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Abstract. We consider random iteration of exponential entire functions, i.e. of the form
C 3 z 7→ fλ(z) := λez ∈ C, λ ∈ C \ {0}. Assuming that λ is in a bounded closed interval
[A,B] ⊂ R with A > 1/e, we deal with random iteration of the maps fλ governed by
an invertible measurable map θ : Ω → Ω preserving a probability ergodic measure m on
Ω, where Ω is a measurable space. The link from Ω to exponential maps is then given
by an arbitrary measurable function η : Ω 7−→ [A,B]. We in fact work on the cylinder
space Q := C/ ∼, where ∼ is the natural equivalence relation: z ∼ w if and only if w − z
is an integral multiple of 2πi. We prove that then for every t > 1 there exists a unique
random conformal measure ν(t) for the random conformal dynamical system on Q. We
further prove that this measure is supported on the, appropriately defined, radial Julia
set. Next, we show that there exists a unique random probability invariant measure µ(t)

absolutely continuous with respect to ν(t). In fact µ(t) is equivalent with ν(t). Then we
turn to geometry. We define an expected topological pressure EP(t) ∈ R and show that its
only zero h coincides with the Hausdorff dimension of m–almost every fiber radial Julia
set Jr(ω) ⊂ Q, ω ∈ Ω. We show that h ∈ (1, 2) and that the omega–limit set of Lebesgue
almost every point in Q is contained in the real line R. Finally, we entirely transfer our
results to the original random dynamical system on C. As our preliminary result, we show
that all fiber Julia sets coincide with the entire complex plane C.
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1. Introduction

The study of the dynamics of entire transcendental functions of the complex plane has
begun with the foundational research of Pierre Fatou ([14]) in the third decade of 20th
century. For some decades since then I. N. Baker ([4], [2] and [3] for example), was the sole
champion of the research in this field. The breakthrough has come in 1981 when Michal
Misiurewicz ([29]) proved that the Julia set of the exponential function C 3 z 7→ ez ∈ C
is the whole complex plane C. This positively affirmed Fatou’s Conjecture from [14] and
opened up the gates for new extensive research. Indeed, the early papers such as [31], [20],
[28], [12], [13] have appeared. These concerned topological and measurable (Lebesgue)
aspects of the dynamics of entire functions. However, already McMullen’s paper [28] also
touched on Hausdorff dimension, providing deep and unexpected results. The theme of
Hausdorff dimension for entire functions was taken up in a series of papers by G. Stallard
(see for ex. [34]–[38] and in [39] and [40]). These two latter papers concerned hyperbolic
exponential functions, i.e. those of the form

C 3 z 7−→ fλ(z) := λez ∈ C,
where λ is such that the map fλ is hyperbolic, i.e. it has an attracting periodic orbit.
Although it did not concern entire functions but meromorophic ones (tangent family in
fact), we would like to mention here the seminal paper of K. Barański ([5]) where for the
first time the thermodynamic formalism was applied to study transcendental functions.
The papers [39] and [40] also used the ideas of thermodynamic formalism and, particularly,
of conformal measures. This is in these papers where the concept of a radial (called also
conical) Julia set, denoted by Jr(f), occurred. This is the set of points z in the Julia
set J(f) for which infinitely many holomorphic pullbacks from fn(z) to z are defined on
balls centered at points fn(z) and having radii larger than zero independently of n. For
hyperbolic functions fλ this is just the set of points that do not escape to infinity under
the action of the map fλ. What we have discovered in [39] and [40] is that HD(Jr(fλ)) <
2 for hyperbolic exponential functions fλ defined above. This is in stark contrast with
McMullen’s results from [28] asserting that HD(Jr(fλ)) = 2 for all λ ∈ C \ {0}. Note that
the set Jr(fλ) is dynamically significant as for example, because of Poincaré’s Recurrence
Theorem, every finite Borel fλ–invariant measure on C is supported on this set. In addition
we proved in [39] and [40] that its Hausdorff dimension HD(Jr(fλ)) is equal to the unique
zero of the pressure function t 7→ P(t) defined absolutely independently of Jr(fλ).

The study of geometric (Hausdorff dimension) and ergodic (invariant measures absolutely
continuous with respect to conformal ones) properties of transcendental entire functions by
means of thermodynamic formalism followed. It is impossible to cite here all of them, we
just mention only [19], [23], [24], [26], [7] and [8]. Related papers include [33], [9], [6] and
many more.



RANDOM NON-HYPERBOLIC EXPONENTIAL MAPS 3

We would like to pay particular attention to the paper [41], where a fairly full account
of ergodic theory and conformal measures was provided for a large class of non-hyperbolic
exponential functions fλ, namely those for which the number 0 escapes to infinity “really
fast”; it includes all maps for which λ is real and larger than 1/e. Our current work stems
from this one and provides a systematic account of ergodic theory and conformal measures
for randomly iterated functions fλ, where λ > 1/e. The theory of random dynamical
systems is a large fast developing subfield of dynamical systems with a specific variety of
methods, tools, and goals. We just mention the classical works of Yuri Kifer, [16], [17] and
of Ludwig Arnold ([1]), see also [18]. Our present work in this respect stems from [22], [27],
and [25].

Our first result, whose proof occupies Section 3, is that if a sequence (an)∞n=1 of real
numbers in [A,B] is taken, where A > 1/e, then the Julia set of the compositions

fan ◦ fan−1 ◦ . . . ◦ fa2 ◦ fa1 : C→ C

is equal to the entire complex plane C. This is a far going generalization of, already
mentioned above, Misiurewicz’s result from [29]. In addition, our proof is a simplification
of Misiurewicz’s one, even in the autonomous (just one map) case. The above compositions
are said to constitute a non–autonomous dynamical system as the “rule of evolution”
depends on time.

Our main focus in this paper are random dynamical systems. These are objects lying
somewhat in between autonomous and non–autonomous systems, sharing many dynamical
and geometrical features with both of them. As in [1], [11], [22], [26], and [27] the random-
ness for us is modeled by a measure preserving invertible dynamical system θ : Ω → Ω,
where (Ω,F ,m) is a complete probability measurable space, and θ is a measurable in-
vertible map, with θ−1 measurable, preserving the measure m. Fix some real constants
B > A > 1/e and let

η : Ω 7−→ [A,B]

be measurable function. Furthermore, to each ω ∈ Ω there is associated the exponential
map fω := fη(ω) : C→ C; precisely

fω(z) := η(ω)ez.

Consequently, for every z ∈ C, the map

Ω 3 ω 7−→ fη(ω)(z) ∈ C

is measurable. In order to avoid ambiguity and confusion about what is fω and what is
fη(ω), we assume without loss of generality that Ω is disjoint from [A,B]. If however Ω
happened to intersect [A,B], we could always replace it for example by Ω×{0} to achieve
the required disjointness. Another option: to introduce different letters/symbols for fω and
fη(ω) would be just too cumbersome and would make the whole exposition less readable.

We consider the dynamics of random iterates of exponentials:

fnω := fθn−1ω ◦ · · · ◦ fθω ◦ fω : C −→ C.

The sextuple

f :=
(
Ω,F ,m; θ : Ω→ Ω; η : Ω→ [A,B]; fη : C→ C

)
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and induced by it random dynamics(
fnω : C −→ C

)∞
n=0

, ω ∈ Ω,

will be referred to in the sequel as random exponential dynamical system. Obviously, this
generates also a global dynamics (skew product) f : Ω× C→ Ω× C defined as f(ω, x) =
(θ(ω), fω(x)).

We define the equivalence relation ∼ on the complex plane C by saying that Z ∼ W if
there exists k ∈ Z such that

Z −W = 2πik.

We denote the quotient space C/ ∼ by Q. So, Q is conformally an infinite cylinder. We
denote by π the natural projection π : C→ Q, i.e.,

π(Z) = [Z]

is the equivalence class of z with respect to relation ∼. Since both maps fη : C → C
and π ◦ fη : C → Q, η ∈ C∗, are constant on equivalence classes, they canonically induce
conformal maps fη : Q→ C and

Fη : Q→ Q.

So, Fη can be represented as

Fη = π ◦ fη ◦ π−1.

In Sections 4–11 we will be exclusively interested in the sextuple

F :=
(
Ω,F ,m; θ : Ω→ Ω; η : Ω→ [A,B];Fη : Q→ Q

)
,

induced by it random dynamics(
F n
ω := Fθn−1ω ◦ · · · ◦ Fθω ◦ Fω : Q −→ Q

)∞
n=0

, ω ∈ Ω

and the global dynamics (skew product) F : Ω × Q → Ω × Q defined as F (ω, x) =
(θ(ω), Fω(x)). All our technical work in Sections 4–11 will concern the sextuple F acting
on the cylinder Q. The main results for this sextuple will be obtained in Sections 8–11. In
Sections 12 and 13 we will fully transfer them for the case of sextuple

f :=
(
Ω,F ,m; θ : Ω→ Ω; η : Ω→ [A,B]; fη : C→ C

)
and induced by it random dynamics.

We now describe our results for the sextuple F . Let X = Ω×Q and let π1 : X → Ω be
the projection onto the first coordinate, i.e., π1(ω, z) = ω.

Following [11] we consider random measures (with respect to the measure m). Let
Mm ⊂ M(X) be the set of all non-negative probability measures on X that project onto
m under the map π1 : X → Ω, i.e.

Mm =
{
µ ∈M(X) : µ ◦ π−1

1 = m
}
.

The members of Mm are called random measures with respect to m. Their disintegration
measures µω, ω ∈ Ω, with respect to the partition of X into sets {ω} ×C, are called fiber-
wise random measures, and frequently, abusing slightly terminology, these are (also) called
just random measures. We are interested in conformal random measures, their existence,
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uniqueness, and geometrical and dynamical properties. Such measures are characterized
by the property that

νθω(Fω(A)) = λt,ω

∫
A

∣∣(Fω)′∣∣t dνω
for m–a.e. ω ∈ Ω and for every Borel set A ⊂ Q such that Fω|A is 1–to–1,where λt :
Ω→ (0,+∞) is some measurable function. Our first main result is about the existence of
conformal random measures. Indeed, we proved the following.

Theorem 1 (Existence of conformal measures). For every t > 1 there exists ν(t), a random
t–conformal measure, for the map F : Q→ Q.

The proof of this theorem is much more involved than its deterministic counterpart of
[41]; the whole Sections 5–8 are entirely devoted to this task. There are many reasons
for that. One of them, notorious for random dynamics, is the difficulty to control upper
and lower bounds of the measurable function λt. In the deterministic case there is just one
number eP(t). Here, we have an apriori uncontrolled function λt. We overcome this difficulty
by starting of with good class of random measures: the sets P and P̂ of Sections 5–8. We
also must carefully control the trajectories of 0, the singularity of f−1

η for every η ∈ [A,B]
and points approaching these trajectories. This is the more difficult in the random case
that we now have the trajectory of 0 for every ω ∈ Ω. There are more subtle and involved
issues.

We then turned our attention to the problem of F -invariant random measures absolutely
continuous with respect to the random conformal measure of Theorem 1. This was done
in Section 9. Its full outcome is contained in the following.

Theorem 2. For every t > 1 there exists a unique Borel probability F–invariant random
measure µ(t) absolutely continuous with respect to ν(t), the random t–conformal measure of
Theorem 1. In fact, µ(t) is equivalent with ν(t) and ergodic.

Note that in terms of fiberwise invariant measures, F–invariance of the measure µ(t) means
that

µ(t)
ω ◦ F−1

ω = µ
(t)
θω

for m–a.e. ω ∈ Ω.
Note that we do not claim that the measure µ(t) is absolutely continuous with respect to
any random t–conformal measure for the map F . We claim this only for the measure ν(t)

resulting from the proof of Theorem 1, i.e. Theorem 38. The proof of Theorem 2 is done
“globally” and requires very subtle estimates of fiberwise random conformal measures of
various balls and inverse images of measurable sets under all iterates.

Turning to geometry, we have defined random counterpart of radial (conical) Julia sets
Jr(ω) and global radial Julia set Jr(F ). The precise definition is provided in Section 9 as
Definition 55.

This definition of radial sets differs a little bit from the standard one. What we mean
is that, when applied to deterministic systems, it produces the sets Jr that are different
than, though contained in, those introduced in [39], comp. ex. [40], [41], [23], [32] and [24].
Therein one merely required that the setsNω(z,N) are infinite. For “truly random” systems
we do however need such a more involved definition, the one which naturally matches with
the random structure.
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With HD denoting Hausdorff dimension, we proved in Section 10 the following theorem
about the geometric structure of the random radial Julia sets Jr(ω).

Theorem 3. For t > 1 put

EP(t) :=

∫
Ω

log λt,ωdm(ω).

Then

(1) EP(t) < +∞ for all t > 1,

(2) The function (1,+∞) 3 t 7→ EP(t) is strictly decreasing, convex, and thus continu-
ous,

(3) limt→1 EP(t) = +∞ and EP(2)) ≤ 0.

(4) (Bowen’s formula) Let h > 1 be the unique value t > 1 for which EP(t) = 0. Then

HD(Jr(ω)) = h

for m–a.e.ω ∈ Ω.

A remarkable fact of this theorem is that the Hausdorff dimension of random radial Julia
sets Jr(ω), ω ∈ Ω, is expressed in terms (zero of the expected pressure EP(t)) that have
nothing to do with these sets. Another remarkable observation about these sets, is their
dynamical significance, which follows from the fact, which we proved, that

µ(Jr(F )) = 1

for every F–invariant random measure on X.
As a matter of fact, we proved even more about geometry of random radial Julia sets

Jr(ω) than Theorem 3. Namely:

Theorem 4. The Hausdorff dimension h = HD(Jr(ω)) of the random radial Julia set
Jr(ω), is constant for m–a.e. ω ∈ Ω and satisfies 1 < h < 2. In particular, the 2–
dimensional Lebesgue measure of m–a.e. ω ∈ Ω set Jr(ω) is equal to zero.

As its, almost immediate, corollary, we obtain the following result about trajectories of
(Lebesgue) typical points.

Theorem 5 (Trajectory of a (Lebesgue) typical point I). For m–almost every ω ∈ Ω there
exists a subset Qω ⊂ Q with full Lebesgue measure such that for all z ∈ Qω the following
holds.

(1.1)
∀δ > 0 ∃nz(δ) ∈ N ∀n ≥ nz(δ) ∃k = kn(z) ≥ 0

|F n
ω (z)− F k

θn−kω(0)| < δ or |F n
ω (z)| ≥ 1/δ.

In addition, lim supn→∞ kn(z) = +∞.

As an immediate consequence of this theorem we get the following.

Corollary 6 (Trajectory of a (Lebesgue) typical point II). For m–almost every ω ∈ Ω
there exists a subset Qω ⊂ Q with full Lebesgue measure such that for all z ∈ Qω, the set
of accumulation points of the sequence (

F n
ω (z)

)∞
n=0

is contained in [0,+∞] ∪ {−∞} and contains +∞.
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These last two properties are truly astonishing and were first time observed for the expo-
nential map C 3 z 7→ ez ∈ C in [31] and [20] and then extended to many other exponential
functions in [41]. Our approach to establish these two properties is different than those of
[31] and [20] and relies on investigation of h–dimensional packing measure Q.

As it is explained in detail in Sections 12 and Section 13, dealing with the sextuple

F :=
(
Ω,F ,m; θ : Ω→ Ω; η : Ω→ [A,B];Fη : Q→ Q

)
and induced by it random dynamics

(
F n
ω : Q −→ Q

)∞
n=0

is entirely equivalent to dealing
with the sextuple

f :=
(
Ω,F ,m; θ : Ω→ Ω; η : Ω→ [A,B]; fη : C→ C

)
and induced by it random dynamics

(
fnω : C −→ C

)∞
n=0

, if the derivatives of the maps fnω
are calculated with respect to the conformal Riemannian metric

|dz|/|z|.

This metric pops up naturally in Section 12 and coincides with the metric dealt with in
[23] and [24]. In Sections 12 and 13 we fully transfer all the main results proven for the
sextuple F to the case of the sextuple f .

2. Preliminaries

2.1. The Quotient Cylinder and the Quotient Maps. We define the equivalence
relation ∼ on the complex plane C by saying that Z ∼ W if there exists k ∈ Z such that

Z −W = 2πik.

We denote the quotient space C/ ∼ by Q. So, Q is conformally an infinite cylinder. We
denote by π the natural projection π : C → Q, i.e., π(Z) = [Z] is the equivalence class
of Z with respect to relation ∼. Since both maps fη : C → C and π ◦ fη : C → Q are
constant on equivalence classes, they canonically induce conformal maps fη : Q → C and
Fη : Q→ Q. So, Fη can be represented as

Fη = π ◦ fη ◦ π−1,

precisely meaning that for every point in Q, its image under π ◦ fη ◦ π−1 is a singleton and
the above equality holds. Although, formally, Q is the set of equivalence classes [z], we
shall often use the notation z ∈ Q, whenever this does not lead to a confusion.

We will also use occasionally the natural identification

Q ∼ {Z ∈ C : 0 ≤ ImZ < 2π},

when this does not lead to a confusion. For z ∈ Q we denote

|z| := inf{|Z| : Z ∈ π−1(z)}.

Similarly, for z ∈ Q we denote by Rez the common value ReZ for Z ∈ π−1(z).

We denote by YM the set

YM := {z ∈ Q : |Re(z)| > M}.
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This set splits naturally as Y +
M ∪ Y

−
M ,where

Y +
M := {z ∈ Q : Re(z) > M} and Y −M := {z ∈ Q : Re(z) < −M}.

We also denote:
QM := {z ∈ Q : |Rez| ≤M}.

For positive variables A,B, depending on a collection of parameters, we write A � B if
there exists a constant C independent of the parameters such that

A ≤ C ·B.
Similarly, we write A � B if B � A. We write

A � B if and only if A � B and A � B.

2.2. Koebe’s Distortion Theorems. For every ξ ∈ C and every r > 0 let

B(ξ, r) := {z ∈ C : |z − ξ| < r}
be the open disk (ball) centered at the point ξ with radius r. We abbreviate

B(ξ, r) := B(ξ, r).

We record the following classical Koebe’s distortion theorems; for proofs see e.g., [15].

Theorem (Koebe’s Distortion Theorem). Let ξ ∈ C and let r > 0. Let g : B(ξ, r)→ C be
a univalent holomorphic map. Then for every t ∈ [0, 1) and every z ∈ B(ξ, tr) we have

1− t
(1 + t)3

≤ |g
′(z)|
|g′(ξ)|

≤ 1 + t

(1− t)3
,

tr

(1 + t)2
|g′(ξ)| ≤ |g(z)− g(ξ)| ≤ tr

(1− t)2
|g′(ξ)|.

and

Theorem (Koebe’s 1/4 Theorem). Let ξ ∈ C and let r > 0. If g : D(ξ, r) → C is a
univalent holomorphic map, then

g(D(z0, r)) ⊃ D
(
g(ξ),

1

4
|g′(ξ)| · r

)
.

We shall often refer to these results as to standard distortion estimates. From now on
throughout the paper, for every t ∈ [0, 1) we set

Kt := max

{
1 + t

(1− t)3
,
(1 + t)3

1− t

}
≥ 1

and
K := K1/2.

We will often make use of Bloch’s theorem (for a proof see e.g., [15]), which does not require
the map to be univalent:

Theorem (Bloch’s Theorem). Let fD : C be a holomorphic map defined on the unit disc
D. If |f ′(0)| = 1, then there is a region (open connected set) U ⊂ D which is mapped by f
univalently onto a disc of radius r ≥ 1/72.
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3. Julia Sets of Non–Autonomous Iterations of exponential Maps

As in the introduction, for η 6= 0 we denote by fη : C→ C the entire map defined by

fη(z) = ηez.

Fix two real numbers A ≤ B with A > 1/e. Put

A := [A,B]N.

For every infinite sequence of numbers in [A,B], i.e., every element a = {a1, a2, . . .} of the
infinite product [A,B]N, define the non–autonomous dynamical system by the following
formula:

fna := fan ◦ fan−1 ◦ · · · ◦ fa2 ◦ fa1 : C −→ C.
For every a ∈ A the respective Fatou and Julia sets Fa and Ja are then defined analogously
as in the deterministic case:

Fa :=
{
z ∈ C : fna |U is normal for some neighborhood U of z

}
and

Ja := C \ Fa.

Denote by σ : A −→ A the left shift, i.e., the map

σ(a1, a2, a3 . . .) = (a2, a3, a4 . . .).

Note that both these sets Fa and Ja are invariant by the dynamics. More precisely:

f 1
a(Ja) = fa1(Ja) ⊂ Jσ(a) and f 1

a(Fa) = fa1(Fa) ⊂ Fσ(a).

Our next theorem extends to the non–autonomous case the celebrated result of Micha l
Misiurewicz (see [29]) which was conjectured by Pierre Fatou already in 1926 (see [14]).
The proof we provide is simple and it constitutes a substantial simplification also for de-
terministic maps.

Theorem 7. For every a ∈ A, we have that

Ja = C.

The proof of Theorem 7 will consist of several lemmas.

Lemma 8. For every a ∈ A,

Ja ⊃ R.

Proof. First, observe that if x ∈ R, then

lim
n→∞

fna (x)→ +∞.

Now, if w ∈ R \ Ja, then there exists a neighborhood V ⊂ C of the point w in C such that
the family

(
fna |V

)∞
n=0

is normal. So, since also fna |R∩V → ∞, as n → ∞, we conclude that
fna converges to infinity uniformly on compact subsets of V as n→∞. Remember that for
this specific family fη we have fη = f ′η. So, if B(w, r) ⊂ V , then

|(fna )′|
∣∣
B(w,r)

→∞
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uniformly as n→∞. Thus, by virtue of Bloch’s Theorem, the image fna (B(w, r)) contains
a ball of radius 2π for all n ≥ 0 sufficiently large. This implies that there exists a sequence
of points zn ∈ B(w, r), n ≥ 0 large enough, such that

lim
n→∞

∣∣Re(fna (zn))
∣∣ = +∞,

and
Imfna (zn)) ∈ π + 2πZ.

Then fn+1
a (zn) ∈ (−∞, 0) and, consequently, |fn+2

a (zn)| < B, where, we recall, B is the
number fixed, along with A, at the beginning of this section. Thus, fna |B(w,r) does not tend
to infinity as n→∞. This contradiction finishes the proof. �

As an immediate consequence of this lemma we get the following.

Corollary 9. If V ⊂ C is an open set and V ∩ Ja = ∅, then V ∩ R = ∅. Furthermore,

(1)

R ∩
∞⋃
n=0

fna (V ) = ∅,

and, more generally,
(2) (⋃

k∈Z

R + kπi

)
∩
∞⋃
n=0

fna (V ) = ∅.

The next lemma and its proof come as minor modifications from [29].

Lemma 10. For every z ∈ C and every integer n ≥ 1,

|(fna )′(z)| ≥ |Imfna (z)|.

Proof. fη(z) = ηez = ηex cos y+iηex sin y. Since | sin y| ≤ |y|, we thus have that |Imfη(z)| ≤
ηex|y| = |fη(z)||Im(z)|. So,

(3.1)
|Imfη(z)|
|Im(z)|

≤ |fη(z)|.

Therefore,

|Imfna (z)| = |Imfna (z)|
|Imfn−1

a (z)|
· |Imf

n−1
a (z)|

|Imfn−2
a (z)|

· . . . · |Imf
2
a(z)|

|Imfa(z)|
· |Imfa(z)|

≤ |fna (z)| · |fn−1
a (z)| · . . . · |f 2

a(z)| · |Imfa(z)|
≤ |fna (z)| · |fn−1

a (z)| · . . . · |f 2
a(z)| · |fa(z)|

= |(fna )′(z)|.
�

Remark 1. The above computation, although very simple, reflects the following phenom-
enon: Denoting by H+ and H−, respectively, the upper and lower half-plane, we see that
the branches f−1

η of the inverse map are well-defined in H+ and H−, and each of them map

H± into H+ or H−. Since the hyperbolic metric in H± is given by |dz|
|Im(z)| , the inequality

(3.1) just expresses the fact that f−1
η are contractions in the hyperbolic metric.
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Lemma 11. If V ⊂ C is an open connected set and V ⊂ V ⊂ C \ Ja, then there exists an
integer N ≥ 0 such that for all n ≥ N ,

fna (V ) ⊂ S := {z ∈ C : |Im(z)| < π}.

Proof. By Corollary 9, for every n ∈ N, either the set fn(V ) is contained in S, or it is
disjoint from S. If fna (V )∩ S = ∅ for infinitely many integers n ≥ 1 then, using Lemma 10
and the Chain Rule, we conclude that

lim sup
n→∞

|(fna )′||V = +∞.

This (using e.g. Bloch’s Theorem) implies that for infinitely many integers n ≥ 1 the set
fna (V ) contains a ball of radius 2π. So, for all such n, fna (V ) ∩

(⋃
k∈ZR + kπi

)
6= ∅. This

however contradicts Corollary 9, and we are done. �

Write S as S = S+ ∪ S− ∪ R, where

S+ := {z ∈ C : 0 < Im(z) < π} and S− := {z ∈ C : −π < Im(z) < 0}.

For a ∈ A denote by ga the holomorphic branch of f−1
a defined on S+ and mapping S+

into S+. More generally, for every η ∈ [A,B], the map gη denotes the holomorphic branch
of f−1

η mapping S+ into S+. Denote by ρ the hyperbolic metric in S+.

Lemma 12. For every η ∈ [A,B] and for all z, w ∈ S+, we have that

(3.2) ρ(gη(z), gη(w)) ≤ ρ(z, w).

Also, for every compact subset K ⊂ S+ there exists κ ∈ (0, 1) such that for every η ∈
[A,+∞) and for all z, w ∈ K, we have that

(3.3) ρ(gη(z), gη(w)) ≤ κρ(z, w).

Proof. The formula (3.2) is a straightforward consequence of Schwarz Lemma. Since the
map gη : S+ → S+ is not bi–holomorphic, it also follows from Schwarz Lemma that

(3.4) ρ(gη(z), gη(w)) < ρ(z, w)

whenever z, w ∈ S+ and z 6= w, and in addition,

(3.5) lim sup
z,w→ξ
z 6=w

ρ(gη(z), gη(w)

ρ(z, w)
< 1

for every ξ ∈ S+. In order to prove (3.3), fix η2 > η1 ≥ A. Since gη2(z) = gη1(z) − log η2
η1

and gη2(w) = gη1(w) − log η2
η1

, and since the metric ρ is invariant under the horizontal

translation, we have

ρ(gη2(z), gη2(w)) = ρ(gη1(z), gη1(w)).

So, it is enough to check the estimate (3.3) for fA. But this follows immediately from (3.4),
(3.5), and compactness of the set K. �

Lemma 13 below will complete the proof of Theorem 7.
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Lemma 13. The interior of the set

Λ :=
∞⋂
n=0

f−na (S)

is empty.

Proof. Since

fa(S+) = {z ∈ C : Im(z) > 0}, fa(S−) = {z ∈ C : Im(z) < 0},
and

fa(R) = (0,+∞),

it follows that
∞⋂
n=0

f−na (S) =
∞⋂
n=0

f−na (S+) ∪
∞⋂
n=0

f−na (S−) ∪ R.

We shall prove that the set
⋂∞
n=0 f

−n
a (S+) has empty interior; the set

⋂∞
n=0 f

−n
a (S−) can be

dealt with in the same way.
So, suppose that there exists V ⊂ C, a nonempty, open, connected, bounded with

V ⊂ V ⊂
∞⋂
n=0

f−na (S+).

Then, obviously, the family
(
fna |V

)∞
n=0

is normal. Now, fix a non-empty open connected set
W (e.g.: a disk) contained, together with its closure, in V . Put

δ := dist(W,∂V ) > 0.

Let N ≥ 1 be so large integer that (π
2

)N
· δ

72
> 2π.

Now, seeking a contradiction, assume that there exists ξ ∈ W such that for at least N
integers n1, . . . , nN ≥ 0 we have that

fnω (ξ) ∈ {z ∈ C : Imz > π/2}.
Then |(fnNω )′(ξ)| > (π/2)N , and again Bloch’s Theorem implies that fnω (W ) contains some
ball of radius 2π. Since fnN (W ) does not intersect the Julia set Jθna, this is a contradiction,
as Jθna ⊃ R + 2πiZ.

We therefore conclude that the trajectory fna (z) of every point z ∈ W visits the domain
{z ∈ C : Imz > π/2} at most N times. For every integer k ≥ 0 let

Wk := W ∩
∞⋂
n=k

f−na

(
{z ∈ C : Imz ≤ π/2}

)
.

Each set Wk, k ≥ 0, is closed (with respect to the relative topology) in W and, as we have
just proved, that

∞⋃
k=0

Wk = W.
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SinceW is an open subset of C, it is completely metrizable, and therefore the Baire Category
Theorem holds for it. Thus, there exits q1 ≥ 0 such that

W ∗ := IntC(Wk) 6= ∅.

This means that for all integers n ≥ q1, we have that

fna (W ∗) ⊂ {z ∈ C : Imz ≤ π/2}.

Since all sets fna (W ∗), n ≥ 0, are open in C and contained in S+, we thus conclude that

(3.6) fna (W ∗) ⊂ {z ∈ C : 0 < Imz < π/2}

for all integers n ≥ q1. Consequently,

fna (W ∗) ⊂ {z ∈ C : Rez > 0}

for all n ≥ q1 + 1. Moreover, observe that there exists a constant M > 0 such that, if
Rez ≥M , Imz ∈ (0, π/2), and fη(z) ∈ S, η ∈ [A,B], then

Refη(z) > Rez + 1.

This, in turn, implies that if f ja(W ∗)∩{z ∈ C : Rez ≥M} 6= ∅ for some integer j ≥ q1 + 1,
then the sequence

(
fnω |W ∗

)∞
n=q1+1

converges uniformly to ∞. But since then the sequence(
(fn)′|W ∗

)∞
n=q1+1

also converges uniformly to ∞, this possibility is again excluded by the

conjunction of Bloch’s Theorem and (3.6).
So, we have concluded that

fnω (W ∗) ⊂ {z ∈ C : 0 < Rez < M and 0 < Imz < π/2}

for all integers n ≥ q1. Since the family
(
fnω |W ∗

)∞
n=q1+1

is normal, its every subsequence

contains a subsequence converging uniformly in W ∗ to some limit holomorphic function.
Since all the maps fnω |W ∗ , n ≥ q1 +1, expand the hyperbolic metric ρ, there are no constant
limits of subsequences

(
fnka |W ∗

)∞
k=1

with values in S+.

So, let g be a non-constant limit of some subsequence
(
fnka |W ∗

)∞
k=1

converging uniformly.
Shrinking W ∗ if necessary, one can assume that g(W ∗) is contained in some compact subset
K ⊂ S+. Putting

K̃ := {z ∈ S+ : ρ(z,K) ≤ 1},
we see that there is q2 ≥ q1 + 1 such that for every k ≥ q2

fnkω (W ∗) ⊂ K̃.

Note that K̃ has finite hyperbolic diameter, in fact is compact, and put D := diamρ(K̃) <
∞. Record that for all k > q2, we have that

fnka = f
nk−nk−1

θnk−1a
◦ · · · ◦ fnq2+1−nq2

θnq2 a
◦ fnq2a .

Let z, w ∈ W ∗ with z 6= w. Then, using (3.3) and (3.2), we see that ρ(z, w) ≤ κk−q2D for
every k ≥ q2, which is a contradiction.

So, the sequence
(
fna |W ∗

)∞
n=0

has no subsequence with a non–constant limit.

Since all limit functions of subsequences of the sequence
(
fna |W ∗

)∞
n=0

with values in S+

have been also already excluded, we arrive at the following conclusion:



14 MARIUSZ URBAŃSKI AND ANNA ZDUNIK

For every θ > 0 there exists an integer nθ ≥ 0 such that

fna (W ∗) ⊂ {z ∈ C : 0 < Imz < θ} ∩ {z ∈ C : 0 < Rez < M}.
for every n ≥ nθ.

In order to complete the proof, we now shall show that the above is impossible. This
can be deduced immediately from the following lemma. Its proof is an easy calculation and
will be omitted.

Lemma 14. Let δ > 0 be so small that (1− δ) > 1
Ae

. Then for every η ≥ A and for every
z ∈ C with cos Imz > 1− δ, we have that

Refη(z) > Re(z) + Ae(1− δ).
In particular, the map fη moves the region {z ∈ S+ : cos Imz > 1− δ)} by ε to the right.

�

4. Random Exponential Dynamics and Random Measures in Q

As in [1], [11], [22], [26], and [27] the randomness is modeled by a measure preserving
invertible dynamical system

θ : Ω→ Ω,

where (Ω,F ,m) is a complete probability measurable space, and θ is a measurable invertible
map, with θ−1 measurable, preserving the measure m. As in the previous section, fix some
real constants A,B with A > 1/e. Let

η : Ω 7−→ [A,B]

be a measurable function. Furthermore, to each point ω ∈ Ω associate the exponential map

fω := fη(ω) : C −→ C
given by the formula

fω(z) = η(ω)ez.

Consequently, for every z ∈ C, the map

Ω 3 ω 7−→ fη(ω)(z) ∈ C
is measurable.

We consider the dynamics of random iterates of exponential functions:

fnω := fθn−1ω ◦ · · · ◦ fθω ◦ fω : C −→ C.
The quintuple (

Ω,F ,m; θ : Ω→ Ω; η : Ω→ [A,B]
)

and induced by it random dynamics(
fnω : C→ C

)∞
n=0

, ω ∈ Ω,

will be referred to in the sequel as random exponential dynamical system. As we have
explained it in the introduction, we will in fact do all of our investigations for the maps
projected to the cylinder Q. More precisely, for every ω ∈ Ω, we consider the map

Fω = π ◦ fω ◦ π−1,
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and the corresponding random dynamical system

F n
ω := Fθn−1ω ◦ · · · ◦ Fθω ◦ Fω : Q −→ Q.

As it was indicated in the introduction, and explained in detail in Section 12, and in
Section 13, this is entirely equivalent to dealing with the random dynamical system (fnω )
with derivatives calculated with respect to the conformal Riemannian metric

|dz|
|z|

.

Recall from [11] that a function g : Ω × Q → C, g(ω, z) = gω(z), is called a random
continuous function if, for every ω ∈ Ω the function

Q 3 z 7−→ gω(z) ∈ C

is continuous and bounded, and, in addition, for every z ∈ Q the function

Ω 3 ω 7−→ g(ω, z) ∈ C

is measurable. It then follows ( see, e.g., Lemma 1.1 in[11]) that every random continuous
function is measurable with respect to the product σ–algebra F ⊗B, where B is the Borel
σ–algebra in Q. Moreover, the map

Ω 3 ω 7−→ ‖gω‖∞ ∈ R

is measurable and, m− integrable. The vector space of all real–valued random continuous
functions is denoted by Cb(Ω×Q). Equipped with the norm

‖g‖ :=

∫
Ω

‖gω‖∞dm(ω)

it becomes a Banach space.
The simplest example of such a random map is obtained just by putting Ω := Π∞−∞[A,B],

equipped with some (completed) product measure, and putting, for ω = (. . . η−1, η0, η1 . . . )
η(ω) := η0.

Put

X := Ω×Q.
Denote byM(X) the space of all those signed measures ν defined on the σ-algebra F ⊗B
for which

‖ν‖∞ := esssup{|νω| : ω ∈ Ω} < +∞,
where νω, ω ∈ Ω, is the corresponding disintegration of ν and, for each ω ∈ Ω the number
|νω| is the total variation norm of νω.

These measures, i.e. the members of M(X), can be canonically identified with linear
continuous functionals on the Banach space Cb(Ω×Q).

Let π1 : X → Ω be the projection onto the first coordinate, i.e.,

π1(ω, z) = ω.

Let Mm ⊂ M(X) be the set of all non-negative probability measures on X that project
onto m under the map π1 : X → Ω, i.e.

Mm =
{
µ ∈M(X) : µ ◦ π−1

1 = m
}
.
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A map µ : Ω× B → [0, 1], (ω,B) 7−→ µω(B), is called a random probability measure on
Q if

• For every set B ∈ B the function Ω 3 ω 7−→ µω(B) ∈ [0, 1] is measurable,
• For m-almost every ω ∈ Ω the map B 3 B 7→ µω(B) ∈ [0, 1] is a Borel probability

measure.

A random measure µ will be frequently denoted as {µω}ω∈Ω or {µω : ω ∈ Ω}.
The setMm(X) can be canonically identified with the collection of all random probability

measures on Q as follows.

Proposition 15 (see Propositions 3.3 and 3.6 in[11]). With the above notation, for every
measure µ ∈Mm(X) there exists a unique random measure {µω}ω∈Ω on Q such that∫

Ω×Q
h(ω, z) dµ(ω, z) =

∫
Ω

(∫
Q

h(ω, z) dµω(z)

)
dm(ω)

for every bounded measurable function h : Ω×Q→ R.
Conversely, if {µω}ω∈Ω is a random measure on Q, then for every bounded measurable

function h : Ω × Q → R the function Ω 3 ω 7−→
∫
Q
h(ω, z)dµω(z) is measurable, and the

assignment

F ⊗ B 3 A 7−→
∫

Ω

∫
Q

11A(ω, z)dµω(z)dm(ω),

defines a probability measure µ ∈Mm(Q).

Both setsM(X) areMm are equipped in [11] with a topology called therein as a narrow
topology. This topology is on M(X) generated by the following local bases of neighbor-
hoods of elements ν ∈M(X):

Ug1,...gk;δ(ν) :=

{
µ ∈M(X) :

∣∣∣ ∫ gjdµ−
∫
gjdν

∣∣∣ < δ

}
,

where g1, . . . gk is an arbitrary collection of random continuous functions and δ is some
positive number. The spaceMm is then endowed with the subspace topology of the narrow
topology on M(X). This topology is in general non–metrizable neither on M(X) nor on
Mm.

A subset R ⊂Mm is said to be tight if for every ε > 0 there exists M > 0 such that for
every ν ∈ R we have that

ν(Ω×QM) ≥ 1− ε.

We recall Theorem 4.4 in [11]:

Theorem 16 (Crauel’s Prokhorov Compactness Theorem). A set R ⊂Mm is tight if an
only if it is relatively compact with respect to the narrow topology. In this case, R is also
relatively sequentially compact.
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5. Random Conformal Measures for Random Exponential Functions; a
Preparatory Step

In this section, after short preparation, we define random t–conformal measures, and our
main goal in it is to prove their existence for every t > 1. In order to do this we introduce
a subspace of random measures for our random dynamics of exponentials. After defining a
properly chosen convex and compact subset P ⊂Mm, with respect to the narrow topology,
we will check that this set is invariant under an appropriate continuous map. The existence
of a random conformal measure will be then deduced from the Schauder–Tichonov Fixed
Point Theorem.

In this section, and in the next Sections 6, 7, 8, 9, we work with an arbitrary, but fixed,
t > 1. So, the space P and the estimates depend on t.

Definition 17. We define a family of operators Lt,ω, t > 1, ω ∈ Ω, by

Lt,ω(g)(z) :=
∑

w∈F−1
ω (z)

g(w) · |F ′ω(w)|−t ∈ R,

where g : Q → R ranges over bounded continuous functions. Note that the series above
converges indeed since t > 1; this is not difficult to check and can be done in exactly the
same way as in [41], in fact it can be seen immediately from the formula (5.2) below.

Furthermore, we define the global transfer operator Lt on the space Cb(Ω×Q) as follows:
for (ω, z) ∈ X = Ω×Q and a random continuous function g, we put

(Lt)ωg(z)) := Lt,θ−1ω(gθ−1ω)(z).

Note that Lt does not act on the space Cb(Ω × Q), i.e. its image is not contained in
Cb(Ω×Q). The point is that for each ω ∈ Ω the function Lt,ω(11) is unbounded. However,
we shall check that for each random continuous function g : X → R and suitably chosen
family of random measures ν, the integral∫

Lt,ω(gω)dνθω

is well defined. This will follow from integrability of the functions

Q 3 z 7−→ Lt,ω(11)(z) ∈ R,

ω ∈ Ω, with respect to the measures νθω. Verifying this will allow us to define formally the
measures L∗t,ωνθω, ω ∈ Ω, as

L∗t,ωνθω(g) :=

∫
Lt,ωgωdνθω.

The random measure
(
νω
)
ω∈Ω

is then said to be t–conformal if

L∗t,ω(νθω) = λt,ωνω

for m–a.e. ω ∈ Ω, where λt : Ω→ (0,+∞) is some measurable function. A straightforward
calculation shows that t–conformality is also characterized by the property that

νθω(Fω(A)) = λt,ω

∫
A

∣∣(Fω)′∣∣t dνω
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for m–a.e. ω ∈ Ω and for every Borel set A ⊂ Q such that Fω|A is 1–to–1, where λt : Ω→
(0,+∞) is some measurable function.

Our task now, in the upcoming sections, is to prove the existence of random t–conformal
measures for every t > 1. Let P ⊂ Mm. We want to define a map Φ : P → Mm by the
following formula/requirement:

(5.1) (Φ(ν))ω :=
L∗t,ω(νθω)

L∗t,ω(νθω)(11)
,

i.e., the measure Φ(ν) is the only measure in Mm, with disintegration Φ(ν)ω given by
(5.1). We look for a sufficient condition under which the map Φ is well defined on P . We
first prove a technical lemma and then provide such sufficient condition in Proposition 19
following it.

Lemma 18. Fix ε > 0 arbitrary. Let Cε ⊂ Cb(Ω×Q) be the set of all random continuous
functions defined on Ω×Q that vanish in

Ω× {z ∈ Q : Re(z) < log ε}.
Then

Ltg ∈ Cb(Ω×Q)

for each g ∈ Cε.

Proof. In order to prove that Ltg ∈ Cb(Ω×Q), we need to check

• measurability of the function Ω 3 ω 7−→ Lt,ω(gω)(z), with fixed z ∈ Q,
• continuity of the function Q 3 z 7−→ Lt,ω(gω)(z) with fixed ω ∈ Ω,

and finally,
• the bound ∫

Ω

‖Lt,ω(gω)‖∞dm(ω) <∞.

Recall the definition:

Lt,ω(gω)(z) =
∑

w∈F−1
ω (z)

gω(w) · |F ′ω(w)|−t.

The preimages w ∈ F−1
ω (z) can be easily calculated, using the equation η(ω) exp(wk) =

z + 2kπi, so,

wk = wk(ω) = Log

(
z + 2kπi

η(ω)

)
where we denoted by Log(Z) the only W ∈ Q such that exp(W ) = Z.

With z fixed, the measurability with respect to ω is now easily seen from the above
explicit formula. Note also, that we can write even more explicitly:

(5.2) Lt,ω(gω)(z) =
∑
wk(ω)

gω(wk) ·
∣∣∣∣ η(ω)

z + 2kπi

∣∣∣∣t .
Since t > 1, the above series of continuous functions converges uniformly in a neighborhood
of any point z ∈ Q, z 6= 0, thus defining a continuous function. It remains to prove
continuity at 0. But, since we assumed that g ∈ Cε, it follows that in a sufficiently small
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neighborhood of z = 0 the summand corresponding to the integer k = 0 vanishes, and the
sum in (5.2) is taken only over all k 6= 0; then the previous argument, i.e. the one for points
z 6= 0 applies.

Finally, the formula (5.2) also shows that in some neighborhood Uε of 0 we have the
following bound:

|Lt,ω(gω)(z)| ≤
∑

k∈Z,k 6=0

∣∣∣∣ η(ω)

z + 2kπi

∣∣∣∣t · ||gω||∞
while, outside Uε,

|Lt,ω(gω)(z)| ≤
∑
k∈Z

∣∣∣∣ η(ω)

z + 2kπi

∣∣∣∣t · ||gω||∞
Thus, there exists a constant Dε such that

‖Lt,ω(gω)‖∞ ≤ Dε · ||gω||∞.
We conclude that Ltg = (Lt,ω(gω))ω∈Ω is a random continuous function. �

Proposition 19. Let P ⊂Mm. Assume that there exist ρ > 0 and a monotone increasing
continuous function ϕ : (0, ρ) → [0,+∞) such that limε→0+ ϕ(ε) = 0 and for each ν ∈ P,
every ω ∈ Ω and ε ∈ (0, ρ) we have that

(5.3)

∫
B(0,ε)

Lt,ω(11)(z) dνθω(z) ≤ ϕ(ε).

Assume also that there are constants P ≥ p > 0 such that

(5.4) p ≤
∫
Lt,ω(11)(z) dνθω(z) ≤ P

for all ν ∈ P and each ω ∈ Ω.
Then, the map Ω 3 ω 7−→ L∗t,ωνθω, given by the formula

(5.5) L∗t,ωνθω(g) := νθω
(
Lt,ωg),

where g ∈ Cb(Q), is well defined, making L∗t,ωνθω a finite Borel measure on Q. Moreover,
the global measure

(5.6) L∗tν :=
(
L∗t,ωνθω

)
ω∈Ω

is well defined and it belongs to M(X).

Furthermore, the map Φ, given by (5.1), is well defined, meaning that

• The collection {Φ(ν)ω}ω∈Ω forms a random measure on Q; equivalently:

• Φ(P) ⊂Mm;

• Furthermore, the map Φ : P −→ Mm is continuous with respect to the narrow
topology on Mm.

Proof. The first part of the proposition, i.e. the one pertaining to the formula (5.5), is
immediate from (5.4). Passing to the part pertaining to (5.6), let ν ∈ P . First, we need to
check that for every random continuous function g : Ω×Q→ R, the function

Ω 3 ω 7−→
∫
Q

gωd
(
L∗t,ωνθω

)
∈ R
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is measurable. Equivalently, we need to check the measurability of the function:

(5.7) Ω 3 ω 7−→
∫
Lt,ω(gω) dνθω.

Since ν is a random measure, for every random continuous function

h(ω, z) = hω(z),

the function Ω 3 ω 7−→
∫
hωdνθω ∈ R is measurable. However, the function Ω 3 ω 7−→

Lt,ω(gω), particularly the function Ω 3 ω 7−→ Lt,θω(11), is not a random continuous function.
This is so because the function Ω 3 ω 7−→ Lt,ω(gω) is unbounded unless gω(z) → 0 as
Rez → −∞.

In order to overcome this difficulty, we invoke Lemma 18. Indeed, it follows from this
lemma that for every g ∈ Cε the function

Ω 3 ω 7−→
∫
Lt,ω(gω) dνθω

is measurable and finite. Since the constant function 11 is a pointwise limit of a monotone
(increasing) sequence of functions in Cε (with ε converging to 0), and since the integrals∫
Lt,ω(11)dνθω are uniformly bounded with respect to ν ∈ P , we conclude that the function

Ω 3 ω 7−→
∫
Lt,ω(11)dνθω

is measurable and bounded, as a pointwise limit of an increasing sequence of measurable
and uniformly bounded functions. In fact the monotonicity property (increasing sequence)
and boundedness were inessential in this argument, and the same reasoning shows that the
function

Ω 3 ω 7−→
∫
Lt,ω(gω)dνθω

is measurable for every ν ∈ P and any random continuous function g : X → R. Measura-
bility of the function defined by (5.7) is thus proved, and the part of (5.6) is established.

Then, the assignment

Cb(Ω×Q) 3 g 7−→
(∫
Lt,ω(gω)dνθω∫
Lt,ω(11)dνθω

)
ω∈Ω

defines a linear function from the Banach space Cb(Ω×Q) into R, and moreover, by virtue
of (5.4), this function is continuous.

We thus conclude that Φ(ν) ∈M(X), and, since for each ω ∈ Ω, (Φ(ν))ω, is a probability
measure, we get that

Φ(ν) ∈Mm,

i.e., Φ(ν) is a random probability measure.
In order to prove continuity of the map Φ, it is enough to show that the map

P 3 ν 7−→ L∗tν ∈M(X)

is continuous with respect to the narrow topology.
So, let V ⊂M(X) be an open set, and assume that

ν̃ := L∗tν ∈ V
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where ν is some measure in P . We need to show that L∗t−1(V ) contains some neighborhood
of ν in the narrow topology on M(X).

We can assume without loss of generality that V is taken from the the local base of
neighborhoods of ν̃, i.e.

V = {µ̃ ∈M : |µ̃(gi)− ν̃(gi)| < δ, i = 1, . . . k}
with some integer k ≥ 1, some d > 0, and gi, i = 1, 2, , . . . , k some functions from the space
Cb(Ω×Q). Now, we can further assume with no loss of generality that k = 1, so that

V = {µ̃ ∈M : |µ̃(g)− ν̃(g)| < δ}.
where g is some function in Cb(Ω×Q). Thus,

L∗−1
t (V ) =

{
µ ∈ P : |µ(Ltg)− ν(Ltg)| < δ

}
.

By the assumptions of our proposition, imposed on ϕ, there exists ε > 0 so small that

(5.8) ϕ(ε)‖g‖ < δ/3.

Next, let hε : Q→ [0, 1] be a continuous function such that

• hε(z) = 1 whenever z ∈ Q and |B exp(z)| < ε/2,
and

• hε(z) = 0 whenever z ∈ Q and |B exp(z)| > ε.

Then, for every ω ∈ Ω, the function Lt,ω(hε) is non-zero only in the ball B(0, ε). Define an
auxiliary function

gε := (1− hε)g.
Then gε ∈ Cε/2B. Put

U :=
{
µ ∈ P : |µ(Ltgε)− ν(Ltgε)| < δ/3

}
.

Then, by Lemma 18, U is an open neighborhood of ν in P . If µ ∈ U , then

|L∗tµ(g)− L∗tν(g)| ≤ |L∗tµ(g)− L∗tµ(gε)|+ |L∗tµ(gε)− L∗tν(gε)|+ |L∗tν(gε)− L∗tν(g)|.
The second summand is just equal to |µ(Ltgε)− ν(Ltgε)|, so it can be estimated above by
δ/3. The third summand is equal to∫

Ω

∫
Q

Lt,ω(hε · g) dνωdm(ω),

so its absolute value can be estimated above by∫
Ω

‖gω‖∞
∫
Q

Lt,ω(hε) dνωdm(ω) ≤
∫

Ω

‖gω‖∞
∫
B(0,ε)

Lt,ω(11) dνωdm(ω) ≤ ϕ(ε)‖g‖ < δ/3,

where the second inequality sign “≤” comes from (5.3) and the third (last) one is due to
(5.8). Since µ ∈ P , exactly the same estimate applies to the first summand. Summing
up, we conclude that U ⊂ L∗−1

t (V ). Since U is open in P , the proof continuity of L∗t , and
simultaneously of the whole Proposition 19, is complete. �

Our goal is to apply the general scheme described above, to a properly chosen set P .



22 MARIUSZ URBAŃSKI AND ANNA ZDUNIK

First, we fix a number

(5.9) r0 ∈
(

0,
1

2K

)
.

Next, we formulate the following straightforward estimate. Its proof is omitted.

Lemma 20. There exist constants D > d > 0 (depending on t > 1) such that, for every
ω ∈ Ω and every z ∈ Q,

d

|z|t−1
≤ Lt,ω(11)(z) ≤ D

|z|t−1
.

Put c := d/2, where d comes from Lemma 20. For M0 > 0 define the constants:

(5.10) C(M0) :=
M t−1

0

c

and

(5.11) c(M0) := 2DC(M0)

where D comes from Lemma 20.

Definition 21 (Definition of the space P). Fix some t > 1. Suppose that P ⊂Mm is such
a set for which there exists M0 > 0, with c(M0) > 0, and C(M0) > 0 defined as in (5.10),
(5.11), such that the the following are satisfied:

(5.12) νω(QM0) ≥ 1/2 for all ω ∈ Ω,

(5.13) νω(Y +
M ) ≤ c(M0)e

M
2

(1−t) for all ω ∈ Ω and all M > 0,

and, for every integer n ≥ 0 the following Condition Wn holds:

Condition Wn. For every ω ∈ Ω and every j ∈ N ∪ {0} the following bounds hold:

(5.14) νθj(ω)(F
−n
θjω,∗(B(F n+j

ω (0), r0)) ≤ aj,n(ω) · bn+j(ω),

where

(5.15) aj,n(ω) := (K · C(M0))n|F j+1
ω (0)|−t · |F j+2

ω (0)|−t · · · · · |F j+n
ω (0)|−t,

aj,0(ω) := 1,

and

(5.16) bk(ω) :=

(
Kr0

2π

)
c(M0) · C(M0) · |F k+1

ω (0)|1−t · e−
(t−1)

4
|Fk+1
ω (0)|,

where F−n
θjω,∗ is the holomorphic branch of F−n

θjω
, defined in B(F n+j

ω (0), r0) and mapping

F n+j
ω (0) back to F j

ω(0).
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6. The Map Φ is Well Defined on P

Our goal in this section is to show that if the constant M0 > 0, together with c(M0) > 0,
and C(M0) > 0 as in (5.11), (5.10), is properly selected, then there exist numbers ρ > 0,
P > 0, and p > 0 and a function ϕ(ε) such that for any set P ⊂ Mm fulfilling the
requirements of Definition 21, the hypothesis of Proposition 19 are satisfied. In particular,
the map Φ is well defined on P . In the next section, we will show that

(6.1) Φ(P) ⊂ P .

So, our strategy is to fix a non–empty set P ⊂ Mm fulfilling the requirements of Defini-
tion 21 with some, undetermined yet, constant M0 > 0, and to work out such sufficient
conditions for this constant that the hypothesis of Proposition 19 will be satisfied, and
later, in the next section, to show that formula (6.1) holds.

Now, given ω ∈ Ω, we define a sequence of radii
(
rn(ω)

)∞
n=1

, converging to 0 as n→∞.
Put

rn = rn(ω) :=
1

4
r0

(
|Fω(0)| . . . |F n

ω (0)|
)−1

.

Then, by Koebe’s 1
4
–Theorem,

B̃n,ω := F−nω
(
B(F n

ω (0), r0)
)
⊃ B

(
0,

1

4
r0

(
|Fω(0)| . . . |F n

ω (0)|
)−1
)

= B(0, rn).

Lemma 22. Put s = 3t+ 7. Then there exist a constant C ∈ (0,+∞), independent of M0,
such that if ν is any random measure in P, then for every radius r ∈ (0, r0/4) we have that

(6.2) νω(B(0, r)) ≤ C · (M t−1
0 )nω(r)+2rs,

where nω(r) is the unique integer n ≥ 0 for which rn+1(ω) ≤ r < rn(ω).

Proof. Denote nω(r) by n. Using condition Wn we get

(6.3) νω(F−nω,∗
(
B(F n

ω (0), r0))
)
≤ a0,n(ω)bn(ω).

Using this condition again one can easily deduce that

νω(B(0, r)) ≤ νω(B(0, rn)) ≤ a0,n(ω)bn(ω) ≤ Const(M t−1
0 )n+2 exp

(
F n+1
ω (0)

8
(1− t)

)
,

where the constants are independent of ω, n and M0. Now, there exists an integer N ≥ 1
such that for all n ≥ N , all ω ∈ Ω, and all rn+1(ω) ≤ r < rn(ω),

exp

(
F n+1
ω (0)

8
(1− t)

)
≤
(

1

4
r0

(
|Fω(0)| . . . |F n

ω (0)| · |F n+1
ω (0)

)−s
= rsn+1 ≤ rs.

If n < N , we still have (6.2), by increasing the constant C if needed. The proof is complete.
�

Lemma 23. We have that

lim
r→0

nω(r)

ln ln 1
r

= 0

uniformly with respect to ω ∈ Ω.
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Proof. As in the proof of the previous lemma put n := nω(r). Then we have

1

r
>

1

rn
=

4

r0

· |Fω(0)| · · · · · |F n
ω (0)|.

So, using F k
ω (0) = η(θk−1ω) exp

(
F k−1
ω (0)

)
> 1

e
exp

(
F k−1
ω (0)

)
, true for every k ≥ 1, we get

that

ln
1

r
> ln 4− ln r0 + ln |Fω(0)|+ · · ·+ ln |F n−1

ω (0)|

> ln 4− ln r0 + |Fω(0)|+ . . . |F n−1
ω (0)| − n

> |F n−1
ω (0)|

for all n large enough, and so, also for all n large enough: ln ln 1
r
> lnF n−1

ω (0) ≥ n2, and
the lemma follows. �

Lemma 24. There exist u ≥ 2t + 7 and ρ ∈ (0, r0/4) (ρ depends on M0) such that, for
every measure ν ∈ P, we have that

νω(B(0, r)) ≤ ru

for all r < ρ and m–a.e. ω ∈ Ω.

Proof. The estimate (6.2) says that νω(B(0, r)) ≤ C · (M t−1
0 )nω(r)+2rs where s = 3t + 7 >

3t + 6 > 2t + 7. Thus, invoking Lemma 23 and the definition of rn(ω), we see that the
required estimate follows, with u := 2t+ 7. �

For every ε ∈ (0, r0/4) let k(ε) ≥ 0 be the least non–negative integer k such that

A exp
(
−M0(k + 1)

)
< ε.

Then, define the function ϕ̃(ε)

(6.4) ϕ̃(ε) := DBt+8

∞∑
k=k(ε)

exp
(
−M0(t+ 8)k

)
,

Conforming to our general strategy, thus aiming to apply Proposition 19, we shall prove
the following.

Lemma 25. If ν ∈ P, then for m–a.e. ω ∈ Ω and every ε ∈ (0, ρ), we have that

(6.5)

∫
B(0,ε)

Lt,ω(11)(z) dνθω(z) ≤ ϕ̃(ε).

Proof. For every ω ∈ Ω, let

B(ω) =:
{
z ∈ Q : |z| < η(ω)e−M0

}
.

Partition the ball B(ω) into annuli

Pk(ω) :=
{
z ∈ Q : η(ω)e−(k+1)M0 < |z| ≤ η(ω)e−kM0

}
.



RANDOM NON-HYPERBOLIC EXPONENTIAL MAPS 25

We define kω(ε) ≥ 0 to be the only non–negative integer such that ε ∈ Pkω(ε)(ω). Of course
k(ε) ≤ kω(ε). Therefore, using also Lemma 20 and Lemma 24, we can estimate as follows.∫
B(0,ε)

Lt,ω(11)(z)dνθω(z) ≤
∞∑

k=kω(ε)

∫
Pk(ω)

Lt,ω(11)(z)dνθω(z) ≤ D
∞∑

k=kω(ε)

∫
Pk(ω)

|z|1−tdνθω(z)

≤ DB1−t
∞∑

k=kω(ε)

exp
(
M0(t− 1)(k + 1)

)
νθω
(
Pk(ω)

)
≤ DB1−t

∞∑
k=kω(ε)

exp
(
M0(t− 1)(k + 1)

)
B2t+7 exp

(
−M0(2t+ 7)k

)
= DBt+8

∞∑
k=kω(ε)

exp
(
−M0(t+ 8)

)
≤ DBt+8

∞∑
k=k(ε)

exp
(
−M0(t+ 8)

)
= ϕ̃(ε).

�

Since the function (0, ρ) 3 ε 7−→ ϕ̃(ε) ∈ (0,+∞), is monotone increasing and limε→0+ ϕ̃(ε) =
0, there exists a monotone increasing continuous function (0, ρ) 3 ε 7−→ ϕ(ε) ∈ (0,+∞)
such that

ϕ̃(ε) ≤ ϕ(ε)

for all ε ∈ (0, ρ) and

lim
ε→0+

ϕ(ε) = 0.

Therefore, as an immediate consequence of Lemma 25, we get the following.

Lemma 26. If ν ∈ P, then for m–a.e. ω ∈ Ω and every ε ∈ (0, ρ), we have that

(6.6)

∫
B(0,ε)

Lt,ω(11)(z)dνθω(z) ≤ ϕ(ε).

In this Lemma, both ρ, and the function ϕ(ε) depend on the choice of M0. As an
immediate consequence of this lemma and Lemma 20, we get the following.

Lemma 27. If ν ∈ P, then there exists P ∈ (0,+∞) such that for m–a.e. ω ∈ Ω, we have
that

(6.7) νθω
(
Lt,ω11) =

∫
Q

Lt,ω(11)(z)dνθω(z) ≤ P.

and, again, the constant P depends on the choice of M0.

Using Lemma 20 again, we will obtain a common, i.e. good for all ω ∈ Ω, lower bound
on νθω

(
Lt,ω11).
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Lemma 28. For every measure ν ∈ P the following holds:

(6.8) νθω
(
Lt,ω11) =

∫
Q

Lt,ω(11)(z)dνθω(z) ≥ c

M t−1
0

=
1

C(M0)
,

where, we recall, C(M0) > 0 is of the form (5.10), thus, satisfying in particular, (5.12).

Proof. Using Lemma 20, we obtain

νθω
(
Lt,ω11) ≥ νθω(QM0) · inf

z∈QM0

Lt,ω(11) ≥ dνθω(QM0) · inf
z∈QM0

1

|z|t−1
≥ c

M t−1
0

.

�

7. Invariance of the Space P Under the Map Φ: Φ(P) ⊂ P

Having Lemmas 25, 27, and 28 proved, we can apply Proposition 19 and take all its
fruits. In particular, the measures L∗tν and Φ(ν) are well defined for all measures ν ∈ P .

Lemma 29. If ν ∈ P (thus, in particular, ν satisfies (5.12)) then the measure Φ(ν) satisfies
the estimate (5.13), with the constant

(DM t−1
0 /c+ C) = (D · C(M0) + C),

where C > 0 is some absolute constant, depending on t > 1 but independent of M0. There-
fore, if M0 is sufficiently large, then the condition (5.13) is satisfied.

Proof. We have

L∗t,ωνθω(Y +
M ) =

∫
Lt,ω(11Y +

M
)(z)dνθω(z) =

=

∫
|Rez|<eM/2

Lt,ω(11Y +
M

)(z)dνθω(z) +

∫
|Rez|≥eM/2

Lt,ω(11Y +
M

)(z)dνθω(z)

≤
∫
|Rez|<eM/2

Lt,ω(11Y +
M

)(z)dνθω(z) + νθω({z : |Rez| ≥ eM/2}) · sup
|Rez|≥eM/2

Lt,ω(11)(z)

= Σ1 + Σ2.

It follows from Lemma 20 that for z with |Rez| ≥ eM/2, we have that Lt,ω11(z) ≤ De
M
2

(1−t)

and, consequently

(7.1) Σ2 ≤ De
M
2

(1−t).

Now, we estimate Σ1. For z = [a+ bi] with |Rez| < eM/2, Lemma 20 yields:

Lt,ω(11)(z) ≥ de
M
2

(1−t).

Also:

(7.2) Lt,ω(11Y +
M

)(z) =
∑
k

1

|a+ bi+ 2kπi|t
≤ CeM(1−t),
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with another positive constant C, where the sum is taken over all such integers k for which
log |a + bi + 2kπi| − log η(ω) > M . Therefore, we can write, for |z| < eM/2, the following
estimate for the summand I, with possibly modified constant C:

(7.3)
Lt,ω(11Y +

M
)(z)

Lt,ω(11)(z)
≤ Ce

M
2

(1−t)

or, equivalently,

(7.4) Lt,ω(11Y +
M

)(z) ≤ Ce
M
2

(1−t)Lt,ω(11)(z).

We are close to the end of the proof of (5.13). Using the lower estimate of Proposition 28,
together with estimates (7.1) and (7.4), we can write

L∗t,ω(νθω)(Y +
M ) ≤ Σ2 + Σ1 ≤ De

M
2

(1−t) + Ce
M
2

(1−t)
∫
Q

Lt,ω(11)(z)dνθω

= De
M
2

(1−t) + Ce
M
2

(1−t)L∗t,ωνθω(11).

Now, using the definition of the map Φ, we obtain

Φ(ν)ω(Y +
M ) =

L∗t,ω(νθω)(Y +
M )

L∗t,ωνθω(11)
≤ M t−1

0

c
De

M
2

(1−t) + Ce
M
2

(1−t) = (DC(M0) + C)e
M
2

(1−t),

Since D and C are absolute constants, and C(M0) → ∞ as M0 → ∞, it is clear that for
all M0 sufficiently large DC(M0) + C < 2DC(M0) = c(M0). The proof is complete. �

At this stage of the paper we have all the constants of Definition 21 except M0. Now,
we will determine its value.

First of all, we require M0 to be large enough as to satisfy Lemma 29. Next, let us note
the following direct consequence of Lemma 29.

Corollary 30. If M0 > 0 is large enough, then for every random measure ν ∈ P (thus, in
particular, satisfying condition (5.12)), the measures Φ(ν)ω, ω ∈ Ω, satisfy the following:

Φ(ν)ω(Y +
M0

) < 1/4.

From now on, we also assume that M0 > 0 is large enough to satisfy Corollary 30.

Proposition 31. If ν ∈ P, then, for every j ≥ 0, we have that

(Φ(ν))θjω(B(F j
ω(0), r0)) ≤ bj(ω),

where

bj(ω) :=
Kr0

2π
c(M0)C(M0) · |F j+1

ω (0)|1−t · e
(1−t)

4
|F j+1
ω (0)|.

In other words, the measure Φ(ν) satisfies condition W0.

Proof. Since
Fθjω

(
B(F j

ω(0), r0)
)
⊂ B

(
F j+1
ω (0), Kr0|F j+1

ω (0)|
)
.

and since
Kr0|F j+1

ω (0)| ≤ 1/2|F j+1
ω (0)|,

we conclude that
Fθjω(B(F j

ω(0), r0)) ⊂ Y +
M
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with M = 1
2
|F j+1
ω (0)| = 1

2
ReF j+1

ω (0).

Now, using Lemma 29, i.e. using formula (5.13) that it yields, with M = 1
2
|F j+1
ω (0)|,

and the fact that the image Fθjω(B(F j
ω(0), r0)) covers Y +

M at most r0F
j+1
ω (0)·K

2π
times, i.e.

every point in Fθjω(B(F j
ω(0), r0)) has at most r0F

j+1
ω (0)·K

2π
preimages in B(F j

ω(0), r0)), we can
estimate the measure L∗t,θjων(B(F j

ω(0), r0)) as follows:

L∗t,θjων(B(F j
ω(0), r0) ≤ c(M0) exp

(
1

4
F j+1
ω (0)(1− t)

)
· |F j+1

ω (0)|−t · |F
j+1
ω (0)|Kr0

2π

=

(
Kr0

2π

)
c(M0) · |F j+1

ω (0)|−t · exp

(
1

4
(1− t)F j+1

ω (0)

)
· |F j+1

ω (0)|

and, using in addition the lower bound provided in Proposition 28,

(Φ(ν))θjω(B(F j
ω(0), r0) ≤

(
Kr0

2π

)
c(M0) · C(M0) · exp

(
1− t

4
F j+1
ω (0)

)
· |F j+1

ω (0)|1−t.

�

Proposition 32. If ν is a random measure in P, then the measure Φ(ν) satisfies all the
conditions Wn, n ≥ 0.

Proof. It was proved in Proposition 31 that then Φ(ν) satisfies the condition W0. So, below,
we prove that all the conditions Wn, n ≥ 1, are satisfied. We estimate as follows:

L∗t,θjωνθj+1ω

(
F−n
θjω,∗(B(F n+j

ω (0), r0))
)

=

= νθj+1ω

(
Lt,θjω11F−n

θjω,∗

(
B(Fn+jω (0,r0))

)) =

∫
F
−(n−1)

θj+1ω,∗

(
B(Fn+jω (0),r0)

) ∣∣(F−1
θjω,∗)

′(y)
∣∣tdνθj+1ω(y)

=

∫
F
−(n−j)
θj+1ω,∗

(
B(Fn+jω (0),r0)

) |y|−tdνθj+1ω(y)

≤ K|F j+1
ω (0)|−tνθj+1ω

(
F
−(n−1)

θj+1ω
(B(F n+j

ω (0), r0)
)
).

Thus, using the fact that L∗t,ω(νθω)(11) ≥ 1/C(M0), known from Lemma 28, together with
the estimate Wn applied to the measure ν, we get that

Φ(ν)θjω(F−n
θjω,∗

(
B(F n+j

ω (0), r0)
)
≤ KC(M0)|F j+1

ω (0)|−tνθj+1ω

(
F
−(n−1)

θj+1ω,∗ (B(F n+j
ω (0), r0))

)
≤ KC(M0)|F j+1

ω (0)|−taj+1,n−1(ω)bj+1+n−1(ω)

= K · C(M0)|F j+1
ω (0)|−taj+1,n−1(ω)bj+n(ω)

= κ · |F j+1
ω (0)|−t · aj+1,n−1(ω)bj+n(ω)

= aj,n(ω)bj+n(ω).

Thus, the measure Φ(ν) satisfies all conditions Wn, n ≥ 1, and the proof is complete. �

Before stating the next proposition, let us recall that the definition of the space P
depends on the constant M0, which we assumed to be large enough to for the hypotheses
of Corollary 30 to be satisfied. Proposition 33 below will impose one more condition on
M0.
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Proposition 33. If M0 > 0 is large enough then for every ν ∈ P and m–a.e. ω ∈ Ω, we
have that

Φ(ν)ω(Y −M0
) ≤ (C/c)M2t−1

0 (η(ω))2t+7eM0t

∞∑
k=1

exp(−(2t+ 7)kM0)(M t−1
0 )log k+logM0+2 < 1/4,

where the constant C comes from Lemma 22.

Proof. Given ω ∈ Ω, we have

Fω
(
Y −M0

)
= B(ω) =

{
z ∈ Q : |z| < η(ω)e−M0

}
.

Note also that for every point z ∈ B(ω) the set

F−1
ω (z) ∩ Y −M0

is a singleton. Denote it by w and note that F ′ω(w) = z.
Utilizing the annuli Pk(ω), introduced in the proof of Lemma 25, and using Lemma 23,

we may assume M0 > 0 to be so large that, if z ∈ Pk(ω), then nθω(|z|) < log k+ logM0−2.
So, applying (6.2) and Lemma 22, we can thus estimate as follows:

L∗νω(Y −M0
) = νθω

(
Lω(11Y −M0

)
)

=
∞∑
k=1

∫
Pk(ω)

1

|z|t
dνθω ≤

∞∑
k=1

sup
z∈Pk(ω)

1

|z|t
· νθω(Pk(ω))

≤ C(η(ω))s−teM0t

∞∑
k=1

exp
(
− k(s− t)M0

)
(M t−1

0 )(nθω(η(ω))+2)

≤ C(η(ω))s−teM0t

∞∑
k=1

exp
(
− k(s− t)M0

)
(M t−1

0 )log k+logM0

= C(η(ω))2t+7eM0t

∞∑
k=1

exp
(
− (2t+ 7)kM0

)
(M t−1

0

)log k+logM0 .

Therefore, invoking now Lemma 28, we get

Φ(ν)ω(Y −M0
) ≤ (C/c)B2t+7M t−1

0 eM0t

∞∑
k=1

exp
(
− (2t+ 7)kM0

)
(M t−1

0 )log k+logM0 < 1/4,

the last inequality holding provided that M0 > 0 is large enough. �

Now, fix M0 > 0 so large as to satisfy all the above estimates. Let us summarize the
above sequence of propositions:

• Let ν ∈ P .

• Then Lemma 29 shows that Φ(ν) satisfies the estimate (5.13).

• Next, Corollary 30 and Proposition 33 guarantee that Φ(ν) satisfies condition (5.12).

• Finally, Propositions 31 and 32 guarantee that the conditions W0,W1, . . . ,Wn, . . .
hold for Φ(ν).

The final conclusion of this section is thus the following.
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Proposition 34. If P is the set of all measures in Mm satisfying the conditions of Def-
inition 21, with the appropriate constants M0, c(M0), and C(M0), determined in the last
two sections, then

Φ(P) ⊂ P .

8. Random Conformal Measures for Random Exponential Functions; the
Final Step

Since for every integer l ≥ 1, we have lM0 ≥M0, Proposition 33 entails the following.

Proposition 35. If ν ∈ P, where P comes from Proposition 34, then for every l ∈ N, we
have that

(8.1) (Φ(ν)ω)(Y −lM0
) ≤ S(l)

where

S(l) := (C/c)B2t+7(M0l)
t−1eM0tl

∞∑
k=1

exp
(
− (2t+ 7)kM0l

)
(M t−1

0 )log k+logM0+l

and

(8.2) lim
l→∞

S(l) = 0.

If P is the set produced in Proposition 34, then we denote by P̂ its subset consisting of
all those measures ν for which

(8.3) νω(Y −lM0
) ≤ S(l)

for m–a.e. ω ∈ Ω and all integers l ≥ 1. Because of Proposition 34 and Proposition 35, we
have the following.

Proposition 36. If P is the set produced in Proposition 34, then

Φ(P) ⊂ P̂
and

Φ(P̂) ⊂ P̂ .

Proposition 37. If P is the set produced in Proposition 34, then the set P̂ is nonempty,
convex and compact with respect to the narrow topology on Mm.

Proof. First, we shall prove that the set P produced in Proposition 34 is non-empty. Indeed,
define ν in the following way: for every ω ∈ Ω consider the set

Zω := QM0 \
∞⋃
j=0

B
(
F j
θ−jω(0), r0)

)
.

Let νω be just the normalized Lebesgue measure on Zω. Since supp(νω) ⊂ QM0 , the
conditions (5.12) and (5.13) are trivially satisfied. Since, for every j ∈ Z and every n ≥ 0,

F−n
θjω,∗

(
B(F n+j

ω (0), r0

)
⊂ B(F j

ω(0), r0),
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all the conditions Wn, n ≥ 0, are also trivially satisfied. So ν ∈ P , hence P 6= ∅. Then
P̂ 6= ∅ because of the first part of Proposition 36.

Convexity of P̂ follows immediately from its definition. The uniform estimates provided
by formula (5.13) and (8.3) along with (8.2) show that the family P̂ is tight, thus relatively
compact according to Theorem 16.

Finally, the set P̂ is closed with respect to the narrow topology onMm because for every
measurable set A ⊂ Ω×Q and all measurable functions g : Ω→ [0,+∞), both the sets{

ν ∈Mm : νω(Aω) ≤ g(ω) for all ω ∈ Ω
}

and {
ν ∈Mm : νω(Aω) ≥ g(ω) for all ω ∈ Ω

}
are closed in Mm with respect to the narrow topology. �

Now, we can prove the main theorem of this section.

Theorem 38 (Existence of (ω, t) conformal measures νω). For every t > 1 there exists a

random t–conformal measure ν(t) ∈ P̂. Recall that t–conformality means that

(8.4) L∗t,ω(ν
(t)
θω ) = λt,ων

(t)
ω

for every ω ∈ Ω, where λt,ω := L∗t,ων
(t)
θω (11).

Proof. Because of the second part of Proposition 36 and because of Proposition 37, the
Schauder–Tichonov Fixed Point Theorem applies to the continuous map Φ : P̂ → P̂ , thus
yielding a fixed point of Φ in P̂ . This just means that formula (8.4) holds. �

Also recall that a, very useful in calculations, property equivalent to (8.4), which will be
frequently used in the sequel, is that

(8.5) ν
(t)
θω (Fω(A)) = λt,ω

∫
A

∣∣(Fω)′∣∣t dν(t)
ω

for every ω ∈ Ω and for every Borel set A ⊂ Q such that Fω|A is 1–to–1. By an immediate
induction, we then get for every integer n ≥ 0 the following.

(8.6) ν
(t)
θω (F n

ω (A)) = λnt,ω

∫
A

∣∣(F n
ω

)′∣∣t dν(t)
ω

for every ω ∈ Ω and for every Borel set A ⊂ Q such that Fω|A is 1–to–1. Lemmas 27, and
28 can be now reformulate as follows. There are two constants 0 < p, P < +∞ such that

(8.7) 1/p ≤ λt,ω ≤ P

for m–a.e. ω ∈ Ω. Let us record the following property of the measure ν(t).

Proposition 39. For m–a.e ω ∈ Ω we have that

supp(ν(t)
ω ) = Q.

Moreover, for all numbers x > 0, R > 0, and ε ∈ (0, 1) there exists a constant ξ =
ξ(x,R, ε) > 0 and a measurable set Ω(x,R, ε) such that

m
(
Ω(x,R, ε)

)
> 1− ε
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and for every ω ∈ Ω(x,R, ε) and every z ∈ Qx, we have that

ν(t)
ω (B(z, R)) ≥ ξ.

Proof. Let z ∈ Q, r > 0. We need to check that

ν(t)
ω (B(z, r)) > 0.

Since J(fω) = C, there exists an integer n = n(ω, z, r) ≥ 0 such that fnω (B(z, r)) ∩ R 6= ∅.
So, there exists z′ ∈ B(z, r) such that fnω (z′) ∈ R. Since for every ω ∈ Ω and every w ∈ R,

lim
k→∞

(
fkω
)′

(w) = lim
k→∞

fkω(w) = +∞,

and since each map fη is 1–to–1 on each open ball with radius π, we first conclude that for
all integers k ≥ 0 large enough

fkω(B(z, r)) ⊃ B
(
fkω(z′), π).

Having this, using the above, we then immediately conclude that for given S > 0, we have
that

fkω(B(z, r)) ⊃ B
(
fkω(z′), S)

for all integers k ≥ 0 large enough. Then the sets fk+1
ω (B(z, r)) contain annuli centered at

the origin with the ratio of the outer and inner radii as large as one wishes. These annuli
in turn will contain some set of the form

QM0 + 2lπi,

where l ∈ Z. This yields

(8.8) F k+1
ω (B(z, r)) ⊃ QM0

for all integers k ≥ 0 large enough. On the other hand, if ν
(t)
ω (B(z, r)) = 0 then, using

conformality of the measures νγ, γ ∈ Ω, i.e. using (8.6), we conclude that

ν
(t)

θk+1ω
(F k+1

ω (B(z, r))) = 0.

This contradicts (5.12) and (8.8), finishing the proof of the first part of Proposition 39.

In order to prove the second statement first note that in view of its first part, we have
that for every radius r > 0 and m–a.e. ω ∈ Ω,

(8.9) ξr(ω) := inf
{
νω(B(z, r)) : z ∈ Qx

}
> 0.

Now, fix a countable dense subset Γ of Qx. Then the function

Ω 3 ω 7−→ ξ∗R(ω) := inf
{
νω(B(z, R/2)) : z ∈ Γ

}
∈ [0, 1]

is measurable and

(8.10) ξR/2(ω) ≤ ξ∗R(ω) ≤ ξR(ω).

In particular ξ∗R(ω) > 0 for m–a.e. ω ∈ Ω. Therefore, there exists ξ > 0 so small that

m
(
(ξ∗R)−1((ξ,+∞)

)
> 1− ε.

Hence, taking
Ω(x,R, ε) := m

(
(ξ∗R)−1((ξ,+∞)

)
and taking into account the right–hand part of completes the proof. �
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Now we shall prove a lemma which is of more restricted scope than Proposition 39 but
which gives estimates uniform with respect to all ω ∈ Ω. We will then derive some of its
consequences and will use them later in the paper.

Lemma 40. For every radius r > 0 there exists ∆(r) ∈ (0,+∞) such that

ν(t)
ω (B(0, r)) ≥ ∆(r)

for m–a.e. ω ∈ Ω.

Proof. Proceeding in the same way as at the beginning of the proof of Proposition 39, we
conclude that there exists an integer k = k(r) ≥ 0 such that

F k
ω (B(0, r)) ⊃ QM0

for m–a.e. ω ∈ Ω. Because of the right hand side of (8.7) and because of (5.12), we get
that

1

2
≤ ν

(t)

θkω

(
F k
ω (B(0, r))

)
≤ λkt,ω

∫
B(0,r)

∣∣(F k
ω

)′∣∣t dν(t)
ω ≤ P k

(
fkB(0)

)t
ν(t)
ω (B(0, r)).

Hence,

ν(t)
ω (B(0, r)) ≥ 1

2
P−k

(
fkB(0)

)−t
> 0,

and the proof is complete. �

Corollary 41. For every r > 0 there exist r∗ > 0 and ∆∗(r) > 0 such that

νω(B(0, r) \B(0, r∗)) ≥ ∆∗(r)

for m–a.e. ω ∈ Ω.

Proof. Fix u > 0 produced in Lemma 24. Take then r∗ ∈ (0, r) so small that ru∗ <
1
2
∆(r).

It then follows from Lemma 40 and Lemma 24 that

νω(B(0, r)\B(0, r∗)) = νω(B(0, r))−νω(B(0, r∗)) ≥ ∆(r)−ru∗ ≥ ∆(r)−1

2
∆(r) =

1

2
∆(r) > 0

So, taking ∆∗(r) := 1
2
∆(r) completes the proof. �

Corollary 42. For every M > 0 there exist M+ ∈ (M,+∞) and ∆−(M) > 0 such that

νω
(
Y −M \ Y

−
M+

)
≥ ∆−(M)

for m–a.e. ω ∈ Ω.

Proof. Take M+ ∈ (M,+∞) so large that

Be−M+ < (Ae−M)∗,

where (Ae−M)∗ comes from Corollary 41. Using this corollary and the right-hand side of
(8.7) again, we obtain

Fω
(
Y −M \ Y

−
M+

)
⊃ B

(
0, Ae−M

)
\B
(
0, Be−M+

)
⊃ B

(
0, Ae−M

)
\B
(
0, (Ae−M)∗

)
and

∆∗(Ae−M) ≤ νθω
(
Fω
(
Y −M \ Y

−
M+

))
≤ λt,ω

∫
Y −M\Y

−
M+

∣∣(Fω)′∣∣t dνω ≤ PBtνω
(
Y −M \ Y

−
M+

)
.
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Hence,

νω
(
Y −M \ Y

−
M+

)
≥ P−1B−t∆∗(Ae−M),

and the proof is complete. �

9. Random Invariant Measures Equivalent to Random Conformal
Measures

From now on until explicitly stated otherwise, we fix t > 1 and the random t–conformal
measure ν := ν(t), with disintegrations

(
νω
)
ω∈Ω

constructed in the previous section. Recall
that we denote

(9.1) λt,ω = L∗t,ωνθω(11)

for all ω ∈ Ω. We will also use the notation

λnt,ω :=
n−1∏
j=0

λt,θjω.

We introduce normalized operators

L̂t,ω := λ−1
t,ωLt,ω and L̂nt,ω := (λnt,ω)−1Lnt,ω,

so that

L̂t,ω(νθω) = νω.

Our purpose in this section is to prove the following.

Theorem 43. There exists a random measure µ, i.e. one belonging to Mm, such that
for all ω ∈ Ω the fiber measures µω and νω are equivalent, and the random measure µ is
F–invariant. The latter meaning that

µ ◦ F−1 = µ,

or equivalently:

µω ◦ F−1
ω = µθω

for m–a.e. ω ∈ Ω.

The proof of Theorem 43 will follow from Proposition 52. We start with some estimates.
Fix some numbers u > 2t+ 7 and ρ > 0 satisfying Lemma 24. Also, because of Lemma 20
there exists M1 ≥M0 large enough so that

(9.2)
1

p
sup

{
Lt,ω11(z) : z ∈ YM1

}
<

1

2
.

The need for such choice of M1 will become clear in the course of the proof of Proposition 51.
Note that there exists an integer N ≥ 1 large enough that for all ω

QM1 ∩
∞⋃

j=N+1

B
(
F j
θ−jω(0), r0

)
= ∅.
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Since also νω(QM1) > 1/2 for m–a.e. ω ∈ Ω, decreasing r0 > 0 if necessary, we can assume
without loss of generality that 0 < r0 < ρ and

νω

(
QM1 \

∞⋃
j=0

B
(
F j
θ−jω(0), r0

))
> 1/2

for m–a.e. ω ∈ Ω.

Lemma 44. If n ≥ 0 is an integer and

(9.3) A ⊂ QM1 \
N⋃
j=0

B
(
F j
θn−jω(0), r0

)
is a Borel set, then

(9.4) νω(F−nω (A)) ≤ c(M1, r0)νθnω(A),

where c(M1, r0) > 0 is some constant depending on M1 and r0, but independent of ω.

Proof. Notice that by partitioning the set

QM1 \
N⋃
j=0

B
(
F j
θn−jω(0), r0

)
into a finite disjoint union of Borel sets with diameters smaller than r0/4, we may assume
without loss of generality that diam(A) < r0/4. Then we further notice that holomorphic
branches of F−nω , labeled as F−nω,∗ are well–defined on A, in fact on a ball with radius r0/2
centered at a point of A, with distortion bounded by K, meaning that

|(F−nω,∗ )′(x)|
|(F−nω,∗ )′(y)|

≤ K

for all x, y ∈ A. We have

(9.5) νω(F−nω (A)) =

∫
A

L̂nt,ω(11)(z)dνθnω(z) ≤ sup
A

(
L̂nt,ω(11)

)
νθnω(A).

In order to establish the upper bound for supA
(
L̂nt,ω(11)

)
notice that

νω

(
F−nω

(
QM1\

N⋃
j=0

B
(
F j
θn−jω(0), r0

)))
=

=

∫
QM1

\
⋃N
j=0B

(
F j
θn−jω

(0),r0)
) L̂nt,ω(11)(z)dνθnω(z)

≥ inf
QM1

(
L̂nt,ω(11)

)
νθnω

(
QM1 \

N⋃
j=0

B
(
F j
θn−jω(0), r0)

))
.
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Now, again by distortion estimates, there exists a constant c(M1, r0) > 0 such that

(9.6)

inf
(
L̂nt,ω(11)(z) : z ∈QM1 \

N⋃
j=0

B
(
F j
θn−jω(0), r0

))
≥

≥ 2

c(M1, r0)
sup

(
L̂nt,ω(11)(z) : z ∈ QM1 \

N⋃
j=0

B
(
F j
θn−jω(0), r0

))
.

Thus,

1 ≥ νω

(
F−nω

(
QM1 \

N⋃
j=0

B
(
F j
θn−jω(0), r0

)))

≥ 1

2

2

c(M1, r0)
sup

(
L̂nt,ω(11)(z) : z ∈ QM1 \

N⋃
j=0

B
(
F j
θn−jω(0), r0

))

=
1

c(M1, r0)
sup

(
L̂nt,ω(11)(z) : z ∈ QM1 \

N⋃
j=0

B
(
F j
θn−jω(0), r0

))
,

i.e.

(9.7) sup
(
L̂nt,ω(11)(z) : z ∈ QM1 \

N⋃
j=0

B
(
F j
θn−jω(0), r0

))
≤ c(M1, r0).

So, inserting this estimate to (9.5), we obtain νω(F−nω (A)) ≤ c(M1, r0)νθnω(A), as required.
�

Given ω ∈ Ω, n ∈ N, and 0 ≤ j ≤ N , set

βn,j(ω) := F j
θn−jω(0).

Now let
A ⊂ B

(
βn,j(ω), r0

)
be an arbitrary Borel set. Consider all connected components C of F−nω

(
B
(
βn,j(ω), r0

))
.

We say that such a C is good if there exists a holomorphic branch of F−nω defined on
B
(
βn,j(ω), r0)) and mapping B

(
βn,j(ω), r0)) onto C. Otherwise, we say that C is bad.

Note that C is bad if and only if 0 ∈ fθk+1ω(F k
ω (C)) for some 0 ≤ k ≤ n− 1. Equivalently,

C is bad if and only if C is unbounded. Now, the set F−nω (A) splits into the disjoint union

F−nω (A) = F−nω,B(A) ∪ F−nω,G(A),

where F−nω,B(A) is the intersection of F−nω (A) with the union of all bad components of

F−nω
(
B
(
βn,j(ω), r0

))
and F−nω,G(A) is the intersection of F−nω (A) with the union of all good

components of F−nω
(
B
(
βn,j(ω), r0

))
The next lemma is proved in an analogous way as Lemma 44, with possibly modified

constant c(M1, r0), still independent of ω ∈ Ω.

Lemma 45. If ω ∈ Ω, n ∈ N, 0 ≤ j ≤ N , and A ⊂ B
(
βn,j(ω), r0

)
is an arbitrary Borel

set, then
νω(F−nω,G(A)) ≤ c(M1, r0) · νθnω(A).
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In Lemma 49, we will provide estimates for bad components of F−nω (A). In order to do
this, we start with the following.

Lemma 46. There exits a constant γ > 0 such that for all radii 0 < r ≤ r0, all integers
n ≥ 0, and all m–a.e. ω ∈ Ω, we have that

νω(F−nω,B(B(0, r)) � rγ.

Proof. First note that the only bad component of F−1
θn−1ω,B(B(0, r)) is of the form π ◦

f−1
θn−1ω(B(0, r)) where the latter B(0, r) is considered as a subset of C, and π : C → Q is

the canonical projection. Thus,

(9.8) F−1
θn−1ω,B(B(0, r)) = Y −M

for some M ∈ [ln(1/r) + lnA, ln(1/r) + lnB]. Next, using the estimate from Lemma 24
and (8.7), we easily conclude that for 0 < r ≤ r0, we have that

(9.9) νθn−1ω

(
F−1
θn−1ω,B(B(0, r))

)
≤ Cr−tru = Cru−t.

with some constant C ∈ (0,+∞). Now, every component of F−nω,B(B(0, r)) is of the form

F
−(n−1)
∗ (Y −M ) where F

−(n−1)
∗ (Y −M ) is some connected component of F−(n−1)(Y −M ). Let us

note that the set f−1
θ(n−2)ω

({Z ∈ C : ReZ < −M}) is a union of (repeated periodically, with
period 2πi) unbounded components, each being bounded by some curve of the form

f−1
θ(n−2)ω

({Z ∈ C : ReZ = −M}).
Since the projection onto Q identifies these components, the set

CM := F−1
θ(n−2)ω

(Y −M ) ⊂ Q

is connected, and the map F restricted to CM is infinite–to–one. Similarly, the set

F−1
θ(n−2)ω

(Y −1 ) ⊃ CM
is connected, and the map Fθ(n−2)ω restricted to C1 is infinite–to–one.

Now, the holomorphic branches of F
−(n−2)
ω are all well defined on C1 and the restriction

of these branches to CM produces all bad connected components of F−nω (B(0, r)), i.e., the
set F−nω,B(B(0, r)). Denote

Y (∗) := Y −1 \ Y −1+ = {z ∈ Q : Rez ∈ [−1+,−1]},

and partition the set C1 into subsets Ck1 by defining

Ck1 :=
{
z ∈ C1 : Imfθ(n−2)ω(z) ∈ [2kπ, 2(k + 1)π)

}
.

Similarly, let

CkM := CM ∩ Ck1 =
{
z ∈ CM : Imfθ(n−2)ω(z) ∈ [2kπ, 2(k + 1)π)

}
.

Then for each k ∈ Z the function fθn−2ω maps Ck1 bijectively onto the region{
Z ∈ C : ReZ < −1 and ImZ ∈ [2kπ, 2(k + 1)π)

}
,

which we identify with Y −1 . Denote by G∗k the corresponding inverse map. Then the
holomorphic map

Z 7−→ Gk(z) := G∗k(Z + 2kπi)
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is in fact defined and univalent on {Z ∈ C : Re(Z) < −1}, and maps the region{
Z ∈ C : Re(Z) < −1 and ImZ ∈ [0, 2π)

}
,

which we identify with Y −1 , onto Ck1 , while it maps the region{
Z ∈ C : Re(Z) < −M and ImZ ∈ [0, 2π)

}
,

which we identify with Y −M , onto CkM .
Still keeping the identification Q ' {Z ∈ C : 0 ≤ ImZ < 2π}, we thus see that the

inverse–image

F−nω,B(B(0, r)) = F−(n−1)
ω (Y −M )

can be expressed as ⋃
k∈Z

⋃
g

g ◦Gk(Y
−
M ),

where, the second union is taken over all holomorphic branches g of F
−(n−2)
ω defined on C1.

Since, as we see, each such branch g ◦ Gk has a univalent holomorphic extension to the
whole left half-plane {Z ∈ C : Re(Z) < −1}, we can use Koebe’s Distortion Theorem to
compare the measure νω

(
g ◦ Gk(Y

−
1 \ Y −1+)

)
and νω

(
g ◦ Gk(Y

−
M )
)
. Applying this theorem

separately for each composition g ◦ Gk and then summing up, with using also (8.7), we
obtain that

νω(F
−(n−1)
ω (Y −M ))

νω
(
F
−(n−1)
ω

(
Y −1 \ Y −1+

)) � |M |3 νθn−1ω(Y −M )

νθn−1ω

(
Y −1 \ Y −1+

) .
By virtue of (9.8) and (9.9), this gives

νω((F−nω,B(B(0, r))) = νω(F−(n−1)
ω (Y −M )) � νω

(
F−(n−1)
ω

(
Y −1 \ Y −1+

)) |M |3ru−t

νθn−1ω

(
Y −1 \ Y −1+

)
≤ |M |3ru−t

νθn−1ω

(
Y −1 \ Y −1+)

.

The proof is now completed by invoking the bounds ln(1/r) + lnA ≤ M ≤ ln(1/r) + lnB
along with Corollary 42 which gives

νω
(
Y −1 \ Y −1+

)
≥ ∆−(1) > 0.

�

As a consequence of Lemma 24, Lemma 45, and Lemma 46, we get the following.

Lemma 47. We have that

νω(F−nω
(
B(0, r))

)
� rγ

for every integer n ≥ 0, all ω ∈ Ω and every r ∈ (0, r0].

We shall prove the following.

Lemma 48. There exists β > 0 such that for every Borel set A ⊂ B(0, r0) and all integers
n ≥ 0 we have that

νω(F−nω (A)) � νβθnω(A).
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Proof. By Lemma 24 and Lemma 47 there exist constants C ∈ (0,+∞) and D ∈ (0,+∞)
such that

νω(B(0, r)) ≤ Cru

and
νω(F−nω

(
B(0, r))

)
≤ Drγ.

for all r ∈ (0, r0], almost all ω ∈ Ω and all integers n ≥ 0. So, Since u > 6, given such r0,
ω, and n, there exists r ∈ (0, r0] such that

νθnω(A) = Cr6.

Then,

νω(F−n(A ∩B(0, r))) ≤ νω
(
F−nω (B(0, r))

)
≤ Drγ = D

(
νθnω(A)

C

)γ/6
= DC−γ/6ν

γ/6
θnω(A),

while using (9.7), we get

νω
(
F−nω (A \B(0, r))

)
≤ sup

{
L̂nt,ω(11)(z) : z ∈ A \B(0, r)

}
νθnω(A \B(0, r))

� r−3 sup
{
L̂nt,ω(11)(z) : z ∈ QM1 \

N⋃
j=0

B(βn,j(ω), r0)
}
νθnω(A)

� c(M1, r0)ν
−1/2
θnω (A)νθnω(A)

= c(M1, r0)ν
1/2
θnω(A).

Thus, the statement holds with β := min(γ/6, 1/2). �

Lemma 49. There exists β > 0 such that, if ω ∈ Ω, j ≤ N , n ∈ N, and A ⊂ B(βn,j(ω), r0)
is an arbitrary Borel set, then

νω(F−nω,B(A)) � νβθnω(A).

Proof. Recall that the bad components of F−nω (B(βn,j(ω), r0)) are all the connected com-
ponents of the set

F−(n−j)
ω (F−j

θn−jω,∗(B(βn,j(ω), r0))),

where F−j
θn−jω,∗ is the branch of F−j

θn−jω mapping B(βn,j(ω), r0) into B(0, r0), and F−nω,B(A)) is

the union of all these components intersected with F−nω (A)). Since, using (8.7), we obtain

νθn−jω(F−j
θn−jω,∗(A)) ≤ max

0≤k≤N

{
Kt|(F k

θn−jω)′(0)|−tpk
}
νθnω(A),

we thus conclude the proof by applying Lemma 48. �

We summarize the above Lemmas 44, 45, 48, 49 in the following.

Lemma 50. There exists β > 0 such that for every Borel set A ⊂ QM1 and for every n ≥ 0

νω(F−nω (A)) � νβθnω(A).

The next proposition deals with sets contained in the complement of QM1 .

Lemma 51. There exists β > 0 such that for every Borel set A ⊂ YM1 and for every n ≥ 0

νω(F−nω (A)) � νβθnω(A).
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Proof. First, let us notice that using (9.2) and the bounds on λt,ω, see (8.7), we can estimate
as follows.

(9.10)

νθn−1ω(F−1
θn−1ω(A)) =

∫
A

L̂t,θn−1ω(11)(z)dνθnω(z)

≤ 1

p
sup

{
Lt,θn−1ω(11)(z)z ∈ YM1

}
νθnω(A) <

1

2
νθnω(A).

Write

F−1
θn−1ω(A) = A1 ∪ A2 = (F−1

θn−1ω(A) ∩QM1) ∪ (F−1
θn−1ω(A) \QM1)

and

F−nω (A) = F−(n−1)
ω (A1) ∪ F−(n−1)

ω (A2).

Using (9.10) and Lemma 50, we have, with some positive constant C1 guaranteed by
Lemma 50:

νω(F−(n−1)
ω (A1)) ≤ C1ν

β
θn−1ω(A1) ≤ C1ν

β
θn−1ω(F−1

θn−1ω(A)) ≤ 2−βC1ν
β
θnω(A),

while, again,

F−1
θn−2ω(A2) = A21 ∪ A22 = (F−1

θn−2ω(A2) ∩QM1) ∪ (F−1
θn−2ω(A2) \QM1),

and

F−(n−1)
ω (A2) = F−(n−2)

ω (A21) ∪ F−(n−2)
ω (A22),

where

νθn−2ω(A21) ≤ 1

2
νθn−1ω(A2) ≤

(
1

2

)2

νθnω(A)

and, similarly,

νθn−2ω(A22) ≤
(

1

2

)2

νθnω(A).

Proceeding inductively we thus obtain the following splitting.

F−nω (A) = F−(n−1)
ω (A1) ∪ F−(n−2)

ω (A21) ∪ F−(n−3)
ω (A221) · · · ∪ F−1

ω (A22...1) ∪ A22...2,

where

νθn−kω(A22...1) ≤
(

1

2

)k
νθnω(A).

Since for all sets A22...1 Lemma 50 applies, we conclude that

νω(F−nω (A)) ≤ C1ν
β
θnω(A)(1 + 2−β + 2−2β + · · ·+ 2−nβ) +

(
1

2

)n
νθnω(A).

This ends the proof, with possibly modified constant c1, and the same β as in Lemma 50. �

We summarize the above lemmas as follows.

Proposition 52. There exist constants β > 0 and C > 0 such that if A ⊂ Q is a Borel set
then for every n ∈ N and for m–a.e. ω ∈ Ω,

νω(F−nω (A)) ≤ Cνβθnω(A).

Now we are position to prove the following.
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Theorem 53. For every t > 1 there exists a random Borel probability F–invariant measure
µ = µ(t) absolutely continuous with respect to ν(t), the t-conformal random measure for
F : Ω× C→ Ω× C, produced in Theorem 38. Furthermore,

µ(t)(A) = `B
(
(ν(t) ◦ F−n(A))∞n=0

)
,

where `B : `∞ → R is a (fixed) Banach limit on `∞.

Proof. It is well–known in abstract ergodic theory that all assertions of Theorem 53, perhaps
except that µ ∈ Mm, would follow from uniform absolute continuity of measures

(
ν ◦

F−n
)∞
n=0

with respect to measure ν. In order to prove this uniform continuity, fix ε > 0

and suppose that A ⊂ Ω × Q is a measurable set such that ν(A) < ε2. We then get for
every integer n ≥ 0 that

ν(F−n(A)) =

∫
Ω

νω(F−nω (Aθn(ω))) dm(ω)

=

∫
Ω0

νω(F−nω (Aθn(ω))) dm(ω) +

∫
Ωc0

νω(F−nω (Aθn(ω))) dm(ω),

where
Ω0 :=

{
ω ∈ Ω : νθn(ω)(Aθn(ω)) ≥ ε

}
.

But then
m(Ω0) = m

(
{ω ∈ Ω : νω(Aω) ≥ ε}

)
≤ ν(A)/ε.

So, applying Proposition 52, we get that

ν(F−n(A)) ≤ ν(A)

ε
+ Cεβ ≤ ε+ εβ,

and the required uniform absolute continuity has been proved. In order to see that µ ∈Mm,
let Γ be an arbitrary Borel subset of Ω. Then

µ(Γ× C) = `B
(
(ν ◦ F−n(Γ× C))∞n=0

)
= `B

(
(ν(θ−n(Γ)× C))∞n=0

)
= `B

(
(m(θ−n(Γ)))∞n=0

)
= `B

(
(m(Γ))∞n=0

)
= m(Γ).

This means that µ ∈Mm, and the proof is complete. �

We can prove more about the invariant measure µ(t). Namely:

Theorem 54. Let t > 1. If ν(t) is the t-conformal random measure for F : Ω×C→ Ω×C,
produced in Theorem 38, then the Borel probability F–invariant measure µ = µ(t) ∈ Mm

absolutely continuous with respect to ν(t), produced in Theorem 53, is in fact equivalent with
ν(t).

Proof. To simplify notation, we write again ν := ν(t). Since limn→∞ F
n
ω (0) = +∞ uniformly

with respect to ω ∈ Ω and since each measure µω is a probability one satisfying, by virtue
of F -invariance, µθ(ω)(Fω(A)) ≥ µω(A) for every ω ∈ Ω and every Borel set A ⊂ C, we have
that

µω
({
F n
θ−n(ω)(0) : n ≥ 0

})
= 0

for m–almost all ω ∈ Ω. Therefore,

µ

(⋃
ω∈Ω

{ω} ×
{
F n
θ−n(ω)(0) : n ≥ 0

})
= 0
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Hence, there exists R ∈ (0, r0/2) so small that

µ

(⋃
ω∈Ω

{ω} ×
∞⋃
n=0

B
(
F n
θ−n(ω)(0), 2R

))
< 1/8.

Hence, there exists a measurable set Ω0 ⊂ Ω such that

(9.11) m(Ω0) ≥ 1/2

and

(9.12) µω

(
∞⋃
n=0

B
(
F n
θ−n(ω)(0), 2R

))
< 1/4 for all ω ∈ Ω0.

Now, there exists a constant M > 0 so large that µ(Ω × YM) < 1/8, and therefore there
exists a measurable set Ω1 ⊂ Ω0 such that

m(Ω1) ≥ 1/4

and
µω(QM) ≥ 1/2 for all ω ∈ Ω1.

Combining this along with (9.12), we conclude that there exists α > 0 and for every ω ∈ Ω1

there exists

ξω ∈ QM ∩

(
C \

∞⋃
n=0

B
(
F n
θ−n(ω)(0), 2R

))
such that

(9.13) µω(B(ξω, R)) ≥ α

and the choice Ω1 3 ω 7→ ξω is measurable. Let

Γ :=
⋃
ω∈Ω1

{ω} ×B(ξω, R).

Of course, µ(Γ) ≥ α/8 > 0. We shall prove the following

Claim 10: If A ⊂ Γ is a measurable set and ν(A) > 0, then µ(A) > 0.

Proof. Because of our definition of the set Γ, for every ω ∈ Ω1, every integer n ≥ 0, and
every ξ ∈ F−nθ−n(ω)(ξω), we have that

νθ−n(ω)

(
F−nθ−n(ω),ξ(Aω)

)
= λ−nθ−n(ω)

∫
Aω

∣∣(F−nθ−n(ω),ξ

)′∣∣t dνω
≥ K−tλ−nθ−n(ω)

∣∣(F n
θ−n(ω)

)′
(ξ)
∣∣−tνω(Aω),

while
νθ−n(ω)

(
F−nθ−n(ω),ξ(B(ξω, R))

)
≤ Ktλ−nθ−n(ω)

∣∣(F n
θ−n(ω)

)′
(ξ)
∣∣−tνω(B(ξω, R)).

Therefore,

νθ−n(ω)

(
F−nθ−n(ω),ξ(Aω)

)
≥ K−2tνθ−n(ω)

(
F−nθ−n(ω),ξ(B(ξω, R))

) νω(Aω)

νω(B(ξω, R))

≥ K−2tνθ−n(ω)

(
F−nθ−n(ω),ξ(B(ξω, R))

)
νω(Aω)
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Now notice that if

Ω∗ :=

{
ω ∈ Ω1 : νω(Aω) ≥ 1

2
ν(A)

}
,

then m(Ω∗) > 0.
Therefore, for every ω ∈ Ω∗, we get

νθ−n(ω)

(
F−nθ−n(ω)(Aω)

)
=

∑
ξ∈F−n

θ−n(ω)
(ξω)

νθ−n(ω)

(
F−nθ−n(ω),ξ(Aω)

)
≥ 1

2
K−2tν(A)

∑
ξ∈F−n

θ−n(ω)
(ξω)

νθ−n(ω)

(
F−nθ−n(ω),ξ(B(ξω, R))

)
=

1

2
K−2tν(A)νθ−n(ω)

(
F−nθ−n(ω)(B(ξω, R))

)
Hence, we obtain

ν(F−n(A)) =

∫
Ω

νθ−n(ω)(F
−n
θ−n(ω)(Aω)) dm(ω)

≥
∫

Ω∗

νθ−n(ω)(F
−n
θ−n(ω)(Aω)) dm(ω)

≥ 1

2
K−2tν(A)

∫
Ω∗

ν(A)νθ−n(ω)

(
F−nθ−n(ω)(B(ξω, R))

=
1

2
K−2tν(A)

(
F−n

( ⋃
ω∈Ω∗

{ω} ×B(ξω, R)

))
.

Finally, using (9.13), we get

µ(A) = `B
(
(ν(F−n(A)))∞n=0

)
≥ 1

2
K−2tν(A)`B

((
ν

(
F−n

( ⋃
ω∈Ω∗

{ω} ×B(ξω, R)

)))∞
n=0

)

=
1

2
K−2tµ

( ⋃
ω∈Ω∗

{ω} ×B(ξω, R)

)
ν(A) ≥ 1

2
K−2tαν(A) > 0,

and the Claim is proved. �

Now we conclude the proof of Theorem 54. So, let D ⊂ Ω × C be an arbitrary Borel
set with ν(D) > 0. Then there exist a measurable set Ω2 ⊂ Ω and η ∈ (0, 1/2) such that
m(Ω2) > 0 and for every ω ∈ Ω2 there exists xω ∈ A(0; 2η, 1/η), depending measurably on
ω, such that

(9.14) νω(Dω ∩B(xω, η)) > 0.

Denote the ball B(xω, η) just by Bω. From our hypotheses on the functions fω, ω ∈ Ω,
there exists an integer N ≥ 0 such that

F n
ω (B(z,R)) ⊃

⋃
x∈A(0;2η,1/η)

B(x, η)
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for all ω ∈ Ω, all n ≥ N , and all z ∈ QM . Since, m(Ω1),m(Ω2) > 0 and since the map
θ : Ω→ Ω is ergodic, there exists n ≥ N such that m(Ω1 ∩ θ−n(Ω2)) > 0. Then

(9.15) m(θn(Ω1) ∩ Ω2) > 0,

and

F n(Γ) ⊃ F n

 ⋃
ω∈Ω1∩θ−n(Ω2)

{ω} ×B(ξω, R)


⊃

⋃
ω∈θn(Ω1)∩Ω2

{ω} ×Bω ⊃
⋃

ω∈θn(Ω1)∩Ω2

{ω} × (Dω ∩Bω).

Therefore there exists a measurable set H ⊂ Γ such that

(9.16) F n(H) =
⋃

ω∈θn(Ω1)∩Ω2

{ω} × (Dω ∩Bω) ⊂ D.

But then, because of (9.14) and (9.15), we have that ν(F n(H)) > 0. This in turn, by
conformality of ν, yields ν(H) > 0. Since H ⊂ Γ, it then follows from Claim 10 that
µ(H) > 0. Hence, by virtue of (9.16), we get that µ(D) ≥ F n(H) ≥ µ(H) > 0. The proof
of Theorem 54 is thus complete. �

We shall prove more about measures µ(t): their ergodicity and uniqueness. This requires
some preparation.

As promised in the Introduction, we now give the definition of random radial Julia sets.

Fix (ω, z) ∈ Ω×Q. Let N ∈ N. Define Nω(z,N) to be the set of all integers n ≥ 0 such
that there exists a (unique) holomorphic inverse branch

F−nω,z : B(F n
ω (z), 2/N)→ Q

of F n
ω : Q→ Q sending F n

ω (z) to z and such that |F n
ω (z)| ≤ N . Following a number theory

tradition, given a set A ⊂ N, we denote by ρ(A) and ρ(A) respective lower and upper
densities of the set A. Precisely,

ρ(A) := lim
n→∞

1

N
#(A ∩ {1, 2, . . . , N})

and

ρ(A) := lim
n→∞

1

N
#(A ∩ {1, 2, . . . , N})

Having the above concepts introduced, we can now define random radial Julia sets, as
follows:

Definition 55 (Random radial Julia sets Jr(ω)). We define

(9.17) Jr(ω) :=
{
z ∈ Q : lim

N→∞
ρ(Nω(z,N)) = 1

}
.

Jr(ω) is said to be the set of radial (or conical) points of F at ω. We further denote:

Jr(F ) :=
⋃
ω∈Ω

{ω} × Jr(ω),

and call it the set of all radial points of F .
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This definition of radial sets differs a little bit from the standard one. What we mean
is that, when applied to deterministic systems, it produces the sets Jr that are different
than, though contained in, those introduced in [39], comp. ex. [40], [41], [23], [32] and [24].
Therein one merely required that the sets Nω(z,N) are infinite.

We will need some sufficient conditions for a point (ω, z) to be radial. In order to
formulate it, we need an auxiliary subset Ñω(z,N) of Nω(z,N). It consists of all integers
n ≥ 0 such that for every integer 0 ≤ k ≤ n,

F k
θn−k(ω)(0) /∈ B

(
F n
ω (z), 2/N

)
and |F n

ω (z)| ≤ N.

Of course

(9.18) Ñω(z,N) ⊂ Nω(z,N).

Also, n ∈ Ñω(z,N) if and only if

F n
ω (z) ∈ QN

and

F n
ω (z) /∈

n⋃
k=0

B
(
F k
θn−k(ω)(0), 2/N

)
=

n⋃
k=0

B
(
F k
θ−k(θn(ω))(0), 2/N

)
.

Therefore, if we denote

J∗N(F ) :=
⋃
ω∈Ω

{ω} ×

(
QN \

∞⋃
k=0

B
(
F k
θ−k(ω)(0), 2/N

))
and

Ñ∗ω(z,N) :=
{
n ≥ 0 : F n

ω (z) = F n(ω, z) ∈ J∗N(F )
}
,

then

(9.19) Ñ∗ω(z,N) ⊂ Ñω(z,N).

The first significance of the set of radial points comes from the following.

Proposition 56. If µ ∈Mm is F–invariant, then µ(Jr(F )) = 1.

Proof. By considering ergodic decomposition, we may assume without loss of generality
that measure µ is ergodic. By virtue of (9.18) and (9.19) it suffices to show that

lim
N→∞

µ
(
J∗N(F )

)
= 1.

And indeed, let

J∗N(F )c := (Ω×Q) \ J∗N(F )

be the complement of J∗N(F ) in Ω×Q. Then

J∗N(F )c =
⋃
ω∈Ω

{ω} ×

(
YN ∪

∞⋃
k=0

B
(
F k
θ−k(ω)(0), 2/N

))
and

(
J∗N(F )c

)∞
N=1

is a descending sequence of measurable sets with

(9.20)
∞⋂
N=1

J∗N(F )c =
⋃
ω∈Ω

{ω} ×
{
F k
θ−k(ω)(0) : k ≥ 0

}
.



46 MARIUSZ URBAŃSKI AND ANNA ZDUNIK

But

F

(
∞⋂
N=1

J∗N(F )c

)
=
⋃
ω∈Ω

{θ(ω)} ×
{
F k+1
θ−k(ω)

(0) : k ≥ 0
}

=
⋃
ω∈Ω

{θ(ω)} ×
{
F k+1
θ−(k+1)(θ(ω))

(0) : k ≥ 0
}
⊂

∞⋂
N=1

J∗N(F )c,

hence by ergodicity of µ,

µ

(
∞⋂
N=1

J∗N(F )c

)
∈ {0, 1}.

If the above measure is equal to zero, we are done. So, suppose that

(9.21) µ

(
∞⋂
N=1

J∗N(F )c

)
= 1.

Then for m–a.e. ω ∈ Ω, say ω ∈ Ω∗, with Ω∗ being θ-invariant,

µω

({
F k
θ−k(ω)(0) : k ≥ 0

})
= 1.

But as µω ◦ F−1
ω = µθ(ω), we then get that

µθ(ω)

({
F k+1
θ−(k+1)(θ(ω))

(0) : k ≥ 0
})

= µθ(ω)

({
Fω

(
F k
θ−k(ω)(0) : k ≥ 0

}))
≥ µω

({
F k
θ−k(ω)(0) : k ≥ 0

})
= 1.

Hence, µω(Fθ−1(ω)(0)) = 0 for all ω ∈ Ω∗. Proceeding in the same way by induction, we
deduce that

µω
(
F k
θ−k(ω)(0)

)
= 0

for every integer k ≥ 0 and all ω ∈ Ω∗. Thus

µω

({
F k
θ−k(ω)(0) : k ≥ 0

})
= 0

for all ω ∈ Ω∗. By (9.20) this entails

µ

(
∞⋂
N=1

J∗N(F )c

)
= 0,

contrary to (9.21). The proof of Proposition 56 is complete. �

We now pass to consider random conformal measures and we do this with their relations
to the set of radial points. Let t > 1 and suppose we are given two t-conformal measures

ν(1) and ν(2). Denote by λ
(1)
ω and λ

(2)
ω the corresponding normalizing factors coming from

the definition of a conformal measure. For every l > 0 and ω ∈ Ω let

(9.22) Lω(l) :=

{
n ≥ 1 :

λ
(1)n
ω

λ
(2)n
ω

≤ l

}
⊂ N.
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Let Ω̂l be the set of all points ω ∈ Ω such that the set Lω(l) ⊂ N has positive upper density.
Finally let

Ω̂ :=
∞⋃
l=1

Ω̂l.

We shall prove the following.

Lemma 57. If t > 1 and two t-conformal measures ν(1) and ν(2) are given, then for every

m-a.e. ω ∈ Ω̂, the fiber measure ν
(2)
ω |Jr(ω) is absolutely continuous with respect to the fiber

measure ν
(1)
ω |Jr(ω).

Proof. Fix an integer l ≥ 1 and then an integer q ≥ 1. By t–conformality and quasi

topological exactness of the map F : Ω × Q → Ω × Q, each measure ν
(i)
ω , i = 1, 2, ω ∈ Ω,

has full topological support, i.e. it is positive on all non-empty open subsets ofQ. Therefore,
for every N ∈ N, we have that

M
(i)
N (ω) := inf

{
ν(i)
ω

(
B(z, (4KN)−1)

)
: z ∈ QN

}
> 0,

and the function

Ω 3 ω 7−→M
(i)
N (ω) ∈ (0,+∞)

is measurable. Hence, for every integer k ≥ 1 there exists ε
(i)
N,k > 0 so small that

m
(
M

(i)−1
N

(
(ε

(i)
N,k,+∞)

))
> 1− 1

2k
.

By Birkhoff’s Ergodic Theorem, for m–a.e. ω ∈ Ω, say ω in some θ–invariant set Ω
(i)
N,k with

measure m equal to 1, we have that

(9.23) ρ
(

Λ
(i)
N,k(ω)

)
= m

(
M

(i)−1
N

(
(ε

(i)
N,k,+∞)

))
> 1− 1

2k
,

where

Λ
(i)
N,k(ω) :=

{
n ≥ 0 : θn(ω) ∈M (i)−1

N

(
(ε

(i)
N,k,+∞)

)}
⊂ N.

Let Ω̂l,q be the set of all points ω ∈ Ω such that the set ρ(Lω(l)) ≥ 1/q. Of course

Ω̂l =
∞⋃
q=1

Ω̂l,q.

It therefore suffices to prove our lemma with the set Ω̂ replaced by Ω̂l,q. In order to do this
we shall estimate from above the limit

lim
r→0

ν
(2)
ω (B(z, r))

ν
(1)
ω (B(z, r))

for all ω ∈ Ω̂l,q and all z ∈ Jr(ω). So, fix Nq ≥ 1 so large that

(9.24) ρ
(
Nω(z,Nq)

)
> 1− 1

2q
.
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It then follows from 1
4
–Koebe’s Distortion Theorem, Koebe’s Distortion Theorem, and

t-conformality of measure ν(1) that for every n ∈ Nω(z,Nq) ∩ Lω(l), we have that

(9.25)
ν(2)
ω

(
B

(
z,

1

4

1

Nq

∣∣(F n
ω

)′
(z)
∣∣−1
))
≤ ν(2)

ω

(
F−nω,z

(
B
(
F n
ω (z), 1/Nq

)))
≤ Ktλ(2)−n

ω

∣∣(F n
ω

)′
(z)
∣∣−tν(2)

θn(ω)

(
B
(
F n
ω (z), 1/Nq

))
≤ Ktλ(2)−n

ω

∣∣(F n
ω

)′
(z)
∣∣−t

By the same token,
(9.26)

ν(1)
ω

(
B

(
z,

1

4

1

Nq

∣∣(F n
ω

)′
(z)
∣∣−1
))
≥ ν(1)

ω

(
F−nω,z

(
B
(
F n
ω (z), (4KNq)

−1
)))

≥ K−tλ(1)−n
ω

∣∣(F n
ω

)′
(z)
∣∣−tν(1)

θn(ω)

(
B
(
F n
ω (z), (4KNq)

−1
))
.

Now assume in addition that
ω ∈ Ω

(1)
Nq ,q

.

Then, we deduce from (9.24) and (9.23) that

ρ
(
Nω(z,Nq) ∩ Lω(l) ∩ Λ

(1)
Nq ,q

)
> 0.

Therefore, for ever n ∈ Nω(z,Nq) ∩ Lω(l) ∩ Λ
(1)
Nq ,q

, we get that

(9.27)

ν
(2)
ω

(
B

(
z, 1

4
1
Nq

∣∣(F n
ω

)′
(z)
∣∣−1
))

ν
(1)
ω

(
B

(
z, 1

4
1
Nq

∣∣(F n
ω

)′
(z)
∣∣−1
)) ≤ Kt

(
ν

(1)
θn(ω)

(
B
(
F n
ω (z), (4KNq)

−1
)))−1 λ

(1)n
ω

λ
(2)n
ω

≤ Kt
(
ε

(1)
Nq ,q

)−1
l.

Consequently,

lim
r→0

ν
(2)
ω (B(z, r))

ν
(1)
ω (B(z, r))

≤ lim
n→∞

ν
(2)
ω

(
B

(
z, 1

4
1
Nq

∣∣(F n
ω

)′
(z)
∣∣−1
))

ν
(1)
ω

(
B

(
z, 1

4
1
Nq

∣∣(F n
ω

)′
(z)
∣∣−1
)) ≤ Kt

(
ε

(1)
Nq ,q

)−1
l.

This implies that for each ω ∈ Ω̂l,q ∩ Ω
(1)
Nq ,q

, the measure ν
(2)
ω |Jr(ω) is absolutely continuous

with respect to ν
(1)
ω |Jr(ω), and the proof of Lemma 57 is complete. �

Our ultimate theorem about conformal and invariant measures is this.

Theorem 58. Let t > 1. If ν(t) is the t-conformal random measure for F : Ω×C→ Ω×C,
produced in Theorem 38, then the Borel probability F–invariant measure µ = µ(t) ∈ Mm

absolutely continuous with respect to ν(t), produced in Theorem 53, is in fact

(a) Equivalent with ν(t),

(b) Ergodic,

(c) It is the only Borel probability F–invariant measure in Mm absolutely continuous
with respect to ν(t).
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Proof. Item (a) is just Theorem 54. In order to prove ergodicity of µ, i.e. item (b) of
Theorem 58, assume for a contradiction that there are two disjoint totally F -invariant
measurable sets A,B ⊂ Ω× C such that

0 < µ(A), µ(B) < 1.

Since θ : Ω→ Ω is ergodic with respect to measure m, we have that 0 < µω(Aω), µω(Bω) < 1
for m–ae. ω ∈ Ω. Therefore, also

0 < νω(Aω), νω(Bω) < 1

for m–ae. ω ∈ Ω. Define two random measures measures ν̂A and ν̂B by demanding that
their fiber measures ν̂A,ω and ν̂B,ω are respective conditional measures of the measure νω
on the sets Aω and Bω. By this very definition both ν̂A and ν̂B belong toMm. It is easy to
verify that these two measures are also t–conformal with respective generalized eigenvalues
equal to

λA,ω = λω
νω(Aω)

νω(Aθ(ω))
and λB,ω = λω

νω(Bω)

νω(Bθ(ω))
.

But then

λnA,ω = λnω
νω(Aω)

νω
(
Aθn(ω)

) and λnB,ω = λnω
νω(Bω)

νω
(
Bθn(ω)

)
for every integer n ≥ 0. Therefore

λnA,ω
λnB,ω

=
νω(Aω)

νω(Bω)
·
νω
(
Bθn(ω)

)
νω
(
Aθn(ω)

) ≤ 1

νω(Bω)
· 1

νω
(
Aθn(ω)

) .
Now, since ν(A) > 0, there exists ε > 0 such that

m
(
{ω ∈ Ω : νω(Aω) ≥ ε}

)
> 0.

Denote this, just defined, subset of Ω by Ω∗. By Birkhoff’s Ergodic Theorem and ergodicity
of the measure m with respect to the map θ : Ω → Ω, we have for m–a.e. ω ∈ Ω, say
ω ∈ Ω+, that

ρ
(
{n ≥ 0 : θn(ω) ∈ Ω∗}

)
= m(Ω∗) > 0.

For every k ≥ 1 let
Ωk := {ω ∈ Ω : νω(Bω) ≥ 1/k}.

Then Ωk ∩ Ω+ ⊂ Ω̂k/ε ⊂ Ω̂. Hence
∞⋃
k=1

Ωk ∩ Ω+ ⊂ Ω̂.

Since also m
(⋃∞

k=1 Ωk ∩ Ω+
)

= 1, it thus follows from Lemma 57 that the fiber measure
ν̂B,ω|Jr(ω) is absolutely continuous with respect to the fiber measure ν̂A,ω|Jr(ω) for m–a.e.
ω ∈ Ω. But because of Proposition 56 and Theorem 54, νω(Jr(ω)) = 1 for m–a.e. ω ∈ Ω;
consequently ν̂B,ω(Jr(ω)) = ν̂A,ω(Jr(ω))) = 1 for m–a.e. ω ∈ Ω. We thus obtained that
the fiber measure ν̂B,ω is absolutely continuous with respect to the fiber measure ν̂A,ω for
m–a.e. ω ∈ Ω. This contradicts the fact that Aω ∩ Bω = ∅ for m–a.e. ω ∈ Ω, and finishes
the proof of item (b), i.e. ergodicity of the measure µ.

The proof of item (c) is now straightforward. Assume for a contradiction that there exists
an F -invariant Borel probability measure on Ω×Q absolutely continuous with respect to ν
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and different from µ. Then there also exists an ergodic measure η with all such properties.
But then by (a), η is absolutely continuous with respect to µ. As both measures η and µ
are ergodic, we thus conclude that µ = η. This contradiction finishes the proof of item (c)
and simultaneously the whole proof of Theorem 58. �

As an immediate consequence of Proposition 56 and Theorem 58, we get the following.

Corollary 59. For every t > 1 we have that ν(t)(Jr(F )) = 1.

As the last important fact in this section, we shall prove the following.

Proposition 60. For every t > 1 the global Lyapunov exponent

χµ(t) :=

∫
Ω×Q

log |F ′ω(z)| dµ(t)(ω, z) =

∫
Ω×Q

log |f ′ω(z)| dµ(t)(ω, z)

is finite and positive.

Proof. We first note that

χµ(t) =

∫
Ω×Q

log |f ′ω(z)| dµ(t)(ω, z) =

∫
Ω×Q

(
log η(ω) + Re(z)

)
dµ(t)(ω, z).

Since logA ≤ log η(ω) ≤ logB for all ω ∈ Ω and since µ(t) is a probability measure, we are
thus to show that ∫

Ω×Q
|Re(z)| dµ(t)(ω, z) < +∞.

In order to do this, we will provide sufficiently good upper estimates for µ
(t)
ω (Y ±M ) for all

M ≥ 0 and all ω ∈ Ω. First, using (5.13) and Proposition 52, we have

ν(t)
ω

(
F−nω (Y +

M )
)
≤ (c(M0))βe

βM
2

(1−t)

for every integer n ≥ 0 and every real number M > 0. Second, by Proposition 52 again
and by Proposition 35 there are two constants D > 0 and γ > 0 such that

ν(t)
ω

(
F−nω (Y −M )

)
≤ De−γM

for every integer n ≥ 0 and every real number M > 0. Therefore,

ν(t)
(
F−n(Ω× Y +

M )
)

=

∫
Ω

ν(t)
ω

(
F−nω (Y +

M )
)
dm(ω) ≤ cβ(M0)e

βM
2

(1−t)

and likewise,
ν(t)
(
F−n(Ω× Y −M )

)
≤ De−γM .

It therefore follows from Theorem 53 and basic properties of Banach limits that

(9.28) µ(t)(Ω× Y +
M ) ≤ cβ(M0)e

βM
2

(1−t) and µ(t)(Ω× Y −M ) ≤ De−γM .

Hence, by straightforward calculation:∫
Ω×Y +

1

|Re(z)| dµ(t)(ω, z) < +∞.

In the same way, based on the right–hand side of (9.28), we get∫
Ω×Y −1

|Re(z)| dµ(t)(ω, z) < +∞.
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Since obviously, ∫
Ω×Q1

|Re(z)| dµ(t)(ω, z) ≤ 1,

we thus conclude that ∫
Ω×Q
|Re(z)| dµ(t)(ω, z) < +∞,

and the proof of finiteness of the global Lyapunov exponent χµ(t) is complete.
So, we now pass to the proof that χµ(t) > 0. The first observation is that for each ω ∈ Ω

the set
Dω := {z ∈ Q : |Im(fω(z))| > 2}

is non-empty and open. Therefore µ(t)(D) > 0, where

D :=
⋃
ω∈Ω

{ω} ×Dω.

It thus follows from ergodicity of the global map F : Ω × Q → Ω × Q with respect to
µ(t) (Theorem 58) and from Birkhoff’s Ergodic Theorem that there exists a measurable set
Γ ⊂ Ω×Q such that µ(t)(Γ) = 1 and

(9.29) lim
n→∞

1

n
#
{

0 ≤ j ≤ n− 1 : F j
ω(z) ∈ D

}
= µ(t)(D) > 0

for every (ω, z) ∈ Γ. Since |(F k
ω )′(z)| = |fkω(z)| ≥ |Im(fkω(z))| for each k ≥ 1, it follows from

Lemma 10, formula (9.29), the Chain Rule, and the definition of the set D, that

lim inf
n→∞

1

n
log |(F n

ω )′(z)| ≥ µ(t)(D) log 2.

Since, by Birkhoff’s Ergodic Theorem again,

χµ(t) = lim
n→∞

1

n
log |(F n

ω )′(z)|

(in particular the limit exists) for µ(t)–a.e. (ω, z) ∈ Ω×Q, we thus obtain that

χµ(t) ≥ µ(t)(D) log 2 > 0,

and the proof of Proposition 60 is complete. �

10. Bowen’s formula

In this section we prove a formula holds that determines the value of the Hausdorff
dimension of radial Julia sets. We refer to it as Bowen’s formula. Precisely, we prove the
following.

Theorem 61. For t > 1 put

EP(t) :=

∫
Ω

log λt,ωdm(ω).

Then

(1) EP(t) < +∞ for all t > 1,

(2) The function (1,+∞) 3 t 7→ EP(t) is strictly decreasing, convex, and thus continu-
ous,
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(3) limt→1 EP(t) = +∞ and EP(2)) ≤ 0.

(4) Let h > 1 be the unique value t > 1 for which EP(t) = 0. Then

HD(Jr(ω)) = h

for m–a.e.ω ∈ Ω.

The proof of this theorem will be deduced from a series of lemmas.

Lemma 62. EP(2) ≤ 0.

Proof. Assume for a contrary that EP(2) > 0. It then follows from Birkhoff’s Ergodic
Theorem that

lim
n→∞

λn2,ω = +∞

for m–a.e. ω ∈ Ω, and in fact, the rate of divergence is exponential. Then using Defini-
tion 9.17 (of the set Jr(ω)), conformality of the measure ν(2) produced in Theorem 53, and

Koebe’s Distortion Theorem, we can write for m–almost every ω ∈ Ω and for ν
(2)
ω – almost

every z ∈ Jr(ω), every integer N ≥ 1 and all n ∈ Nω(z,N), that

ν(2)
ω (F−nω,z (B(F n

ω (z), 1/N))) ≤ C(N)
1

λnω,2
diam2(F−nω,z (B(F n

ω (z), 1/N))),

with some constant C(N) ∈ (0,+∞) depending only on N . Using Koebe’s Distortion
Theorem again, we thus conclude that

(10.1) lim inf
r→0

ν
(2)
ω (B(z, r))

r2
= 0.

But since Leb(B(z, r)) = πr2 for all r > 0 small enough independently of z, where Leb
denotes the 2–dimensional Lebesgue measure on Q, formula (10.1) implies (standard in

geometric measure theory, see e.g., Lemma 2.13 in [21] or [30]) that ν
(2)
ω (Jr(ω)) = 0. This

contradicts Corollary 59 and finishes the proof. �

Lemma 63. For every t > 1 the expected pressure EP(t) is finite and the function

(1,+∞) 3 t 7→ EP(t) ∈ R
is convex, thus continuous.

Proof. First note that finiteness of the expected pressure follows immediately from the
bounds on λt,ω provided in (8.7). The constants p, P in this estimate depend on t but they
are independent of ω.

Let us fix some t1, t2 > 1 and α ∈ [0, 1]. Put t3 = αt1 + (1− α)t2. We are to show that

EP(t3) ≤ αEP(t1) + (1− α)EP(t2).

For every ω ∈ Ω denote:

Eω := QM1 \
⋃
j∈N

B
(
F j
θn−jω(0), r0

)
,

with M1 > 0 and r0 > 0 produced in the course of the proof of Theorem 43). Increasing
M1 and decreasing r0 if necessary, we can assume that

(10.2) ν
(t)
θnω(Eω) > 1/2
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for m–a.e. ω ∈ Ω and for all t ∈ {t1, t2, t3}. Since

lim
n→∞

F n
ω (z) = +∞

uniformly with respect to ω ∈ Ω on R∩ΩM1 , and since each measure µω is a probability one
satisfying, by virtue of its fiberwise F–invariance, µθ(ω)(Fω(A)) ≥ µω(A) for every ω ∈ Ω
and every Borel set A ⊂ C, we conclude that

(10.3) µ(t)
ω (R ∩QM1) = 0

for m–almost all ω ∈ Ω. This is a stronger statement than the one obtained at the very
beginning of the proof of Theorem 54. Denote

E :=
{
z ∈ QM1 : |Im(z)| > r0

}
.

Obviously,

(10.4) E ⊂ Eω

for each ω ∈ Ω. We conclude from (10.3) that if r0 > 0 is small enough, then there exists
a measurable set Ω′ ⊂ Ω, with m(Ω′) > 0.999 and such that

µ(t)
ω (E) > 0.999

for all t ∈ {t1, t2, t3} and all ω ∈ Ω′. It follows from (9.6) and (9.7) that

(10.5)
1

λnt,ω
Lnt,ω(z) � ν

(t)
ω (F−nω (Eω)

ν
(t)
θnω(Eω)

for all t ∈ {t1, t2, t3} with comparability constants witnessing to the comparability sign “�”
above being independent of ω ∈ Ω and z ∈ Eω. Because of (10.2), we have that

(10.6) ν(t)
ω (F−nω (E)) ≤ ν(t)

ω (F−nω (Eω)) ≤ ν
(t)
ω (F−nω (Eω))

ν
(t)
θnω(Eω)

≤ 2ν(t)
ω (F−nω (Eω)) ≤ 2

Our goal now is to find a lower bound for ν
(t)
ω (F−nω (E)), for some measurable set, with

positive measure m, of ω’s and for a sequence of infinitely many n’s that may depend on
ω. Put

A := Ω′ × E.
Then

µ(t)(A) > 0.999 · 0.999 > 0.99

for all t ∈ {t1, t2, t3}. Recall that

(10.7) µ(t)(A) = `B
(
ν(t)(F−n(A))∞n=0

)
Since

µ(t1)(A) + µ(t2)(A) + µ(t3)(A) > 2.97,

it follows from (10.7) that

lim sup
n→∞

(
ν(t1)(F−n(A)) + ν(t2)(F−n(A)) + ν(t3)(F−n(A)

)
> 2.97

So, we conclude that there exists an infinite set
(
nk
)∞
k=1

such that

ν(t)(F−nk(A)) > 0.97
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for all t ∈ {t1, t2, t3}. Using the fact that ν
(t)
ω (F−nkω (E)) ≤ 1 for all ω ∈ Ω, it is straightfor-

ward to conclude that for each such nk and all t ∈ {t1, t2, t3},

m
({
ω ∈ Ω : ν(t)

ω (F−nkω (E)) < 0.1
})

<
1

30
.

So, for each such nk there exists a measurable subset Ωk ⊂ Ω with

m(Ωk) ≥ 0.9

and such that

(10.8) ν(t)
ω (F−nkω (E)) ≥ 0.1

for each ω ∈ Ωk and t ∈ {t1, t2, t3}. Next, put

Ω∗ :=
⋂
m∈N

⋃
k≥m

Ωk

i.e., Ω∗ is the set of all elements ω ∈ Ω that belong to Ωk for infinitely many integers k.
Arrange the set of these integers k into an increasing sequence

(
kj(ω)

)∞
j=1

. We immediately

see that
m(Ω∗) ≥ 0.9.

By Birkhoff’s Ergodic Theorem a measurable set Ω∗∗ ⊂ Ω∗ such that

m(Ω∗∗) = m(Ω∗) ≥ 0.9

and the limit

lim
n→∞

1

n
log λnt,ω

exists and is equal to EP(t) for all t ∈ {t1, t2, t3} and all ω ∈ Ω∗∗. For all ω ∈ Ω∗∗, denoting
nkj(ω) by sj(ω) for all integers j ≥ 1, and using (10.5), (10.6), end (10.8), we see that

0.1 � 1

λ
sj(ω)
t,ω

Lsj(ω)
t,ω (z) � 2

for all t ∈ {t1, t2, t3} and all ω ∈ Ω∗∗. So, for all t ∈ {t1, t2, t3}, all ω ∈ Ω∗∗, and all z ∈ Eω,
we have that

(10.9) EP(t) = lim
k→∞

1

sj(ω)
log λ

sj(ω)
t,ω = lim

k→∞

1

sj(ω)
logLsj(ω)

t,ω (z).

A direct application of Hölder inequality gives now the following:

EP(t3) = lim
j→∞

1

sj(ω)
logLsj(ω)

αt1+(1−α)t2,ω
(z)

≤ lim
j→∞

1

nk

(
α logLsj(ω)

t1,ω (z) + (1− α) logLsj(ω)
t2,ω (z)

)
= α lim

j→∞

1

sj(ω)
logLsj(ω)

t2,ω (z) + (1− α) lim
k→∞

1

sj(ω)
logLsj(ω)

t,ω (z)

= αEP(t2) + (1− α)EP(t2).

The proof is complete. �

Lemma 64. The function (1,∞) 3 t 7−→ EP(t) ∈ R is strictly decreasing.
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Proof. Seeking contradiction suppose that

(10.10) EP(t) ≥ EP(s)

for some 1 < s < t. It follows from Corollary 59, Theorem 58, Proposition 60, and Birkhoff’s
Ergodic Theorem, that there exist χ > 0, an integer q0 ≥ 1, a measurable set Ω0 ⊂ Ω with
m(Ω0) > 1/2, and for each ω ∈ Ω0, a measurable set J0

r (ω) ⊂ Jr(ω) such that

ν(t)
ω (J0

r (ω)) ≥ 1/2,

and

|(F n
ω )′(z)| ≥ eχn

for every ω ∈ Ω0, every z ∈ J0
r (ω), and every integer n ≥ q0. It furthermore follows from

Birkhoff’s Ergodic Theorem and (10.10) that there are an integer q1 ≥ q0, a measurable set
Ω1 ⊂ Ω0 with m(Ω1) > 1/4, and

λ−nt,ω
λ−ns,ω
≤ e

1
2
χ(t−s)n.

for every ω ∈ Ω1 and every integer n ≥ q1. Fix such ω ∈ Ω1 and z ∈ J0
r (ω). By the

definition of Jr(ω) there exists an integer N ≥ 1 such that ρ(Nω(z,N)) > 3/4. So, there
exist an integer N ≥ 1 depending on ω and z and an unbounded increasing sequence
(nk)

∞
k=1 of integers ≥ q1 with lower density ≥ 3/4 such that for every k ≥ 1 there exists a

holomorphic branch F−nkω,z : B(F nk
ω (z), 2/N)→ Q of F−nkω,z that maps F nk

ω (z) back to z and

|F nk
ω (z)| ≤ N.

By Birkhoff’s Ergodic Theorem and Proposition 39 there exist a measurable set Ω2 ⊂ Ω1

such that m(Ω2) > 1/8 and

θnω ∈ Ω
(
N, (4KN)−1, 1/4

)
for all ω ∈ Ω2 and a set of integers n ≥ 0 of lower density ≥ 3/4, where the set
Ω
(
N, (4KN)−1, 1/4

)
comes from Proposition 39. Passing to a subsequence we may there-

fore assume that

θnkω ∈ Ω
(
N, (4KN)−1, 1/4

)
for all ω ∈ Ω2 and every integer k ≥ 1.

Using all the above, Koebe’s Distortion Theorems, conformality of the measures ν
(t)
ω and

ν
(s)
ω , and at the end Proposition 39 (the constant ξ = ξ

(
N, (4KN)−1, 1/4

)
> 0 below comes
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from it), we obtain

ν
(t)
ω

(
B(z, (4N)−1|(F nk

ω (z)′|−1)
)

ν
(s)
ω

(
B(z, (4N)−1|(F nk

ω (z)′|−1)
) ≤ ν

(t)
ω

(
F−nkω,z

(
B(F nk

ω (z), N−1)
))

ν
(s)
ω

(
F−nkω,z

(
B(F nk

ω (z), (4KN)−1)
)) ≤

≤ Kt−s|(F nk
ω )′(z)|s−t

ν
(t)
θnkω

(
B(F n

ω (z), N−1)
)

ν
(s)
θnkω

(
B(F nk

ω (z), (4KN)−1)
) λ−nkt,ω

λ−nks,ω

≤ Kt−s exp(χ(s− t)nk)
(
ν

(s)
θnkω

(
B(F nk

ω (z), (4KN)−1)
))−1

exp

(
1

2
χ(t− s)nk

)
= Kt−s exp

(
1

2
χ(s− t)nk

)(
ν

(s)
θnkω

(
B(F nk

ω (z), (4KN)−1)
))−1

≤ ξ−1Kt−s exp

(
1

2
χ(s− t)nk

)
.

Therefore

lim
r→0

ν
(t)
ω (B(z, r))

ν
(s)
ω (B(z, r))

≤ lim
k→∞

ν
(t)
ω

(
B
(
z, (4N)−1|(F nk

ω (z)′|−1
))

ν
(s)
ω

(
B
(
z, (4N)−1|(F nk

ω (z)′|−1
))

≤ ξ−1Kt−s lim
k→∞

exp

(
1

2
χ(s− t)nk

)
= 0.

This, in a standard way, implies that

ν(t)
ω

( ⋃
ω∈Ω1

{ω} × J0
r (ω)

)
= 0.

But, on the other hand, from the very definition of the sets Ω2 and J0
r (ω), we have that

ν(t)
ω

( ⋃
ω∈Ω1

{ω} × J0
r (ω)

)
≥ 1/8 > 0.

This contradiction ends the proof of Lemma 64. �

Lemma 65. There exist constants C > 0 and t0 > 1 such that for every t ∈ (1, t0) there
exists M = Mt > 0 such that for every z ∈ QM and every ω ∈ Ω, we have that

Lt,ω(11QM )(z) ≥ C

t− 1
.

Proof. Take an arbitrary point z ∈ QM , z 6= 0, and its representative in x + iy ∈ C with
y ∈ (−π, π]. We assume that y ≥ 0, the other case being treated identically. Then

Lt,ω(11QM )(z) =
∑
k∈Kz

1

(x2 + (y + 2kπ)2)t/2
≥
∑
k∈Kz

1

(|x|+ y + 2kπ)t
.

where Kz is the set of integers k for which
∣∣ log |x+ iy + 2kπi| − log η(ω)

∣∣ ≤M , i.e.,

(10.11) log |x+ iy + 2kπi| ≤M + log η(ω)

and

(10.12) log |x+ iy + 2kπi| ≥ −M + log η(ω).
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Let

(10.13) K :=
AeM −M

2π
− 1

2
.

A straightforward calculation shows that if 0 ≤ k ≤ K, then k satisfies inequality (10.11)
for every z ∈ QM . On the other hand, if −M + log η(ω) ≤ 0, then inequality (10.11) holds
for every integer k ≥ 1. So, assuming that M > logB, which we do from now on, we will
have that (10.12) holds for every integer k ≥ 1 and every point z ∈ QM . Hence, for every
z ∈ QM ,

{k ∈ Z : 1 ≤ k ≤ K} ⊂ Kz.

Therefore,

(10.14) Lt,ω(11QM )(z) ≥
∑

1≤k≤K

1

(|x|+ y + 2kπ)t
=

1

(2π)t

∑
0≤k≤K−1

1(
|x|+y+2π

2π
+ k
)t

We are thus to estimate from below the sum
∑K−1

k=0
1

(a+k)t
with a = |x|+y+2π

2π
. The bound is

given by the integral

(10.15)

∫ K

0

1

(a+ s)t
ds =

1

t− 1

(
1

at−1
− 1

(a+K)t−1

)
We now want to find M > logB so large that the estimate

(10.16)
1

(a+K)t−1
<

1

2

1

at−1
or, equivalently, a+K > 2

1
t−1a

holds. So, for (10.16) to be satisfied it is enough to have K/a > 2
1
t−1 . Assuming that

M > 3π, invoking the formula (10.13) which defines K, and using the inequality 2πa ≤
M + 1 + 2π, we see that for (10.16) to hold it is enough to have tho following inequality:

(10.17)
AeM − 2M

2M
> 2

1
t−1 .

A straightforward estimate shows that, if

M ≥Mt :=
2 log 2

t− 1

and t is sufficiently close to 1, then (10.17), and, consequently, also (10.16) holds. We can
this estimate (10.14)∫ K

0

1

(a+ s)t
≥ 1

2(t− 1)

1

at−1
≥ 1

2(t− 1)

(
2π

Mt + 3π

)t−1

=
1

t− 1

(2π)t−1

2

(
Mt

Mt + 3π

)t−1
1

M t−1
t

.

Now, since Mt ≥ 3π, we have that (
Mt

Mt + 3π

)t−1

≥ 1

2
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for all t ∈ (1, 2]. Invoking the formula defining Mt and using, in the last step, the inequality
xx ≥ exp(−1/e) for all x ∈ (0, 1]), we thus have for z ∈ QMt that

Lt,ω(11QMt )(z) ≥ 1

t− 1
· (2π)t−1

4
· 1

(2π)t
· (t− 1)t−1

(2 log 2)t−1
≥ C

1

t− 1

with

C =
1

8π(log 2)2
exp(−1/e).

The proof is complete.
�

Corollary 66.

lim
t→1+
EP(t) = +∞.

Proof. Indeed, it follows from Lemma 63 and (10.9) that for each t > 1 and every M1

sufficiently large, there exists a sequence nk and a positive measure set Ω∗∗ such that for
ω ∈ Ω∗∗,z ∈ Eω ⊂ QM1

EP(t) = lim
k→∞

1

nk
logLnkt,ω(11)(z).

Obviously, one can take M1 ≥ Mt, where Mt comes from Lemma 65. Then, by applying
this lemma we obtain the required estimate. �

As a consequence of the above lemmas and the last corollary, we get the following.

Corollary 67. There exists a unique value h ∈ (1, 2] such that EP(h) = 0.

Now, in order to conclude the proof of Theorem 61, we are only left to establish its item
(4). Towards this end, we shall prove the following auxiliary result.

Lemma 68. For every ω ∈ Ω and every integer N ≥ 2 there exists q(ω,N) such that if
z ∈ QN and if q(ω,N) ≤ n ∈ Nω(z,N), then

|(F n
ω )′(z)| ≥ 2.

Proof. Fix an integer N ≥ 2. Notice that then there exists an integer qN ≥ 0 such that

(10.18) fnω (R) ⊂ [4N,+∞)

for all ω ∈ Ω and all n ≥ qN . Now fix also ω ∈ Ω. Assume for a contrary that there
exist a strictly increasing sequence (nl)

∞
l=1 of integers, all greater than or equal to qN , and

a sequence (zl)
∞
l=1 of points in QN such that

nl ∈ Nω(zl, N) and |(F nl
ω )′(zl)| ≤ 2

for every l ≥ 1. Using compactness of QN we can replace the sequence (nl)
∞
l=1 by its

increasing subsequence for which there exist a point ξ ∈ QN such that

zl ∈ B(ξ, 1/(16Nl)).

It then follows from Koebe’s 1
4
–Distortion Theorem that

(10.19) B(ξ, 1/(16N)) ⊂ F−nlω,zl

(
B(F nl

ω (zl), 1/N)
)
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now seeking contradiction assume that

fkω
(
B(ξ, 2−4N−1)

)
∩

(⋃
j∈Z

R + jπi

)
6= ∅

for some integer k ≥ 0. Then for for every integer l ≥ 1,

fkω
(
F−nlω,zl

(
B(F nl

ω (zl), 1/N)
))
∩

(⋃
j∈Z

R + jπi

)
6= ∅.

Fix l ≥ 1 so large that nl − k ≥ qN + 1. Then invoking (10.18), we conclude that

B(F nl
ω (zl), 1/N) ∩ [4N,+∞) 6= ∅.

Hence, F nl
ω (zl) /∈ QN contrary to the fact that nl ∈ Nω(zl, N). So,

(10.20) fkω
(
F−nlω,zl

(
B(F nl

ω (zl), 1/N)
))
∩

(⋃
j∈Z

R + jπi

)
= ∅

for every integer k ≥ 0. Now, as at the beginning of the paper, keep S to denote the set

{z ∈ C : |Im(z)| < π}.
If the set

Aω(N) :=
{
k ≥ 0 : fkω

(
B(ξ, 2−4N−1)

)
∩ S = ∅

}
is infinite, then limj→∞ |(f jω)′(ξ)| = +∞ by lemma 10 and the Chain Rule. This and (10.20)
would however contradict Bloch’s Theorem, proving that the set Aω(N) is finite. But if
fkω
(
B(ξ, 2−4N−1)

)
∩ S 6= ∅, then

(10.21) fkω
(
B(ξ, 2−4N−1)

)
⊂ S

by (10.20) again. Therefore, (10.34) holds for all but finitely many k’s. This however
contradicts Lemma 13, finishing the proof of Lemma 68. �

Now, within the framework of Lemma 68, let q0(ω,N) denote the least number q(ω,N)
produced by this lemma. We immediately observe the following.

Observation 69. For every integer N ≥ 2 the function

Ω 3 ω 7−→ q0(ω,N) ∈ N

is measurable.

Lemma 70.

HD(Jr(ω)) = h

for m–a.e. ω ∈ Ω.

Proof. The beginning of this proof is similar to the proof of Lemma 64. It follows from
Corollary 59, Theorem 58, Proposition 60, and Birkhoff’s Ergodic Theorem, that there
exist χ > 0, a measurable set Ω0 ⊂ Ω with m(Ω0) = 1, and for each ω ∈ Ω0, a measurable
set J0

r (ω) ⊂ Jr(ω) such that

ν(h)
ω (J0

r (ω)) = 1



60 MARIUSZ URBAŃSKI AND ANNA ZDUNIK

and

(10.22) lim
n→∞

1

n
log |(F n

ω )′(z)| = χ

for every ω ∈ Ω0 and every z ∈ J0
r (ω). It furthermore follows from Birkhoff’s Ergodic

Theorem that there exists a measurable set Ω1 ⊂ Ω0 with m(Ω1) = 1, and such that

(10.23) lim
n→∞

1

n
log λnh,ω = 0

for every ω ∈ Ω1. Fix such ω ∈ Ω1 and z ∈ J0
r (ω). Fix η ∈ (0, 1/2) arbitrary. By the

definition of Jr(ω) there exists an integer Nη ≥ 1 such that

(10.24) ρ(Nω(z,Nη)) > 1− η.

For every r ∈ (0, 1/Nη) let k := k(z, r) be the largest integer n ∈ Nω(z,Nη) such that

(10.25) F−nω,z
(
B(F n

ω (z), 1/Nη)
)
⊃ B(z, r).

Let s = sk be the largest integer ≥ k + 1 belonging to Nω(z,Nη). It follows from (10.24)
that

(10.26) lim
r→0

k(z, r)

sk(z,r)

≥ 1− η.

Applying conformality of the measure ν(h) and Koebe’s Distortion Theorem, we now con-
clude from (10.25) and the definition of k that

(10.27)

ν(h)
ω

(
B(z, r)

)
≤ ν(h)

ω

(
F−kω,z

(
B(F k

ω (z), 1/Nη)
))

≤ Khλ−kω,h
∣∣(F k

ω

)′
(z)
∣∣−hν(h)

θkω

(
B(F k

ω (z), 1/Nη)
)

≤ Khλ−kω,h
∣∣(F k

ω

)′
(z)
∣∣−h.

On the other hand B(z, r) 6⊂ F−sω,z
(
B(F s

ω(z), 1/Nη)
)
. But since, by 1

4
-Koebe’s Distortion

Theorem,

F−sω,z
(
B(F s

ω(z), 1/Nη)
)
⊃ B

(
z,

1

4

∣∣(F s
ω

)′
(z)
∣∣−1

N−1
η

)
,

we thus get that r ≥ 1
4

∣∣(F s
ω

)′
(z)
∣∣−1

N−1
η . Equivalently,∣∣(F s
ω

)′
(z)
∣∣−1 ≤ 4Nηr.

By inserting this into (10.27) and using also the Chain Rule, we obtain

ν(h)
ω

(
B(z, r)

)
≤ (4KNη)

hrhλ−kω,h
∣∣(F s−k

θkω

)′
(F k

ω (z))
∣∣h.

Equivalently,

(10.28)

log ν
(h)
ω (B(z, r))

log r
≥ h+

log(4KNη)

log r
−

log λkω,h
log r

+ h
log |

(
f s−k
θkω

)′
(F k

ω (z))
∣∣

log r

= h− k

log(1/r)

log(4KNη)

k
+

k

log(1/r)

1

k
log λkω,h−

− h k

log(1/r)

1

k
log |

(
f s−k
θkω

)′
(F k

ω (z))
∣∣.
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Now, Koebe’s Distortion Theorem yields

F−kω,z
(
B(F k

ω (z), 1/Nη)
)
⊂ B

(
z,K

∣∣(F k
ω

)′
(z)
∣∣−1

N−1
η

)
.

Along with (10.25) and the definition of k this gives r ≤ K
∣∣(F k

ω

)′
(z)
∣∣−1

N−1
η . Equivalently:

(10.29) − log r ≥ log(Nη/K) + log
∣∣(F k

ω

)′
(z)
∣∣.

Therefore, invoking (10.22), we get that

(10.30) lim sup
r→0

k(z, r)

log(1/r)
≤ 1/χ.

Also, formula (10.22) along with (10.26) gives

(10.31) lim
r→0

1

k
log |

(
F s−k
θkω

)′
(F k

ω (z))
∣∣ ≤ χ

1− η
− χ =

η

1− η
χ.

Inserting now (10.30), (10.23), and (10.31) to (10.28), we obtain

lim inf
r→0

log ν
(h)
ω (B(z, r))

log r
≥ h

(
1− η

1− η

)
=

1− 2η

1− η
h.

Since η ∈ (0, 1/2) was arbitrary, this yields

(10.32) lim inf
r→0

log ν
(h)
ω (B(z, r))

log r
≥ h,

Therefore

(10.33) HD(Jr(ω)) ≥ HD(J0
r (ω)) ≥ h,

and one side of the equation from Lemma 70 is thus established.
For the opposite inequality set η := 1/4 and

N := N1/4.

By Lemma 68, Observation 69, and Proposition 39, there exists an integer q ≥ 1 such that

(10.34) m
({
ω ∈ Ω : q0(ω,N) ≤ q

}
∩ Ω(N, 1/N, 1/8

)
> 5/8.

It therefore follows from Birkhoff’s Ergodic Theorem that there exists a measurable set
Ω̂ ⊂ Ω such that m(Ω̂) = 1 and

ρ
({
n ≥ 0 : q0(θnω,N) ≤ q and θnω ∈ Ω(N, 1/N, 1/8)

})
> 5/8

for all ω ∈ Ω̂. Then

(10.35) ρ
(
Nω(z,N) ∩

{
n ≥ 0 : q0(θnω,N) ≤ q and θnω ∈ Ω(N, 1/N, 1/8)

})
> 3/8.

Fix now an arbitrary element ω ∈ Ω̂ and z ∈ Jr(ω). S There thus exists an integer l0 ≥ 1
so large that if l is an integer ≥ l0 and if ul is the lth element of the set

Nω(z,N) ∩
{
n ≥ 0 : q0(θnω,N) ≤ q and θnω ∈ Ω(N, 1/N, 1/8

}
,

then
l

ul
≥ 3/8.
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So, applying Lemma 68, we thus get that

(10.36) |(F ul
ω )′(z)| ≥ 2l/q ≥ 23ul/8q

Let rl > 0 be the least radius such that

(10.37) F−ulω

(
B(F ul

ω (z), 1/N)
)
⊂ B(z, rl).

But, by Koebe’s Distortion Theorem, F−ulω

(
B(F ul

ω (z), 1/N)
)
⊂ B

(
z,KN−1|(F ul

ω )′(z)|−1
)
;

hence

(10.38) rl ≤ KN−1|(F ul
ω )′(z)|−1.

Formula (10.37) along with Koebe’s Distortion Theorem and (10.38), and Proposition 39
(the constant ξ = ξ(N, 1/N, 1/8) > 0 below comes from it), yield

(10.39)

ν(h)
ω

(
B(z, rl)

)
≥ ν(h)

ω

(
F−ulω

(
B(F ul

ω (z), 1/N)
))

≥ K−hλ−ulω,h

∣∣(F ul
ω

)′
(z)
∣∣−hνθulω(B(F ul

ω (z), 1/N)
)

≥ K−hξλ−ulω,h

∣∣(F ul
ω

)′
(z)
∣∣−h

≥ (K−2N)hξλ−ulω,h r
h
l .

Therefore,

(10.40)
log ν

(h)
ω (B(z, rl))

log rl
≤ h+

h log(N/K2)

log rl
−

log λulω,h
log rl

+
ξ

log rl
.

Formula (10.38) equivalently means that

(10.41) − log rl ≥ log |(F ul
ω )′(z)|+ log(N/K).

Hence, invoking (10.36), we get that

(10.42) − log rl ≥
3 log 2

8q
ul + log(N/K).

Inserting this to (10.40) and using (10.23), we get

lim inf
r→0

log ν
(h)
ω (B(z, r))

log r
≤ lim inf

l→∞

log ν
(h)
ω (B(z, rl))

log rl
≤ h.

Therefore,

HD(Jr(ω)) ≤ h,

and along with (10.33) this finishes the proof of Lemma 70. �
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11. Hausdorff Dimension of the radial Julia set is smaller than 2

Lemma 71. Let (Y,F, µ) be a probability space and let T : Y → Y be a measure preserving
ergodic transformation. Assume that ϕ : Y → R is an integrable function with

∫
ϕdµ = 0.

Assume further that there exist a set A ∈ F with µ(A) > 0 and a constant C > 0 such that
for all y ∈ A

sup
k≥1
{Skϕ(y)} < C.

Then for µ-a.e. y ∈ A the following implication holds:

(11.1) T n(y) ∈ A =⇒ Snϕ(y) > −2C.

Proof. Assume that (11.1) does not hold. Then there exists a measurable subset B ⊂ A
with µ(B) > 0 and such that for every y ∈ B there exists an integer n ≥ 1 for which

(11.2) T n(y) ∈ A and Snϕ(y) ≤ −2C.

Replacing B by its subset, still of positive measure, we can assume that there exists an
integer k ≥ 1 such that (11.2) holds for integers n being the kth returns of y to A. Now,

let us consider the map T̂
(k)
B : B → B being the kth return from B to B. For µ–almost

every x ∈ B denote by nB(x) the first return time of x to B and by n
(k)
B (x) the kth return

time of x to B.
Kac’s lemma applied for the kth return map T̂ (k) and for the function ϕ thus gives

(11.3)

∫
B

S
n
(k)
B (x)

ϕ(x)dµ(x) = k

∫
B

SnB(x)ϕ(x)dµ(x) = k

∫
X

ϕ(x)dµ(x) = 0.

Still for µ–almost every x ∈ B denote by n
(k)
A (x) the k-th entrance time of x to A and

notice an obvious inequality n
(k)
B (x) ≥ n

(k)
A (x). Writing

S
n
(k)
B (x)

ϕ(x) = S
n
(k)
A (x)

ϕ(x) + S
n
(k)
B (x)−n(k)

A (x)
ϕ
(
T n

(k)
A (x)(x)

)
,

we see that

S
n
(k)
B (x)

ϕ(x) < −2C + C = −C

for µ–almost all x ∈ B. But this contradicts (11.3) and finishes the proof of our lemma. �

In Section 10 we proved that the dimension of the radial random Julia set Jr(ω) is almost
surely equal to the only value h such that the expected pressure at h, i.e.

EP(h) =

∫
log λh,ωdm(ω) = 0.

As in Section 9, we denote

λnh,ω := λh,ω · λh,θω · λh,θn−1ω.

Our goal now is to prove that h < 2. The crucial technical ingredient is the following.

Proposition 72. For m–a.e. ω ∈ Ω and for ν
(h)
ω –almost every point z ∈ Q we have that

(11.4) lim inf
r→0

ν
(h)
ω (B(z, r))

rh
= 0.
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Proof. We consider two separate cases.
Case10. Partial sums

log λnh,ω =
n−1∑
j=0

log λh,θjω

are bounded above for a measurable set of points ω ∈ Ω with positive measure m. This
means that there exist a measurable set A ⊂ Ω with m(A) > 0 and a constant C < +∞
such that

(11.5) log λnh,ω < C

for all ω ∈ A. By ergodicity of the map F : Ω × Q → Ω × Q with respect to the measure
µ(h) (see Theorem 58) and by Birkhoff’s Ergodic Theorem there exists a measurable set
Γ1 ⊂ Ω × Q with µ(h)(Γ1) = µ(h)(Γ1) = 1 and such that for every point (ω, z) ∈ Γ1 there
exists an integer k1(ω, z) ≥ 0 such that

(11.6) F k1(ω,z)(ω, z) ∈ A×Q.
Fix an integer N ≥ 1 and consider the set

A×
(
Y +
N+2 \ (R× (−2, 2))

)
.

Since µ(h)
(
A×
(
Y +
N+2\(R×(−2, 2))

))
> 0, again by ergodicity of the map F : Ω×Q→ Ω×Q

with respect to the measure µ(h) (see Theorem 58) and by Birkhoff’s Ergodic Theorem there
exists a measurable set Γ2 ⊂ A × Q with µ(h)(Γ2) = µ(h)(A × Q) and such that for every
point (τ, ξ) ∈ Γ2 there exists an integer k2(τ, ξ;N) ≥ 0 such that

(11.7) F k2(τ,ξ;N)(τ, ξ) ∈ A×
(
Y +
N+2 \ (R× (−2, 2))

)
.

In conclusion, there exists a measurable set Γ3(N) ⊂ Γ1 such that µ(h)(Γ3(N)) = 1 and

(11.8) F k1(ω,z)(ω, z) ∈ Γ2

for all points (ω, z) ∈ Γ3(N). In particular k2

(
F k1(ω,z)(ω, z);N

)
is well defined and finite.

For every point (ω, z) ∈ Γ3(N) set

(11.9) `N(ω, z) := k1(ω, z) + k2

(
F k1(ω,z)(ω, z);N

)
.

Denote

Γ3(∞) :=
∞⋂
N=1

Γ3(N).

Then
µ(h)(Γ3(∞)) = 1

and the number `N(ω, z) is well defined for all points (ω, z) ∈ Γ3(∞) and all integers N ≥ 1.
Fix such (ω, z) and N . Then

(11.10) log λ
`N (ω,z)
h,ω = log λ

k1(ω,z)
h,ω + log λ

k2

(
Fk1(ω,z)(ω,z);N

)
h,θk1(ω,z)ω

> log λ
k1(ω,z)
h,ω − 2C

by (11.6)–(11.9) and Lemma 71.

Now, since F
`N (ω,z)
ω (z)

)
∈ Y +

N+2\(R×(−2, 2)), the holomorphic inverse branch F
−`N (ω,z)
ω :

B
(
F
`N (ω,z)
ω (z), 2

)
→ Q, sending F

`N (ω,z)
ω (z) back to z, is well defined,

(11.11) B
(
F `N (ω,z)
ω (z), 1

)
⊂ Y −N
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and, with a use of Koebe’s Distortion Theorem,

B

(
z,

1

4

∣∣(F `N (ω,z)
ω

)′
(z)
∣∣−1
)
⊂ F−`N (ω,z)

ω

(
B
(
F `N (ω,z)
ω (z), 1

))
.

Set

rN(ω, z) :=
1

4

∣∣(F `N (ω,z)
ω

)′
(z)
∣∣−1

.

Then, using, (11.11), (11.10), and (5.13), we get

ν
(h)
ω

(
B(z, rN(ω, z)

)
rhN(ω, z)

≤
ν

(h)
ω

(
F
−`N (ω,z)
ω

(
B
(
F
`N (ω,z)
ω (z), 1

)))
rhN(ω, z)

≤
λ
−`N (ω,z)
h,ω Kh

∣∣(F `N (ω,z)
ω

)′
(z)
∣∣−hν(h)

θ`N (ω,z)ω

(
B
(
F
`N (ω,z)
ω (z), 1

))
rhN(ω, z)

=
(4K)hλ

−`N (ω,z)
h,ω rhN(ω, z)ν

(h)

θ`N (ω,z)ω

(
B
(
F
`N (ω,z)
ω (z), 1

))
rhN(ω, z)

= (4K)hλ
−`N (ω,z)
h,ω ν

(h)

θ`N (ω,z)ω

(
B
(
F `N (ω,z)
ω (z), 1

))
≤ (4K)hλ

−`N (ω,z)
h,ω ν

(h)

θ`N (ω,z)ω
(Y +

N )

≤ (4K)he2Cλ
−k1(ω,z)
h,ω C(M0)e(1−t))N

2 .

Since 1− t < 0, this yields

lim
r→0

ν
(h)
ω (B(z, r)

rh
≤ lim

N→∞

ν
(h)
ω

(
B(z, rN(ω, z)

)
rhN(ω, z)

≤ (4K)he2Cλ
−k1(ω,z)
h,ω C(M0) lim

N→∞
e(1−t))N

2 = 0.

Case 2. For m–a.e (ω, z) ∈ Ω×Q

lim sup
n→∞

λnω = +∞.

Let (ω, z) be a point for which the above upper limit is equal to +∞. There then exists a
strictly increasing sequence

(
nj(ω, z)

)∞
j=1

of positive integers such that

(11.12) lim
n→∞

λnj(ω,z)ω = +∞.

Fix a radius 0 < s < min{1, ρ}/4, where ρ comes from Lemma 24. Fix an integer j ≥ 1. If

B(F nj(ω,z)
ω (z), 2s) ∩

{
F
nj(ω,z)−k
θkω

(0) : k = 1, . . . nj − 1
}

= ∅,

then there exists a holomorphic branch F
−nj(ω,z)
ω,z defined on B

(
F nj(ω,z)(z), 2s

)
and sending

F
nj
ω (z) back to z. Analogously as in the previous case, put

rj(ω, z) :=
1

4

∣∣(F nj(ω,z)
ω

)′
(z)
∣∣−1

s.

Then by the same token as in the previous case, we get

(11.13)
ν

(h)
ω

(
B(z, rj(ω, z))

rhj (ω, z)
≤ (4K)hλ

−nj(ω,z)
h,ω ν

(h)

θnj(ω,z)ω

(
B
(
F nj(ω,z)
ω (z), r

))
≤ (4K)hλ

−nj(ω,z)
h,ω .
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Finally, consider the case when the ball B
(
F
nj(ω,z)
ω (z), 2s

)
contains some point from the

set
{
F
nj−k
θkω

(0) : k = 1, . . . nj(ω, z) − 1
}

. Fix such k ∈ {0, . . . nj − 1} with the smallest

distance between F
nj(ω,z)
ω (z) and F

nj(ω,z)−k
θkω

(0) in addition. Denote this distance by 2ŝ.
Then 2ŝ < 2s < ρ/2 and

B
(
F nj(ω,z)(ω,z)
ω (z), ŝ

)
⊂ B

(
F
nj(ω,z)−k
θkω

(0), 3ŝ
)
.

It thus follows from Lemma 24 that

ν
(h)

θnj(ω,z)ω

(
B
(
F nj(ω,z)(ω,z)
ω (z), ŝ

))
≤ ν

(h)

θnj(ω,z)ω

(
B
(
F
nj(ω,z)−k
θkω

(0), 3ŝ
))
� r̂u ≤ rh.

It also follows from the definition of r̂ that there exists a unique holomorphic branch

F
−nj(ω,z)
ω,z defined on B

(
F nj(ω,z)(z), 2r̂

)
and sending F

nj
ω (z) back to z. Analogously as in the

previous case, put

r̂j(ω, z) :=
1

4

∣∣(F nj(ω,z)
ω

)′
(z)
∣∣−1

r̂.

Then, in the same way as (11.13), we get

(11.14)
ν

(h)
ω

(
B(z, r̂j(ω, z))

r̂hj (ω, z)
≤ (4K)hλ

−nj(ω,z)
h,ω r̂−hν

(h)

θnj(ω,z)ω

(
B
(
F nj(ω,z)
ω (z), r̂

))
� λ

−nj(ω,z)
h,ω .

Along with formula (11.12), formulas (11.13) and (11.14) respectively imply that limj→∞ rj(ω, z) =
limj→∞ r̂j(ω, z) = 0 and

lim inf
r→0

ν
(h)
ω (B(z, r))

rh
= 0.

The proof of Proposition 72 is complete. �

Theorem 73. The Hausdorff dimension h = HD(Jr(ω)) of the random radial Julia set
Jr(ω), is constant for m–a.e. ω ∈ Ω and satisfies 1 < h < 2. In particular, the 2–
dimensional Lebesgue measure of m–a.e. ω ∈ Ω set Jr(ω) is equal to zero.

Proof. The fact that the function Ω 3 ω 7→ HD(Jr(ω)) is constant for m–a.e. ω ∈ Ω, and
the inequality h > 1 is just item (4) of Theorem 61.

Because of Proposition 72, h–dimensional packing measure of Q is locally infinite for
m–a.e. ω ∈ Ω. Since 2–dimensional packing measure is just the (properly rescaled) 2–
dimensional Lebesgue measure, it is locally finite. Thus h < 2.

�

As a corollary, we obtain the following result about trajectories of (Lebesgue) typical
points.

Theorem 74 (Trajectory of a (Lebesgue) typical point I). For m–almost every ω ∈ Ω there
exists a subset Qω ⊂ Q with full Lebesgue measure such that for all z ∈ Qω the following
holds.

(11.15)
∀δ > 0 ∃nz(δ) ∈ N ∀n ≥ nz(δ) ∃k = kn(z) ≥ 0

|F n
ω (z)− F k

θn−kω(0)| < δ or |F n
ω (z)| ≥ 1/δ.

In addition, lim supn→∞ kn(z) = +∞.
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Proof. For every ω ∈ Ω, the set of points with trajectories described (11.15) contains the
complement of the radial set Julia set Jr(ω). So, now the first assertion follows immediately
from the last assertion of Theorem 73. The second assertion is obvious. �

As an immediate consequence of this theorem we get the following.

Corollary 75 (Trajectory of a (Lebesgue) typical point II). For m–almost every ω ∈ Ω
there exists a subset Qω ⊂ Q with full Lebesgue measure such that for all z ∈ Qω, the set
of accumulation points of the sequence (

F n
ω (z)

)∞
n=0

is contained in [0,+∞] ∪ {−∞} and contains +∞.

12. Random Dynamics on the Complex Plane:
the Original Random Dynamical system fnω

In this section we will show that both random dynamical systems

fnω := fθn−1ω ◦ · · · ◦ fθω ◦ fω : C∗ −→ C∗

and

F n
ω := Fθn−1ω ◦ · · · ◦ Fθω ◦ Fω : Q −→ Q,

ω ∈ Ω are conjugate via conformal (bi-holomorphic) homeomorphisms. Start with a single
exponential map fη : C −→ C given by the formula

fη(z) = ηez.

Let C∗ := C \ {0}. Since exp : C −→ C∗ is a quotient map and fη is constant on each set
exp−1(z), z ∈ C∗, the map fη induces a unique continuous map

F̃η : C∗ → C∗

such that the following diagram commutes

C C

C∗ C∗

fη

exp exp

F̃η

i.e.

(12.1) F̃η(exp(z)) = exp(fη(z)).

The map F̃η can be easily calculated:

F̃η(z) = exp(fη(exp−1(z))) = exp(ηz).

Let Hη : C→ C be the similarity map given by the formula Hη(z) = z/η. Then

(12.2) F̃η ◦Hη(z) = exp(η(z/η)) = exp(z) =
1

η
fη(z) = Hη ◦ fη(z).

This means that the maps F̃η and fη are conjugate via Hη. Consequently,
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Proposition 76. For every integer n ≥ 1,

(12.3) F̃ n
η ◦ exp = exp ◦fnη ,

i.e. the following diagram commutes

C C

C∗ C∗

fnη

exp exp

F̃nη

and

(12.4) F̃ n
η ◦Hη = Hη ◦ fnη ,

i.e. the following diagram commutes

C C

C C

fnη

Hη Hη

F̃nη

We now pass to the non–autonomous case. This means that we fix an element a ∈ [A,B]N

and we consider the non–autonomous compositions

fna := fan−1 ◦ fan−2 ◦ · · · ◦ fa1 ◦ fa0 : C −→ C.

and likewise with F̃ n
a . Iterating (non-autonomously) (12.1) and doing straightforward cal-

culations based on (12.2), we get the following.

Proposition 77. For every integer n ≥ 1,

(12.5) F̃ n
a ◦ exp = exp ◦fna .

and

(12.6) F̃ n
a ◦Ha1 = Han ◦ fnσ(a)

We need two more “little” results. First recall that the map exp : Q → C∗ naturally
defined from the cylinder Q to C∗ is indeed well defined and is holomorphic:

Proposition 78. The map exp : Q −→ C∗

(1) is a conformal/holomorphic homeomorphism;

(2) transfers the Euclidean metric on Q to the conformal metric on C∗: |dρ| := |dz|
|z|

(3) conjugates F̃η and Fη, i.e.

F̃η ◦ exp = exp ◦Fη and

(4)

F̃ n
η ◦ exp = exp ◦F n

η

for every integer n ≥ 0. In other words, the following diagram commutes
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Q Q

C∗ C∗

Fnη

exp exp

F̃nη

(5)

F̃ n
a ◦ exp = exp ◦F n

a

for every a ∈ [A,B]N. In other words, the following diagram commutes

Q Q

C∗ C∗

Fna

exp exp

F̃na

Proof. Item (1) is obvious. In order to prove item (3), we calculate

exp(Fη([w]) = exp(π ◦ fη ◦ π−1([w]) = exp(π ◦ fη(w)) = exp(fη(w) = F̃ η(z) = F̃η(exp([w]).

So,

exp ◦Fη = F̃η ◦ exp .

Item (4) is a standard consequence of item (3). Likewise, item (5), follows by a straight-
forward inductive argument based on (3).

Now, we shall prove item (2). If [w] ∈ Q and v is a tangent vector at [w] with Euclidean
length 1 then it is mapped by exp to a tangent vector at the point z = exp([w]), whose
Euclidean length is equal to | exp′([w]) = |z|. So, the conformal metric on C∗ which makes
the bijection exp : Q→ C∗ an isometry is exactly the one

dρ :=
|dz|
|z|

.

�

13. Random Ergodic Theory and Geometry on the Complex Plane:
the Original Random Dynamical system fnω

We shall now transfer all our results concerning random conformal measures, random
invariant measures, Hausdorff dimension of fiber radial Julia sets, and asymptotic behavior
of Lebesgue typical points to the case of original random system(

Ω,F ,m; θ : Ω→ Ω; η : Ω→ [A,B]
)

and induced by it random dynamics(
fnω : C→ C

)∞
n=0

, ω ∈ Ω,

given by the formula:

fnω := fθn−1ω ◦ · · · ◦ fθω ◦ fω : C −→ C.
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Lemma 79. Fix t > 1. If ν =
(
νω
)
ω∈Ω

is a random conformal measure for the random
conformal system

F n
ω : Q −→ Q, ω ∈ Ω, n ≥ 0,

with a measurable function λ : Ω −→ (0,+∞) and the standard Euclidean metric, then the
random measure

ν̃ :=
(
νω ◦ exp−1

)
ω∈Ω

is a random conformal measure for the random conformal system

F̃ n
ω : C∗ −→ C∗, ω ∈ Ω, n ≥ 0,

with the same measurable function λ : Ω −→ (0,+∞) and the Riemannian metric ρ given
by formula (2) of Proposition 78. The converse is also true.

Proof. Using formula (5) of Proposition 78 and, of course, the definition of the random
measure ν̃, we get for every ω ∈ Ω, every integer n ≥ 1 and every Borel set A ⊂ C∗ such
that the restricted map F n

ω |A is 1–to–1, that

(13.1)

ν̃
(
F̃ n
ω (A)

)
= ν

(
exp−1(F̃ n

ω (A))
)

= ν
(
F n
ω (exp−1(A)))

)
=

∫
exp−1(A)

λnω
∣∣(F n

ω

)′∣∣t dνω =

∫
A

λnω
∣∣(F n

ω

)′ ◦ exp−1
∣∣t dν̃ω

= λnω

∫
A

∣∣F̃ n
ω (z)

∣∣−t∣∣(F̃ n
ω

)′
(z)
∣∣t|z|t dν̃ω(z)

= λnω

∫
A

∣∣(F̃ n
ω

)′∣∣t
ρ
dν̃ω.

An analogous calculation gives the converse. �

Lemma 80. Fix t > 1. If ν̃ =
(
νω
)
ω∈Ω

is a random conformal measure for the random
conformal system

F̃ n
ω : C −→ C, ω ∈ Ω, n ≥ 0,

with a measurable function λ : Ω −→ (0,+∞) and the Riemannian metric ρ given by
formula (2) of Proposition 78, then the random measure

ν̂ :=
(
ν̃ω ◦Hθ−1ω

)
ω∈Ω

is a random conformal measure for the random conformal system

fnω : C −→ C, ω ∈ Ω, n ≥ 0,

with the same measurable function λ : Ω −→ (0,+∞) and the same Riemannian metric ρ.
The converse is also true.

Proof. First note that if s ∈ C∗ and Hs : C −→ C is the map given by the formula

Hs(z) = s−1z,

then

|(Hs)
′(z)|ρ = |Hs(z)|−1| · |(Hs)

′(z)| · |z| = |s|
|z|
· 1

|s|
· |z|. = 1.
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Using this formula, the definition of the random measure ν̂, and formula (12.6) of Proposi-
tion 77, we get for every ω ∈ Ω, every integer n ≥ 1, and every Borel set A ⊂ C such that
the restricted map fnθω|A is 1–to–1, that

(13.2)

ν̂θn+1ω

(
fnθnω(A)

)
= ν̃θnω

(
Hθnω

(
fnθnω(A)

))
= ν̃θnω

(
F̃ n
ω (Hω(A)

)
= λnω

∫
Hω(A)

∣∣(F̃ n
ω

)′∣∣t
ρ
| dν̃ω = λnω

∫
A

∣∣(F̃ n
ω

)′∣∣t
ρ
◦Hω dν̂θω

= λnω

∫
A

∣∣(fnθω)′∣∣tρ dν̂θω.
�

Now we pass to transferring of invariant random measures. This is even easier. We shall
prove the following two lemmas.

Lemma 81. If µ =
(
µω
)
ω∈Ω

is an invariant random measure for the random conformal
system

F n
ω : Q −→ Q, ω ∈ Ω, n ≥ 0,

then the random measure

µ̃ :=
(
µω ◦ exp−1

)
ω∈Ω

is an invariant random measure for the random conformal system

F̃ n
ω : C∗ −→ C∗, ω ∈ Ω, n ≥ 0,

The converse is also true.

Proof. The proof is an immediate consequence of Proposition 78 (5). �

Lemma 82. If µ̃ =
(
µ̃ω
)
ω∈Ω

is an invariant random measure for the random conformal
system

F̃ n
ω : C −→ C, ω ∈ Ω, n ≥ 0,

then the random measure

µ̂ :=
(
µ̃ω ◦Hθ−1ω

)
ω∈Ω

is an invariant random measure for the random conformal system

fnω : C −→ C, ω ∈ Ω, n ≥ 0,

The converse is also true.

Proof. The proof is carried through by an explicate direct calculation based on formula
(12.6) of Proposition 77.

µ̂θω ◦ f−nθω = µ̃ω ◦Hω ◦ f−nθω = µ̃θnω ◦Hθnω = µ̂θn+1ω.

�

As a consequence of the lemmas and Theorem 38 along with Theorem 58, we get the
following.
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Theorem 83. For every t > 1 there exists a random t–conformal measure ν̂(t), the one
resulting from Theorem 8.4, Lemma 79 and Lemma 80, for the random conformal system

fnω : C −→ C, ω ∈ Ω, n ≥ 0,

with with respect to the Riemannian metric ρ defined in item (2) of Proposition 78. This
means that formula (13.2) holds.

Furthermore, there exists a Borel probability f–invariant measure µ̂ = µ̂(t) absolutely
continuous with respect to ν̂(t). It has the following further properties.

(a) µ̂(t) is equivalent to ν̂(t),

(b) µ̂(t) is ergodic.

(c) µ̂(t) is is the only Borel probability f–invariant measure absolutely continuous with
respect to ν̂(t).

Turning to geometry, we now define random radial (conical) Julia sets on the complex
plane C for the random conformal system

fnω : C −→ C, ω ∈ Ω, n ≥ 0.

These sets are defined analogously as the radial random sets for the random conformal
system F n

ω :

(13.3) Jr(f)(ω) :=
{
z ∈ C : lim

N→∞
ρ(Nω(z,N)) = 1

}
,

where Nω(z,N) is the set of all integers n ≥ 0 such that there exists a (unique) holomorphic
inverse branch

f−nω,z : B(fnω (z), 2/N) −→ C
of fnω : C → C sending fnω (z) to z and such that |F n

ω (z)| ≤ N . The set Jr(f)(ω) is said to
be the set of radial (or conical) points of f at ω. Based on the propositions proved in this
section, it is easy to prove that for every ω ∈ Ω,

(13.4) Jr(f)(ω) = H−1
θ−1ω ◦ exp

(
Jr(θ

−1ω)
)
.

Having this and all the propositions proved in this section, as an immediate consequence
of Theorem 61, Theorem 73, Theorem 74, and Corollary 75, we get the following.

Theorem 84. For the random conformal system

fnω : C −→ C, ω ∈ Ω, n ≥ 0.

we have that

(1) HD
(
Jr(f)(ω)

)
= h for m–a.e.ω ∈ Ω, where h ∈ (1, 2) is the number coming from

item (4) of Theorem 61. In particular:
(2) The 2–dimensional Lebesgue measure of m–a.e. ω ∈ Ω set Jr(ω) is equal to zero.
(3) For m–almost every ω ∈ Ω there exists a subset Cω ⊂ C with full Lebesgue measure

such that for all z ∈ Cω the following holds.

∀δ > 0 ∃nz(δ) ∈ N ∀n ≥ nz(δ) ∃k = kn(z) ≥ 0

|fnω (z)− fkθn−kω(0)| < δ or |fnω (z)| ≥ 1/δ.

In addition, lim supn→∞ kn(z) = +∞. In consequence,
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(4) The set of accumulation points of the sequence(
fnω (z)

)∞
n=0

is contained in [0,+∞] ∪ {−∞} and contains +∞.
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Statistics. Birkhäuser Boston, Inc., Boston, MA, 1988. 1

[18] Yuri Kifer and Pei-Dong Liu. Random dynamics. In Handbook of dynamical systems. Vol. 1B, pages
379–499. Elsevier B. V., Amsterdam, 2006. 1
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[24] Volker Mayer and Mariusz Urbański. Thermodynamical formalism and multifractal analysis for mero-
morphic functions of finite order. Mem. Amer. Math. Soc., 203(954):vi+107, 2010. 1, 1, 1, 9
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