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Abstract. We deal with the problem of asymptotic distribution of first
return times to shrinking balls under iteration generated by a large gen-
eral class of dynamical systems called Weakly Markov. Our ultimate
main result is that these distributions converge to the exponential law
when the balls shrink to points. We apply this result to many classes
of smooth dynamical systems that include conformal iterated function

systems, rational functions on the Riemann sphere Ĉ, and transcenden-
tal meromorphic functions on the complex plane C. We also apply them
to expanding repellers and holomorphic endomorphisms of complex pro-
jective spaces.

One of the key ingredients in our approach is to solve the well known,
in this field of mathematics, problem of appropriately estimating the
measures of, suitably defined, large class of geometric annuli. We suc-
cessfully do it. This problem is, in the existing literature, differently
referred to by different authors; we call it the Thick Thin Annuli Prop-
erty.

Having this property established, we prove that for non–conformal
systems the aforementioned distributions converge to the exponential
one along sets of radii whose relative Lebesgue measure converges fast
to one.

But this is not all. In the context of conformal iterated function sys-
tems, we establish the Full Thin Annuli Property, which gives the same
estimates for all radii. ln this way, we solve a long standing problem. As a
result, we prove that the convergence to the exponential law holds along
all radii for essentially all conformal iterated function systems and, with
the help of the techniques of first return maps, for all aforementioned
conformal dynamical systems.
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1. Introduction

In this paper we deal with asymptotic statistics of return times to shrink-

ing objects that are formed by ordinary open balls with radii converging to

zero. Let (T,X, µ, ρ) be a metric measure preserving dynamical system. By

this we mean that (X, ρ) is a metric space and T : X → X is a Borel mea-

surable map preserving a Borel probability measure µ on X. Given a set

U ⊂ X and x ∈ X define

τU(x) := min{n ≥ 1 : T n(x) ∈ U},

and call it the (first) entry time to U . When x ∈ U , this is called the first

return time.

The modern study of return times was initiated in the early nineties

by the seminal papers of M. Boshernitzan [2], and D. S. Ornstein and B.

Weiss [28]. They looked at return times to shrinking balls (Boshernitzan) or

to decreasing cylinders in a symbol space (Ornstein, Weiss). These papers

triggered a growing interest in the statistics of return times reflected in

numerous publications on the subject.
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This lead, amongst others, to the notions of the recurrence dimensions

in [4] or [37], the study of possible limiting distributions in [20], speed of

convergence, e.g. in [13]. One of the main avenues of study is the continuing

search for systems for which the return (and entry) times distribution tends

to the exponential law. By presenting the first general technique of proving

such convergence, it was shown in [17] that this should be the natural limit.

The early results focused on return times to cylinder sets. Passing to

balls introduces some, qualitatively new, geometric flavour. It however ush-

ers a considerable obstacle demanding to have a subtle upper estimates of

measures of shrinking annuli. Virtually every proof of convergence to the

exponential law requires that the measure of a thin annuli, of inner radii r

and outer radii r + rκ, κ > 1, are small compared to the measures of the

balls of radii r. This assumption is either trivial to check (e.g. the invariant

measure is absolutely continuous) or very difficult to verify. In almost all,

known to us, papers such estimates are simply introduced as hypotheses, see

for example the assumption (A4) from [14], or the assumption (IV’) from

[36]. This notion is also essential while proving the Poisson law as we may

see in [35], where the entire Appendix A in is devoted to comments on this

problem. The first result in a non trivial case was proved to hold for SRB

measures of Henon-like maps by Chazottes and Collet in [5].

This property is easily checked for measures equivalent to the Lebesgue

measure or if the measure of every ball is bounded above by its radius raised

to the power larger than d−1, where d is the dimension of the ambient space.

It should be underlined that these measures were, essentially, the only ones

for which the required aforementioned property was known. Consequently,

the exponential limiting law for the return times all radii was known only

for such measures.

In the present paper we provide a fairly complete solution to the problem

of estimating the measures of thin annuli, getting two results: firstly, see

Theorem D and Section 3.3, we prove that it holds for conformal systems

and all radii, and, secondly, see Theorem C, for non-conformal ones, we

show that it holds along a very large set of radii. Up to our knowledge,

the present paper is the first one to tackle successfully the issue of proving

upper estimates of measures of thin annuli.

In what follows we denote the open ball of radius r > 0 centred at a

point x ∈ X either by both B(x, r) or Br(x) depending on the context.

Recall that given a measurable set A with positive measure, we denote by
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µA the measure on A, given by the formula

µA(F ) :=
µ(F )

µ(A)

where F ranges over measurable subsets of A.

Our main motivation and the main goal in this article is to identify a

large class of systems and large classes of families of positive radii R =

{Rx ⊂ (0, 1]}, such that 0 ∈ Rx, which are defined for µ–a.e. x ∈ X, and

for which the following properties hold:

(1.1) lim
Rx3r→0

sup
t≥0

∣∣∣∣µ({z ∈ X : τBr(x)(z) >
t

µ(Br(x))

})
− e−t

∣∣∣∣ = 0

for µ–a.e. x ∈ X, i.e. the distributions of the normalized first entry time

converge to the exponential one law, and

(1.2)

lim
Rx3r→0

sup
t≥0

∣∣∣∣µBr(x)({z ∈ Br(x) : τBr(x)(z) >
t

µ(Br(x))

})
− e−t

∣∣∣∣ = 0

for µ–a.e. x ∈ X, i.e. the distributions of the normalized first return time

converge to the exponential one law. Formulas (1.1) and (1.2) are equivalent

to saying that for every Borel set F ⊂ [0,+∞) with boundary of Lebesgue

measure zero, we have that, for µ–a.e. x ∈ X, both of the following hold:

lim
Rx3r→0

µ
({
z ∈ X : τBr(x)(z)µ(Br(x)) ∈ F

})
=

∫
F

e−t dt(1.3)

lim
Rx3r→0

µBr(x)
({
z ∈ Br(x) : τBr(x)(z)µ(Br(x)) ∈ F

})
=

∫
F

e−t dt.(1.4)

Our large class of measure preserving dynamical systems is that of Weakly

Markov ones defined, somewhat lengthily but naturally, in Section 2. It is

motivated by the class of loosely Markov systems introduced and explored

in [42]. This class captures systems, not necessarily conformal, such as ex-

panding repellers and holomorphic endomorphisms of complex projective

spaces, but also conformal ones such as conformal graph directed Markov

systems, conformal expanding repellers, rational functions of the Riemann

sphere, and transcendental meromorphic functions. All this is described in

detail in Section 4 devoted to examples.

Having conformality in the system is not just to work in a more com-

fortable setting, but it does have seminal qualitative impact on the range

of radii for which our main theorems hold. They do hold for all radii. Up

to our best knowledge, this is the first time that for such general classes of

systems and invariant measures the convergence to the exponential law is

proved to hold along all radii.
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1.1. Subsets of radii. In what follows Leb denotes Lebesgue measure.

In this subsection X is an arbitrary set. We now describe several natural

classes of radii for which we will prove the aforementioned convergence to

the exponential law.

• The first class, denoted by F and called full, contains all families

{Tx : x ∈ X}, for which Tx = (0, ηx] for some ηx > 0.

• The next class, denoted by AF , called almost full, consists of all

families {Tx : x ∈ X} for which Leb(Tx ∩ (0, ηx]) = ηx for some

ηx > 0.

• The third class, denoted by D and called dense, contains the families

{Tx : x ∈ X} satisfying

lim
r→0

Leb(Tx ∩ (0, r])

r
= 1 for all x

i.e., 0 is the density point of Tx.

• The fourth class, super dense, denoted by SD. It is composed of all

families {Tx : x ∈ X} for which, for every α > 0

lim
r→0

∣∣∣Leb(Tx∩(0,r])r
− 1
∣∣∣

rα
= 0 for all x.

• Finally, the last class, called β–thick (for β > 0), and denoted by

βT contains all families {Tx} satisfying

lim
r→0

∣∣∣Leb(Tx∩(0,r])r
− 1
∣∣∣

rln
β(1/r)

= 0 for all x.

Trivially, for any β > 0,

F ⊂ AF ⊂ βF ⊂ SD ⊂ D.

1.2. Main results.

Theorem A. If X is a Borel subset of Rd and (T,X, µ, ρ) is a Weakly

Markov system, then for every β > 0 there exists βT = {Tx : x ∈ X},
a β–thick class of radii, such that for µ–a.e. x ∈ X

(1.5) lim
Tx3r→0

sup
t≥0

∣∣∣µ({z ∈ X : τBr(x)(z) >
t

µ(Br(x))

})
− e−t

∣∣∣ = 0,

i.e. the distributions of the normalized first entry time converge to the ex-

ponential one law, and

(1.6) lim
Tx3r→0

sup
t≥0

∣∣∣µBr(x)({z ∈ Br(x) : τBr(x)(z) >
t

µ(Br(x))

})
− e−t

∣∣∣ = 0,

i.e. the same convergence holds for the normalized first return time.
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Remark 1.1. In fact, as we prove, there are even larger classes of radii for

which Theorem A holds. See Theorem B and Remark 1.5.

We now introduce a crucial property of a measure, which we call the

Thin Annuli Property. We define and discuss it now in two steps.

Definition 1.2. A function κ : (0, 1] → R+ will be called subpolynomial if

it is monotone nonincreasing, and for every ε > 0

(1.7) lim
r→0

κ(r)rε = 0.

Remark 1.3. Subpolynomial functions include all positive constant func-

tions and functions of the form κ(r) = α lnβ(1/r), for α, β > 0.

Definition 1.4. Let µ be a finite Borel measure on a metric space X. Let

R = {Rx : x ∈ X}, be a class of radii defined µ–a.e. in X. The measure µ

is said to have the Thin Annuli Property relative to R if for µ–almost every

x ∈ X there exists a subpolynomial function κx : (0, 1]→ R+ such that

lim
Rx3r→0

µ
(
B(x, r + rκx(r)) \B(x, r)

)
µ (B(x, r))

= 0.(1.8)

We say that measure µ satisfies the Thick Thin Annuli Property if for every

β > 0 it has the Thin Annuli Property with respect to some β–thick class

of radii. We analogously define the Full Thin Annuli Property.

The two main ingredients of the proof of Theorem A, and important

results on their own, are the following.

Theorem B. Let (T,X, µ, ρ) be a Weakly Markov system. If the measure

µ has the Thin Annuli Property relative to some class of radii R, then both

(1.1) and (1.2) hold, i.e. the distributions of the normalized first entry time

and first return time converge to the exponential one law.

Theorem C. Every finite Borel measure µ in a Euclidean space Rd, satisfies

the Thick Thin Annuli Property.

Remark 1.5. In fact, Theorem C could be strengthened: see Theorem 3.7

along with Theorem 3.5, Definition 1.2 (and Remark 1.3), and Remark 3.8.

Of course, Theorem A is an immediate consequence of Theorems B and C.

The further natural question to ask is about the convergence to the

exponential law along a full class of radii. Because of Theorem B the answer

would be positive if we had a Weakly Markov system whose measure has

the Full Thin Annuli Property.
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We have discovered that this property is satisfied for a large class of

systems. The only additional requirement is for the system to be generated

by a countable (either finite or infinite) alphabet conformal iterated func-

tion system (IFS). This gives rise, via suitable inducing schemes, to several

classes of applications as it is shown in the last section.

All the definitions appearing in the following theorems are in Subsection

3.3. Here is the fourth main result, an achievement on its own.

Theorem D (see Theorem 3.15). If S = {φe : X → X}e∈E is a confor-

mal geometrically irreducible IFS, then for every µ ∈ ME, a large class

of measures containing many Gibbs/equilibrium measures of Hölder contin-

uous summable potentials on the symbol space EN, the projection measure

µ◦π−1 on JS has the Full Thin Annuli Property. In fact, the following holds

lim
r→0

µ ◦ π−1
(
B(x, r + r3) \B(x, r)

)
µ ◦ π−1 (B(x, r))

= 0 for µ ◦ π−1–a.e. x ∈ JS .

We should immediately emphasize that in this theorem the conformal IFS

S is not required to satisfy any kind of separation condition, nor even

its weakest form known as the Open Set Condition. In other words, all

kinds of overlaps are allowed. Also, the measures µ ∈ ME need not be

Gibbs/equilibrium states nor even shift-invariant. These measures are just

to satisfy two natural conditions formulated in Subsection 3.3. Theorem D

via Theorem B leads to the convergence to the exponential distribution

along all radii (full class) for all Weakly Markov systems generated by con-

formal IFS and Gibbs/equilibrium measures (now we do need them).

Theorem E (see Theorem 4.8). Suppose that S is a finitely irreducible

and geometrically irreducible conformal IFS satisfying the Strong Open Set

Condition. If f : EN → R is a summable Hölder continuous potential such

that for some β > 0

(1.9)
∑
e∈E

exp
(

inf
(
f |[e]

))
‖φ′e‖−β < +∞,

then the measure–preserving dynamical system
(
TS : J̊S → J̊S , µ̂f

)
is Weakly

Markov and satisfies the Full Thin Annuli Property. In consequence, the

exponential one laws hold along all radii.

We highlight again that the above theorem is very general and allows

us to prove, using a suitable inducing procedure, the exponential law for

several naturally occurring classes of conformal systems, as seen in Section 4

devoted to applications and examples.
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We end this introduction with a comment on the Weakly Markov sys-

tems. This concept captures and extends that of Loosely Markov systems

of [42], and of the earliest works on the subject such as [37]. One of the ad-

vantages of Weakly Markov systems is that no transfer operator is involved,

and merely the exponential decay of correlations is assumed, along with two

other standard hypotheses.

2. Convergence to Exponential Distribution for Weakly

Markov Systems

In this section we do two things. First, we define the class of Weakly

Markov systems and then we prove Theorem B. We begin by recalling the

following standard definition:

Definition 2.1. For a finite Borel measure µ on a metric space X, define

the lower and upper pointwise dimensions, denoted respectively by dµ and

dµ, of the measure µ by

dµ(z) = lim inf
r→0

ln
(
µ(Br(z))

)
ln r

, dµ(z) = lim sup
r→0

ln
(
µ(Br(z))

)
ln r

.

Passing to the next concept we need, given ξ ∈ (0, 1] denote by Hξ(X)

the vector space of all real–valued Hölder continuous functions on a metric

space (X, ρ) with exponent ξ, i.e. f ∈ Hξ(X) if f : X → R is bounded,

continuous, and vξ(f) <∞, where

vξ(f) := inf
{
H ≥ 0 : ∀x,y∈X |f(x)− f(y)| ≤ Hρξ(x, y))

}
.

The space Hξ(X) is commonly endowed with the norm:

||f ||ξ := ||f ||∞ + vξ(f),

and then it becomes a Banach space.

Define further the first return of a set U to itself under the map T by

τ(U) := min
x∈U

τU(x).

Definition 2.2. We will call a metric measure preserving dynamical sys-

tem (T,X, µ, ρ), defined in Introduction, Weakly Markov, if it satisfies the

following conditions (i) to (iii):

(i) Exponential Decay of Correlations : There exists γ ∈ (0, 1) and C > 0

(in general depending on ξ) such that for all g ∈ Hξ, all f ∈ L∞µ and

every n ∈ N, we have

(2.1) |µ (f ◦ T n · g)− µ(g) · µ(f)| ≤ Cγn||g||ξµ(|f |).

(ii) For µ–a.e. x ∈ X, we have that 0 < dµ(x) ≤ dµ(x) < +∞.
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(iii) X is a subset of a Euclidean space.

In addition, if measure µ also has the thin annuli property relative to a

family R of radii, then we will call the system Weakly Markov with thin

annuli relative to R. If R is thick (resp. full) we will call the system Weakly

Markov with thick (resp. full) thin annuli.

Remark 2.3. The last assumption may be replaced by a so-called no small

returns property, i.e.

(iii’) lim inf
r→0

τ
(
Br(x)

)
− ln(r)

> 0 for µ–a.e. x ∈ X.

This changes the proof of Lemma 2.9 slightly. More precisely we need to

use it to get (2.6). This property has been proved to hold for many dynam-

ical systems; e.g. those considered in [37], and also, as it is easy to check,

it holds for open transitive distance expanding maps and measures µ be-

ing Gibbs/equilibrium states of Hölder continuous potentials. For further

information on this notion see for example [33] and the references therein.

Remark 2.4. As mentioned in the introduction, the second named author

introduced the concept of Loosely Markov systems in [42]. These systems

are required to satisfy (ii), a stronger version of (i), and a Weak Partition

Existence Condition, which implies (iii’), as it was observed in [42].

Remark 2.5. For some specific systems the exponential distribution of the

limit of return times has already been proved assuming only polynomial

decay of correlations. We however work in a very general setting, and our

method, suitable for such generality, does need faster, in fact exponential,

decay.

In order to prove Theorem B we will apply two theorems from [17].

Proof of Theorem B. Recall that (T,X, ρ, µ) is a Weakly Markov system.

Let us start with some notation; we follow [17]. For a fixed set U ⊂ X let

us define

c(k, U) := µU (τ > k)− µ (τ > k) ,

c(U) := sup
k∈N
|c(k, U)| .

The first result from [17], valid in a fairly abstract context, is this:

Theorem 2.6. For a transformation T : X → X, preserving a probability

measure µ on X, the distributions of both the first return time and first
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entry time differ from the exponential law by an expression which converges

to 0 if both µ(U) and c(U) go to 0. More precisely, for entry time

(2.2) sup
t≥0

∣∣∣∣µ({z ∈ X : τU(z) >
t

µ(U)

})
− e−t

∣∣∣∣ ≤ d(U),

and also for return time

(2.3) sup
t≥0

∣∣∣∣µU ({z ∈ U : τU(z) >
t

µ(U)

})
− e−t

∣∣∣∣ ≤ d(U),

where d(U) = 4µ(U) + c(U)
(
1− ln c(U)

)
.

The second theorem (also from [17]) gives an estimate on the value of c(U).

Theorem 2.7. With the transformation as above:

c(U) ≤ inf
N∈N
{aN(U) + bN(U) +Nµ(U)} , where

aN(U) = µU ({τU ≤ N}) ,

bN(U) = sup
V ∈B

∣∣µU(T−NV )− µ(V )∣∣ = sup
V ∈B

∣∣∣µ(U ∩ T−NV )− µ(U)µ
(
V
)

µ(U)

∣∣∣,
where B is the σ-algebra of Borel sets on X.

Remark 2.8. Note that for a fixed set U the number aN(U) grows to 1 as

N → +∞, whereas bN(U) tends to 0 (provided that the system has some

mixing properties). The tricky part is to find a number N such that bN has

already become small, but aN and N · µ(U) have not grown too big.

The proof of Theorem B is a consequence of those two theorems and the

following lemma, which is our main technical result in this section.

Lemma 2.9. If a system (T,X, µ,B, ρ) is Weakly Markov with Thin Annuli

Property relative to a class R = {Rx : x ∈ X} of radii, then for µ–almost

all x ∈ X and all radii r > 0 there are integers nr(x) ≥ 1 such that

lim
r→0

anr(x)(Br(x)) = lim
Rx3r→0

bnr(x)(Br(x)) = lim
r→0

nr(x) · µ(Br(x)) = 0

for µ–almost all x ∈ X.

Proof. We will write Br instead of Br(x), when dependence on x is clear.

Put

nr = nr(x) := µ(Br)
−θ.

Obviously, if θ < 1 we get nr · µ(Br)→ 0 instantly. So it remains to find θ

such that both anr and bnr will tend to 0.

The assumptions imposed on pointwise dimension imply that there exists

a set W ⊂ X, of full measure µ, such that for all x ∈ W

(2.4) r2dµ(x) ≤ µ (Br(x)) ≤ rdµ(x)/2,
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for all radii 0 < r < ρ1(x) with a certain measurable, positive µ–a.e. function

ρ1.

Now fix x ∈ W and recall the definition of aN .

aN(Br) = µBr (τBr ≤ N) .

We want to apply Lemma 42 from [34], but we need a small comment

(below). The lemma states that

(2.5) lim
r→0

µBr(x)(τBr(x) ≤ r−d) = 0

for µ–a. e. x ∈ X ⊂ Rn and for all d < dµ(x).

Even though the author assumes that dµ = dµ = const a.e. (and then

instead of dµ(x) he writes dimH µ), it is not used in the proof. The only

requirement is that dµ(x) = R(x), which is given by Theorem 5 from [32].

Recall that x ∈ W so the upper/lower pointwise dimensions are well

defined in x. Take θ(x) > 0 so small that µ(Br(x)) ≥ rdµ(x)/2θ(x), this is

possible because dµ(x) < +∞. This means that µ(Br(x))−θ(x) ≤ r−dµ(x)/2

and application of (2.5) proves that

(2.6) lim
r→0

anr(Br) = 0.

Note that our reasoning leading to this formula did not require any kind of

the thin annuli property at all. We did, however, use the fact that we are

in a Euclidean space.

Now we turn to the task of estimating bnr(Br(x)). For this we do need

and we do use the Thin Annuli Property relative to R.

First, let us define a family of Lipschitz continuous functions approxi-

mating a characteristic function on a ball; depending on: radius r > 0, real

number α > 0, and x ∈ X, which will vary in the sequel. We define the

auxiliary functions

φ(α)
r (t) :=

 1 for 0 ≤ t ≤ r
r−α(r + rα − t) for r ≤ t ≤ r + rα

0 for t ≥ r + rα
.

The approximating functions are

g(α)r,x (z) := φ(α)
r (ρ(z, x)).

The Lipschitz constant of g
(α)
r,x is bounded from above by r−α as the metric ρ

is 1–Lipschitz. In particular their Hölder norms (needed in the definition of

exponential decay of correlations) are bounded from above by (take ξ = 1)

||g(α)r,x ||ξ ≤ 1 + r−α ≈ r−α

for all r > 0 sufficiently small.
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Let κx : (0, 1] → (0,+∞) be the subpolynomial function resulting from

the Thin Annuli Property of the system (T,X,B, ρ) relative to R.

Fix x ∈ W and also respecting formula (1.8) of Definition 1.4. Fix small

r > 0 and a Borel set H. Put gr := g
(κx(r))
r,x and put fr := 1Br . Note that

fr ≤ gr. Then∣∣µ(Br ∩ T−nr(H)
)
− µ(Br)µ

(
H
)∣∣ =

∣∣µ(1H ◦ T nr · fr)− µ(1H)µ(fr)
∣∣ ≤

≤
∣∣µ(1H ◦ T nr · fr)− µ(1H ◦ T nr · gr)∣∣+
+
∣∣µ(1H ◦ T nr · gr)− µ(1H)µ(gr)

∣∣+
∣∣µ(1H)µ(gr)− µ(1H)µ(fr)

∣∣.
So µ(Br)bnr(Br) is bounded by the supremum (over all Borel sets H ⊂ X)

of the sum of the three terms above.

The third expression bounding bnr(Br) is estimated easily:

µ(Br)
−1∣∣µ(1H)µ(gr)− µ(1H)µ(fr)

∣∣ ≤
≤ µ(Br)

−1(µ(gr)− µ(fr)
)

≤ µ(Br)
−1(µ(B(x, r + rκx(r))− µ(B(x, r)

)
=
µ
(
B(x, r + rκx(r)) \B(x, r)

)
µ(Br)

.

This tends to 0 as Rx 3 r → 0 because of the Thin Annuli Property relative

to R assumed to hold. The first term is bounded in the same way since∣∣µ(1H ◦ T nr · fr)− µ(1H ◦ T nr · gr)∣∣ ≤ µ(gr)− µ(fr).

Dealing with the second term we use the exponential decay of correlations:∣∣µ(1H ◦ T nr · gr)− µ(1H)µ(gr)
∣∣ ≤ Cγnr r

−κx(r)µ(1H) ≤ Cγnr r
−κx(r).

The pointwise dimensions formula (2.4) gives nr = µ(Br)
−θ ≥ r−θdµ(x)/2 and

µ(Br)
−1
∣∣∣µ(1H ◦ T nr · gr)− µ(1H)µ(gr)

∣∣∣ ≤ Cr−κx(r)−2dµ(x)γr
−θdµ(x)/2

= Ce−κx(r) ln(r)−2dµ(x) ln(r)+r
−θdµ(x)/2 ln(γ).

The last term in this formula converges to zero as r → 0 once we know that

(2.7) lim
r→0

κx(r) ln(r)rθdµ(x)/2 = 0,

which indeed holds because κx is a subpolynomial function. Thus,

(2.8) lim
Rx3r→0

bnr(Br) = 0.

and this ends the proof of Lemma 2.9. �

The proof of Theorem B is complete. �
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3. The Thin Annuli Property

3.1. Thick Thin Annuli Property holds for Finite Borel Measures

in Rd.

Our main result in this subsection is Theorem C. We will need several

technical auxiliary results, one of which, Theorem 3.7 is of high generality,

interesting in itself, and entails Theorem C. The following well-known result

comes from [4].

Proposition 3.1. Any Borel probability measure on Rd is weakly diamet-

rically regular, i.e. for µ–almost every x ∈ Rd and every ε > 0 there exists

δ > 0 such that for all 0 < r < δ

(3.1) µ(B(x, 2r)) ≤ µ(B(x, r))r−ε.

As a matter of fact, by carefully reading the proof of Proposition 3.1 pre-

sented in [4], one sees that the following strengthening of this proposition

can be can proved in a similar way.

Theorem 3.2. Assume that µ is a Borel probability measure on Rd and fix

any ε > 0. Then for µ–a.e. x ∈ Rd and every sufficiently small r > 0 (i.e.

0 < r ≤ δ(x) and δ(x) > 0 µ–a.e.) we have

(3.2) µ (B(x, 2r)) ≤ log2+ε
2 (1/r)µ(B(x, r)).

Moreover, if s and r are such that [− log2(s)] = [− log2(r)] (i.e. for some k

we have 2−k−1 < r, s ≤ 2−k), then

(3.3)

[− log2(r)]
−1−ε µ (B(x, r)) ≤ µ (B(x, s)) ≤ [− log2(r)]

1+ε µ (B(x, r)) .

Remark 3.3. In fact, by taking different convergent series in their proof,

e.g. 1
n log2(n)

as αn we could improve the above estimate further (and therefore

in Cor. 3.9) to e.g.

µ (B(x, 2r)) ≤ log2
2(1/r) log2+ε(log(1/r))µ(B(x, r)).

Motivated by Theorem 3.2 and Remark 3.3 we introduce the following.

Definition 3.4. A non–increasing function G : (0,+∞) → (1,+∞) satis-

fying

(3.4) G(r/2) ≤ γG(r)

with some γ ∈ [1, 2) and all r > 0 small enough, is called a doubling bound

for a Borel probability measure µ on Rd if for µ–a.e. x ∈ Rd, all sufficiently

small r > 0 (i.e. 0 < r ≤ δ(x) and δ(x) > 0 µ–a.e.), we have that

(3.5) µ (B(x, 2r)) ≤ G(r)µ(B(x, r)).



14  LUKASZ PAWELEC, MARIUSZ URBAŃSKI, AND ANNA ZDUNIK

With this definition Theorem 3.2 can be reformulated as follows.

Theorem 3.5. For every ε > 0 the function

(0,+∞) 3 r 7−→ max
{

0, log2+ε
2 (1/r)

}
,

(in fact any function of Remark 3.3) is a doubling bound for any Borel

probability measure µ on Rd.

Definition 3.4 and Theorem 3.5 will lead us to the following crucial tech-

nical estimate on the measures of annuli.

Lemma 3.6. Let κx : (0, 1]→ R be subpolynomial functions such that

(3.6) κx := inf
r∈(0,1]

κx(r) > 1 for every x ∈ Rd.

If µ is a Borel probability measure on X = Rd, then for µ–a.e. x ∈ X and

every A > 0 the set of those radii r > 0 for which

µ
(
B(x, r + rκx(r)) \B(x, r)

)
µ (B(x, r))

> A(3.7)

has zero density at the point r = 0. In other words, if we denote by Zx(A)

the set of all radii r > 0 that satisfy (3.7), then

(3.8) lim
r→0

l(Zx(A) ∩ [0, r])

l([0, r])
= 0, where l is Lebesgue measure on R.

Moreover, let G be a doubling bound almost everywhere for µ. Then the

following, more precise estimate holds:

(3.9) l(Zx(A) ∩ [0, r]) ≤ 2(
1− γ

2

)
ln(1 + A)

rκx(r) lnG(r).

Proof. The first observation is that (3.8) follows from (3.9). Indeed, it suf-

fices to take G(r) = r−α for some α ∈ (0, 1). We are therefore to prove (3.9)

only. We do it now.

G is a doubling bound, so there exists a Borel set Y ⊂ Rd with µ(Y ) = 1

such that for every x ∈ Y there exists δx > 0 such that for all r ∈ (0, 2δx)

(3.10) µ
(
B(x, 2r)

)
≤ G(r)µ

(
B(x, r)

)
.

Fix any x ∈ Y . Then fix r ∈ (0, δx) and η > 0. There exist an integer n ≥ 1,

and a sequence of n radii rj ∈ (0, δx) ∩ Zx(A), j = 1, 2 . . . , n such that

(3.11) r ≤ r1 < r1+r
κx(r1)
1 < r2 < r2+r

κx(r2)
2 < r3 < · · · < rn+rκx(rn)n ≤ 2r

and

(3.12) l

((
Zx(A) ∩ [r, 2r]

)
\

n⋃
j=1

[
rj, rj + r

κx(rj)
j

))
≤ η.
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In particular the annuli defined by radii rj do not intersect. Since rj ∈ Zx(A)

for all j = 1, 2 . . . , n, for any 1 ≤ p ≤ n, we have that

(3.13)
µ
(
B
(
x, rp + r

κx(rp)
p

))
µ (B(x, rp))

> 1 + A.

Using this estimate n times we arrive at

µ (B(x, r)) ≤ µ (B(x, r1)) ≤
µ
(
B
(
x, r1 + r

κx(r1)
1

))
1 + A

≤ µ (B(x, r2))

1 + A
≤ · · ·

· · · ≤ µ (B(x, rn))

(1 + A)n
≤ µ (B(x, 2r))

(1 + A)n
.

Applying further (3.10) yields

µ(B(x, r)) ≤ µ(B(x, r))G(r)

(1 + A)n
.

This shows that

(3.14) G(r) ≥ (1 + A)n, giving the estimate: n ≤ lnG(r)

ln(1 + A)
.

Now divide the interval [r, 2r) into subintervals of length (2r)κx(2r). Define

I1 =
[
r, r + (2r)κx(2r)

)
, . . . , Ik =

[
r + (k − 1)(2r)κx(2r), r + k(2r)κx(2r)

)
. . .

for all k ≥ 1 until (k + 1)(2r)κx(r) ≥ 2r.

Observe that r
κx(rp)
p ≤ (2r)κx(2r), since rp ≤ 2r and the function κx is

nonincreasing. So, if rp ∈ Ik then the interval
[
rp, rp + r

κx(rp)
p

)
is contained

in Ik ∪ Ik+1.

Thus, the union
n⋃
j=1

[
rj, rj + r

κx(rj)
j

)
is contained in a union of at most 2n ≤ 2 lnG(r)

ln(1+A)
intervals of the form Ik. So

(3.15)

l

( n⋃
j=1

[
rj, rj+r

κx(rj)
j )

)
≤ (2r)κx(2r)· 2 lnG(r)

ln(1 + A)
=

2

ln(1 + A)
(2r)κx(2r) lnG(r).

Along with (3.12), this gives

l
(
Zx(A) ∩ [r, 2r]

)
≤ η +

2

ln(1 + A)
(2r)κx(2r) lnG(r).

Since η > 0 was arbitrary, this in turn gives

l
(
Zx(A) ∩ [r, 2r]

)
≤ 2

ln(1 + A)
(2r)κx(r) lnG(r).
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By summing this estimate and recalling that the function κx is monotone

decreasing while the function G satisfies (3.4), we get

l(Zx(A) ∩ [0, r]) ≤
∞∑
j=1

l
(
Zx(A) ∩

[ r
2j
,
r

2j−1

])
≤ 2

ln(1 + A)

∞∑
j=1

( r

2j−1

)κx(r/2j−1)

lnG
( r

2j

)
≤ 2

ln(1 + A)
rκx(r) lnG(r)

∞∑
j=1

(γ/2)j−1

=
2(

1− γ
2

)
ln(1 + A)

rκx(r) lnG(r). �

As a consequence of this lemma we get the following first main result of

this section.

Theorem 3.7. Let g : R+ → R+ be a function such that limr→0 g(r) = +∞
and for every α > 0, every s > 0 sufficiently small, and every 0 < r ≤ s

g(r)

g(s)
≤
(s
r

)α
.

Let µ be a Borel probability measure on X = Rd and let G be a doubling

bound almost everywhere for µ. For every x ∈ Rd let κx : (0, 1] → (1,+∞)

be a subpolynomial function such that

(3.16) κx := inf
r∈(0,1)

κx
(
r) > 1.

Then the measure µ has the Thin Annuli Property with respect to some class

of radii R = {Rx}x∈X for which

(3.17) lim
Rx3r→0

∣∣∣ l(Rx∩(0,r])r
− 1
∣∣∣

g(r)rκx(r)−1 lnG(r)
= 0.

In addition, the subpolynomial functions witnessing this Thin Annuli Prop-

erty are just the functions κx introduced above in the hypotheses.

Proof. We first shall prove the following.

Claim 10: There exists a constant Q ≥ 1 such that

g(r)rκx(r) lnG(r) ≤ Qg(s)sκx(s) lnG(s)

for every s > 0 sufficiently small and every 0 < r ≤ s.

Proof of Claim 10. The formula of this claim is equivalent to the following:

g(r)

g(s)
· lnG(r)

lnG(s)
≤ Q

sκx(s)

rκx(r)
.
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Since the function κx is monotone decreasing, we have that(s
r

)κx
≤
(s
r

)κx(s)
≤ sκx(s)

rκx(r)
.

It therefore suffices to show that

g(r)

g(s)
· lnG(r)

lnG(s)
≤ Q

(s
r

)κx
.

And in order to have this it suffices to know that

(3.18)
g(r)

g(s)
≤
(s
r

)κx/2
and

lnG(r)

lnG(s)
≤ Q

(s
r

)κx/2
.

The former follows directly (for s > 0 small enough) from our hypotheses

while for proving the latter fix a unique integer k ≥ 0 such that 2kr ≤ s

and 2k+1r > s. Then

G(r) ≤ γk+1G(2k+1r) ≤ γk+1G(s).

Therefore lnG(r) ≤ (k + 1) ln γ + lnG(s). Hence

lnG(r)

lnG(s)
≤ 1 + ln γ

k + 1

lnG(s)
.

Thus in order to have (3.18) it suffices to know that

1 + ln γ
k + 1

lnG(s)
≤ Q · 2

1
2
κxk.

But as inf lnG > 0, this inequality clearly holds for a sufficiently large

constant Q ≥ 1, all integers k ≥ 0 and all s > 0 sufficiently small. The

claim is proved. �

Passing to the actual proof of Theorem 3.7, we note that by Lemma 3.6,

the estimate (3.9), and by the fact that g(r) → ∞ as r → 0, there exists

(rn)∞n=1, a decreasing sequence of positive radii converging to 0 such that

(3.19) l(Zx(1/n) ∩ [0, r]) ≤ 2−nQ−1g(r)rκx(r) lnG(r)

for all integers n ≥ 1 and all radii r ∈ (0, rn]. For x ∈ X define

Zx :=
∞⋃
n=1

Zx(1/n) ∩ (rn+1, rn]
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and then Rx := (0, 1)\Zx. For every r ∈ (0, r1] let n = nr ≥ 1 be the unique

integer such that rn+1 < r ≤ rn. Using Claim 10, we then estimate

l(Zx ∩ (0, r]) =
∞∑

k=n+1

l
(
Zx ∩ (rk+1, rk]

)
+ l
(
Zx ∩ (rn+1, r]

)
=

∞∑
k=n+1

l
(
Zx(1/k) ∩ (rk+1, rk]

)
+ l
(
Zx(1/n) ∩ (rn+1, r]

)
≤

∞∑
k=n+1

2−kQ−1g(rk)r
κx(rk)
k lnG(rk) + 2−nQ−1g(r)rκx(r) lnG(r)

≤ Q
∞∑

k=n+1

2−kQ−1g(r)rκx(r) lnG(r) + 2−ng(r)rκx(r) lnG(r)

=
∞∑

k=nr

2−kg(r)rκx(r) lnG(r) = 2−nr+1g(r)rκx(r) lnG(r).

Therefore, since limr→0 nr = +∞, we get that

lim
r→0

l(Zx ∩ (0, r])

g(r)rκx(r) lnG(r)
≤ lim

r→0
2−nr+1 = 0. �

Remark 3.8. Note that any iterate of the logarithmic function,

g(r) = ln(k)(1/r), k ∈ N,

satisfies the hypotheses of Theorem 3.7.

Taking g(r) = ln ln(1
r
), G(r) = log2+ε

2 (1/r) and κx(r) = lnβ(1/r) + 1,

and, using also Theorem 3.5, we get the following.

Corollary 3.9. Every finite Borel measure µ on Rd for every β > 0

has the Thin Annuli Property with respect to some class of radii R(β) =

{Rx(β)}x∈X satisfying

(3.20) lim
Rx(β)3r→0

∣∣∣ l(Rx(β)∩(0,r])r
− 1
∣∣∣

rln
β(1/r) ln ln(1/r)

= 0.

Ending this part we observe that this corollary directly entails Theorem C.

3.2. Conformal Graph Directed Markov Systems and Conformal

Iterated Function Systems: Short Preliminaries. This subsection has

a preparatory character. It is needed for us in order to be able to formulate

and to prove the main result, Theorem 3.15, of the next subsection. It estab-

lishes the Full Thin Annuli Property for essentially all conformal countable

alphabet Iterated Function Systems. These iterated function systems will

show up in later (applications, examples) sections too. There we will need

them as our tool to prove the Full Thin Annuli Property for many other
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conformal dynamical systems such as conformal expanding repellers, ratio-

nal functions of the Riemann sphere, and large subclasses of transcendental

meromorphic functions from the complex plane to the Riemann sphere. An

intermediate convenient tool, also interesting on its own, is that of (confor-

mal) graph directed Markov systems introduced and systematically studied

in [26]. These are considerable but quite natural generalizations of (confor-

mal) countable alphabet iterated function systems.

Passing to strictly mathematical terms, let us define a graph directed

Markov system (abbr. GDMS) relative to a directed multigraph (V,E, i, t)

and an incidence matrix A. As was indicated above, such systems were

introduced and studied at length in [26]. A directed multigraph consists of

• A finite set V of vertices,

• A countable (either finite or infinite) set E of directed edges,

• A map A : E × E → {0, 1} called an incidence matrix on (V,E),

• Two functions i, t : E → V , such that Aab = 1 implies t(b) = i(a).

Now suppose that in addition, we have a collection of nonempty compact

metric spaces {Xv}v∈V and a number λ ∈ (0, 1), and that for every e ∈ E,

we have a one-to-one contraction φe : Xt(e) → Xi(e) with Lipschitz constant

≤ λ < 1. Then the collection

S = {φe : Xt(e) → Xi(e)}e∈E

is called a graph directed Markov system (or GDMS ). We now describe the

limit set of the system S. For every n ∈ N let

En
A := {ω ∈ En : ∀(1 ≤ j ≤ n− 1) Aωjωj+1

= 1},

and let E0
A be the set consisting of the empty word. Then let

(3.21) E∗A :=
∞⋃
n=0

En
A

and

E∞A := {ω ∈ EN : every finite subword of ω is in E∗A}.

We use the commonly accepted symbol σ for the shift map on EN. More

precisely, σ : EN → EN is defined by the formula:

σ
(
(ωn)∞n=1)

)
= (ωn+1)

∞
n=1.

The space E∞A is forward invariant with respect to the shift map σ : EN →
EN, i.e. σ

(
E∞A
)
⊂ E∞A and we frequently consider also the dynamical system

σ : E∞A −→ E∞A .
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The union defining E∗A in the formula (3.21) is disjoint and for every ω ∈ E∗A
we denote by |ω| the unique integer n such that ω ∈ En

A; we call |ω| the

length of ω. For each ω ∈ E∞A and n ∈ N, we write

ω|n := ω1ω2 . . . ωn ∈ En
A.

For each n ≥ 1 and ω ∈ En
A, we let i(ω) = i(ω1) and t(ω) = t(ωn), and we

let

φω := φω1 ◦ · · · ◦ φωn : Xt(ω) → Xi(ω).

For ω ∈ E∞A , the sets {φω|n
(
Xt(ωn)

)
}n≥1 form a descending sequence of

nonempty compact sets and therefore
⋂
n≥1 φω|n

(
Xt(ωn)

)
6= ∅. Since for every

n ≥ 1,

diam
(
φω|n

(
Xt(ωn)

))
≤ λn diam

(
Xt(ωn)

)
≤ λn max{diam(Xv) : v ∈ V },

we conclude that the intersection⋂
n∈N

φω|n
(
Xt(ωn)

)
is a singleton and we denote its only element by π(ω). In this way we have

defined a map

π : E∞A −→
∐
v∈V

Xv,

where
∐

v∈V Xv is the disjoint union of the compact sets Xv (v ∈ V ). The

map π is called the coding map, and the set

J = JS = π(E∞A )

is called the limit set of the GDMS S. The sets

Jv = π({ω ∈ E∞A : i(ω1) = v}) (v ∈ V )

are called the local limit sets of S.

We call the GDMS S finite if the alphabet E is finite. Furthermore, we

call S maximal if for all a, b ∈ E, we have Aab = 1 if and only if t(b) = i(a).

In [26], a maximal GDMS was called a graph directed system (abbr. GDS).

Finally, we call a maximal GDMS S an iterated function system (or IFS ) if

V , the set of vertices of S, is a singleton. Equivalently, a GDMS is an IFS

if and only if the set of vertices of S is a singleton and all entries of the

incidence matrix A are equal to 1.

Definition 3.10. We call the GDMS S and its incidence matrix A finitely

(symbolically) irreducible if there exists a finite set Λ ⊂ E∗A such that for

all a, b ∈ E there exists a word ω ∈ Λ such that the concatenation aωb is

in E∗A. S and A are called finitely primitive if the set Λ may be chosen to
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consist of words all having the same length. Note that all IFSs are finitely

primitive.

Intending to pass to geometry and following [26], we call a GDMS con-

formal if for some d ∈ N, the following conditions are satisfied:

(a) For every vertex v ∈ V , Xv is a compact connected subset of Rd,

and Xv = Int(Xv).

(b) There exists a family of open connected sets Wv ⊂ Xv (v ∈ V ) such

that for every e ∈ E, the map φe extends to a C1 conformal dif-

feomorphism from Wt(e) into Wi(e) with Lipschitz constant bounded

above by some number λ < 1.

(c) There are two constants L ≥ 1 and α > 0 such that for every e ∈ E
and every pair of points x, y ∈ Xt(e),∣∣∣∣ |φ′e(y)|

|φ′e(x)|
− 1

∣∣∣∣ ≤ L‖y − x‖α,

where |φ′ω(x)| denotes the scaling of the derivative, which is a linear

similarity map.

Remark 3.11. If d ≥ 2 and a family S = {φe}e∈E satisfies the conditions

(a) and (b), then it also satisfies condition (c) with α = 1. When d = 2

this is due to the well–known Koebe’s distortion theorem. When d ≥ 3 it

is due to [26] depending heavily on Liouville’s representation theorem for

conformal mappings, see [18] for a detailed development leading up to the

strongest current version. If d = 1, condition (c) is only automatic if the

alphabet E is finite and all contractions φe are of C1+ε class.

Remark 3.12. We do emphasize that, unlike to [26], in the above definition,

and in all the results of this section, we do not need and we do not require

any separation condition whatsoever. In particular even its weakest form

φa (Int(X)) ∩ φb (Int(X)) = ∅.

for all a, b ∈ E such that a 6= b, known as the Open Set Condition, is not

assumed to hold. We also do emphasize that we do not impose any form of

boundary regularity, in particular no Cone Condition of [26].

3.3. Full Thin Annuli Property holds for (essentially all) Confor-

mal IFSs. In this subsection we establish the Full Thin Annuli Property

for a large class of conformal countable alphabet IFSs.

S = {φe : X → X}e∈E,

where X ⊂ Rd, d ≥ 1.
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Definition 3.13. We say that the system S is geometrically irreducible if

the limit set JS is not contained in any proper, i.e. of dimension ≤ d − 1,

real analytic sub-manifold; precisely: is not contained in a conformal image

of any affine hyperspace or geometric round sphere of dimension ≤ d− 1.

Throughout this whole Subsection 3.3 we assume that the system S is

geometrically irreducible. For the sake of brevity we denote

D(ω) := diam(φω(X))

for all ω ∈ E∗. The Bounded Distortion Property tells us that

(3.22) Q−1D(ω)D(τ) ≤ D(ωτ) ≤ QD(ω)D(τ)

for all ω, τ ∈ E∗ and some constant Q ≥ 1. In this section we consider

a (really large) class, called ME, of Borel probability measures µ on the

symbol space EN, determined by the following two requirements:

(A) Weak Independence:

P−1µ([ω])µ([τ ]) ≤ µ([ωτ ]) ≤ Pµ([ω])µ([τ ])

for some constant P ≥ 1 and all ω, τ ∈ E∗.
(B) There exists β > 0 such that

∑
e∈E

µ([e])

diamβ(φe(X))
< +∞.

Remark 3.14. All Gibbs measures, on the symbol space EN, introduced

and considered in [25] are weakly independent, i.e. enjoy the property (A).

It is easy to have abundance of measures satisfying the property (B); among

them are the Gibbs states of all (geometrically most significant) potentials

EN 3 ω 7−→ t log
∣∣φ′ω1

(π(σ(ω)))
∣∣ ∈ R, where t ≥ 0 is sufficiently large.

The main result of this subsection follows.

Theorem 3.15. If S = {φe : X → X}e∈E is a geometrically irreducible

conformal IFS, then for every µ ∈ ME the measure µ ◦ π−1 on JS has the

Thin Annuli Property with κ = 3 (in fact this is true for any κ > 1). In

other words:

lim
r→0

µ ◦ π−1 (B(x, r + r3) \B(x, r))

µ ◦ π−1 (B(x, r))
= 0 µ ◦ π−1–a.e.

In order to ease notation, let us denote by R(x, r, r3) the annulus centred

at x with inner radius r > 0 and outer radius r + r3, i.e.

R(x, r, r3) := B(x, r + r3) \B(x, r).

The proof of Theorem 3.15 consists of several steps listed below, and it has

been strongly influenced by the techniques of [7]. For the sake of brevity we

denote µ̂ := µ ◦ π−1.
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Lemma 3.16. There exist constants ρ > 0, H <∞ and a finite set F ⊂ E∗

such that for any x ∈ JS , any radius 0 < r < ρ, and any finite word ω ∈ E∗,
with diameter D(ω) ≥ Hr3, there exists a word τ ∈ F such that π([ωτ ])

does not intersect R(x, r, r3). In symbols:

π([ωτ ]) ∩R(x, r, r3) = ∅.

Lemma 3.17. There exist α > 0, C <∞, ρ > 0 such that for all 0 < r < ρ,

x ∈ JS and any finite word ω ∈ E∗, with diameter D(ω) ≥ r2, we have

(3.23) µ
(
[ω] ∩ π−1(R(x, r, r3))

)
≤ Crαµ([ω]).

Lemma 3.18. For any numbers 0 < A < B define the set

(3.24) TBA :=
{
ω ∈ EN : ∀k∈ND(ω|k) /∈ (A,B)

}
.

Then there exists C <∞ for which µ(TBA ) ≤ C
(
A
B

)β
ln
(
diamX
A

)
, where β is

the constant from condition (B) from the definition of the space ME.

Lemma 3.19. Let ν be an arbitrary Borel probability measure defined on

some bounded Borel set X ⊂ Rd. Let F be a measurable subset of X. Define

(3.25) S(F, c, ρ) := {x ∈ X : ν(B(x, ρ) ∩ F ) > cν(B(x, ρ))ν(F )} .

Then for any numbers c, ρ > 0 we have ν(S(F, c, ρ)) ≤ M/c, where M is

some constant depending only on the space X.

Proof of Lemma 3.16. Assume without loss of generality that E = N. Seek-

ing a contradiction suppose that there exist a sequence (rn)∞n=1 ↘ 0, a

sequence xn ∈ JS , n ∈ N, and a sequence of finite words ω(n) ∈ E∗ with

diameters satisfying

(3.26) D(ω(n)) ≥ nr3n

such that for every τ ∈ {1, 2, . . . , n}n the cylinder π([ω(n)τ ]) intersects

R(xn, rn, r
3
n). Let us denote

Rn := R(xn, rn, r
3
n) and Sn := ∂B(xn, rn) = {x ∈ Rd : ||x− xn|| = rn}.

Take then any sequence of similarities Tn, n ≥ 1, for which 0 ∈ Tn(π([ω(n)]))

and |T ′n| = (D(ω(n)))−1 for all n ≥ 1. Note that (Tn ◦φω(n))∞n=1 is a bounded

equicontinuous sequence of conformal maps with derivatives uniformly

bounded from above and uniformly separated from zero. Actually, in di-

mension d = 1 the conformality is not needed, making the proof easier.

Applying Ascoli-Arzela Theorem and passing to an appropriate subse-

quence we will have that the sequence (Tn ◦ φω(n))∞n=1 converges uniformly

on X to a conformal map U : X → Rd. Now, working with the one-point

(Alexandrov) compactification R̂d of Rd, with∞ as the compactifying point,
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endowing R̂d with spherical metric, and then the collection Kd of non-empty

compact subsets of R̂d with the corresponding Hausdorff metric dH , we see

that the collection Γ of all geometric spheres of R̂d, including the spheres

containing infinity (hyperplanes) and singletons, forms a compact subset of

Kd. Since Tn(Sn) ∈ Γ, passing to a subsequence, we can therefore assume

without loss of generality that Tn(Sn) converges in the Hausdorff metric dH

to some element Q ∈ Γ.

Depending on actual sizes of D(ω(n)), the limit object Q may be ei-

ther a sphere – the case if D(ω(n)) � rn, a point in Rd – the case if

D(ω(n))/rn →∞, or a hyperplane in Rd – which is so if D(ω(n))/rn → 0. In

all three cases the ratio of the outer and inner radii of the annulus Tn(Rn)

converges to one, as r+r3

r
→ 1 when r → 0.

In the first two cases, this immediately proves that also limn→∞ Tn(Rn) =

Q. In the third case, we need to use additionally (3.26), to conclude that

both spheres bounding the annulus R(xn, rn, rn + r3n), after rescaling by

(D(ω(n)))−1 ≤ 1
nr3n

tend to the same hyperplane in Rd.

So, finally, in all three cases we may conclude that

(3.27) lim
n→∞

Tn(Rn) = Q.

Observe also that by Definition 3.13 for every M ∈ Γ there exists a point

wM ∈ JS such that dist (wM ,M) > 0. Writing the wU−1(Q) = π(ξ) ∈ JS ,

ξ ∈ EN, we have that

dist (π(ξ), U−1(Q)) > 0.

We therefore conclude that there exists k ≥ 1 such that

(3.28) dist
(
π([ξ|k]), U−1(Q)

)
> 0.

Consider now only integers n ≥ k so large that all letters forming ξ|k belong

to {1, 2, . . . , n}. By our contrary hypothesis

φω(n)

(
φξ|k(JS)

)
∩Rn = φω(n)ξ|k(JS) ∩Rn 6= ∅.

Fix an arbitrary zn ∈ JS such that φω(n)ξ|k(zn) ∈ Rn. Passing to a subse-

quence we may assume without loss of generality that limn→∞ zn = z ∈ X
for some point z ∈ JS . Then, invoking also (3.27), we get that

lim
n→∞

Tn ◦ φω(n)(φξ|k(z)) = U(φξ|k(z)) ∈ Q.

Hence φξ|k(z) ∈ U−1(Q), and as φξ|k(z) ∈ π([ξ|k]), this contradicts (3.28)

and finishes the proof of our lemma. �

Proof of Lemma 3.17. Take ρ, H and the set F given by Lemma 3.16. First

of all, observe that, because the lengths of all words in F are uniformly
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bounded above, by taking an iterate of the system S we may assume that

F ⊂ E (instead of E∗). Fix x ∈ JS , 0 < r < ρ, and denote R := R(x, r, r3).

We will in fact prove a stronger fact; namely that with no restrictions

on D(ω)

(3.29) µ
(
[ω] ∩ π−1(R)

)
≤
(
Hr3

D(ω)

)α
µ([ω]),

for all ω ∈ E∗. This will trivially prove the lemma as its hypotheses require

that D(ω) ≥ r2. So, we now focus on the proof of (3.29). First note that

if D(ω) ≤ Hr3, then inequality (3.29) is trivial. Also for all n ≥ 1 big

enough and all ω ∈ En we have D(ω) ≤ Hr3. Now let us work from the

bottom upwards. Take a cylinder [ω] such that (3.29) is already proven for

all subcylinders [ωe], e ∈ E. We have

µ([ω] ∩ π−1(R)) =
∑
e∈E

µ([ωe] ∩ π−1(R)).

Applying Lemma 3.16, we may drop at least one element of this sum, say

b ∈ F , to get

µ([ω] ∩ π−1(R)) =
∑
E3a6=b

µ([ωa] ∩ π−1(R))

≤
∑
E3a6=b

(
Hr3

D(ωa)

)α
µ([ωa]) =

(
Hr3

)α ∑
E3a6=b

µ([ωa])

(D(ωa))α
,

where we used the estimate (3.29) for every cylinder [ωa]. In order to prove

the required inequality we need to have∑
E3a6=b

µ([ωa])

(D(ωa))α
≤ µ([ω])

(D(ω))α
=
∑
a∈E

µ([ωa])

(D(ω))α
,

where the equality sign trivially holds. Simplifying this gives∑
E3a6=b

((
D(ω)

D(ωa)

)α
− 1

)
µ([ωa]) ≤ µ([ωb]).

Applying Bounded Distortion Property (3.22) and Weak Independence of

µ, i.e. condition (A), we see that it is thus enough to prove that∑
E3a6=b

((
QD(ω)

D(ω)D(a)

)α
− 1

)
Pµ([ω])µ([a]) ≤ P−1µ([ω])µ([b]).

Recall that b was chosen from a finite set so P−2µ([b]) is bounded away from

zero, say P−2µ([b]) > δ for some fixed δ > 0. Simplifying again, we see that

it is enough to prove ∑
E3a6=b

((
Q

D(a)

)α
− 1

)
µ([a]) ≤ δ.
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Therefore, it is enough to have∑
E3a6=b

µ([a])

D(a)α
≤ Q−αδ +Q−α

∑
E3a6=b

µ([a]).

But since, by Assumption (B), the series on the left-hand side of this formula

converges for all α > 0 small enough. Its sum tends to
∑

E3a6=b µ([a]) as

α→ 0 and using a dominated convergence theorem we get that this formula

will hold for all α > 0 small enough. Thus the proof is complete. �

Proof of Lemma 3.18. First, divide TBA into disjoint subsets (for k = 0, 1 . . .)

TBA (k) =
{
ω ∈ EN : D(ω|k+1) ≤ A < B ≤ D(ω|k)

}
.

For any cylinder D(ω|k) ≤ λk diam(X), so for any n ≥ N := logλ
(

A
diamX

)
we have D(ω|n) ≤ A and TBA (n) = ∅. This allows us to write

(3.30) µ(TBA ) ≤
N∑
n=0

µ
(
TBA (n)

)
.

Now, fix 0 ≤ k ≤ N and ω ∈ EN. If D(ω|k) < B, then µ
(
TBA (k) ∩ [ω|k]

)
= 0.

If D(ω|k) ≥ B, then

µ
(
TBA (k) ∩ [ω|k]

)
=
∑
e

µ([ω|ke]),

where the sum is taken over those e ∈ E for which D(ω|ke) ≤ A. Applying

the Weak Independence of µ, i.e. condition (A) and Bounded Distortion

(3.22), we further get

µ
(
TBA (k) ∩ [ω|k]

)
≤

∑
D(ω|ka)≤A

Pµ([ω|k])µ([a]) ≤
∑

Q−1D(ω|k)D(a)≤A

Pµ([ω|k])µ([a]),

and using the fact that D(ω|k) ≥ B, this gives

(3.31) µ(TBA (k) ∩ [ω|k]) ≤ Pµ([ω|k])
∑

D(a)≤QA/B

µ([a]).

By Assumption (B) we may write:

+∞ > Z :=
∑
a∈E

µ([a])

D(a)β
≥

∑
D(a)≤QA/B

µ([a])

D(a)β
≥

∑
D(a)≤QA/B

µ([a])

(QA/B)β

=
∑

D(a)≤QA/B

µ([a])
( B

QA

)β
.

Combining this estimate with (3.31) gives

µ
(
TBA (k) ∩ [ω|k]

)
≤ Pµ([ω|k]) · Z

(QA
B

)β
,
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and summing over all cylinders [ω|k], this gives µ(TBA (k)) ≤ C(A/B)β with

some constant C. Finally applying (3.30), we get

µ(TBA ) ≤ logλ

( A

diamX

)
· C
(A
B

)β
. �

Proof of Lemma 3.19. Set S := S(F, c, ρ). By Besicovitch’s Covering The-

orem there exists a covering of S with balls B(xi, ρ), i ∈ I, all centred

at S, with finite multiplicity Md depending only on the dimension d. The

following estimate uses first, the definition of S and then the multiplicity,

bounded by Md, of the covering.

ν(S) ≤
∑
i∈I

ν(B(xi, ρ)) ≤
∑
i∈I

ν(B(xi, ρ) ∩ F )

cν(F )
≤ Mdν(F )

cν(F )
=
Md

c
. �

In the final proof of this section we also use Proposition 3.1 (proved in

[4]). Recall that it is an immediate consequence of, much stronger, Theo-

rem 3.2.

Proof of Theorem 3.15. We will show that for µ̂ almost every x ∈ JS and

all sufficiently small radii r > 0 we have that, for some γ > 0,

µ̂(R(x, r, r3)) ≤ Cµ̂(B(x, r))rγ.

First, using notation from Lemmas 3.18 and 3.19 define Tn := T 2−n

4−n , n ≥ 1

and denote T̂n = π(Tn). Put

Sn := S(T̂n, n
2, 4 · 2−n).

Lemma 3.19 gives that µ̂(Sn) ≤ M/n2 and so
∑

n µ̂(Sn) < ∞. Thus the

Borel–Cantelli Lemma applies to tell us that for µ̂ almost every x ∈ JS

there exists an integer K(x) ≥ 1 such that x /∈ Sk for all k ≥ K(x). Fix

x ∈ JS with such property, i.e. an arbitrary x produced by the Borel–Cantelli

Lemma. For any n ≥ 1 define the set

(3.32) Cn =
{

[ω] ∈ E∗ : D(ω) ≤ 2−n < D(ω||ω|−1)
}
.

Now, take any 0 < r ≤ 2−(K(x)+1). Define n ≥ 1 so as to satisfy the inequal-

ities 2−n−1 < r ≤ 2−n. Then

(3.33) n ≥ K(x).

Denote the annulus R(x, r, r3) by R and cover π−1(R) by cylinders from Cn.

We estimate the measure

µ̂(R) = µ ◦ π−1(R) ≤
∑
[ω]

∗µ([ω] ∩ π−1(R))

≤
∑

[ω]⊂Tn

∗ µ([ω] ∩ π−1(R))︸ ︷︷ ︸
I

+
∑

[ω]∩Tn=∅

∗ µ([ω] ∩ π−1(R))︸ ︷︷ ︸
II

,
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where the ∗ indicates that the corresponding sum above is taken over all

cylinders [ω] ∈ Cn intersecting π−1(B(x, r+ r3)). Recall that for such cylin-

ders D(ω) < 2r, and as r + r3 ≤ 2r, the cylinder [ω] is contained in the set

π−1(B(x, 4r)). So

I ≤
∑

[ω]⊂Tn

∗ µ([ω]) ≤ µ
(
Tn ∩ π−1(B(x, 4r))

)
≤ µ

(
Tn ∩ π−1(B(x, 4 · 2−n))

)
.

Now, first straightforward from the definition of Sn, and from the fact that,

because of (3.33), x /∈ Sn, then by applying Lemma 3.18, we get that

I ≤ n2µ
(
π−1(B(x, 4 · 2−n))

)
µ(Tn)

≤ n2µ̂
(
B(x, 4 · 2−n)

)
C

(
4−n

2−n

)β
ln
(diamX

4−n

)
≤ n2µ̂

(
B(x, 4 · 2−n)

)
· Ĉn2−nβ

≤ C̃µ̂ (B(x, 8r)) rβ/2

with appropriate constants Ĉ and C̃.

Finally, we apply the estimate of Proposition 3.1 with ε = β/4 to get

I ≤ C̃µ̂ (B(x, r)) r−εrβ/2 ≤ C̃µ̂ (B(x, r)) rβ/4

which completes the estimate of the first sum, i.e. the one labelled by I.

Now, observe that if [ω]∩ Tn = ∅, then D(ω) ≥ 4−n ≥ r2 and so we may

first apply Lemma 3.17, and then Proposition 3.1 with ε = α/2 to estimate

as follows:
II ≤

∑
[ω]∩Tn=∅

∗ Crαµ([ω]) ≤ Crαµ̂(B(x, 4r))

≤ Crαµ̂(B(x, r))r−ε ≤ Crα/2µ̂(B(x, r)).

This completes the upper estimate of II and finishes the entire proof. �

4. Applications and Examples: Exponential One Laws

Let us start by noting that all our examples are in Euclidean spaces,

so the assumption (iii) is always satisfied. In fact, one can prove that so is

(iii’), but we do not need it here.

4.1. Expanding Repellers. In this subsection we deal with the class of,

not assumed to be conformal, expanding repellers. The main result of this

short subsection is Theorem 4.5. It was proved in [34] (see also [31] for its

random counterpart) with the extra hypothesis that a sufficiently strong

version of the thin annuli property holds. The main point in our approach

is that we do not assume any form of thin annuli property. We proved it: this

is Theorem C. Because of the aforementioned papers, having Theorem C,

we could have actually skipped the actual proof of Theorem 4.5, merely
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referring to them. We however provide it as a prelude to more technically

involved further sections, for the sake of completeness, convenience of the

reader, and because this proof is quite short.

In what follows we will need the classical concepts of topological pressure,

variational principle, and equilibrium states. We bring them up now. Let

X be a compact metrizable space, T : X → X be a continuous map, and

ϕ : X → R be a continuous function. We denote by P(ϕ) its topological

pressure with respect to the dynamical system given by T , see for example

[30] for the definition and properties. One of the most important of these

properties is the following formula, commonly referred to as the Variational

Principle.

(4.1) P(ϕ) = sup
{

hµ(T ) +

∫
X

ϕdµ
}
,

where the supremum is taken over all Borel probability T–invariant mea-

sures on X. Any measure for which the supremum is attained is called an

equilibrium state of ϕ.

We now provide the definition of expanding repellers.

Definition 4.1. Let U be an open subset of Rd, d ≥ 1. Let J be a compact

subset of U . Let T : U → Rd be a C1+ε–differentiable map. The map T is

called an expanding repeller, if the following conditions are satisfied:

(1) T (J) = J ,

(2) for every z ∈ J the derivative T ′(z) : Rd → Rd is invertible and the

norm of its inverse is smaller than 1.

(3) there exists an open set V such that V ⊂ U and

J =
∞⋂
k=0

T−n(V ).

(4) the map T |J : J → J is topologically transitive.

Note that T is not required to be one-to-one; in fact usually it is not. Abusing

notation slightly we refer to the set J alone as an expanding repeller. In order

to use the uniform terminology we also call J the limit set of T .

One of the basic concepts associated with expanding repellers is this.

Definition 4.2. A finite coverR = {R1, . . . , Rq} ofX is said to be a Markov

partition of the space X for the mapping T if the following conditions hold.

(a) Ri = IntRi for all i = 1, 2, . . . , q.

(b) IntRi ∩ IntRj = ∅ for all i 6= j.

(c) IntRj ∩ T (IntRi) 6= ∅ =⇒ Rj ⊂ T (Ri) for all i, j = 1, 2, . . . , q.
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The elements of a Markov partition will be called cells in the sequel. The

existence of Markov partitions is guaranteed by the following theorem whose

proof can be found for instance in [30].

Theorem 4.3. Any expanding repeller T : J → J admits Markov partitions

of arbitrarily small diameters.

Another crucial theorem about expanding repellers is the following, see

[30] for a proof.

Theorem 4.4. If T : J → J be an expanding repeller and ψ : J → R is a

Hölder continuous potential, then there exists µψ, a unique equilibrium state

for ψ with respect to T .

The equilibrium state µψ is also a unique Gibbs state of ψ. A definition

of them can be again found in [30]; we will not need it here. We are now

ready to state and prove the main result of this subsection.

Theorem 4.5. Let T : J → J be an expanding repeller, let ψ : J → R be

a Hölder continuous potential, and let µψ be the corresponding equilibrium

(Gibbs) state. Then the measure–preserving dynamical system
(
T, µψ

)
is

Weakly Markov. In particular, the exponential one laws of Theorem A hold.

Proof. We shall check that the system satisfies the requirements of Defini-

tion 2.2 defining Weakly Markov systems. Property (i) of this definition for

the dynamical system
(
T, µψ

)
has been proved in [30]. Property (ii) also

has been proved therein. As mentioned, (iii) will be always satisfied in our

examples. �

4.2. Equilibrium Measures (States) for Holomorphic Endomorphisms

of Complex Projective Spaces. Let f : Pk → Pk be a holomorphic en-

domorphism of a complex projective space Pk, k ≥ 1, and let J(f) be the

Julia set of f , which is commonly defined to be the topological support

of the (unique) Borel probability f–invariant measure of maximal entropy.

Generally, this system is not conformal, although sometimes it is, for ex-

ample if k = 1, the case dealt with in Section 4.6. Let ϕ : J(f) → R be a

Hölder continuous function. It was proved in [43] that if

sup(ϕ)− inf(ϕ) < κf ,

where 0 < κf ≤ log d is some constant depending on the map f , then ϕ

admits a unique equilibrium state µϕ on J(f). Further strong stochastic

properties of the measure µϕ were established in [40]. A potential ϕ satis-

fying the above condition is called admissible.
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Now, we shall prove the following main result of this section.

Theorem 4.6. Let f : Pk → Pk, k ≥ 1, be a holomorphic endomorphism of

a complex projective space Pk of degree d ≥ 1. Let ϕ : J(f)→ R be an admis-

sible potential, and let µϕ be its unique equilibrium state. Then (J(f), f, µϕ)

forms a Weakly Markov system. Consequently, Theorem A holds for this

system.

Proof. We shall check that the system satisfies the requirements of Defini-

tion 2.2 defining Weakly Markov systems. Item (i) of this definition follows

from Theorem 7.6 in [40]. Item (ii), i.e. positive lower pointwise dimension,

can be deduced from much more precise estimate of the lower pointwise

dimension of some f–invariant Borel probability measures obtained in [12],

Theorem A. Indeed, note that the hypothesis of this theorem,

hµ(f) > (k − 1) log d,

is fulfilled for our system since,

hµϕ(f) +

∫
J

ϕdµϕ = P(ϕ) ≥ hm(f) +

∫
J

ϕdm ≥ k log d+ inf(ϕ)

> k log d+ sup(ϕ)− log d

= supϕ+ (k − 1) log d,

where we denoted by m the measure of maximal entropy of f . Hence,

hµϕ(f) > (k − 1) log d+
(

sup(ϕ)−
∫
ϕdµϕ

)
≥ (k − 1) log d,

as required. �

4.3. Conformal Graph Directed Markov Systems and Conformal

IFSs. Entering this subsection we start to deal with conformal systems. The

ultimate difference between the examples to follow and those considered in

the previous sections is that now we will be able to establish the convergence

to the exponential one law, i.e. formulas (1.1)–(1.4) for Full classes of radii

and not merely β–Ultra Thick ones. Up to our best knowledge, this is the

first time that the convergence to the exponential law is proved to hold for

so general systems and measures along all radii.

In this subsection we apply our results about the exponential distribu-

tion of statistics of return times, namely Theorem B for Weakly Markov

systems and also the thin annuli property (Theorem 3.15, the same as The-

orem D from the introduction) for conformal IFSs to obtain Theorem 4.8

(the same as Theorem E from the introduction), i.e. the statistics of ex-

ponential one law for dynamical systems naturally induced by conformal
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GDMSs, in particular by conformal IFSs. So, let

S := {φe : Xt(e) → Xi(e) : e ∈ E}

be a conformal GDMS as defined in Section 3.2 and let A : E ×E → {0, 1}
denote its incidence matrix. We assume throughout the subsection that A

(and so also S) is finitely irreducible. This time we however assume in ad-

dition that the Open Set Condition, in fact the Strong Open Set Condition

of [26] holds. The Open Set Condition means that

(4.2) φa
(
Int(Xt(a))

)
∩ φb

(
Int(Xt(b))

)
= ∅

whenever a, b ∈ E with a 6= b. By a standard induction this condition

implies that

(4.3) φω
(
Int(Xt(ω))

)
∩ φτ

(
Int(Xt(τ))

)
= ∅

whenever ω and τ are any two incomparable words in E∗A. The Strong Open

Set Condition requires that in addition

JS ∩ Int(X) 6= ∅.

Now let f : EN
A → R be a Hölder continuous function, called in the sequel

potential. We assume that f is summable, meaning that∑
e∈E

exp
(

sup(f |[e])
)
< +∞.

It is well known (see [26] or [25]) that the following limit

P(f) := lim
n→∞

1

n
log

∑
ω∈EnA

exp
(

sup(f |[ω])
)

exists. It is called the topological pressure of f . It was proved in [25] (cf.

[26]) that there exists a unique shift-invariant Gibbs/equilibrium measure

µf for the potential f . The Gibbs property means that

C−1f ≤
µf ([ω|n])

exp
(
Snf(ω)− P(f)n

) ≤ Cf

with some constant Cf ≥ 1 for every ω ∈ EN
A and every integer n ≥ 1, where

here and in the sequel throughout this subsection

Sn(g) = gn(ω) :=
n−1∑
j=0

g ◦ σj

for every function g : EN
A → C. Let us record the following basic properties

of the Gibbs state µf .
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Fact 1. If the matrix A is finitely irreducible and if f : EN
A → R is a

summable Hölder continuous potential, then the unique Gibbs state µf is

ergodic and its topological support is equal to EN
A. In addition µf enjoys the

Weak Independence Property (A).

Ergodicity has been proved in [26] while the Weak Independence Property

(A) follows immediately from the Gibbs property.

Following [42] we introduce the set

J̊S := JS \
⋃
ω∈E∗A

φω(∂Xt(ω)).

We define

E̊N
A := π−1S

(
J̊
)

and notice that for every z ∈ J̊S there exists a unique ω(z) ∈ EN
A such that

z = π(ω(z)).

Moreover, ω(z) ∈ E̊N
A and we simply denote it by π−1(z). Note that

σ
(
E̊N
A

)
⊂ E̊N

A

and this restricted shift map induces a map TS : J̊S → J̊S by the formula

TS(z) = π ◦ σ(π−1(z)) ∈ J̊S ,

so that the diagram
E̊N
A

σ−−−→ E̊N
A

π

y yπ
J̊S −−−→

TS
J̊S

commutes and the map π : E̊N
A → J̊S is a continuous bijection. The map

TS : J̊S → J̊S is the main object of our interest in this subsection. Following

notation of Section 3.3 we denote

µ̂f := µf ◦ π−1S .

The following observation we deduce directly from Fact 1.

Observation 4.7. Suppose that S is a finitely irreducible conformal GDMS

satisfying the Strong Open Set Condition. If f : EN
A → R is a summable

Hölder continuous potential, then

µf
(
E̊N
A

)
= 1 and µ̂f

(
J̊S
)

= 1.

Moreover, the projection π : E̊N
A → J̊S establishes a measure–preserving iso-

morphism between measure–preserving dynamical systems
(
σ : E̊N

A → E̊N
A, µf

)
and

(
TS : J̊S → J̊S , µ̂f

)
.
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We shall prove the following.

Theorem 4.8. Suppose that S is a finitely irreducible and geometrically

irreducible conformal GDMS satisfying the Strong Open Set Condition. If

f : EN
A → R is a summable Hölder continuous potential such that

(4.4)
∑
e∈E

exp
(

inf
(
f |[e]

))
||φ′e||−β∞ < +∞

for some β > 0, then the measure–preserving dynamical system
(
TS : J̊S →

J̊S , µ̂f
)

is Weakly Markov and satisfies the Full Thin Annuli Property. In

consequence, the exponential one laws of (1.1) and (1.2) hold for the dy-

namical system
(
TS : J̊S → J̊S , µ̂f

)
. Precisely,

(4.5) lim
r→0

sup
t≥0

∣∣∣∣µ̂f ({z ∈ X : τBr(x)(z) >
t

µ̂f (Br(x))

})
− e−t

∣∣∣∣ = 0

for µ–a.e. x ∈ X, i.e. the distributions of the normalized first entry time

converge to the exponential one law, and

(4.6) lim
r→0

sup
t≥0

∣∣∣∣µ̂fBr(x)({z ∈ Br(x) : τBr(x)(z) >
t

µ̂f (Br(x))

})
− e−t

∣∣∣∣ = 0

for µ–a.e. x ∈ X, i.e. the distributions of the normalized first return time

converge to the exponential one law.

Proof. Property (i) of being Weakly Markov (i.e. of Definition 2.2) for the

dynamical system
(
σ : E̊N

A → E̊N
A, µf

)
has been proved in [26]. For the

dynamical system
(
TS : J̊S → J̊S , µ̂f

)
it then follows from the fact that the

projection πS : EN
A → JS is Hölder continuous. Property (ii) has been also

proved in [26].

Since, see Theorem 3.15, measure µ̂f satisfies the Full Thin Annuli Prop-

erty for IFSs, we are done in the case when S is an IFS. In the general case

we need an inducing argument. We only need to show that µ̂f satisfies the

Full Thin Annuli Property. Fix a ∈ E arbitrary and consider the following

collection of A-admissible words.

Ea :=
{
τ ∈ E∗A : τ1 = a, ∀2≤k≤|τ | τk 6= a, Aτ|τ |a = 1

}
.

This gives rise to the following system of conformal uniformly contracting

maps

Sa :=
{
φτ |φa(Xt(a)) : φa

(
Xt(a)

)
→ φa

(
Xt(a)

)}
.

It is evident that E∗a ⊂ E∗A and that Sa forms a conformal IFS whose limit

set is contained in JS ∩ φa
(
Xt(a)

)
; in the same vein the first return map

σa : [a] → [a] is canonically isomorphic to the full shift from EN
a to EN

a .

Moreover, the conditional measure µa,f on [a] is the only Gibbs/equilibrium
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state of the shift map σa : [a] → [a] and the Hölder continuous summable

potential

Ea 3 ω 7−→ S|ω1|f(ω)− P(f)|ω1| ∈ R,
where |ω1| maintains its original meaning as the length of a word in E∗A
and S|ω1|f denotes a Birkhoff’s sum with respect to the original shift map

σ : EN
A → EN

A. It therefore follows from the already proven cases of IFSs that

µa,f satisfies the Full Thin Annuli Property. Since, by Poincaré Recurrence

Theorem,

µf
(
φe(Xt(e)) ∩ JSe

)
= µf

(
φe(Xt(e))

)
and since

B(z, r) ⊂ Int
(
φπ−1(z)(Xt(π−1(z)))

)
⊂ φπ−1(z)

(
Xt(π−1(z))

)
for all radii r > 0 small enough, we therefore conclude that µf itself has the

Full Thin Annuli Property. The proof is complete. �

Remark 4.9. Note that if the system S of Theorem 4.8 is finite, then

the hypothesis (4.4) is automatically satisfied and can be removed from its

assumptions.

Now we will pass to deal with measures that are of more geometric flavor.

Definition 4.10. We say that a real number s belongs to ΓS , if

(4.7)
∑
e∈E

||φ′e||s∞ < +∞.

We define the function ζ : EN
A → R

ζ(ω) := log
∣∣φ′ω1

(πS(σ(ω)))
∣∣.

For every t ∈ R we consider the potential

tζ : E∞A → R.

Furthermore, we set

P(t) := P(tζ).

Let us record the following immediate observation.

Observation 4.11. A real number s belongs to ΓS if and only if the Hölder

continuous potential sζ : EN
A → R is summable.

We recall from [23] and [26] the following definitions:

γS := inf ΓS = inf
{
s ∈ R :

∑
e∈E

||φ′e||s∞ < +∞
}
.

Note that if the alphabet E is finite, then γS = −∞ and if E is infinite,

then γS ≥ 0. The proof of the following statement can be found in [26].
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Proposition 4.12. If S is a finitely irreducible conformal GDMS, then for

every s ≥ 0 we have that

ΓS = {s ∈ R : P(s) < +∞}

In particular,

γS = inf {s ∈ R : P(s) < +∞} .

For every t ∈ ΓS we abbreviate

µt := µtζ .

As an immediate consequence of Theorem 4.8 we get the following.

Corollary 4.13. Suppose that S is a finitely irreducible and geometrically

irreducible conformal GDMS satisfying the Strong Open Set Condition. Fix a

real number t > γS . Then the corresponding measure–preserving dynamical

system
(
TS : J̊S → J̊S , µ̂t

)
is Weakly Markov and satisfies the Full Thin

Annuli Property. In particular, the exponential one laws of (1.1) and (1.2)

hold for the dynamical system
(
TS : J̊S → J̊S , µ̂t

)
.

Remark 4.14. Recall that if the system S of Corollary 4.13 is finite, then

γS = −∞ and the hypothesis t > γS is automatically fulfilled.

Remark 4.15. In the setting of Corollary 4.13, let hS be the Hausdorff

dimension of the limit set JS . It is known, see [26], that then HhS (JS), the

hS–dimensional Hausdorff measure of JS is finite while the corresponding

packing measure PhS (JS) is positive. If either one of these two measures is

both finite and positive, then this measure is equivalent to the measure µ̂hS
(which then does exist!) with uniformly bounded Radon–Nikodym deriva-

tives. Thus the Full Thin Annuli Property holds respectively for HhS or

PhS (or both) restricted to JS . This is always the case when the system S
is finite. Note also that if µ is any finite Borel measure satisfying Ahlfors

property with exponent h > d − 1, then, as a straight volume argument

shows, this measure satisfies the Full Thin Annuli Property at each point

of its topological support.

Since, as it is well known, the harmonic measure of the limit set of a finite

conformal IFS which satisfies the strong separation condition, is equivalent,

with uniformly bounded Radon–Nikodym derivatives, to a Gibbs/equilib-

rium measure, as an immediate consequence of Theorem 4.8, we get the

following.
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Corollary 4.16. Suppose that S is a conformal IFS in the complex plane

C satisfying the Strong Separation Condition. Then the harmonic measure

of its limit set satisfies the Full Thin Annuli Property.

In fact this corollary is a consequence of Theorem 4.8 under the additional

assumption of geometrical irreducibility. In the real–analytic case, still IFS,

it follows, from easy to prove, upper estimates of the harmonic measure of

a ball by its radius raised to some positive power.

4.4. Conformal Parabolic GDMSs. In this subsection, following [24]

and [26], we first shall provide the appropriate setting and basic proper-

ties of conformal parabolic iterated function systems, and more generally

of parabolic graph directed Markov systems. We then prove for them the

appropriate theorems on convergence to the exponential law.

As in Section 3.2 there are given a directed multigraph (V,E, i, t) (E and

V both (!) finite), an incidence matrix A : E × E → {0, 1}, and two func-

tions i, t : E → V such that Aab = 1 implies t(b) = i(a). Also, we have

nonempty compact metric spaces {Xv}v∈V and their respective bounded

connected neighborhoods Wv, v ∈ V . Suppose further that we have a col-

lection of conformal maps φe : Xt(e) → Xi(e), e ∈ E, satisfying the following

conditions:

(1) Open Set Condition: φi(Int(X)) ∩ φj(Int(X)) = ∅ for all i 6= j.

(2) |φ′i(x)| < 1 everywhere except for finitely many pairs (i, xi), i ∈ E,

for which xi is the unique fixed point of φi and |φ′i(xi)| = 1. Such

pairs and indices i will be called parabolic and the set of parabolic

indices will be denoted by Ω. All other indices will be called hyper-

bolic. We assume that Aii = 1 for all i ∈ Ω.

(3) ∀n ≥ 1 ∀ω = (ω1, ..., ωn) ∈ En
A if ωn is a hyperbolic index or ωn−1 6=

ωn, then φω extends conformally to an open connected set Wt(ωn) ⊂
Rd and maps Wt(ωn) into Wi(ωn).

(4) If i is a parabolic index, then
⋂
n≥0 φin(X) = {xi} and the diameters

of the sets φin(X) converge to 0.

(5) ∃s < 1 ∀n ≥ 1 ∀ω ∈ En
A if ωn is a hyperbolic index or ωn−1 6= ωn,

then

‖φ′ω‖ ≤ s.

We call such a system of maps

S = {φi : i ∈ E}
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a subparabolic iterated function system. Let us note that conditions (1), (3),

(5) are modeled on similar conditions which were used to examine hyperbolic

conformal systems. If Ω 6= ∅, we call the system {φi : i ∈ E} parabolic. As

declared in (2) the elements of the set E\Ω are called hyperbolic. We extend

this name to all the words appearing in (5). It follows from (3) that for every

hyperbolic word ω,

φω(Wt(ω)) ⊂ Wt(ω).

Note that our conditions ensure that φ′i(x) 6= 0 for all i ∈ E and all x ∈ Xt(i).

It was proved (though only for IFSs but the case of GDMSs can be treated

completely similarly) in [24] (comp. [26]) that

(4.8) lim
n→∞

sup
|ω|=n
{diam(φω(Xt(ω)))} = 0.

As its immediate consequence, we record the following.

Corollary 4.17. The map π : E∞A → X :=
⊕

v∈V Xv,

{π(ω)} :=
⋂
n≥0

φω|n(X),

is well defined, i.e. this intersection is always a singleton, and the map π is

uniformly continuous.

As for hyperbolic (attracting) systems the limit set J = JS of the system

S = {φe}e∈e is defined to be

JS := π(E∞A )

and it enjoys the following self-reproducing property:

J =
⋃
e∈E

φe(J).

We now, following still [24] and [26], want to associate to the parabolic

system S a canonical hyperbolic system S∗. The set of edges is this.

E∗ :=
{
inj : n ≥ 1, i ∈ Ω, i 6= j ∈ E, Aij = 1

}
∪ (E \ Ω) ⊂ E∗A.

We set

V∗ = t(E∗) ∪ i(E∗)
and keep the functions t and i on E∗ as the restrictions of t and i from

E∗A. The incidence matrix A∗ : E∗ × E∗ → {0, 1} is defined in the natural

(the only reasonable) way by declaring that A∗ab = 1 if and only if ab ∈ E∗A.

Finally

S∗ := {φe : Xt(e) → Xt(e) : e ∈ E∗}.
It immediately follows from our assumptions (see [24] and [26] for details)

that the following is true.
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Theorem 4.18. The system S∗ is a hyperbolic conformal GDMS and the

limit sets JS and JS∗ differ only by a countable set.

We have the following quantitative result, whose complete proof can be

found in [1].

Proposition 4.19. Let S be a conformal parabolic GDMS. Then there exists

a constant C ∈ (0,+∞) and for every i ∈ Ω there exists some constant

βi ∈ (0,+∞) such that for all n ≥ 1 and for all z ∈ Xi :=
⋃
j∈I\{i} φj(X),

C−1n
−βi+1

βi ≤ |φ′in(z)| ≤ Cn
−βi+1

βi .

In fact we know more: if d = 2 then all constants βi are integers ≥ 1 and if

d ≥ 3, then all constants βi are equal to 1.

Let

β = βS := min{βi : i ∈ Ω}.

Passing to equilibrium/Gibbs states and their escape rates, we now describe

the class of potentials we want to deal with. This class is somewhat narrow

as we restrict ourselves to geometric potentials only. There is no obvious nat-

ural larger class of potentials for which our methods would work and trying

to identify such classes would be of dubious value and unclear benefits. We

thus only consider potentials of the form

E∞A 3 ω 7→ ζt(ω) := t log
∣∣φ′ω0

(πS(σ(ω)))
∣∣ ∈ R, t ≥ 0.

We then define the potential ζ∗t : E∞∗A∗ → R as

ζ∗t (injω) =
n∑
k=0

ζt(σ
k(injω)), i ∈ Ω, n ≥ 0, j 6= i and injω ∈ E∞∗A∗ .

We shall prove the following.

Proposition 4.20. If S is a finite conformal parabolic GDMS, then given

t ≥ 0 the potential ζ∗t is Hölder continuous. Moreover, this potential is

summable if and only if

t >
β

β + 1
.

Proof. Hölder continuity of potentials ζ∗t , t ≥ 0, follows from the fact that

the system S∗ is hyperbolic, particularly from its distortion property, while

the summability statement immediately follows from Proposition 4.19. �

So, for every t > β
β+1

we can define µ∗t to be the unique equilibrium/Gibbs

state for the potential ζ∗t with respect to the shift map σ∗ : E∞∗A∗ → E∞∗A∗ .
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We know that µ∗t gives rise to a Borel σ-finite, unique up to multiplica-

tive constant, σ-invariant measure µt on E∞A , absolutely continuous, in fact

equivalent, with respect to µ∗t ; see [26] for details in the case of t = bS = bS∗ ,

the Bowen’s parameter of the systems S and S∗ alike. The case of all other

t > β
β+1

can be treated similarly. It follows from [26] that the measure µt is

finite if and only if either

(a) t ∈
(

β
β+1

, bS

)
or

(b) t = bS and bS >
2β
β+1

.

The main result of this subsection is the following.

Theorem 4.21. Suppose that S is a finite irreducible and geometrically

irreducible parabolic conformal GDMS satisfying the Strong Open Set Con-

dition. Fix a real number t for which one of the conditions (a) or (b) above

holds. Then the corresponding measure–preserving dynamical system
(
TS :

J̊S → J̊S , µ̂t
)

satisfies the Full Thin Annuli Property and the exponential one

laws of (1.1) and (1.2) hold for the dynamical system
(
TS : J̊S → J̊S , µ̂t

)
.

Proof. The proof consists of the following three ingredients. The first one is

that the induced system S∗ with the measure µ∗t satisfies all the hypotheses

of Corollary 4.13. The second one is that the measure–preserving dynamical

system
(
TS∗ : J̊S∗ → J̊S∗ , µ̂

∗
t

)
forms the 1st return time map of the measure–

preserving system
(
TS : J̊S → J̊S , µ̂t

)
. The third one is that, according to

one of the main results of [17], if the 1st return time map of a measure–

preserving dynamical systems satisfies the exponential one laws of (1.1) and

(1.2), then so does the original system. �

We would like to remark that Theorem 4.21 covers such examples as

Parabolic Cantor Sets (see [41]) Apollonian packing system (see [26]), and

finitely generated Schottky groups with some generating ball tangent to each

other, Farey map, and much more. More information about these systems

can be found for example in [26].

We would like however to single out one class of parabolic systems,

namely parabolic rational functions. These are defined as rational functions

of the Riemann sphere whose restrictions to their Julia sets are expansive

but not expanding. Equivalently (see [10]), those whose Julia sets contain

no critical points but do contain rationally indifferent (parabolic) periodic

points. Such rational functions admit Markov partitions with arbitrarily

small diameters (see [10] again). Thus, these can be viewed as finite para-

bolic conformal iterated function systems. Let f : Ĉ→ Ĉ be such a function.
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Let hf be the Hausdorff dimension of the Julia set J(f) of f . Let p ≥ 1

denote the maximal number of petals around parabolic periodic points of f .

It coincides with the number β of the above mentioned parabolic iterated

function system. Suppose that

(4.9) hf >
2p

p+ 1
.

We know from [10], [11], and [1] that if (4.9) holds, in fact if hf ≥ 1,

then the hf -dimensional Hausdorff measure of J(f) is positive and finite.

Furthermore (see the same three papers), still assuming (4.9), there exists

then a unique probability f -invariant measure absolutely continuous, in fact

equivalent, with respect to this Hausdorff measure. This invariant measure

coincides with the measure µ̂hf obtained from the parabolic conformal iter-

ated function system generated by the above mentioned Markov partition.

Therefore, Theorem 4.21 entails the following.

Theorem 4.22. Let f : Ĉ→ Ĉ be a parabolic rational function whose Julia

sets is not contained in any real analytic curve. Assume also that (4.9)

holds. Then the measure µ̂hf satisfies the Full Thin Annuli Property and

the exponential one laws of (1.1) and (1.2) hold for the dynamical system

(f : J(f)→ J(f), µ̂hf
)
.

Remark 4.23. A classical example to which Theorem 4.22 applies is the

polynomial Ĉ 3 z 7→ z2 + 1
4
.

Remark 4.24. The obvious analogue of Theorem 4.22 holds for all t ∈(
p
p+1

, hf

)
. Note however that this case is also covered by Subsection 4.6.

4.5. Conformal Expanding Repellers. Now let us formulate the defi-

nition of a conformal expanding repeller, the primary object of interest in

this subsection.

Definition 4.25. Let U be an open subset of Rd, d ≥ 1. Let J be a compact

subset of U . Let T : U → Rd be a conformal map. The map T is called a

conformal expanding repeller if the following conditions are satisfied:

(1) T (J) = J ,

(2) |T ′|J | > 1,

(3) there exists an open set V such that V ⊂ U and

J =
∞⋂
k=0

T−n(V ).

(4) the map T|J : J → J is topologically transitive.
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So, a conformal expanding repeller is an expanding repeller of Subsection 4.1

for which the corresponding map T is not merely smooth but conformal.

Typical examples of conformal expanding repellers are provided by the fol-

lowing.

Proposition 4.26. If f : Ĉ → Ĉ is a rational function of degree d ≥ 2,

such that the map f restricted to its Julia set J(f) is expanding, then J(f)

is a conformal expanding repeller.

Theorem 4.27. Let T : J → J be a conformal expanding repeller such that

J is not contained in any real analytic submanifold of dimension ≤ d − 1.

Let ψ : J → R be a Hölder continuous potential and, see [30], let µψ be the

corresponding equilibrium (also frequently referred to as Gibbs) state. Then

the measure–preserving dynamical system
(
T : J → J, µψ

)
is Weakly Markov

and satisfies the Full Thin Annuli Property. In particular, the exponential

one laws of (1.1) and (1.2) hold for the dynamical system
(
T : J → J, µψ

)
.

Proof. The dynamical system
(
T : J → J, µψ

)
is Weakly Markov because

this property was established in Theorem 4.5 for all expanding repellers. For

the Full Thin Annuli Property we use again the Markov partitions discussed

in Subsection 4.1. So, let

R = {R1, . . . , Rq}

be the Markov partition considered therein. We now associate to R a finite

conformal graph directed Markov system. The set of vertices is equal to R
while the alphabet E is defined as follows.

E :=
{

(i, j) ∈ {1, 2 . . . , q} × {1, 2 . . . , q} : IntRj ∩ T (IntRi) 6= ∅
}
.

Now, for every (i, j) ∈ E there exists a unique conformal map T−1i,j :

B(Rj, δ)→ Rd satisfying

T−1i,j (Rj) ⊂ Ri.

Define the incidence matrix A : E × E → {0, 1} by

A(i,j)(k,l) =

{
1 if l = i

0 if l 6= i.

Define further

t(i, j) = j and i(i, j) = i.

Of course,

SR = {T−1i,j : (i, j) ∈ E}
forms a finite conformal directed Markov system, and SR is irreducible since

the map T : J → J is transitive. In addition, SR is geometrically irreducible
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because J is not contained in any any real analytic submanifold of dimension

≤ d− 1. Define the potential ψ̂ : EN
A → R by

ψ̂ := ψ
(
πSR

)
.

The potential ψ̂ is Hölder continuous as a composition of two Hölder con-

tinuous functions; Hölder continuity of πSR with the standard metric on

the symbol space follows immediately from the expanding property and a

detailed proof can be found e.g. in [30]. Moreover, it is known (see [30]) that

µψ = µψ̂ ◦ π
−1
SR .

Therefore, the Full Thin Annuli Property of µψ follows from Theorem 4.8;

remember that this is not a property of a system but of a measure. The

proof is complete. �

Remark 4.28. Since, every conformal expanding repeller T : J → J admits

a finite Markov partition (see Theorem 4.27), the proof of this theorem

shows that Corollary 4.13 and Remark 4.15 now apply, the latter for IFSs

with finite alphabets. These two thus yield the Full Thin Annuli Property

of HD(J)–dimensional Hausdorff measure of J .

4.6. Equilibrium States for Rational Maps of the Riemann Sphere

Ĉ and Hölder Continuous Potentials with a Pressure Gap.

Let f : Ĉ → Ĉ be a rational map of degree larger than 1. Denote by

J(f) its Julia set. Let ϕ : J(f) → R be a Hölder continuous function. As

in previous subsections keep P(ϕ) to denote its topological pressure with

respect to the dynamical system generated by the map f : J(f) → J(f).

M. Lyubich proved in [22] that in our context of rational functions each

continuous function admits an equilibrium state. It was shown in [9] that if

ϕ (being Hölder continuous) has a pressure gap, i.e. if

P(ϕ) >
1

n
sup(Snϕ)

for some integer n ≥ 1, then there exists a unique equilibrium measure for

ϕ which we again denote by µϕ.

In [39] several strong stochastic properties of this equilibrium measure

µϕ have been deduced from a special inducing scheme. The induced map

forms a conformal Iterated Function System, satisfying the Strong Separa-

tion Condition, in particular the Strong Open Set Condition. Now we shall

prove the following main result of this section.

Theorem 4.29. Let f : Ĉ → Ĉ be an arbitrary rational map of degree

larger than 1 whose Julia set is not contained in a real analytic curve (this
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is always the case if for instance HD(J(f)) > 1). Let ϕ : J(f) → R be a

Hölder continuous function with a pressure gap. Then (J(f), f, µϕ) forms a

Weakly Markov system with the Full Thin Annuli Property. Consequently,

the exponential one laws of (1.1) and (1.2) hold for the dynamical system(
T : J(f)→ J(f), µϕ

)
.

Proof. In order to check that the required properties hold, we refer to appro-

priate results in [39]. The argument for the dynamical system
(
T : J(f)→

J(f), µϕ
)

to be Weakly Markov is actually the same as the one presented

in the proof of Theorem 4.6. It is exactly the same for item (i) while the

argument for item (ii) is simpler; it holds in the current one-dimensional

setting, since the limit under consideration exists µϕ–a.e. and is equal to

the Hausdorff dimension of the measure µϕ, which is a positive number.

The Full Thin Annuli Property is a consequence of the above-mentioned

fine inducing procedure, see [39], Section 3. We follow the notation of [39],

especially Section 8 of this paper. The fine inducing construction leads to a

conformal IFS, satisfying the Strong Separation Condition, and such that

the limit set of this system is of full µϕ measure. We denote this system

by S. We recall briefly the way this induced system is constructed. For a

properly chosen topological disc U , the system S is defined by a family of

conformal univalent homeomorphisms φe : U → De, e ∈ E, where E is some

countable set and De ⊂ U for every e ∈ E. Each map φe, e ∈ E, is just, a

suitably chosen, holomorphic branch of the inverse of some iterate of f , say

fN(e), mapping U onto De. As usual, denote the corresponding projection

from EN to Ĉ by πS . The iterated function system S, together with the

summable Hölder potential

ϕ = SN(e)ϕ ◦ πS − P(ϕ)N(e) : EN → R,

arising naturally from the inducing procedure, admits an (invariant) equi-

librium state which is equivalent to the initial measure µϕ. We claim that

the IFS S together with the (induced) potential ϕ, satisfies the hypotheses

of Theorem 4.8, with f therein being replaced by ϕ. We shall sketch the ar-

gument here, referring to appropriate estimates in [39]. The estimate which

we need to verify the assumption of Theorem 4.8 is the following (see (4.4))

(4.10)
∑
e∈E

exp
(

inf
(
ϕ|[e]

))
||φ′e||−β∞ < +∞

with some β > 0. Note, however, that exp
(

inf
(
ϕ|[e]

))
is multiplicatively

comparable to µϕ(De) independently of e, and, consequently, in order to
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verify (4.10), it is enough to check that

(4.11)

∫
|F ′|βdµϕ <∞ for some β > 0,

where the map F is defined on each set De just as (φe)
−1. This can be easily

done by using the estimates provided in [39]. Indeed, by the definition of F

and the system S, we have that F |De = fN(e)|De . Moreover, the estimates

in [39] (see e.g. the formula (3.1) in [39]) show that

µϕ

( ⋃
e : N(e)≥n

De

)
≤ 2e−nγ

for every integer n ≥ 1 and some γ > 0. Using the trivial estimate |F ′| ≤
||f ′||N(e), (4.11) follows immediately. Finally, the system S is geometrically

irreducible since the Julia set is not contained in any real analytic curve.

Therefore, we are in position to apply Theorem 4.8, and the measure µϕ

has the Full Thin Annuli Property. The proof is complete. �

4.7. Dynamically Semi–Regular Meromorphic Functions.

Let f : C → Ĉ be a meromorphic function. Let Sing(f−1) be the set of

all singular points of f−1, i.e. the set of all points w ∈ Ĉ such that if W

is any open connected neighborhood of w, then there exists a connected

component U of f−1(W ) such that the map f : U → W is not bijective. Of

course, if f is a rational function, then Sing(f−1) = f(Crit(f)). Define

PS(f) :=
∞⋃
n=0

fn(Sing(f−1)).

The function f is called topologically hyperbolic if

dist Euclid(Jf ,PS(f)) > 0,

and it is called expanding if there exist c > 0 and λ > 1 such that

|(fn)′(z)| ≥ cλn

for all integers n ≥ 1 and all points z ∈ Jf\f−n(∞). Note that every topolog-

ically hyperbolic meromorphic function is tame (see definition before The-

orem 4.32). A meromorphic function that is both topologically hyperbolic

and expanding is called hyperbolic. The meromorphic function f : C → Ĉ
is called dynamically semi-regular if it is of finite order, commonly denoted

by ρf , and satisfies the following rapid growth condition for its derivative.

(4.12) |f ′(z)| ≥ κ−1(1 + |z|)α1(1 + |f(z)|)α2 , z ∈ Jf ,

with some constant κ > 0 and α1, α2 such that α2 > max{−α1, 0}. Set

α := α1 + α2.
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Let h : Jf → R be a weakly Hölder continuous function in the sense of [27].

The definition, introduced in [27] is somewhat technical and we will not

provide it in the current paper. What is important is that each bounded,

uniformly locally Hölder function h : Jf → R is weakly Hölder. Fix τ > α2

as required in [27]. For t ∈ R, let

(4.13) ψt = −t log |f ′|τ + h

where |f ′(z)|τ is the norm, or, equivalently, the scaling factor, of the de-

rivative of f evaluated at a point z ∈ Jf with respect to the Riemannian

metric

|dτ(z)| = (1 + |z|)−τ |dz|.
For any t > ρf/α let Lt : Cb(Jf ) → Cb(Jf ) be the corresponding Perron–

Frobenius operator given by the formula

Ltg(z) =
∑

w∈f−1(z)

g(w)eψt(w).

The hypothesis t > ρf/α guaranties that the series∑
w∈f−1(z)

|f ′(w)|−tτ

converges uniformly on Jf , and, in particular, the linear operator Lt :

Cb(Jf )→ Cb(Jf ) is well defined and bounded. It was shown in [27] that, for

every z ∈ Jf , the limit

lim
n→∞

1

n
logLt1(z)

exists and takes on the same common value, which we denote by P(t) and

call the topological pressure of the potential ψt. The following theorem was

proved in [27].

Theorem 4.30. If f : C → Ĉ is a dynamically semi-regular meromorphic

function and h : Jf → R is a weakly Hölder continuous potential, then for

every t > ρf/α there exist uniquely determined Borel probability measures

mt and µt (which do depend on the function h too, even though this is not

explicitly indicated) on Jf with the following properties.

(a) L∗tmt = mt.

(b) P(t) = sup
{

hµ(f) +
∫
ψt dµ : µ ◦ f−1 = µ and

∫
ψt dµ > −∞

}
.

(c) µt ◦ f−1 = µt,
∫
ψt dµt > −∞, and hµt(f) +

∫
ψt dµt = P(t).

(d) The measures µt and mt are equivalent and the Radon–Nikodym

derivative dµt
dmt

has a nowhere-vanishing Hölder continuous version

which is bounded from above.
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Item (a) (along with (d)) essentially means that mt and µt are Gibbs states

of the potential ψt, while items (b) and (c) mean that µt is an equilibrium

state for the potential ψt. We shall prove the following.

Theorem 4.31. Let f : C→ Ĉ be a dynamically semi-regular meromorphic

function whose Julia set is not contained in a real analytic curve (this is

always the case if for instance HD(Jf ) > 1). Let t > ρf/α, and let h : Jf →
R be a weakly Hölder continuous potential. Then the measure–preserving

dynamical system
(
f : C → Ĉ, µt

)
is Weakly Markov and satisfies the thin

annuli property. In particular, the exponential one laws of (1.1) and (1.2)

hold for the dynamical system
(
f : C→ Ĉ, µt

)
.

Proof. Property (i) of being Weakly Markov (i.e. of Definition 2.2) for the

dynamical system
(
f : C→ Ĉ, µt

)
has been proved in [27] as Theorem 6.16.

Property (ii) is a part of Theorem 8.1 therein.

We are thus left to prove the Thin Annuli Property. As in the case of

conformal graph directed Markov systems it will be based on an inducing

argument. The point is that one can construct conformal IFSs having any

given non-periodic recurrent point of the Julia set in the interior of its seed

set. We formulate the appropriate theorem in a more general setting which

does not enlarge the volume of our considerations. Following [29] and [38]

we call a meromorphic function f : C→ Ĉ tame if

J(f) \ PS(f) 6= ∅.

The following theorem was proved in [8].

Theorem 4.32. Let f : C → Ĉ be a tame meromorphic function. Fix a

non-periodic point z ∈ J(f) \ PS(f), κ > 1, and K > 1. Then for all

λ > 1 and for all r > 0 sufficiently small there exists an open connected set

V = V (z, r) ⊂ C \ PS(f) such that

(a) If U ∈ Comp(f−n(V )) and U ∩ V 6= ∅, then U ⊆ V .

(b) If U ∈ Comp(f−n(V )) and U ∩ V 6= ∅, then for all w,w′ ∈ U,

|(fn)′(w)| ≥ λ and
|(fn)′(w)|
|(fn)′(w′)|

≤ K.

(c) B(z, r) ⊂ U ⊂ B(z, κr) ⊂ C \ PS(f).

Each nice set canonically gives rise to a countable alphabet conformal iter-

ated function system in the sense considered in the previous sections of the

present paper. Namely, put

Comp∗(V ) =
∞⋃
n=1

Comp(f−n(V )).
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For every U ∈ Comp∗(V ) let τV (U) ≥ 1 the unique integer n ≥ 1 such that

U ∈ Comp(f−n(V )). Put further

φU := f
−τV (U)
U : V → U

and keep in mind that

φU(V ) = U.

Denote by EV the subset of all elements U of Comp∗(V ) such that

(a) φU(V ) ⊂ V ,

(b) fk(U) ∩ V = ∅ for all k = 1, 2, . . . , τV (U)− 1.

The collection

SV := {φU : V → V }
of all such inverse branches forms obviously a conformal iterated function

system in the sense considered in the previous sections of the present paper.

In other words, the elements of SV are formed by all holomorphic inverse

branches of the first return map fV : V → V . In particular, τV (U) is the

first return time of all points in U = φU(V ) to V . We define the function

NV : EN
V → N1 by setting

NV (ω) := τV (ω1).

Let πV : EN
V → Ĉ be the canonical projection induced by the IFS SV . Let

JV = πV
(
EN
V

)
be the limit set of the system SV . Clearly JV ⊂ J(f). It is immediate from

our definitions that

τV (π(ω)) = NV (ω)

for all ω ∈ EN
V . It is a general fact from abstract ergodic theory that µt,V ,

the conditional measure of µt on V is fV –invariant and ergodic. It is clear

that µt,V is the (only) equilibrium state of the Hölder continuous summable

potential

ψ̃t,V := ψt,V − P(ψt)τV : JV → R,

where

ψt,V (x) :=

τV (x)−1∑
j=0

ψt ◦ f j(x).

Since the point z is recurrent, z ∈ JV , and since z ∈ V , the Full Thin Annuli

Property of measure µt will follow from Theorem 4.8 provided that condition

(4.4) and geometric irreducibility are verified. But the former follows from

the assumption that t > ρf/α while the latter holds since the Julia set is

not contained in any real analytic curve. �
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