction expansion of z € [0, 1) (see [8]). The original conjecture, solved in
[5], gave the distribution of ©,,(z) for Lebesgue-a.e x € [0, 1). We extended this in [30] for
the coefficients ©,(z) associated to numbers x from other sets in [0, 1) which are singular
with respect to Lebesgue measure, but have full equilibrium measure. In addition, using
our dimension formula, we found the frequency of visits of ©,,(z) to small intervals.

On() = ¢ |x

2. BACKGROUND ON SMALE SKEW PRODUCT ENDOMORPHISMS

In this section we collect some notions and results from [30], which will be used in the
sequel. We include them in order to make the current paper more accessible to the reader.

2.1. Notions from two-sided thermodynamic formalism. Let E be a countable set
and a matrix A : E'x E — {0,1}. A finite or countable infinite tuple w of elements of
E is called A-admissible if and only if A,, = 1 for any two consecutive elements a, b of E.
The matrix A is called finitely irreducible if there is a finite set F' of finite A-admissible
words so that for any two elements a, b of E there exists v € F' such that the word avb is
A-admissible. In the sequel, the incidence matrix A is assumed to be finitely irreducible.
Given 3 > 0, define the metric dg on EY,

ds((wn), (10)°) = exp(—Bmax{n >0: (0 <k < n) = wp = 71})

with the standard convention that e~ = 0. All metrics dg, 8 > 0, on EN are Holder
continuously equivalent and induce the product topology on EV. Let

EX = {(wn)go ! Vnen AW7LUJ77,+1 = 1}

E7 is a closed subset of EN and we endow it with the topology and metrics dg inherited
from EN. The shift map o : EN — EV is defined by o ((w,)3°) = ((wn41)5%), For every



finite word w = wowy . .. wp—_1, put |w| = n the length of w, and
w] = {7 € EX : Viogjzn-1) : 73 = ws}
is the cylinder generated by w. If ¢ : EY — R is continuous, define the pressure P () by
o1
P(¥) = lim ~log D  exp(sup(Sutili))

|w[=n

and the limit exists, as the sequence (log ZM:n exp (sup (S"w““’o is sub-additive. A

neN
function ¢ : E} — R is called summable if and only if

Zexp(sup(¢|[e])) < 00

eeE
A shift-invariant Borel probability measure 1 on E} is called a Gibbs state of 1 if there
are constants C > 1 and P € R such that

- p(lw))

2.1 c < <C
. = e (S.lr) P
for all n > 1, all admissible words w of length n and all 7 € [w]. It follows from (2.1) that
if ¢ admits a Gibbs state, then P = P(v).

Definition 2.1. A function g : E}Y — C is called Holder continuous if it is Holder
continuous with respect to one, equivalently all, metrics dg. Then there exists B > 0 s.t g
is Lipschitz continuous with respect to dg. The corresponding Lipschitz constant is Ls(g).

A measure realizing supremum in Variational Principle is called an equilibrium state for 1.
See also [41], [42] for thermodynamic formalism of equilibrium states on 1-sided countable
Markov shifts E}.

We now recall from [30] results from the thermodynamic formalism of 2-sided shifts
(E4,0) on countable alphabets. Again E is a countable set and A : E x F — {0,1} a
finitely irreducible matrix. For 8 > 0 the metric dg on E” is

dg((wn)i"oo, (Tn)o_ooo) = exp(—ﬁ max{n > 0: Viezlk| <n = w, = Tk})
with €7 = 0. All metrics dg, 8 > 0, on E” induce the product topology on EZ. We set

Ey= {(wn)iooo i Vnez Awpwnss = 1}

Holder continuity is defined similarly as before, for potentials g : £4 — C. For every
w e E4and all —oo < m <n < oo, define w|?, = wpwmii - - - wy. Let E% be the set of all
A-admissible finite words. For 7 € E*, 7 = 7,,,Tyna1 - - . Ta, we let the cylinder from m to n,

[Tt ={w e Eq:w|h =7}

n
m:*

The family of cylinders from m to n is denoted by C7. If m = 0, write [7] for [7]

Let ¢ : E4 — R be a continuous function. The topological pressure P(1)) is:

(2.2) P(¢) := lim llog Z exp(sup(Snl/zhw])),

n—oo N
weep!
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and the limit exists by the same subadditivity argument. A shift-invariant Borel probability
measure (1 on F 4 is called a Gibbs state of 1) if there are constants C' > 1, P € R such that

o R
(23) = (s P =€

for all n > 1,w € E4. From (2.3), if ¢» admits a Gibbs state, then P = P(1).
The function ¥ : F4 — R is called summable if

Z exp(sup(w\[e])) < 0

eclE

In [30] we proved the following results:
Lemma 2.2. [30] A Hélder continuous ¢ : E4 — R is summable if and only if P(v) < oo.

Theorem 2.3. [30] For every Hélder continuous summable potential b : E4 — R there
exists a unique Gibbs state i, on Ea, and the measure ji, is ergodic.

Theorem 2.4 (Variational Principle for Two-Sided Shifts, [30]). Suppose that ¢ : E4 — R
1s a Holder continuous summable potential. Then

sup {h“(a) + /Ewd,u cpoot =y and /wdp > —oo} =P) =h,,(0) + /E Ydpuy,

A

and fiy is the only measure at which this supremum is attained.

Equilibrium states for ¢ are defined as before for E}.

Consider now the partition:
P ={w[f?]:we Es} ={lw]:we EL}

P_ is a measurable partition of F4 and two o, € E4 are in the same set of P_ if and
only if a|¢° = B|°. If p is a Borel probability measure on Ey, let

{ﬁTZ’TGEA}

be a canonical system of conditional measures induced by partition P_ and measure u
(see Rokhlin [38]). Each 7™ is a Borel probability measure on [7|3°] and we also write 1%,
w € E}, for the conditional measure on [w]. The canonical projection is:

70 Eqa — EY, mo(7) = 7|0°, 7 € Ea,

The system {i* : w € E{} of conditional measures is determined by the property that,

/gdu=/ /gdﬁ“’d(uwal)(w
Ea Ef Jw]

for every g € L'(u) ([38]). The canonical system of conditional measures of p is uniquely
defined up to a set of u o 7, '-measure zero.
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Theorem 2.5. [30] Suppose that ¢ : E4 — R is a Holder continuous summable potential.
Let 1 be a Borel probability shift-invariant measure on E4. Then =y, the unique Gibbs
state for 1 if and only if there exists D > 1 such that for alln > 1,

L 7 (re)
(24) P i)~ Pom) =

{07”‘,&?71'0_1-&.6 w € Ff, i¥-a.e Tw € Fa(—n,00) with A, ., =1, and p € o7 ([Tw|®,]) =
TW|5 ]

2.2. Skew product Smale spaces of countable type.

Definition 2.6. [30] Let (Y, d) be a complete bounded metric space. For every w € E let
Y, CY be an arbitrary set and let T,, : Y,, — Y5, be a continuous injective map. Define

Vo= (J{w} xY,CEfxY
wGEX
Define the map T :Y — Y by T(w,y) = (o(w), Tw(y)). The pair (Y, T :Y —Y) is called

a skew product Smale endomorphism if there exists A\ > 1 such that T is fiberwise uniformly
contracting, i.e for allw € E} and all y;,y2 € Y.,

(2.5) d(T,(ya), Tu(yr)) < A" d(ya, 1)
For every 7 € E4(—n,00) the map TJ' = Tre 0 Tre 0 ... 0 Thee = Y, — Yoo s
well-defined. For every 7 € E4 define
" =TI I:TTOO OTTOO O...OTTOO :YTOO —>Y7—oo
T T‘—n |71 |72 |7’IL |7n |O

Then (77 (¥y=,)

n=0

are descending, and diam(m) < A diam(Y). As (Y, d) is
complete, (0, T (YTIS%) is a singleton denoted by 75(7). Hence we defined the map
o Fy —Y,
and define also # : E4 — Ef x Y by
(2.6) (1) = (716°, 7a(7)),
and the truncation to the elements of non-negative indices by
mo: Eqa — EY, mo(7) =7|°

In the notation for my we drop the hat symbol, as this projection is independent of the skew
product on Y. For all w € E} define the 7p-projection of the cylinder [w] C Ejy,

J, = m([w]) €Y,
and call these sets the stable Smale fibers of the system T'. The global invariant set is:
Ji=#(Es) = | J {w} x J,CEf xY,
wGEX

called the Smale space (or the fibered limit set) induced by the Smale pre-system 7.
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For each 7 € E4 we have my(7) € 77|g°; so J, C Y, for every w € E}. Since all maps
T, : Y, — Y, are Lipschitz continuous with Lipschitz constant A\71, they extend uniquely
to Lipschitz continuous maps from Y, to 70@). In [30] we have proved the following.

Proposition 2.7. [30] For everyw € EY we have that T,,(J,,) C Jo(w)s U6€E7A6w0:1 Tow(Jow) =
Jo,andTomr =moo.

Then T'(J) C J, so consider the system
T:J—J T(wy) = (0(w)7Tw(y))7

which we call the skew product Smale endomorphism generated by T : Y — Y.

If Y is the closure of a bounded open set in R?, then at any point (w,y) € J, there is a
local stable manifold {w} x D(y), where D(y) is a small ball B(y,r) C Y.

Definition 2.8. A measure pn € My(J) is called an equilibrium state of the continuous
potential ¢ Y — R, if [ dp > —o0 and h,(T)+ [;¢dp = Pr(v).

Definition 2.9. The potential v : J — R is called summable if
ZGXP(SUP(@MMT)) <0

ecE

Observation 2.10. ¢ : J — R is summable if and only if Y o : B4 — R is summable.

Definition 2.11. We call a continuous skew product Smale endomorphism T : VY > Y
Holder, of m: Eq4 — J is Holder continuous.

2.3. Conformal skew product Smale endomorphisms. In this subsection we keep
the setting of skew product Smale endomorphisms. As in [30], we assume more about the
spaces Y, w € E:{, and the fiber maps T, : Y, — Y,(,), namely:

(a) Y, is a closed bounded subset of R¢, with some d > 1 such that Int(Y,,) = Y.

(b) Each map T,, : Y, = Yy, extends to a C* conformal embedding from Y to Y
where Y* is a bounded connected open subset of R? containing Y,,. The same
symbol T, denotes this extension and we assume that the maps 7., : Y.J — Y,
satisfy:

(¢) Formula (2.5) holds for all y;,ys € Y¥, perhaps with some smaller constant A > 1.

(d) (Bounded Distortion Property 1) There exist constants a > 0 and H > 0 such that

for all y,z € Y7 we have that:
| log [T, (y)| —log [T (2)|| < H]ly — 2[|*

(e) The function E4 > 7 — log |T/(72(w))| € R is Hélder continuous.

(f) (Open Set Condition) For every w € Ef and for all a,b € F with Ay, = Ap, = 1
and a # b, we have Ty, (Int(Ya,)) N Thw(Int(Vs,)) = 0.

(g) (Strong Open Set Condition) There exists a measurable function 6 : Ef — (0, 00)
such that for every w € E}, J, N (Y, \ B(YS,d(w)) # 0.
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Any skew product Smale endomorphism satisfying conditions (a)—(g) will be called in the
sequel a conformal skew product Smale endomorphism.

From (c), (d), and (e), we obtain two more Bounded Distortion Properties (BDP):
(BDP 2) There is H > 0, so that for all 7 € Ey, y,z € YT*|oo ,n >0,

‘log|(TT") !—log|(T" ‘ < Hlly — =[|*
(BDP 3) For all 7 € E4, n >0, andy,zGY‘w,

[(Tr)'(2)]
2.4. General skew products over countable-to—1 endomorphisms. We now recall
some notions and results on general skew products over countable-to-1 endomorphisms
from [30], that will be used in the sequel. For dynamics and thermodynamic formalism for
various types of endomorphisms, one can see [39], [1], [6], [22], [26], [23], [24], [29], [33],
etc. In [22] it was proved a result about the exact dimensionality of measures on stable
manifolds for hyperbolic endomorphisms. In [30] we proved a result about skew products

whose base transformations are modeled by 1-sided shifts on a countable alphabet. Assume
we have a skew product:

F.:XxY—XXY,

where X and Y are complete bounded metric spaces, Y C R? for some d > 1, and

F(r,y) = (f(x),9(z,y)),

where the map Y 3 y — g(x,y) is injective and continuous for every z € X. Denote the
map Y 3y — g(z,y) also by g.(y). Assume that

f:X—X

is at most countable-to—1, with dynamics modeled by a 1-sided Markov shift on a countable
alphabet E with matrix A finitely irreducible, i.e there is a surjective Holder continuous

p:Ef — X
called coding, so that po o = f o p. Assume conditions (a)—(g) from 2.3 are satisfied for,
T,:Y, — Yo(w); T, = Gp(w)»

for all w € E}. Then as in [30] we call F': X XY — X X Y a generalized conformal skew
product Smale endomorphism.

Given the skew product F' as before, we form a skew product endomorphism by defining
for every w € E%, the fiber map F, : Y = Y,

F,(y) = g(p(w), )

The system (Y F ) is called the symbohc lift of F. If Y = E} xY, we obtain a conformal
skew product Smale endomorphism F:Y Y given by

(2.7) Fw,y) = (o(w), Fu(y))
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As in subsection 2.2, we study the fibers J,,, w € Ef and the sets J,, * € X. From
definition, J,, = 7a(w]) is the set of points of type

~

ﬂ E 1w © ﬁLZLlw o...oF. . ..)

n>1
By n-prehistory of x with respect to (f, X) we understand any finite set of points in X
(IE, T_1,T_2y... 7:[;711) € XnJrla

where f(zx_1) =z, f(x_9) = x_1,..., f(x_,) = v_,41. Call a prehistory of x with respect
to (f, X), any infinite sequence of consecutive preimages in X, i.e. & = (z,2_1,2_9,...),
where f(x_;) =x_;41,1> —1.

The space of prehistories is denoted by X and is called the natural extension (or inverse
limit) of (f, X). Tt projects onto X by 7(#) = x, & € X. There is a bijection f : X — X,

.]E(j:) = (f(x),a:,:c,l, o )

The terms inverse limit and natural extension are both used in the sequel, without having
necessarily an invariant measure on X. On X we take the canonical metric, which induces
the topology equivalent to the one inherited from the product topology on X~. Then f is a
homeomorphism. For more on dynamics of endomorphisms and inverse limits, one can see
for eg, [9], [39], [26], [11], [22], [29], [24], [25], [23], [27]. In above notation, f(p(T_1w)) =
p(w) = z, and for all the prehistories of z, & = (z,2_1,x_2,...) € X, consider the set J, of
points of type

ﬂ 9z_1909z_5°...90x_, (Y>

n>1

If ) = (09,1, - . .) is another sequence in £} with p(7)) = x, then for any n_, withn_,7) € EF,
we have p(n_11) = 2’_; where 2’ | is a 1-preimage (i.e preimage of order 1) of x. Thus,

wEEj,p(w):a:
We denote the fibered limit sets for 7" and F' by:
(2.9) J= J{wxJcEfxY and J(X):= | J{z} x , C X xY

weEY z€X
So F'(J) = J and F(J(X)) = J(X). The Hélder continuous projection is:

ps o — J(X), ps(w,y) = (p(w),y),

and we obtain F o p; :pJoF. In the sequel, g : B4 — Y and #:Ey — Ef xY
are the maps defined in subsection 2.2 and,

(1) = (7[¢°, 72(7))

Now, we want to know if enough points € X have unique coding sequences in E7}.
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Definition 2.12. [30] Let F: X x Y — X X Y be a generalized conformal skew product
Smale endomorphism. Let ju be a Borel probability measure X. We then say that the coding
p:Ef — X
is p—ingjective, if there exists a p-measurable set G C X with (G) = 1 such that for every

point © € G, the set p~*(z) is a singleton in EJ.
Denote such a set G by G,, and for x € G, the only element of p~*(z) by w(x).

In [30] we proved the following.

Proposition 2.13. If the coding p : E§ — X is u—injective, then for every x € G, we
have that J, = Jy(z)-
In the sequel we work only with p-injective codings, and the measure p will be clear from

the context. Also given a metric space X with a coding p : Ef — X, and a potential
¢: X — R, we say that ¢ is Hoélder continuous if and only if ¢ o p is Hélder continuous.

Now consider a potential ¢ : J(X) — R such that the potential
¢:=c¢opsjor:Ey—R

is Holder continuous and summable. For example, <$ is Holder continuous if ¢ : J(X) — R
is itself Holder continuous. This case will be quite frequent in examples below. Define now
(2.10) fo = pigo (pyom)~",

and call it the equilibrium measure of ¢ on J(X) with respect to F.

Now, let us consider the partition & of J(X) into the fiber sets {z} x J,, € X, and
the conditional measures ji§ associated to g with respect to the measurable partition &’

(see [38]). Recall that for each w € E}, we have 7y([w]) = J,.

Definition 2.14. We say in general that a measure p is exact dimensional on a space X,
if its pointwise dimension at x, defined by the formula

4, (z) = lim log u(B(z,7))

r—0 log r ’

exists for p-a.e x € X, and d,(-) is constant p-almost everywhere.

In see [36], [4], [45] were proved several results about exact dimensionality of invari-
ant measures on manifolds. Also in [22] the conditional measures on stable manifolds of
hyperbolic endomorphisms were proved to be geometric and exact dimensional.

If 41 is a probability o-invariant measure on E4, then by x,(¢) is its Lyapunov exponent,

Xu(0) = —/EA log TT'lgo (ﬁg(T))’du(T) = —/E+ /M log ’TLL (ﬁQ(T))‘dﬁ“(T) dm(w),

where m = p1 o 5! = 71, is the canonical projection of u onto E}.

Define the Lyapunov exponent of an F-invariant measure p on J(X) = |J {z} x J, by:
reX

YulF) = — / el )tz
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Denote by p; : X XY — X the canonical projection on the first coordinate, p;(x,y) = =.
Then we proved that the conditional measures on fibers are exact dimensional.

Theorem 2.15. [30] Let F': X xY — X XY a generalized conformal skew product Smale
endomorphism. Let ¢ : J(X) — R be a potential such that b:=cdopjoi:Es— Ris
Hélder continuous summable. Assume the coding p: E4 — X is pg o py *—injective.

Then, for pg o pit-a.e x € X, the conditional measure pg s exact dimensional on J;, and

| log pe(Bly,r)) _ by, (F)
r—=0 log 7 Xy (F)

= HD(MZ)?

for pg-a.e y € Jy; hence equivalently for pug-a.e (v,y) € J(X).

By using Theorem 2.15, we have proved in [30] the exact dimensionality of conditional
measures of equilibrium states on fibers for many types of skew products. Then we also
proved the following result about global exact dimensionality of measures on J(X).

Theorem 2.16. [30] Let F : X xY — X x Y a generalized conformal skew product
Smale endomorphism. Assume that X C R with some integer d > 1. Let 1 be a Borel
probability F—invariant measure on J(X), and (u*)zex be the Rokhlin’s canonical sytem of
conditional measures of p, with respect to the partition ({az} X Jx)xex. Assume that:

(a) There exists o > 0 such that for pop;'-a.e x € X, the conditional measure p® is
exact dimensional and HD(u") = «,
(b) The measure o py" is exact dimensional on X.

Then, the measure w is exact dimensional on J(X), and for p-a.e (z,y) € J(X),

HD (p) — tim 28 #(BU:9).7))

_ —1
lim log =a+HD(uop, ")

3. SKEW PRODUCTS WITH THE BASE MAPS BEING GRAPH-DIRECTED MARKOV
SYSTEMS

In this section we consider dynamical systems being skew products for which the base
map is given by a countable alphabet conformal graph directed Markov system (GDMS).
Our main goal is to prove that equilibrium measures for skew products over such base maps
are exact dimensional. A directed multigraph consists of:

e A finite set V of vertices,

e A countable (either finite or infinite) set E of directed edges,

e Amap A: E x E — {0,1} called an incidence matriz on (V, E),

e Two functions i,t : E — V, such that A,, = 1 implies t(a) = i(b).
Now suppose also that a collection of nonempty compact metric spaces {X,},ev is given
along with a number A € (0, 1), and that for every e € E, we have an injective contraction

Ge + Xie) — Xie)
with Lipschitz constant < A. Then the collection
S = {0 : Xitey — Xi(e)}

ecE
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is called a graph directed Markov system (or GDMS). We now describe the limit set of S.
For every w € EY, {¢yy, (Xt(wn)) }n>1 form a descending sequence of compact sets and thus
ﬂn>1 ¢w|n (Xt(wn)) 7'é (Z) Since for every n Z 1, diam (¢w|n (Xt(wn))) S A"diam (Xt(wn)) S
A" max{diam(X,) : v € V'}, the intersection

) Putn (Xien))

neN

is a singleton, and we denote its only element by 7 (w). In this way we define a map

m: B — [ X0
veV

where X := [], ., X, is the disjoint union. The map = is called the coding map, and
J=Js:=n(EY})
is called the limit set of the GDMS S. The sets
Jy =7m({w € E} :i(wr) = v})
for v € V are called the local limit sets of S.

We call the GDMS S finite if the alphabet E is finite. Moreover we call & maximal if
for all a,b € E, we have A, = 1 if and only if ¢(a) = i(b). In [21] a maximal GDMS
was called a graph directed system (abbr. GDS). Finally, we call a maximal GDMS S an
iterated function system (or IFS) if V', the set of vertices of S, is a singleton. Equivalently,
a GDMS is an IFS if and only if the set of vertices of S is a singleton and all entries of
the incidence matrix A are 1. For finite IFS with overlaps and exact dimensionality of
measures see [10]. For thermodynamic formalism for (countable) IFS with overlaps, and
exact dimensionality of measures, see [31], [30], [32], [34]. Our setting below is different
however, in the sense that it uses a different type of randomization.

Definition 3.1. We call the GDMS S and its incidence matriz A finitely (symbolically)
irreducible if there exists a finite set A C E% such that for all a,b € E there exists a word
w € A such that the concatenation awb is in E%. S and A are called finitely primitive if
the set A may be chosen to consist of words all having the same length. Note that all IFSs
are finitely primitive.

We call a GDMS conformal if for some d € N, the following conditions hold:

(a) For every vertex v € V, X, is a compact connected subset of R?, and X, = Int(X,).

(b) There exists a family of open connected sets W, C X,, (v € V) such that for every
e € I, the map ¢, extends to a C' conformal diffeomorphism from Wiy into Wi
with Lipschitz constant < A.

(c¢) (Bounded Distortion Property) There are two constants L > 1 and « > 0 such that
for every e € £/ and every pair of points ,y € Xy,

|9 (y)]
9% ()]
where |¢/,(z)| denotes the scaling of the derivative, which is a linear similarity map.
(d) (Open Set Condition) If a,b € E, and a # b, then ¢, (Int(X,)) N ¢p(Int(X,)) = 0.

— 1| < Lljy — ||
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(e) (Boundary Condition) There exists e € E such that
JsNInt X, # 0

If the Open Set Condition and the Boundary Condition are both satisfied, then we
say that the Strong Open Set Condition (SOSC) is satisfied.

Examples of conformal GDMS contain: GDMS obtained by gluing conformal iterated
function systems in the same Euclidean space; and GDMS obtained from Markov partitions
{ X tmen of expanding conformal maps f : X — X with M as the set of vertices, and
contractions being the inverse branches of f, and incidence matrix A given by the respective
Markov partition { X, }mens-

We define now the GDMS map

f=TfsiJs — s,
associated to the system S, by
(3.1) f(¢e(2)) ==

if € Int(Xy)) (then e is uniquely determined), and f(z) to be some given preassigned
point & of Js, if 2 ¢ U,cp ¢e (Int(Xy(e))).

A special class of conformal GDMSs is provided by one dimensional-systems. Indeed, if
X is compact interval in R, then the GDMSs, more precisely the derived maps fs : Js — Js,
associated to them, are sometimes called ezpanding Markov-Rényi maps (EMR maps); see
[37]. A sufficient condition for (BDP), i.e. (c) is the Rényi condition, i.e,

¢! ()] }
o e N { W) - len= S =

Let us now consider a general GDMS map f : Js — Js, and a skew product

F:JsxY — JsxY,
where Y C R? is a bounded open set, defined by the formula
F(z,y) = (f(2),9(z,y)),
Recall from 2.4 that the symbolic lift of Fis F': Ef x Y — Ef x Y, given by

~

Flw,y) = (0(w), g(n(w),y))

The map p : Ef — X is now equal to the map s : Ef — X. So, the map p x Id :
El xY — Js x Y is given by the formula (p x Id)(w,y) := (7s(w),y). Using the notation
of subsection 2.4, we denote by p; its restriction to the set

J=J {w}x L

u.)EE;r
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If the symbolic lift F'is a Holder conformal skew product Smale endomorphism, then we
say by extension that F'is a Holder conformal skew product endomorphism over f. Recall
also from (2.9) that the fibered limit set of F is

J(Js) = |J Az} x Ja

The first result, easy but useful for us is the following.

Lemma 3.2. Let f : Js — Js be a finitely irreducible conformal GDMS map, let Y C R?
be an open bounded set, and let

F:JSXY—>J3XY

be a Holder conformal skew product endomorphism over f. If v is a Borel probability shift—
invariant ergodic measure on EY with full topological support, then the coding p = 7s :
E} — Js is v o g —injective.

Proof. Since ¢.(IntXy()) C IntXy(), we have that o~ (75" (IntX)) C 75" (IntX), where
mtX := | J Int Xy

eck

Since the Borel probability measure v is shift-invariant and ergodic, it thus follows that
v(mg'(IntX)) € {0,1}. But since supp(v) = E}, we thus conclude from the Strong Open

Set Condition (e) that v(r5'(IntX)) > 0. Hence, v(mg'(IntX)) = 1. From the shift-
invariance of v, we thus conclude that

v (m a"(WSI(IntX))> =1

Denote the set in parentheses by Int.,(S). Then, by the Open Set Condition (d), the map
75 |nto (s) i one-to—one and 75" (7s(Inteo(S))) = Inteo(S). Thus,

vomg' (ms(Inteo(S))) = v(Inteo(S)) = 1,

and for every point € ms(Intw(S)), the set m5'(z) is a singleton.

We can now prove the following result:

Theorem 3.3. Let f : Js — Js be a finitely irreducible conformal GDMS map, let
Y C R? be open bounded, and let a Hélder conformal skew-product endomorphism over f,

FZJSXY—>J5XY

Let ¢ : J(Js) — R be a potential such that b = popyjom: By — R is a locally Hélder
continuous summable potential on E4. Then, for jis opl-a.ex € X, the conditional
measure jig is exact dimensional on J;, and, for ug-a.e. y € Jy,

mlogué(B(y,T)) by, (F)
r—0 log r X (F)

= HD ()
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Proof. One needs to notice that supp(,uq; or 1) = E} since g is the equilibrium state of

the locally Holder continuous summable potential ¢ on E4. We showed in [30] that

poopyt = pgo(psod) topt =pgo(propsor) Tt =pso(pom) Tt =pgomytop™

! in order to conlude

This allows then to apply Lemma 3.2, with the measure v := pgom
that the coding p =75 : Ef — X is g o p; injective.
Hence Theorem 2.15 applies to give the exact dimensionality of the conditional measure

g, together with the formula for its Hausdorfl dimension.
O

Now consider the following situation. Let S, f, F', and Y be as above. Let 0 : J¢ — R
be an arbitrary potential such that § o 75 : Ef — R is a locally Holder continuous
summable potential. Let

(3.2) ¢pg:=0op:J(Js) — R.
Then we have:

Lemma 3.4. The potential ng =ggopyjom: Eyx —> R is locally Holder continuous and
summable.

Proof. Since Q/ﬁ\g = (foms)omy, it follows that ngﬁg is locally Holder continuous as a composition
of two locally Holder continuous functions. From the definition of summability, the function

¢g : E4 — R is summable, since 6 o s : Ef — R is summable. O
In this setting, as a result related to Theorem 3.3, we get

Theorem 3.5. Let § be a finitely irreducible conformal GDMS. Let f : Js — Js be the
corresponding GDMS map. Let Y C R? be an open bounded set, and let

F:JsxY —JsxY

be a Holder conformal skew product endomorphism over f. Let also 0 : J¢ — R be a
potential such that 0 o s : EY — R is a locally Holder continuous summable. Then,

(a) For pgorg © ngfa.e. r € Js, the conditional measure “29 1s exact dimensional on

Jz, and

10845, (B, 7)) _ by, (F)
r—0 logr X, (F)

for pg, —a.e. y € Jp; hence, equivalently for pgy,—a.e (z,y) € J(Js).
b) The equilibrium state pg, of ¢g = J(Js) —> R for F, is exact dimensional on J(Js
b0
and
h,, (F) h,, (F) h
HD :u — /@(ﬁg_ + HD ,erw o) 71'71 — %0 +
( %) Heq (F) ( ° g ) XAL¢9 (F> Xﬂems

Proof. Tt follows from (2.10) that

/"[’9071'5

-1 AN—1 1 ~y—1
oy O D1 = Hegopyor © (PgOT) " OP] = [gopiopyor © (P10 PO T)
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Since mg o0 Ty = p; o py o 7, then,

-1

-1 -1 Ay—1
Hoorg © Tg = Hborgomy © g ©Tg = Hbopiopjor © (pl opyo 7T)

Therefore,

2250 opl_l = Hforg © 7T§1-
Hence, (a) follows now directly from Theorem 3.3, while (b) follows from (a) and Theo-
rem 2.16 since exact dimensionality of the measure fiporg © 7T§1 has been proved in [31].
Indeed in [31] we proved, as a particular case of the random case, the exact dimensionality
for all projections of ergodic invariant measures on limit sets of countable conformal IFSs

with arbitrary overlaps; and this result extends easily to GDMS.
O

An immediate consequence of Theorem 3.3 is this:

Corollary 3.6. Let f : Js — Js be a finitely irreducible conformal GDMS map, let Y C R¢
be an open bounded set, and let

F:J3XY—>J3XY

be a Hélder conformal skew product endomorphism over f. Let ¢ : J(Js) — R be a locally
Hoélder continuous potential such that ¢ := ¢popyom : B4 — R is summable. Then, for
iy o py ' —a.e x € X, the conditional measure g is exact dimensional on J,, and

o Jog g (By,r)) by, (F)

= = HD(u?
50 log r Xy (F7) (15).

for pf-a.e y € Jp; hence, equivalently, for py-a.e (x,y) € J(Js).

A Corollary of Theorem 3.5, which will be applied to EMR maps (in the sense of [37]),
is then:

Corollary 3.7. Let § be a finitely irreducible conformal GDMS. Let f : Js — Js be the
corresponding GDMS map. Let Y C R? be an open bounded set, and let

F:JsxY —JsgxY
be a Holder conformal skew product endomorphism over f. Let 6 : J¢ — R be a locally
Holder continuous potential so that 0 o ws : Ef — R is a summable potential. Then,

(a) For [igong © T5' —a.e. x € Js, the conditional measure pg ts exact dimensional on
Jz; in fact
. Log g, (By.r) _ bu, (F)
=0 log r Xpagy (F)
for i, —a.e. y € J.; hence, equivalently for piy,—a.e (v,y) € J(Js).
(b) The equilibrium state 14, of g : J(Js) —> R for F, is exact dimensional on J(Js)
and

hy,, (F)
HD (pgg) = 5 =y 1D (om0 7m5') =
%6

h/hpe (F) + h
XM4>9 (F) XNGOWS

lu907rs
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Remark 3.8. As mentioned above, it folows from the last Corollary that our results hold
i a particular setting when the derived map fs : I — I, associated to the GDMS S, s
an expanding Markov-Rényi (EMR) map in the sense of [37].

Now, consider further an arbitrary conformal GDMS
S ={¢e: Xy — Xi(o)}

Let 0 : Js — R be a potential such that 6 o 7g : EX — R is locally Holder continuous
and summable. Of particular importance are then the potentials 8, : Js — R, t,q € R,

(3.3) Ogi(de(x)) == tlog |¢c ()| + q(B(de(x)) — P(6))
playing a significant role for developing a multifractal analysis of equilibrium states (see
also [37], [15]). We have then,

B0 0 (1) = t1og |0, (ms(0(w))]| + 4(0 0 7s() — P(9)
In terms of the GDMS map fs : Js — Js associated to S, and defined by (3.1), we have
(3.4) 40(x) = —tlog|f'(x)] + g(6(x) — P(9)).
From the Bounded Distortion Property (BDP) from the definition of conformal GDMSs,

the first summand in the above formula is Holder continuous and the second one is Holder
continuous by its definition. Thus, we obtain:

eckE

Lemma 3.9. For all q,t € R the potential 6,, o ws : EX — is locally Hélder continuous.

The problem of parameters ¢,¢ € R for which 6, o 75 : E{ — R are summable is more
delicate and has been treated in detail in [13]. The importance of the geometric potentials
84+ o ms is due to the fact that these are suitable for a description of geometry of the limit
set Js. If ¢ = 0, then the parameter ¢ > 0 for which P(,,;) = 0 (if it exists) coincides with
the Hausdorff dimension HD(Js) of the limit set Js, and also these potentials play a role in
multifractal analysis of the equilibrium state jigors o m5'; for example as in [13], [21], [37].

Denote by 3(S, 0) the set of pairs (¢,¢) € R? for which the potential 6,; o 7s : Ef — R
is summable and by Y¥,(S, ) the set of those ¢ € R for which there exists a (unique) real
number 7'(q), usually refered to as a temperature, so that (¢,7'(¢q)) € 3(S,6) and

P(0qr(q) 0 7s) = 0
We now are in the setting of Lemma 3.4 and Theorem 3.5. For g € ¥((S, ) abbreviate
77Z)Q = ¢9q,T(q) = equ(q) opl : J(JS) — R
From Theorem 3.5, we get the following.

Corollary 3.10. With 0,; defined in (3.3) and with notation following it, we have the
following. If g € (S, 0), then,
(a) For pig, 1, ons © s —a.e. x € Js, the conditional measure Iy, is exact dimensional on
Jz;in fact

logt, (Bur) i, (F)

r—0 log r X, (F)

for i, —a.e. y € Jy; hence, equivalently for py,—a.e (x,y) € J(Js).



17

(b) The equilibrium state fiy, of Vg : J(Js) = R for F, is exzact dimensional on J(Js), and

(F) Dy, (F)

h
Hb OL%) N % +HD ('ueq,T(q)O”S © 7T§1) - Xu (F) Xpo
Yq (7]

Hoq,1(g)°ms

a,T(q)°7S

3.1. Skew products with conformal parabolic GDMSs in the base. Now we pass
to the second large class of examples, built on parabolic iterated function systems.

Assume again that we are given

a directed multigraph (V, E,i,t) (E countable, V finite),

an incidence matrix A : F x E — {0,1},

two functions i,t : E — V such that A,, = 1 implies t(a) = i(b).
nonempty compact metric spaces {X, }yey .

Suppose further that we have a collection of conformal maps
Ge + Xye) —> Xie), €€ L,

satisfying the following conditions (which are more general than the above in that we do
not necessarily assume that the maps are uniform contractions):
(1) (Open Set Condition) ¢,(Int(X)) N ¢(Int(X)) = 0, for all a,b € E with a # b.
(2) |¢.(x)| < 1 everywhere except for finitely many pairs (e, z.), e € E, for which z. is
the unique fixed point of ¢, and |¢,(z.)| = 1. Such pairs and indices e will be called
parabolic and the set of parabolic indices will be denoted by 2. All other indices
will be called hyperbolic. We assume A, = 1 for all e € ().
(3) Vn > 1 Vw = (wjws...w,) € E% if w, is a hyperbolic index or w,_1 # w,, then ¢,
extends conformally to an open connected W,y C R? and maps Wiw,) into Wie,)-
(4) If e € E is a parabolic index, then

m ¢e"(X) = {xe}

and the diameters of the sets ¢en (X) converge to 0.
(5) (Bounded Distortion Property) 3K > 1Vn > 1Vw € E} Va,y € Wy, if wy, is a
hyperbolic index or w,,_1 # w,, then

/
LWl _
|6 (x)] —
(6) 3k < 1Vn >1VYw € EY if w, is a hyperbolic index or w,,_1 # wy, then ||¢/ | < k.
(7) (Cone Condition) There exist a,l > 0 such that for every z € X C R? there
exists an open cone Con(z, «,l) C Int(X) with vertex z, central angle of Lebesgue
measure «, and altitude [.
(8) There exists a constant L > 1 such that for every e € E and every z,y € V,

e ()]

|92 ()|
We call such a system & = {¢. : e € E} a subparabolic conformal graph directed Markov
system.

—WSLM—ﬂw
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Definition 3.11. If Q # 0, we call the system S = {¢; : i € E} parabolic.

As declared in (2) the elements of the set £\ © are called hyperbolic. We extend this
name to all the words appearing in (5) and (6). It follows from (3) that for every hyperbolic
word w, ¢u(Wiw)) C Wyw). Note that our conditions ensure that ¢ (z) # 0 for all e € E
and all v € Xy;). It was proved (though only for IFSs but the case of GDMSs can be
treated completely similarly) in [18] (comp. [21]) that

(3.5) lim sup {diam(¢, (X))} = 0.

n—oo WGEX

This implies then:

Corollary 3.12. The map 7 : Ef — X = P
well-defined, and w is uniformly continuous.

v Xor AT} = Masg Gl (X), s

Similarly as for hyperbolic (attracting) systems the limit set J = Jg of & = {¢, }eee is,
Js :==7(EY})
and satisfies the following self-reproducing property: J = |J.cp ¢e(J).
We now want to associate to the parabolic system S a canonical hyperbolic system &*;

this will be done by using the jump transform ([43]). We will then be able to apply the
ideas from the previous section to &*. The set of edges is:

E.={i"j:n>1,i€Q, i#j€E, Ay =1}U(E\Q) C E}
We set
V.=V
and keep the functions ¢ and 7 on E, as the restrictions of ¢ and ¢ from E%. The incidence

matrix A* : E, x E, — {0,1} is defined in the natural (the only reasonable) way by
declaring that Af, =1 if and only if ab € E. Finally

S = {¢e t Xie) — Xue)l € € E*}
It follows from our assumptions (see [18] and [21]) that the following is true.

Theorem 3.13. The system S* is a hyperbolic (contracting) conformal GDMS and the
limit sets Js and Js+ differ only by a countable set. If the system S is finitely irreducible,
then so is the system S*.

The most important advantage of S* is that it is a an attracting conformal GDMS. On
the other hand, the price we pay by replacing the non—uniform contractions in & with the
uniform contractions in &* is that even if the alphabet E is finite, the alphabet F, of &*
is always infinite. Thus we will be able to apply our results on infinite Smale systems. We
have the following quantitative behavior around parabolic points.

Proposition 3.14. Let S be a conformal parabolic GDMS. Then there exists a constant
C € (0,00) and for every i € § there exists some constant 5; € (0,00) such that for all
n > 1 and for all z € X; := U;cp sy 95(X),

Byt _
C7in~ < gl (2)] < On
If d = 2 then all constants B; are integers > 1, and if d > 3 then all 5; are equal to 1.

Bi+1
B
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From Theorem 3.5 we obtain:

Corollary 3.15. Let § be an irreducible conformal parabolic GDMS. Let §* be the cor-

responding atracting conformal GDMS produced in Theorem 3.15. Furthermore, let [ :
Js« — Js« be the corresponding GDMS map. Let Y C R? be an open bounded set, and let

Fijs*XY—>J5*XY

be a Holder conformal skew product endomorphism over f. Let 6 : Js+ — R be a potential
such that 6 o ws« : EX. — R is a locally Holder continuous summable potential. Then,

(a) For pigors © ﬂg*lfa.e r € Js«, the conditional measure g, s exact dimensional on J,
and for yig, ~a.e. y € J, (hence, equivalently for pgy,—a.e (z,y) € J(Js-)) we have,

- Jog g, (B(y, 1)) _ i, (£)

70 logr N X, (F)
(b) The equilibrium state pi4, of ¢g = J(JS) —> R for F, is exact dimensional on J(J§) and
Biagy (F b, (F) h
HD (g1, ) = ror ) + HD (ptgorg. © m5.') = o (F) 4 Mooms

Xhgy (£)
From Corollary 3.10, by replacing S with §*, we get:

Corollary 3.16. With 0, defined in (3.3) and with notation following it, we have the
following. If q € Xo(S*,0), then we obtain for the potential g = Oy op1 : J(Js<) — R
the same conclusions (a), (b) as in Corollary 3.15.

Xpg, (F) Xbgor g

We investigate now an example, denoted by Z, formed by the inverse maps of the two
continuous pieces of the Manneville-Pomeau map f, : [0,1] — [0, 1] defined by:

fo(z) = 2+ 2" (mod 1),
where a > 0 is arbitrary fixed. Of course the GDMS map resulting from Z is f,.

Then as a consequence of Corollary 3.15, we obtain:

Corollary 3.17. a > 0. Let Y C R be an open bounded set, and let
F,:JrxY —JrxY

be a Holder conformal skew product endomorphism over the Manneville—Pomeau map f,.
Let 0 : J; — R be a potential such that 6 oz : NT — R is a locally Holder continuous
summable potential. Then, the conclusions of Corollary 3.15 will hold in this case.

Also for the geometric potentials 0, 7, we obtain:

Corollary 3.18. With 0,; defined in (3.3), then for ¢ € ¥Xo(Z,0), we obtain the same
conclusions (a), (b) as in Corollary 3.17 for the potential Oq 1 (q) -

Remark 3.19. In constructing the attracting conformal GDMS of Theorem 3.15 we built on
Schweiger’s jump transformation, [43]. We could also use inducing on each X,, v € V'\ Q,
considering the system generated by ¢, where i(wy) = t(whw‘) = v and i(wyg) # v for all
k=23,...,|wl—1. The “ump” construction of Theorem 5.13 seems to be somewhat
better as it usually leads to a smaller system.
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3.2. Backward continued fractions. Fach irrational x € [0, 1] has a unique expansion
in the form of backward continued fraction:

1
S B
w1 w2_<,.;31%
where wy,wo, ... are integers > 2. The corresponding map to the Gauss map from the

regular continued fractions, is the Rényi map V' : [0,1) — [0, 1) given by the formula

V(x) = {éﬁ} Ao

The graph of Rényi map is the reflection of the graph of the Gauss map in the line z = 1.

The backward continued fraction system § is given by the maps:
1

. )
1 —x
Hence the map ¢ has a neutral fixed point at 1, and is contracting everywhere else. All the
other maps ¢; are contracting on [0, 1], for j > 3. Unlike for the regular continued fractions
dx

where the invariant absolutely continuous measure for the Gauss map is the measure T

for backward continued fractions, the invariant absolutely continuous measure for V is df
(see [2]). The backward continued fraction map V' is a factor of a cross—section map for
the geodesic flow on the unit tangent bundle of the modular surface.

The system S given by (3.6) satisfies our conditions for a parabolic system, and we
can associate to it the contracting system S* (using the jump transformation). We can
then apply Corollary 3.15 with regard to a Holder conformal skew product endomorphism
F: Js xY — Js- x Y over f, to obtain the exact dimensionality of the conditional
measures of the equilibrium measure p, of any Holder continuous summable potential ¢.
We infer also the global exact dimensionality of p14 on Js« X Y.

[\

1> 2.

4. NATURAL EXTENSIONS OF GRAPH DIRECTED MARKOV SYSTEMS

Finally in this section, we want to define and explore the systems we refer to which as
natural extensions of graph directed Markov systems. More precisely, let S = {(be : Xi(e) —
Xi(e)}ee  be a conformal finitely irreducible graph directed Markov system and let

f=fs:Js—Js

be the GDMS map associated to the system S and given by formula (3.1). Fix an arbitrarily
chosen point £ € Js. We then define the skew product map

f:JSXjS—)J5X75,

(4.1) F(@e(@),9) = (2, 0e(v) = (F(e()), 6e(w)
if z € Int(Xy) (then e is uniquely determined), and

(4.2) f(z.y) = (£,9),
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if 2 ¢ U,cp®e(Int(Xye))). We call it the natural extension (or inverse limit) of f, see
also 2.4. For applications to endomorphisms see for eg [40], [28], [23], [24], [26]. In [24] it
was constructed and studied in detail a large class of skew product endomorphisms with
overlaps in fibers, which dynamically are far from both homeomorphisms and constant-to-1
endomorphisms, in regard to their fiber dimensions. From Theorem 3.3 we obtain:

Corollary 4.1. Let S be a conformal finitely irreducible graph directed Markov system and
let f = fs:Js— Js be the corresponding GDMS map. Let also

fﬁJ5X73—>J5X7S

be the natural extension of the map f, as defined above. Let ¢ : Js x Js — R be a potential
such that ¢ := ¢popyor: By — R is locally Holder continuous and summable. Then, for
iy o py ' —a.e x € Js, the conditional measure pg 1s exact dimensional on Js, and

logp5(Bly,r) _ by, (f)

0 logr N X%(f),

Jor pg-a.ey € Js; hence, equivalently, for py—a.e (z,y) € Js X Js.

As a consequence of Theorem 3.5 we obtain the following.

Corollary 4.2. Let S be a conformal finitely irreducible graph directed Markov system and
let f = fs:Js— Js be the corresponding GDMS map. Furhermore, let

f:J3X7g—)J5X7g
be the natural extension of the map f. Let 0 : Jg — R be an arbitrary potential such that
Oorms: Ef — Js is a locally Holder continuous summable potential. Then,
(a) For pigors 0 Mg —a.e. x € Js, the conditional measure g, s exact dimensional on

Je; in fact for g —a.e. y € Jy,

log g, (B(y,1) _ Ty, (f)

20 logr Xpo, ()

(b) The equilibrium state ug, of ¢g: Js x Js — R for f, s exact dimensional and,

Dy, (F) B, (D) hy
HD(M¢9> - X ¢ (f) +HD('“9°7TS Oﬂsl) - X ¢ (f) N Xu
Hoq Heg forg

Thus, in the important case of the Gauss map and the continued fraction system, we have
the exact dimensionality of the conditional measures on the fibers of the natural extension,
and also the global exact dimensionality of equilibrium measures:

Corollary 4.3. Let Q° be the set of all irrational numbers in the unit interval [0,1]. Let
G : Q¢ — Q° the Gauss map G(z) := {2}, and let the iterated function system on [0,1]

Sg:{[o,l]SQZIH ! 6[0,1]} ,
r+n neN
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consisting of all inverse branches of the Gauss map G, so that G = [s,. Let
é:JgXT]g—>JgX7g

be the natural extension of G. Let 0 : Jg — R be a potential such that 0 o mg : Ef — R is
locally Holder continuous summable. Then the conclusion of Corollary 4.2 holds.

Remark. We recall that in [30] we used these results to study the approximation
coefficients ©,,(z) from the continued fraction expansion of x, extending and developing
the Doeblin-Lenstra Conjecture (see [5], [8], [14]). If z € [0, 1) is an irrational number with
continued fraction expansion

1
aj:—l ,CLZ'Z].,Z.Z].,
ax + as+...
and if
Pn 1
qn ai + L

T
az+ T

+an

is the truncated expansion at order n, with integers p,,q, > 1, for n > 1, then
_Pn

an
The original Doeblin-Lenstra Conjecture gave the distribution of ©,,(z) associated to num-
bers x from a set A C [0, 1) of Lebesgue measure 1. We studied the distribution of 6,,(z)
for numbers x outside A, namely from sets in [0, 1) having (singular) p-equilibrium mea-

sure equal to 1. Moreover, we improved the Doeblin-Lenstra conjecture in this case, by
describing the frequency of visits of ©,(z) to arbitrarily small intervals.

5. GENERALIZED LUROTH SYSTEMS AND THEIR INVERSE LIMITS

We include this short section since it is needed for the full treatment of S-transformations,
for arbitrary § > 1, and of their natural extensions. It just collects the results of the
previous sections in the case of a special subclass of maps.

Definition 5.1. We call an iterated function system S = {¢. : I — I}ecp a Liiroth
system if the maps ¢, : I — I, e € E, are of the form x — ax +b, « # 0, and

Leb (UeeE ¢e<1)) =1
Let f = fs: Js — Js be the map associated to the system S and given by formula (3.1):

(5.1) f(pe(z)) =2
Writing
¢e(r) = aex + b, €€ FE,

with a, € (0,1), we rewrite (5.1) in the followmg more explicit form

{a r —a, be, if x € Int(¢.(1))

(5.2) 0, if ©¢&U,.cpInt(oe(1)).
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In particular, we took the given preassigned point £ involved in (3.1) to be 0. In the sequel
we will need however mainly only the definition of f on |J, .z Int(¢e(1)).

The natural extension f : Js X Js — Js X Jg of f is given by formula (4.1). In more
explicit terms, we have:

(53) f(iE y) _ (f(x)aaey—"be) = (a;lx—aglbe,aey+b€), YIS Int(gbe(l))
(0,0), 2 ¢ Ueep Int(¢e(1))
As consequences of Corollary 4.1, we have:

Corollary 5.2. Let S be a Luroth system system and let f = fs : Js — Js be the
corresponding GDMS map. Furhermore, let
f:J3X73—>J3X73
[/)\6 the natural extension of the map f. Let ¢ : Js x Js — R be a potential such that
p=¢opyjom: Ey — R islocally Holder continuous and summable. Then, for p, op; -
a.e x € Js, the conditional measure g is exact dimensional on Js, and moreover,
o ui(Bly.r)) _ by, (f)

=0 logr oy, ()

Jor pg-a.ey € Js; hence, equivalently, for po-a.e (x,y) € Js % Js.

In particular,Athe above conclusions hold if ¢ : Jgx Js — R is a locally Hélder continuous
potential with ¢ = ¢popyon : Ey — R summable. And the above conclusions hold if
0:Js — R withfomns : Ej — Js locally Holder continuous summable potential.

6. THERMODYNAMIC FORMALISM FOR INVERSE LIMITS OF S—MAPS, 5 > 1
For arbitrary 5 > 1, the f-transformation is 75 : [0,1) — [0, 1),
Ts(x) = Bz (mod 1),

and the f—expansion of x is:
00 dk
=35,
k=1

where dy, = di(z) = [ﬁTg’l(x)], k > 1, where as usually [a] denotes the integer part of a
real number a. The digits dj, k > 1 are chosen from the finite set {0,1,...,[F]}.

Not all infinite series of the form ) %, with dy, € {0,1,...,[5]} are however J-expansions
k>1
of some number. We say that a sequence of digits (dy,ds,...) is admissible if there is

x € [0,1) with S-expansion
dk

k>1
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The map T does not necessarily preserve Lebesgue measure A, however it has a unique
probability measure vz = hgd\, which is equivalent to A and Tg-invariant. Its density hg
has an explicit form (see [35], [8]).

The dynamical and metric properties of the transformation 75 have been studied by
many authors, for eg [7], [8], [9], [35]. Also several authors studied the Ts-invariant set Up
of real numbers x which have a unique [S-representation (also called univoque numbers for
p-expansion), for eg [3], [12]. In this case there is a bijection between Uz and the set Us of
uniquely defined prehistories of points from Ug.

VE+1
b

3 as

Consider now the inverse limit of the system ([0, 1),75). First, let us take 5 =
a simpler example. Define the following skew product map

Tes) = (1o, )

on a subset Z C [0,1)?, where the horizontal [0, 1) is considered as the future-axis and the
vertical [0,1) is considered as the past-axis. The inverse limit of T must encapsulate both

the forward iterates of T, and the backward trajectories of Ts. For 8 = 1*‘/5, take

Z=100,1/8) x [0,1) | [1/8.1) x [0,1/8)

Then the map 73 : Z — Z is well defined and bijective, and it is the inverse limit of T3. For

b= \/52“, the set of admissible sequences forms a subshift of finite type Fy (11), defined as
the set of sequences in £ which do not contain the forbidden word 11. In this case there

is a Holder continuous coding map = : FEy (11) — [0, 1), given by

7 ((dy, da, ..)) :Z%

n>1

We can then take skew product endomorphisms over T, 5, and obtain the following.
2

Theorem 6.1. Let F': [0,1) x Y — [0,1) X Y be a skew product endomorphism given by

F(x,y) = (1 +2\/5x (mod 1),9(90,?;)) 7

where Y is an open bounded set in R® and g(x,-) : Y — Y is a conformal map for every
x €0,1). Assume also that for any x_1,2" | € [0,1) with T, sx_1 =T\ 52", we have
2

g(x_l,Y) ﬂgwll(y) = (Da

and that the fiber maps g, satisfy conditions (a)-(g) of subsection 2.3. Then, for any
locally Hélder continuous potential ¢ : [0,1) x Y — R, its equilibrium measure i, has
ezact dimensional conditional measures g, for pg o Ty —a.e v € [0,1).

Proof. This case is simpler because the coding space is a subshift of finite type on finitely

many symbols. Moreover we see that the coding map 7 : E5 (11) — [0,1) over T\, is
2

injective outside a countable set, and the associated symbolic skew product

F:Ef(11)xY — Ef(11) x Y
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over E (11), satisfies conditions (a)—(g) in subsection 2.3. Therefore if ¢ is locally Holder
we have also the summability condition, since we work with finitely many symbols, thus
Theorem 2.15 gives the conclusion.

O
A similar case is for § a pseudo-golden mean number of order m (or multinacci number),
i.e B > 1 is the positive root of the polynomial 2™ — z™~! — .. — 1. Thus 1 has a finite
[-expansion,
1= ! +...+ !
gt tgm

In this case the inverse limit homeomorphism 75 : Z — Z is defined on the finite union
U [Tm I Tg—j—1(1)) x [o,Tgu))

Then we can construct a Smale skew product as above for 73, and prove the exact dimen-
sionality of equilibrium measures, and the formula for their dimension. So a similar result
as Theorem 6.1 is obtained for these 8’s. The partition of [0, 1) given by the intervals

1 11 1 1 1
o o) Bt ) [ ),

gives a GLS map S, which is piecewise affine and takes any such interval onto [0, 1). Then,
the natural extension S : [0,1)? — [0,1)? of S has the intervals from (6.1) on its image on
the vertical coordinate (see [8]), and is given by:

(6.2) |
( <ﬁx7 %) ) if («T,y) S _0, %) X [O, 1),
sy = | (e84 8, it (z.y) € [5.5+ %) x [0.0)

A

(e =S 95005 B )it () € S5 579,1) < 0,1),

We will now recall the general concepts of first return time and first return map.
If (X,F) is a o—algebra, f : X — X measurable, and p a Borel probability f-invariant
measure on (X, F), let A C X be a measurable set with u(A) > 0. As we work with
equilibrium measures, it is enough to take A with Int(A) # (. By Poincaré Recurrence
Theorem it p-a.e x € A is recurrent, i.e it returns infinitely often to A under iterates of f.
Define then,

n(z) :=inf{m > 1,T"(z) € A}

This number being finite fro y—a.e. x € X, is commonly called the first return time of x to
A. This permits to define the induced, or ﬁrst return, map Ty : A —> A, by the formula

(6.3) Ta(z) := T ().
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It is well known, and easy to prove, that if pa(B) = %, for all B C A, then the
probability measure 4 on A is T4—invariant.

It was proved that the induced transformation of the natural extension 7z onto a certain
subset, is isomorphic to the natural extension S of a GLS system (see for eg [8]). Recall
that natural extensions are viewed only as dynamical systems, without measures.

When f = Y3l take the partition 7 = {[O,%),[%,l)} and the associated GLS(Z)-

S() = {Tg(x), if x € [O, l)

transformation
Ti(x), ifxe(31)

ISy

So if B = Y5t let

W [0,1) % [0,%).

Then let
7%7[/1/ W — W,

be the induced transformation of 73 on W.
If (z,y) €0, %) x [0,1), then

Te) €00 % [0.5).

so for such (z,y), we get n(z,y) = 1. If (z,y) € [%7 1) %[0, %), then T3(z,y) € [0, %) X [%7 1) ¢
W, but 7%2(% y) € W,son(x,y) = 2. Hence, the induced map 73 of the natural extension
Ts on W is,

(6m, %) , if (z,y) € [0, %) X [0, %)
(6.4) Tow(w,y) =

(BB = 1), 581) = (B2 - 8.4, if (wy) € [5,1) x [0.4).
Then, from (5.3), the inverse limit of S is the map & : [0,1)*> — [0,1)? given by:

(61:, %) , if (z,y) € [O, %) x [0,1)

™=

(6.5) S(z,y) = :
(22— 8,5 +y%5) = (#2—8,52), if (e.y) € |51 x[0,1)

If ¥:[0,1)2 — W is given by
Y
U(z,y) =|x,= |,
(z,y) ( ﬁ)

then W is an isomorphism between ([0, 1)%,S) and ([0, 1) x [0, %), 7'5W> So Ts.w coincides
(mod W) with the natural extension S of GLS(Z).
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Similarly, if 5 > 1 satisfies

for some integer m > 2, then the associated natural extension S from (6.2) is isomorphic
to the induced transformation of 75 onto the rectangle [0, 1) x [0, %)

For a general number § > 1, the situation is more complicated.
First of all, not all sequences in E[/’g} are admissible, i.e not all sequences of digits (dy, ds, . . .)

determine a point = € [0, 1) that has S-expansion
dn
xr = —
This is an important obstacle, since we cannot code T3 with subshifts of finite type. For
general > 1, one needs a more complicated GLS with partition Z with countably many
subintervals I,,,n € D, and then to induce the natural extension of T on an appropriate
subset, in order to obtain the natural extension of the GLS(Z)-map. We will apply next
Corollary 5.2 for equilibrium states on the natural extension of the GLS(Z) expansion. The

construction of the inverse limit of T can be found in [8], [9], and we recall it here for the
sake of completeness. Define the following rectangles

, 1

Consider the natural extension Z obtained by placing each rectangle Z;,; on top of Z;,
for all # > 0. The index ¢ indicates at what height we are in this stack. If 1 has a finite

B-expansion of length n, then only n such rectangles Z; are stacked. Assume 1 has an
infinite S—expansion; the finite case being treated in the same ways as for § = %ﬁ
Write the f—expansions of 1, x,y, respectively as:

].:blbg, J/’Zdldg, yZOOCH_lCH_Q

with 0 repeated i times. If (z,y) € Z;, then d; < b;41. Define T3 : Z — Z, Tz(z,y) =
(Ts(x), §(x)), with

66) )= {
B)

If (ZE, y) c Zz then d1 S bi+17 SO

%—l——i—%—l—ﬁ(f}rl +%:.bl...bidlci+1ci+2..., if dy <bi+1,
i dy = by

ZO; if dl < bi—‘rl?
Zi+17 if dl = bi+1-

For (z,y) € Zy, if dy < by then Ts(x,y) € Zp; and if d; = b;,1 <i <n—1andd, <b,, then
Ti(z,y) € Zi,i <n—1and T3 (x,y) € Zo. Hence the induced map of 75 on Zy = [0,1)* is

7—5(1’,y)7 if dy <b1,

(6.7) Ts(x,y) € {

,T@Zo(x?y) -
T3 (v, y), ifdi=0b;1<i<n-—1, and d, <b,
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Partition Z; into subsets

Zh = {(:U,y) € Zy, inf {n > 1,75 (v, y) € Zy} = k}
Then,

(Ts(x), 5y + dv)), (w,y) € Z,
(6.8)  Taz(w,y) =

IS8

(Th@), %+ .. + 3=+ %+ %), (zy) € Z5k>2

(Ts(@), 4y + ) . if (2,y) € 23,

by, —

69 Tonlew) = b d
(Tg@),ﬁl—{—...%—ﬂkj —I—B—§+By—k>, if (z,y) € Zk k>2

For any n > 0, if by := 0, there exist unique integers k = k(n) > 0 and 1 < i < by so that
n=by+b+...+b+(i—1)
Define a partition Z = {I,,, n > 0} of [0,1) by

b b ,— 1 b b ]
(6.10) In::|:b0-|-_1_|__._ k ¢ b_|__1_|_____|__k+ ¢ )

3 +E+5k+1’ 03 Bk T gkt
From the definition of T3 z, and of I,,, we see that for (x,y) € I,, x [0,1), we have:

bl bk 7—1 Yy
Ts,20(2,y) = Tﬁkﬂ(x»y) = (Tﬁkﬂx? bo +- E . @ + Bk+1 - 5k+1)

If we take the transformation S of GLS(Z) and its natural extension S, then (5.3) applies.
If x € I,,, then s;(x) = ¥ and,

b by i—1
O et
Thus by (5.3), S is equal to the induced map of the natural extension of T on Zy:
(6.11) S—Ton

We can now apply (6.11) to equilibrium states of locally Holder continuous potentials, for
the induced map of the natural extension 73, in order to prove the exact dimensionality of
their conditional measures on fibers. By (6.11) and Corollary 5.2, we obtain the following
result, for the induced map of the natural extension of the g—transformation:

Theorem 6.2. Let § > 1 arbitrary and let Ts : [0,1) — [0,1) be the S-map, given by
Ts(z) = Bx(mod 1). Let ¢ : [0,1)> — R be a locally Holder continuous map with

Z exp(sup ¢|lnx[0,1)) < 00,
n>1

where I,,, n > 0, are given by (6.10). Let ps be the equilibrium state of ¢ with respect to
the induced map Tao1)2 of the natural extension Tz on [0, 1)2. Denote by S the natural
extension of the GLS(Z) map, where T is the partition of [0,1) given by (I,)n>0-
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Then for pgomy ' ~a.e x € [0,1), conditional measure % is exact dimensional on [0,1) and

e BE(By,r)  hy(S)
HD = hm =
(/1“25) r 0 IOg r Xu¢ (8)

Due to the expression of the induced map on [0, 1)? of the natural extension 73, as being
a natural extension for a GLS-map, we can say more about the Lyapunov exponent x,,,(S)
and the dimension of conditional measures:

Corollary 6.3. In the setting of Theorem 6.2 with 8 > 1 arbitrary, write the B-expansion
of 1 as 1 = .byby.... For an arbitrary integer n > 0, define the integers k = k(n) > 0 and
1<i=i(n) <bgy sothatn=>0by+...+b.+1i—1. Then,

(a) with the intervals I,,n > 0 given by (6.10), we obtain the Lyapunov exponent as,

Xuo(8) =log - ) (k(n) +1) - i (£ x [0,1))
n>0
By, (S)

log 8- 3= (k(n)+1) 15 (£axl01))

Hence for pigyomy ' —a.e z € [0,1), we have: HD(u3) =

(b) When g = 1+2\/57 we obtain that the Lyapunov exponent of 4 is equal to

Xu, (S) = log ! +2\/5 . (1 + u(b([%, 1) x [0, 1))) .

Hence, for pgomy'~a.e x € 0,1), we have: HD(pf) =

iy (5)
log 15 <1+u¢ (12.0)x [0,1)))

m—1

c) Let 5 > 1 be the positive root of the polynomial z™ — z — ... —1, so that
1= % + % +...+ BL’” Let S from (6.2) be the natural extension of the associated
GLS. Then, the Lyapunov exponent of jis 1s equal to

Xus(S) = log - (1+u¢<[%,%+%)> +...+(m— 1)u¢<[%+...+%,1)>)

Hence for iy o' —a.e z € [0,1),

hu¢(8)
log B+ (141 (13,3 +2)) . (m = Do (3 + .+ 5, 1) )
Proof. In order to prove (a) we apply (6.10), and (6.11). Let us write

S(z,y) = (S(2), 9:(y)), (2,y) € [0,1) x [0,1),
where S is the GLS(Z)-transformation and § is its natural extension (see 5.3). The deriv-

ative of the fiber map g, is constant and equal to L,,, for x € I,,, where L,, is the length
of the interval I,, and thus is equal to W, for n > 0. Finally, for the Hausdorff (and

HD(pig) =

pointwise) dimension of conditional measures we apply Theorem 6.2.
For (b) we apply (6.5) to get, for 8 = %5,
1

() = % if (2,1) € [o%) < [0,1), and, g,(s) = 5. if (e.1) € %, )% [0.1)
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Therefore in this case, k£(0) = 0 and k(1) = 1, which we use in the formula for the Lyapunov
exponent. Then we use the fact that

1o ([0 %) x [0,1)) + g ([%1) « [0, 1) — 1

For (c), since by = ... = b,, = 1, it follows that
k(1) =1,k(2)=2,...,k(m) =m

Then we use the definition of the Lyapunov exponent

u(S) = — /[ 18 10, ). ).
0,1)2

and the fact that
(P (53-8 om (e
Mo 75 He B,B 52 He /8 5m71’ = 1.

From (6.11), we know that the induced map 7 o 1y> is equal to the inverse limit S of the
GLS transformation S associated to the countable partition Z, given by (6.10). From (5.3)
and as [ is given by (5.2), then S(z,y) and Tz o1)2 satisfy

(6.12) S(,y) = Ty () = (f<x>, My 3) (a.y) € [0,1)

S1 S1

O

We use now the explicit form of 73 and Theorem 2.16, to show that any 7z —
equilibrium measure f, is exact dimensional on [0,1)? and to compute its dimension.
Notation is of Corollary 6.3; and 7 : [0,1)? — [0, 1) is the projection on first coordinate.

Theorem 6.4. Let an arbitrary > 1, Tz(z) = Sz (mod 1), x € [0,1), and let Tz be the
natural extension of Tg, and S = Tz 012 be the induced map of Tg on [0, 1)2. Recall the
associated map f from (5.2), (6.12). Let ¢ : [0,1)> — R be a locally Holder continuous
potential which satisfies,

> " exp(sup @1, xpp1) < 00,

n>1
where the subintervals I,,,n > 0 are given by (6.10). Denote by ji, the unique equilibrium
measure of ¢ with respect to Tgjo1)2. Define v := pig 0 7! as the projection of fty on the
first coordinate. Then, 1, is ezact dimensional on [0,1)? and,

- 2h, (f)
HD(pg) = log B+ Y (k(n) 4+ 1)pe (L, x [0,1))

n>0

Proof. First we will show that p, is exact dimensional. Recall from (6.12) that for 5 > 1
arbitrary, and for all (z,y) € [0,1)?,

Tajonz2(z,y) = S(2,y) = (f(x), h 1 E)

51 S1
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Note that the projection v is f—invariant and ergodic on [0, 1).
Now, if Z denotes the countable partition (I,),>1 from (6.10), then from the previous
Section we obtain the conjugacy

T35 —[0,1)

between (X1, ) and ([0, 1), f). Moreover, we also have that v gives zero measure to points,
and thus v is the projection of an ergodic measure 7 on 3F. The interval [0,1) is viewed as
the limit set of the iterated system associated to the countable partition Z of [0, 1), where
the contractions are the inverses of the branches of f on I,,,n > 1.

Consider now, in the notation of [31], the random system given by a parameter space
A = {)\} with the identity homeomorphism 6 : A — A, #(\) = A, which preserves the
Dirac delta measure 4y, and the shift space (XF, ) with the ergodic o-invariant measure
v. Then, the measure v is in fact the only conditional measure of the product measure
oy X 7 on A x X7

On the other hand, since the potential ¢ is summable, it follows from our results in 2.2
and from the fact that ([0, 1), 7,'3,[071)2) is coded by a Smale space of countable type, that
the entropy hy,, (73,0,1)2) is finite. Therefore, since

v=psom’,
we obtain that h;(f) < co. But then we get from Remark 3.4 of [31] that
Haywo (o ()l (ea)) < 00

Hence, it follows from Theorem 3.13 in [31] and the discussion above, that v is exact
dimensional on [0, 1), and that
i) = 1ulD)

Xo(f)

On the other hand, it follows from Theorem 6.2 that the conditional measures of p4 are
exact dimensional on fibers (which fibers are all equal to [0, 1) in this case).

Now, if the f-invariant measure v is exact dimensional on [0, 1), and if the conditional
measures of [, are exact dimensional on fibers, we apply Theorem 2.16 to obtain that s,
is exact dimensional globally on [0,1)2. From Theorem 2.16, HD () is the sum of HD(v)
and of the dimension of conditional measures.

The last step is then to obtain the expression of the Lyapunov exponent y,(f). In our
case, it follows from (5.2) that |f'(z)| = L,! for all z € I,,, where L,, denotes the length of
I,,, for n > 0. In addition, it follows from (6.10) that

B 1
o ﬁk(n)ﬂ

But also v(A) = p4(A x [0,1)), for any Borel set A C [0, 1). Therefore,
xo(f) =log B+ (k(n) +1)pe(In x [0,1))
n>0

In addition by the Shannon-McMillan-Breiman Theorem ([16]), h, (S) is equal to h,(f)
since S contracts in the second coordinate. Then, from the above discussion and Corol-
lary 6.3, the dimension of p, is obtained as in the statement. 0

L,
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