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A VARIATIONAL PRINCIPLE IN THE PARAMETRIC GEOMETRY OF NUMBERS,

WITH APPLICATIONS TO METRIC DIOPHANTINE APPROXIMATION

TUSHAR DAS, LIOR FISHMAN, DAVID SIMMONS, AND MARIUSZ URBAŃSKI

Abstract. We establish a new connection between metric Diophantine approximation and the parametric
geometry of numbers by proving a variational principle facilitating the computation of the Hausdorff and
packing dimensions of many sets of interest in Diophantine approximation. In particular, we show that the
Hausdorff and packing dimensions of the set of singular m× n matrices are both equal to mn

(

1− 1

m+n

)

,

thus proving a conjecture of Kadyrov, Kleinbock, Lindenstrauss, and Margulis as well as answering a
question of Bugeaud, Cheung, and Chevallier. Other applications include computing the dimensions of
the sets of points witnessing conjectures of Starkov and Schmidt.

Résumé. Nous établissons une nouvelle connexion entre l’approximation métrique diophantine et la
géométrie paramétrique des nombres en prouvant un principe variationnel facilitant le calcul des dimensions
d’Hausdorff et de packing de nombreux ensembles d’intérêt dans l’approximation diophantienne. Nous
montrons que les dimensions précitées de l’ensemble des matrices m×n singulières sont toutes deux égales
à mn

(

1 −
1

m+n

)

, démontrant ainsi une conjecture de Kadyrov, Kleinbock, Lindenstrauss, et Margulis et

répondant à une question de Bugeaud, Cheung, et Chevallier. D’autres applications comprennent le calcul
des dimensions des ensembles des points témoignant des conjectures de Starkov et de Schmidt.

1. Main results

The notion of singularity (in the sense of Diophantine approximation) was introduced by Khintchine,
first in 1937 in the setting of simultaneous approximation [11], and later in 1948 in the more general setting
of matrix approximation [12].1 Since then this notion has been studied within Diophantine approximation
and allied fields, see Moshchevitin’s 2010 survey [13]. An m×n matrix A is called singular if for all ε > 0,
there exists Qε such that for all Q ≥ Qε, there exist integer vectors p ∈ Zm and q ∈ Zn such that

‖Aq+ p‖ ≤ εQ−n/m and 0 < ‖q‖ ≤ Q.

Here ‖ · ‖ denotes an arbitrary norm on Rm or Rn. We denote the set of singular m × n matrices by
Sing(m,n). For 1× 1 matrices (i.e. numbers), being singular is equivalent to being rational, and in general
any matrix A which satisfies an equation of the form Aq = p, with p,q integral and q nonzero, is singular.
However, Khintchine proved that there exist singular 2× 1 matrices whose entries are linearly independent
over Q [10, Satz II], and his argument generalizes to the setting ofm×n matrices for all (m,n) 6= (1, 1). The
name singular derives from the fact that Sing(m,n) is a Lebesgue nullset for all m,n, see e.g. [11, p.431]
or [2, Chapter 5, §7]. Note that singularity is a strengthening of the property of Dirichlet improvability
introduced by Davenport and Schmidt [6].

In contrast to the measure zero result mentioned above, the computation of the Hausdorff dimension
of Sing(m,n) has been a challenge that so far only met with partial progress. The first breakthrough
was made in 2011 by Cheung [3], who proved that the Hausdorff dimension of Sing(2, 1) is 4/3; this was
extended in 2016 by Cheung and Chevallier [4], who proved that the Hausdorff dimension of Sing(m, 1) is
m2/(m+1) for all m ≥ 2; while most recently Kadyrov, Kleinbock, Lindenstrauss, and Margulis [8] proved
that the Hausdorff dimension of Sing(m,n) is at most δm,n := mn

(
1 − 1

m+n

)
, and went on to conjecture

that their upper bound is sharp for all (m,n) 6= (1, 1) (see also [1, Problem 1]).
In this paper, we announce a proof that their conjecture is correct. We will also show that the packing

dimension of Sing(m,n) is the same as its Hausdorff dimension, thus answering a question of Bugeaud,
Cheung, and Chevallier [1, Problem 7]. To summarize:

1Although Khintchine’s 1926 paper [10] includes a proof of the existence of 2× 1 and 1× 2 matrices possessing a certain
property which implies that they are singular, it does not include a definition of singularity nor discuss any property equivalent
to singularity.
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Theorem 1.1. For all (m,n) 6= (1, 1), we have

dimH(Sing(m,n)) = dimP (Sing(m,n)) = δm,n
def
= mn

(
1− 1

m+n

)
,

where dimH(S) and dimP (S) denote the Hausdorff and packing dimensions of a set S, respectively.

1.1. Dani correspondence. The set of singular matrices is linked to homogeneous dynamics via the Dani
correspondence principle. For each t ∈ R and for each matrix A, let

gt
def
=

[
et/mIm

e−t/nIn

]
, uA

def
=

[
Im A

In

]
,

where Ik denotes the k-dimensional identity matrix. Finally, let d = m+ n, and for each j = 1, . . . , d, let
λj(Λ) denote the jth successive minimum of a lattice Λ ⊆ Rd (with respect to some fixed norm on Rd),
i.e. the infimum of λ such that the set {r ∈ Λ : ‖r‖ ≤ λ} contains j linearly independent vectors.. Then
the Dani correspondence principle is a dictionary between the Diophantine properties of a matrix A on the
one hand, and the dynamical properties of the orbit (gtuAZd)t≥0 on the other. A particular example is
the following result:

Theorem 1.2 ([5, Theorem 2.14]). An m×n matrix A is singular if and only if the trajectory (gtuAZd)t≥0

is divergent in the space of unimodular lattices in Rd, or equivalently if

lim
t→∞

λ1(gtuAZd) = 0.

It is natural to ask about the set of matrices such that the above limit occurs at a prescribed rate, such
as the set of matrices such that − logλ1(gtuAZd) grows linearly with respect to t. This question is closely
linked with the concept of uniform exponents of irrationality. The uniform exponent of irrationality of an
m × n matrix A, denoted ω̂(A), is the supremum of ω such that for all Q sufficiently large, there exist
integer vectors p ∈ Zm and q ∈ Zn such that

‖Aq+ p‖ ≤ Q−ω and 0 < ‖q‖ ≤ Q.

By Dirichlet’s theorem, every m × n matrix A satisfies ω̂(A) ≥ n
m . Moreover, it is immediate from the

definitions that any matrix A satisfying ω̂(A) > n
m is singular. We call a matrix very singular if it satisfies

the inequality ω̂(A) > n
m , in analogy with the set of very well approximable matrices, which satisfy a similar

inequality for the regular (non-uniform) exponent of irrationality (see (1.2)). We denote the set of very
singular m× n matrices by VSing(m,n). The relationship between uniform exponents of irrationality and
very singular matrices on the one hand, and homogeneous dynamics on the other, is given as follows:

Theorem 1.3. A matrix A is very singular if and only τ̂ (A) > 0, where

τ̂ (A)
def
= lim inf

t→∞

−1

t
logλ1(gtuAZd).

Moreover, the quantities τ = τ̂(A) and ω = ω̂(A) are related by the formula

(1.1) τ =
1

n

ω − n
m

ω + 1
·

This theorem is a straightforward example of the Dani correspondence principle and is probably well-
known, but we have not been able to find a reference.

1.2. Dimensions of very singular matrices. Perhaps unsurprisingly, the set of very singular matrices
has the same dimension properties as the set of singular matrices.

Theorem 1.4. For all (m,n) 6= (1, 1), we have

dimH(VSing(m,n)) = dimP (VSing(m,n)) = δm,n.
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One can also ask for more precise results regarding the function ω̂. Specifically, for each ω > n
m we can

consider the levelset2

Singm,n(ω)
def
= {A : ω̂(A) = ω} = {A : τ̂ (A) = τ},

where τ is given by (1.1). It would be desirable to give precise formulas for the Hausdorff and packing
dimensions of Singm,n(ω) in terms of ω, m, and n, see e.g. [1, Problem 2]. However, this appears quite
challenging at the present juncture, though we have made significant progress towards this question which
we will describe in the next section. Thus, instead of precise formulas we will give asymptotic formulas
of two types: estimates valid when ω is small and estimates valid when ω is large. Note that while the
minimum value of ω̂ is always n

m (corresponding to τ̂ = 0), the maximum value depends on whether or not

n is at least 2. If n ≥ 2, then the maximum value of ω̂ is ∞ (corresponding to τ̂ = 1
n ), while if n = 1, then

the maximum value of ω̂ (excluding rational points) is 1 (corresponding to τ̂ = m−1
2m ). Consequently, we

have two different asymptotic estimates of the dimensions of Singm,n(ω) when ω is large corresponding to
these two cases.

Recall that Θ(x) denotes any number such that x/C ≤ Θ(x) ≤ Cx for some uniform constant C. In all
of the formulas below, τ is given by (1.1).

Theorem 1.5. Suppose that (m,n) 6= (1, 1). Then for all ω > n
m sufficiently close to n

m , we have

dimH(Singm,n(ω)) = δm,n −Θ
(√

ω − n
m

)
dimP (Singm,n(ω)) = δm,n −Θ

(
ω − n

m

)

= δm,n −Θ
(√
τ
)

= δm,n −Θ(τ)

unless m = n = 2, in which case

dimH(Singm,n(ω)) = δm,n −Θ
(
ω − n

m

)
dimP (Singm,n(ω)) = δm,n −Θ

(
ω − n

m

)

= δm,n −Θ(τ) = δm,n −Θ(τ) .

Theorem 1.6. Suppose that n ≥ 2. Then for all ω <∞ sufficiently large, we have

dimH(Singm,n(ω)) = mn− 2m+Θ
(
1
ω

)
dimP (Singm,n(ω)) = mn−m.

= mn− 2m+Θ
(
1
n − τ

)

Theorem 1.7. Suppose that n = 1 and m ≥ 2. Then for all ω < 1 sufficiently close to 1, we have

dimH(Singm,n(ω)) = Θ (1− ω) dimP (Singm,n(ω)) = 1.

= Θ
(

m−1
2m − τ

)

Remark 1.8. Call a matrix A trivially singular if there exists j = 1, . . . , d− 1 such that

logλj+1(gtuAZd)− logλj(gtuAZd) → ∞ as t→ ∞.

Then all of the above formulas remain true if Singm,n(ω) is replaced by the set

Sing∗m,n(ω) = {A ∈ Singm,n(ω) : A is not trivially singular}.
Moreover, for n ≥ 2 we have

dimH(Sing∗m,n(∞)) = mn− 2m dimP (Sing
∗
m,n(∞)) = mn−m

and for n = 1, m ≥ 2 we have

dimH(Sing∗m,n(1)) = 0 dimP (Sing
∗
m,n(1)) = 1.

Note that the class of trivially singular matrices is smaller than the class of matrices with degenerate
trajectories in the sense of [5, Definition 2.8], but larger than the class considered in [1, p.2] consisting of
matrices A such that the group AZn + Zm does not have full rank. A d × 1 or 1 × d matrix is trivially
singular if and only if it is contained in a rational hyperplane of Rd.

2For results considering the superlevelset, see Theorem 2.9.
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Figure 1. The functions f0(τ) = dimH(Sing1,2(ω)) and f1(τ) = dimP (Sing1,2(ω)). The

function f0 is real-analytic on the intervals [0, τ0] and [τ0, 1/2], where τ0 = 3
√
2−2
14 ∼ 0.1602,

while f1 is linear on the intervals [0, 1/8] and [1/8, 1/2].

1.3. 1× 2 and 2× 1 matrices. Although we cannot give precise formulas for the Hausdorff and packing
dimensions of Singm,n(ω) for all pairs (m,n), the special cases (m,n) = (1, 2) and (m,n) = (2, 1) are easier
to handle.

Theorem 1.9. For all ω ∈ (1/2, 1) we have

dimH(Sing1,2(ω)) =

{
4
3 − 4

3

√
τ − 6τ3 + 4τ4 − 2τ + 8

3τ
2 if τ ≤ τ0

def
= 3

√
2−2
14

1−2τ
1+τ if τ ≥ τ0

dimP (Sing1,2(ω)) =

{
4−8τ

3 if τ ≤ τ1
def
= 1

8

1 if τ ≥ τ1

(cf. Figure 1).

Remark. By Jarńık’s identity [7], for all ω ∈ [2,∞] we have

Sing1,2(ω) = Sing2,1(ω
′)

where ω′ = 1 − 1
ω . Thus by applying an appropriate substitution to the above formulas, it is possible

to get explicit formulas for dimH(Sing2,1(ω
′)) and dimP (Sing2,1(ω

′)), either in terms of ω′ or in terms of

τ ′ =
ω′− 1

2

ω′+1 = τ
1+2τ . However, the resulting formulas are not very elegant so we omit them.

Remark. The transition point τ0 = 3
√
2−2
14 in the above formula for Hausdorff dimension corresponds to

ω0 = 2 +
√
2, ω′

0 =
√
2
2 , τ ′0 = 4−3

√
2

2 , and dimH(Sing1,2(ω0)) = 2 −
√
2. The transition point τ1 = 1

8 for

packing dimension corresponds to ω1 = 3, ω′
1 = 2

3 , τ
′
1 = 1

10 , and dimP (Sing1,2(ω1)) = 1.

Remark. Theorem 1.9 implies that dimH(Sing1,2(ω)) < dimP (Sing1,2(ω)) for all ω ∈ (1/2, 1). This
answers the first part of [1, Problem 7] in the affirmative.

Remark. There has been a lot of partial progress towards the Hausdorff dimension part of Theorem 1.9.
In particular, the ≥ direction follows from [1, Corollary 2 and Theorem 3]. For τ ≥ τ0 the upper bound
follows from [1, Corollary 2] and for τ < τ0, a non-optimal upper bound is given in [1, Theorem 1]. We
refer to [1] for a detailed history of the prior results.
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1.4. Singularity on average. A different way of quantifying the notion of singularity is the notion of
singularity on average introduced in [8]. Given a matrix A, we define the proportion of time spent in the
cusp to be the number

P(A) = lim
ε→0

lim inf
T→∞

1

T
λ
({
t ∈ [0, T ] : λ1(gtuAZd) ≤ ε

})
∈ [0, 1],

where λ denotes Lebesgue measure. The matrix A is said to be singular on average if P(A) = 1. Clearly,
every singular matrix is singular on average.

Theorem 1.10. For all p ∈ [0, 1], we have

dimH({A : P(A) = p}) = dimP ({A : P(A) = p}) = pδm,n + (1− p)mn.

In particular, the dimension of the set of matrices singular on average is δm,n.

Note that the fact that the Hausdorff dimension of the set of matrices singular on average is ≤ δm,n was
proven in [8], while the fact that this number is ≥ δm,n follows from Theorem 1.1.

1.5. Starkov’s conjecture. In [22, p.213], Starkov asked whether there exists a singular vector (i.e. m×1
singular matrix) which is not very well approximable. Here, we recall that a matrix A is called very well
approximable if for some ω > n

m , there exist infinitely many pairs (p,q) ∈ Zm × Zn such that

(1.2) ‖Aq+ p‖ ≤ ‖q‖−ω,

or equivalently in terms of the Dani correspondence principle, a matrix A is very well approximable if
lim supt→∞ − 1

t logλ1(gtuAZd) > 0. This question was answered affirmatively by Cheung [3, Theorem 1.4]

in the case m = 2. In fact, Cheung showed that if ψ is any function such that q1/2ψ(q) → 0 as q → ∞, then
there exists a 2×1 singular vector which is not ψ-approximable. Here, a matrix A is called ψ-approximable
if there exist infinitely many pairs (p,q) ∈ Zm × Zn such that q 6= 0 and

‖Aq+ p‖ ≤ ψ(‖q‖).
The following theorem improves on Cheung’s result both by generalizing it to the case of arbitrary m,n,
and also by computing the dimension of the set of matrices with the given property:

Theorem 1.11. If ψ is any function such that qn/mψ(q) → 0 as q → ∞, then the set of m × n singular
matrices that are not ψ-approximable has Hausdorff dimension δm,n. Equivalently, if φ is any function such
that φ(t) → ∞ as t→ ∞, then the set of m× n singular matrices A such that − logλ1(gtuAZd) ≤ φ(t) for
all t sufficiently large has Hausdorff dimension δm,n. The same is true for the packing dimension.

Note that this theorem is optimal in the sense that if ψ(q) ≥ cq−n/m for some constant c, then it is easy
to check that every singular m× n matrix is ψ-approximable.

1.6. Schmidt’s conjecture. In [19, p.273], Schmidt conjectured that for all 2 ≤ k ≤ m, there exists an
m× 1 matrix A such that

λk−1(gtuAZd) → 0 and λk+1(gtuAZd) → ∞ as t→ ∞.(1.3)

(Note that any matrix satisfying (1.3) is singular by Theorem 1.2.) This conjecture was proven by
Moshchevitin [14], who constructed an m × 1 matrix A satisfying (1.3) and not contained in any rational
hyperplane of Rm (see also [9, 17]). We will improve Moshchevitin’s result by computing the Hausdorff
and packing dimensions of the set of matrices witnessing this conjecture:

Theorem 1.12. For all (m,n) 6= (1, 1) and for all 2 ≤ k ≤ m+ n − 1, the Hausdorff and packing
dimensions of the set of matrices A that satisfy (1.3) are both equal to

max(fm,n(k), fm,n(k − 1))

where

(1.4) fm,n(k) = mn− kmn

m+ n

(
1− k

m+ n

)
−
{

km

m+ n

}{
kn

m+ n

}
.
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Here {x} denotes the fractional part of a real number x. The same formulas are valid for the set of matrices
A that satisfy (1.3) and are not trivially singular.

Remark 1.13. The function fm,n satisfies fm,n(m+ n− k) = fm,n(k) and fm,n(1) = fm,n(m+ n− 1) =
δm,n. Moreover, for all 1 ≤ k ≤ m+ n−1 we have fm,n(k) ≤ δm,n. It follows that when k = 2 or m+ n−1,
the Hausdorff and packing dimensions of the set of matrices A that satisfy (1.3) are both equal to δm,n.

Remark 1.14. When m = 1 or n = 1, the fractional parts appearing in (1.4) can be computed explicitly,
leading to the formula

fm,n(k) = mn− k(m+ n− k)

m+ n
·

However, this formula is not valid when m,n ≥ 2.

Acknowledgements. This research began when the authors met at the American Institute of Math-
ematics via their SQuaRE program. We thank them for their hospitality. The first-named author was
supported in part by a 2017-2018 Faculty Research Grant from the University of Wisconsin–La Crosse.
The second-named author was supported in part by the Simons Foundation grant #245708. The third-
named author was supported in part by the EPSRC Programme Grant EP/J018260/1. The fourth-named
author was supported in part by the NSF grant DMS-1361677. We thank Nicolas Chevallier, Elon Linden-
strauss, Damien Roy, and Johannes Schleischitz for helpful comments.

2. The variational principle

All the theorems in the previous section (with the exception of Theorems 1.2 and 1.3) are consequences
of a single variational principle in the parametric geometry of numbers. This variational principle is a
quantitative analogue of theorems due to Schmidt and Summerer [21, §2] and Roy [15, Theorem 1.3].
However, we will state their results in language somewhat different from the language used in their papers,
due to the fact that the fundamental object we consider is the one-parameter family of unimodular lattices
(gtuAZd)t≥0 used by the Dani correspondence principle, rather than a one-parameter family of (non-
unimodular) convex bodies as is done in [21, 15]. We leave it to the reader to verify that the theorems we
attribute below to [21] and [15] are indeed faithful translations of their results to our setting. We note that
these papers, unlike ours, do not consider the case of matrices.

The fundamental question of our version of the parametric geometry of numbers will be as follows: given
a matrix A, what does the function h = hA = (h1, . . . , hd) : [0,∞) → Rd defined by the formula

(2.1) hi(t)
def
= logλi(gtuAZd)

look like? The function hA will be called the successive minima function of the matrix A. The Dani corre-
spondence principle shows that many interesting Diophantine questions about the matrix A are equivalent
to questions about its successive minima function.

The main restriction on the successive minima function comes from an application of Minkowski’s second
theorem on successive minima to certain subgroups of gtuAZd. Specifically, fix j = 1, . . . , d − 1 and let I
be an interval such that hj(t) < hj+1(t) for all t ∈ I. For each t ∈ I, let Vt ⊆ Rd be the linear span of the
set

{r ∈ Zd : ‖gtuAr‖ ≤ λj(gtuAZd)}.
Then a continuity argument shows that the map t 7→ Vt is constant on I, see [20, Lemma 2.1] for the case
of simultaneous approximation. Write Vt = V . By Minkowski’s second theorem, we have

∑

i≤j

hi(t) ≍+ Fj,I(t)
def
= log ‖gtuA(V ∩ Zd)‖,

where ‖Γ‖ denotes the covolume of a discrete group Γ ⊆ Rd, and A ≍+ B means that there exists a
constant C such that |B −A| ≤ C. Now an argument based on the exterior product formula for covolume
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and the definition of gt shows that Fj,I ≍+ Gj,I for some convex, piecewise linear function Gj,I whose
slopes are in the set

(2.2) Z(j)
def
=

{
L+

m − L−

n : L± ∈ [0, d±]Z, L+ + L− = j
}
,

where for convenience we write d+ = m, d− = n, and [a, b]Z = [a, b] ∩ Z. This suggests that h can be
approximated by a piecewise linear function f such that whenever fj < fj+1 on an interval I, the function
Fj =

∑
i≤j fi is convex on I with slopes in Z(j). Moreover, it is obvious that h1 ≤ · · · ≤ hd, and the

formula for gt implies that for all i, we have − 1
n ≤ h′i ≤ 1

m wherever hi is differentiable. We therefore make
the following definition:

Definition 2.1. An m×n template is a piecewise linear map f : [t0,∞) → Rd with the following properties:

(I) f1 ≤ · · · ≤ fd.
(II) − 1

n ≤ f ′
i ≤ 1

m for all i.
(III) For all j = 1, . . . , d and for every interval I such that fj < fj+1 on I, the function Fj :=

∑
i≤j fi

is convex on I with slopes in Z(j). Here we use the convention that f0 = −∞ and fd+1 = +∞.

When m = 1, templates are a slight generalization of reparameterized versions of the rigid systems of [15].
We denote the space of m× n templates by Tm,n.

The fundamental relation between templates and successive minima functions is given as follows:

Theorem 2.2.

(i) For every m× n matrix A, there exists an m× n template f such that hA ≍+ f .
(ii) For every m× n template f , there exists an m× n matrix A such that hA ≍+ f .

In the case m = 1, part (i) of Theorem 2.2 is due to Schmidt and Summerer [21, §2] and part (ii) is due
to Roy ([15, Theorem 1.3] and [16, Corollary 4.7]).

Theorem 2.2(ii) asserts that for every template f , the set

M(f)
def
= {A : hA ≍+ f}

is nonempty. It is natural to ask how big this set is in terms of Hausdorff and packing dimension. Moreover,
given a collection of templates F , we can ask the same question about the set

M(F) =
⋃

f∈F
M(f).

It turns out to be easier to answer the second question than the first, assuming that the collection of
templates F is closed under finite perturbations. Here, F is said to be closed under finite perturbations if
whenever g ≍+ f ∈ F , we have g ∈ F .

Theorem 2.3 (Variational principle, version 1). Let F be a collection of templates closed under finite
perturbations. Then

dimH(M(F)) = sup
f∈F

δ(f), dimP (M(F)) = sup
f∈F

δ(f)(2.3)

where the functions δ, δ : Tm,n → [0,mn] are as in Definition 2.5 below.

Corollary 2.4. With F as above, we have

dimH(M(F)) = sup
f∈F

dimH(M(f)), dimP (M(F)) = sup
f∈F

dimP (M(f)).(2.4)

However, note that Theorem 2.3 does not imply that dimH(M(f)) = δ(f) for an individual template f ,
since the family {f} is not closed under finite perturbations. And indeed, since the function δ is sensitive
to finite perturbations, the formula dimH(M(f)) = δ(f) cannot hold for all f ∈ Tm,n.
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Definition 2.5. We define the lower and upper average contraction rate of a template f as follows.
Let I be an open interval on which f is linear. For each q = 1, . . . , d such that fq < fq+1 on I, let
L± = L±(f , I, q) ∈ [0, d±]Z be chosen to satisfy L+ + L− = q and

(2.5) F ′
q =

q∑

i=1

f ′
i =

L+

m
− L−

n
on I,

as guaranteed by (III) of Definition 2.1. An interval of equality for f on I is an interval (p, q]Z, where
0 ≤ p < q ≤ d satisfy

(2.6) fp < fp+1 = · · · = fq < fq+1 on I.

Note that the collection of intervals of equality forms a partition of [1, d]Z. If (p, q]Z is an interval of equality
for f on I, then we let M±(p, q) =M±(f , I, p, q), where

(2.7) M±(f , I, p, q) = L±(f , I, q)− L±(f , I, p),

and we let

S+(f , I) =
⋃

(p,q]Z

(
p, p+M+(p, q)

]
Z

(2.8)

S−(f , I) =
⋃

(p,q]Z

(
p+M+(p, q), q

]
Z

(2.9)

where the unions are taken over all intervals of equality for f on I. Note that M±(p, q) ≥ 0 by (II) of
Definition 2.1, and further that S+ and S− are disjoint and satisfy S+∪S− = [1, d]Z, and that #(S+) = m
and #(S−) = n. Next, let

(2.10) δ(f , I) = #{(i+, i−) ∈ S+ × S− : i+ < i−} ∈ [0,mn]Z,

and note that

(2.11) mn− δ(f , I) = #{(i+, i−) ∈ S+ × S− : i+ > i−}.
The lower and upper average contraction rates of f are the numbers

δ(f)
def
= lim inf

T→∞
∆(f , T ), δ(f)

def
= lim sup

T→∞
∆(f , T ),(2.12)

where

∆(f , T )
def
=

1

T

ˆ T

0

δ(f , t) dt.

Here we abuse notation by writing δ(f , t) = δ(f , I) for all t ∈ I.

Definition 2.5 can be understood intuitively in terms of a simple version of one-dimensional physics with
sticky collisions and conservation of momentum. Suppose that we observe particles P1, . . . , Pd travelling
along trajectories f1, . . . , fd during a time interval I along which f is linear, and we want to infer the
velocities of these particles before they collided, based on the following background information: before the
collision m of the particles were travelling upwards at a speed of 1

m , and n of the particles were travelling

downwards at a speed of 1
n . When particles collide (that is, when the velocities of the particles of lower

index are more upwards than the velocities of the particles of higher index at the same location), they join
forces to move as a unit, and their new velocity is determined by conservation of momentum. However, we
can still think of the group as being composed of a certain number of “upwards” particles and a certain
number of “downwards” particles.

The equations (2.8) and (2.9) can be understood as suggesting a particular solution to this problem of
inference: assume that within each group, all of the upwards-travelling particles started out below all of
the downwards-travelling particles. This is not the only possible solution but it is the nicest one for certain
purposes. Specifically, we can imagine a force of “gravity” attempting to bring all of the particles together,
which acts between any two particles by imposing a fixed energy cost if the two particles are travelling
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away from each other.3 The total energy cost is then the codimension mn− δ(f , I) defined by (2.11). The
equations (2.8) and (2.9) can then be thought of as giving the solution that minimizes this cost.

The idea of codimension as an energy cost is also useful for computing the suprema (2.3) in certain
circumstances, since it suggests principles like the conservation of energy. However, one needs to be careful
since the stickiness of collisions means that some naive formulations of conservation of energy are violated.

In most cases of interest, the collection F in Theorem 2.3 is defined by some Diophantine condition. In
this case, generally rather than M(F) the set we are really interested in is the set of all matrices whose
corresponding successive minima functions satisfy the same Diophantine condition. Although these two
sets are a priori different, Theorem 2.2(i) implies that they are the same and thus Theorem 2.3 is equivalent
modulo Theorem 2.2(i) to the following:

Theorem 2.6 (Variational principle, version 2). Let S be a collection of functions from [0,∞) to Rd which
is closed under finite perturbations, and let

M(S) = {A : hA ∈ S}.
Then

dimH(M(S)) = sup
f∈S∩Tm,n

δ(f), dimP (M(S)) = sup
f∈S∩Tm,n

δ(f).(2.13)

Proof of equivalence. Theorem 2.6 implies Theorem 2.3 since we can take S = {g : g ≍+ f ∈ F}. Con-
versely, Theorem 2.3 implies Theorem 2.6 modulo Theorem 2.2(i) since we can take F = S ∩ Tm,n. �

Theorem 2.6 can be thought of as a quantitative analogue of Theorem 2.2, as shown by the following
equivalent formulation:

Theorem 2.7 (Variational principle, version 3).

(i) Let S be a set of m× n matrices of Hausdorff (resp. packing) dimension > δ. Then there exists a
matrix A ∈ S and a template f ≍+ hA whose lower (resp. upper) average contraction rate is > δ.

(ii) Let f be a template whose lower (resp. upper) average contraction rate is > δ. Then there exists
a set S of m× n matrices of Hausdorff (resp. packing) dimension > δ, such that hA ≍+ f for all
A ∈ S.

Proof of equivalence. Part (i) is equivalent to the ≤ direction of (2.13), and part (ii) to the ≥ direction.
For the first equivalence, for the forwards direction take S = {A : hA ∈ S}, and for the backwards direction
take S = {g : g ≍+ hA, A ∈ S}. For the second equivalence, for the backwards direction take S = M(f)
and S = {g : g ≍+ f}. �

It is worth stating the special case of Theorem 2.6 that occurs when the collection S is defined by the
Diophantine conditions defining Singm,n(ω) and Sing∗m,n(ω) for some ω ≥ n

m . Thus, we define the uniform

dynamical exponent of a map f : [0,∞) → Rd to be the number

τ̂(f) = lim inf
t→∞

−1

t
f1(t).

Similarly, f is said to be trivially singular if fj+1(t) − fj(t) → ∞ as t → ∞ for some j = 1, . . . , d − 1.
Letting S = {f : τ̂(f) = τ} or S = {f : τ̂(f) = τ, f not trivially singular} in Theorem 2.6 yields the
following result:

Theorem 2.8 (Special case of variational principle). For all ω ≥ n
m , we have

dimH(Singm,n(ω)) = sup{δ(f) : f ∈ Tm,n, τ̂ (f) = τ}
dimP (Singm,n(ω)) = sup{δ(f) : f ∈ Tm,n, τ̂ (f) = τ}
dimH(Sing∗m,n(ω)) = sup{δ(f) : f ∈ Tm,n, τ̂ (f) = τ, f not trivially singular}
dimP (Sing

∗
m,n(ω)) = sup{δ(f) : f ∈ Tm,n, τ̂ (f) = τ, f not trivially singular},

3This is of course unlike real gravity, which imposes an energy cost variable with respect to distance.
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where τ is as in (1.1).

Theorem 2.6 can also be used to compute the dimensions of the set

S̃ing
∗
m,n(ω) = {A : ω̂(A) ≥ ω, A not trivially singular} =

⋃

ω′≥ω

Sing∗m,n(ω
′).

Theorem 2.9 (Special case of variational principle). For all ω ≥ n
m , we have

dimH(S̃ing
∗
m,n(ω)) = sup

ω′≥ω
dimH(Sing∗m,n(ω

′))

dimP (S̃ing
∗
m,n(ω)) = sup

ω′≥ω
dimP (Sing

∗
m,n(ω

′)).

(Theorem 2.9 is also true with the stars removed, but in that case it is not as interesting because
dimH(Singm,n(∞)) is “too large”, whereas dimH(Sing∗m,n(∞)) is the “correct” size according to Remark
1.8.)

It is natural to expect that the map ω 7→ dimH(Sing∗m,n(ω)) is monotonically decreasing, in which case
Theorem 2.9 would imply that

dimH(S̃ing
∗
(ω)) = dimH(Sing∗m,n(ω)).

Conjecture 2.10. The functions

ω 7→ dimH(Sing∗m,n(ω)), ω 7→ dimP (Sing
∗
m,n(ω))

are decreasing and continuous, and furthermore are computable in the sense of [23].

The main difficulty in proving this conjecture is the rigidity of templates – one would like to show that
every template can be perturbed into a new template whose uniform dynamical exponent is either slightly
larger, or much smaller, than that of the original template, and whose average contraction rates are not
too much smaller than those of the original template. However, it is not at all clear how one would perform
such a perturbation except in a few special cases.

3. A characterization of Hausdorff and packing dimensions using games

The proof of the variational principle is based on a new variant of Schmidt’s game which is in principle
capable of computing the Hausdorff and packing dimensions of any set. In Schmidt’s game [18], players take
turns choosing a descending sequence of balls and compete to determine whether or not the intersection
point of these balls is in a certain target set. The key feature of our new variant is that instead of requiring
the rate at which the players’ moves contribute information to the game to be constant, the new variant
allows the rate of information transfer to be variable, with the first player, Alice, getting to choose the rate
of information transfer. However, Alice is penalized if she exerts too much control over the game over long
periods of time without giving her opponent Bob a chance to exert control over the game.

Definition 3.1. Given 0 < β < 1, Alice and Bob play the δ-dimensional Hausdorff (resp. packing) β-game
as follows:

• The turn order is alternating, with Alice playing first. Thus, Bob’s kth turn occurs after Alice’s
kth turn and before Alice’s (k + 1)st turn.

• Alice begins by choosing a starting radius ρ0 > 0.
• On the kth turn, Alice chooses a nonempty 3ρk-separated set Ak ⊆ Rd, and Bob responds by

choosing a ball Bk = B(xk, ρk), where xk ∈ Ak and ρk = βkρ0.
• On the first (0th) turn, Alice’s choice A0 can be any finite set, but on subsequent turns she must

choose it to satisfy

(3.1) Ak+1 ⊆ B(xk, (1− β)ρk).

Note that this condition guarantees that

B0 ⊇ B1 ⊇ B2 ⊇ · · ·
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After infinitely many turns have passed, the point

x∞ = lim
k→∞

xk ∈
∞⋂

k=0

Bk

is computed (note that the right-hand side is always a singleton). It is called the outcome of the game.
Also, we let A = (Ak)k∈N, and we compute the numbers

(3.2) δ(A)
def
= lim inf

k→∞

1

k

k∑

i=0

log#(Ai)

− log(β)

and

(3.3) δ(A)
def
= lim sup

k→∞

1

k

k∑

i=0

log#(Ai)

− log(β)

which are called Alice’s lower and upper scores, respectively. Alice’s goal will be to ensure that the outcome
is in a certain set S, called the target set, and simultaneously to maximize her score while doing so.

To be precise, a set S ⊆ Rd is said to be δ-dimensionally Hausdorff (resp. packing) β-winning if Alice
has a strategy to simultaneously ensure that the outcome x∞ is in S, and that her lower (resp. upper)
score is at least δ. It is said to be δ-dimensionally Hausdorff (resp. packing) winning if it is δ-dimensionally
Hausdorff (resp. packing) β-winning for all sufficiently small β > 0. The reader may contrast the definition
of our game with that of Cheung’s self-similar coverings in [3, Section 3].

The following result is one of the key ingredients in the proof of the variational principle:

Theorem 3.2. The Hausdorff (resp. packing) dimension of a Borel set S is the supremum of δ such that
S is δ-dimensionally Hausdorff (resp. packing) winning.
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