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Abstract

In this monograph we consider the general setting of conformal graph directed Markov systems modeled
by countable state symbolic subshifts of finite type. We deal with two classes of such systems: attracting
and parabolic. The latter being treated by means of the former.

We prove fairly complete asymptotic counting results for multipliers and diameters associated with
preimages or periodic orbits ordered by a natural geometric weighting. We also prove the corresponding
Central Limit Theorems describing the further features of the distribution of their weights.

These results have direct applications to a wide variety of examples, including the case of Apollonian
Circle Packings, Apollonian Triangle, expanding and parabolic rational functions, Farey maps, continued
fractions, Mannenville-Pomeau maps, Schottky groups, Fuchsian groups, and many more. This gives a
unified approach which both recovers known results and proves new results.

Our new approach is founded on spectral properties of complexified Ruelle-Perron—Frobenius operators
and Tauberian theorems as used in classical problems of prime number theory.
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CHAPTER 1

Introduction

1.1. Short General Introduction

We begin with a simple problem formulated for general iterated function systems acting on a compact
metric space X. Let

(pe: X —>X)66E,

be a countable, either finite or infinite, family of C'*® contracting maps on a metric space. We can
associate to a point £ € X the images

Sow(g) =Py, 00 @wn(f)

where w = (w1, ,wy) € E™, n > 1, and then we associate two natural weights

Ae(w) = —log|(w)"(6)]
and
A¢(w) := —log diam(p, (X)).
Since there is no natural way to order and count these images in terms of their combinatorial weight (i.e.,
the length n of w = (w1, - ,wy)), we use instead the two weights introduced above: namely, A¢(w) and

Ag (w)
Under mild natural hypotheses, we show that there exist two constants Cy,Cs > 0 (and we provide
explicit dynamical expressions for them) and ¢ € (0, +00) such that

#w: Ae(w) ST} _

Tgrfoo 65T Cl
and A
: <
i W Aelw) < T} .

T—+o0 edT
These are perhaps the highlights of our results which are simplest to present; but we actually prove more.
For example, we also provide the corresponding asymptotic results when, in addition, one requires that the
points ¢, (§) are to fall into a prescribed ball B in X. We also count the corresponding multipliers if the
points ¢, (£) are replaced by periodic points of the system, i.e. by unique fixed points z,, of the maps ¢,,,
which exists because all the maps ¢, are (with our current hypotheses) contractions of the space X into
itself. To this end, we can denote

Ap(w) = —log [(¢w)'(2w)|

and then there exists C3 > 0 such that

= Cs.
T— 400 €5T 3

A fuller description of our results is provided below in further subsections of this introduction and in
complete detail in appropriate technical sections of the manuscript.

There are natural and instructive parallels of our work and the classical approach to the prime number
theorem, as well as with known results on the Patterson-Sullivan orbit counting technology and the asymp-
totics of Apollonian circles. There are also natural counting problems in both expanding and parabolic
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2 1. INTRODUCTION

rational functions, complex continued fractions, Farey maps, Manneville-Pomeau maps, Schottky groups,
Fuchsian groups, including Hecke groups, and more examples. We apply our general results to all of them,
thus giving a unified approach which yields both new results and a new approach to established results.

All of these are based on our current results for conformal graph directed Markov systems over a
countable alphabet. These, i. e. such directed Markov systems, form the core of the manuscript, and
are objects of ultimate results of Part 1 and Part 2. Their more detailed informal description is presented
below in Section 1.2, entitled Asymptotic Counting Results; Section 1.3 is devoted to the, above mentioned,
classes of examples.

Our counting results (on the symbolic level) are close in spirit to those of Steve Lalley from [37].
These would directly apply to our counting on the symbolic level if the graph directed Markov systems we
considered had finite alphabets. However, we need to deal with those systems with a countable alphabet
and we obtain our counting results via the study of spectral properties of complexified Ruelle-Perron—
Frobenius operators, as used by William Parry and the first—named author, rather than the renewal theory
approach of Lalley. It is worth mentioning that our results on the symbolic level could have been formulated
and proved with no real additional difficulties in terms of ergodic sums of summable Hélder continuous
potentials rather than merely the functions A¢(w) from the next subsection.

We would also like to add that our work was partly inspired by counting results of Kontorovich
and Oh for Apollonian packings from [36] (see also [56]-[58]), which in our monograph are recovered and
ultimately follow from our more general results for conformal graph directed Markov systems. Nevertheless,
the approach and the level of generality of our approach is entirely different than that of Kontorovich and
Oh. We have recently received an interesting preprint [31] of Byron Heersink where he studies the counting
problems for the Farey map, Gauss map, and closed geodesics on the modular surface. We would also like
to note that a part of the classical work of the first named author and William Parry (including [68], [69],
[62], [61]), the method of the complex Perron—Frobenius operator to approach various counting problems
in geometry and dynamics, has been used by several authors including [50], [52], [72], [3].

We now discuss our results below in more detail.

1.2. Asymptotic Counting Results

In Sections 2.2, and 3.1, we will recall from [47] the respective concepts of attracting and parabolic
countable alphabet conformal graph directed Markov systems. This symbolic viewpoint is a convenient
framework for keeping track of the quantities we want to count. We begin by recalling enough notation to
allow us to formulate versions of our main results, beginning with the family of contractions we will study,
referring the read to the appropriate later sections for more details.

In contrast to the simple family of contractions described in Subsection 1.1, we will need to consider
a more general “Markovian structure” for our family of contractions, so as to accommodate the examples
we wish to apply them to (see Subsection 1.3). A directed multigraph consists of a finite set V' of vertices,
a countable (either finite or infinite) set E of directed edges, two functions

,t: E—V,
and an incidence matric A: E x E — {0,1} for (V, E,,t) such that
Agpy =1 implies t(b) =i(a).
Now suppose that in addition, we have a collection of nonempty compact metric spaces {X,},cv and a

number k € (0,1), such that for every e € E, we have a one-to-one contraction @, : Xie)y = Xi(e) with
Lipschitz constant (bounded above by) . Then the collection

S = {pe : Xi(e) = Xie) Yeck

is called an attracting graph directed Markov system (or GDMS). The GDMS is called an attracting iterated
function system (or IFS) if the set V of vertices is a singleton and all the entries of the incidence matrix
A are 1s. We will explain these definitions in greater detail in Section 2.2.
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We denote by ES C EY the subshift of finite type associated to the alphabet E and the matrix A,
and we denote by E% the collection of finite words admissible by the matrix A. We say that the incidence
matrix A is finitely irreducible if there exists a finite set 0 C E7% such that for all a,b € E there exists a
word w € 2 such that the concatenation awb is in E%. We then also call the system S irreducible. We
extend the functions 4,¢ : E — V in a natural way to £ as follows:

t(w) ==t(w) and i(w) =i(w).
For every word w € E%, say w € E}, n > 0, let us denote

Puw = Puwy 00 Py, Xi(w) = Xi(w)-

This symbolic setting is particularly useful for our analysis (in particular, the introduction of a transfer
operator).
Now, we define the natural coding map

ts=n:EY — X = HX”’
veV
by
{rs(@)} = [ Puln (Ke(wn))
neN
where w € E and [], o, X, is the disjoint union of the compact topological spaces X,,, v € V. The set

J = JS = TS(EEO)

is called the limit set of the GDMS S. We will describe these objects in greater detail in Section 2.2.
To be able to study geometrical features of S we need to impose some additional hypotheses. We call
a GDMS S conformal if for some d € N, the following conditions are satisfied.

(a) For every vertex v € V, X, is a compact connected subset of R?, and X, = Int(X,).
(b) (Open Set Condition) For all a,b € E such that a # b,

Pa(Int(Xy(a))) Ny (Int(Xyp))) = 0.

(¢) (Conformality) There exists a family of open connected sets W,, C X,, v € V, such that for
every e € F, the map ¢, extends to a C' conformal diffeomorphism from Wiey into Wy with
Lipschitz constant < k.

(d) (Bounded Distortion Property (BDP)) There are two constants L > 1 and o > 0 such that for
every e € E and every pair of points z,y € Xy(),

/
P8 1] < oy -l
e ()]
where |¢!,(z)| denotes the scaling factor of the derivative ¢/ () : R? — R? which is a similarity

map.
From now on through this introduction and, actually, through the entire manuscript we assume that
the system S is finitely irreducible, i.e. that the incidence matrix A is finitely irreducible. For our
counting results we need one natural hypothesis more. We call the system S strongly regular if there
exists s € [0, +00) such that
0 <P(s) < +o0

where for s > 0, we let

n—4+oco n

. 1 s
P(s):= lim —log | Y ll¢lll% |
jwl=n



4 1. INTRODUCTION

and [|¢'||e denotes the supremum norm of the derivative of a conformal map ¢ over its domain. For
example, every non trivial finite GDMS is strongly regular. In particular, every finite IFS with the alphabet
FE having at least two elements is strongly regular.

Finally, we want to introduce a standard form of non-degeneracy condition on the derivatives. First,

By ={we k) Ay, w =1}

Further, for all t,a € R we denote by G,(t) multiplicative subgroup of positive reals (0,4o0) that is
generated by the set

{ _a‘“"|<p (x)]':w e E;} C (0, +00)

where z,, is the only fixed point for ¢, : Xjw,) — Xjw,). Let & = {@c}ecr be a finitely irreducible
conformal GDMS then call a parameter t € R strongly S—generic if there exists no a € R such that G,(¢)
is generated by e2™* for some k € Ny. We call the system S D-generic if each parameter ¢t € R\ {0} is
S—generic.

In order to formulate an equidistribution result we need to introduce an appropriate reference measure.
There is (see [47], comp. [42]) a natural ambient Borel probability measure msg on the shift space EY
occasionally called the the symbolic conformal measure, and which satisfies the following Gibbs property:
For every w € E’, we have that

(L.1) Coa L1138 < mas ([W]) < Css llilIo

where s is the Hausdorff Dimension of the limit set Js, Css € (0,+00) is a constant independent of w
and we denote

w] = {1 € EX : 7| =w}

is the cylinder generated by the word w. In here |w| is the length of the finite word w and 7|, is the word
formed by the first n terms of 7.

There is also (see again[47], comp. [42]) pss, & unique Borel probability shift invariant measure on

¢ absolutely continuous with respect to mss. In fact sy and msg are equivalent and the corresponding

Radoanlkodym derlvatlves are bounded.

Msg 1= Mgg O 775 , the image of the measure ms; under the projection ms, is then supported on Js
and is called the (6s—) conformal measure on Js. It is characterized (see [47], comp. [42]) by the following
two properties. Firstly,

Mg (o (F / |0,1%% dinsg

for every w € E4 and every Borel set ' C X(,,), and secondly,

Mss (Pa(Xe(a)) Nes(Xyg))) =0

whenever «, 3 are incomparable elements of E%. We also denote

~ o~ —1
Hés ‘= s O Tg

the image of the invariant measure ps, under the projection ms. We will return to these definitions again
in Section 2.2 and Section 3.1.

An equally important role for us is played by parabolic conformal GDMSs. These are somewhat the
same as finite alphabet attracting systems with one exemption that some moduli of derivatives at some
fixed points can be equal to 1. This apparent small change in definition yields however quite transparently
visible differences in dynamical and geometric properties. This can be readily seen from our exposition
in Section 3.1, particularly in what concerns invariant measures. Furthermore, some counting results for
parabolic systems are strikingly different than those for attracting ones as the content of Theorem 1.2.2
readily shows.
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We are now in a position to formulate our first counting and equidistribution results. Let ms(p) € J C
X be a reference point coded by an infinite sequence p € EY°. Fix any non-empty Borel set B C X. Then
for all T > 0 we define:

No(B,T) :=#{w € E} : pu(rs(p)) € B and Ar(py(w) < T}
and
Ny(B,T) :=#{w € By z, € B and \p(w) < T},
where
B :={we k) wpe EY},
and, we recall,
Ey={weF,: Ay =1},
are finite words of symbols, i.e. we count the number of words w € E for which the weight A;(w) does
not exceed T and, additionally, the image ¢, (7s(p)) is in B if i = p, or the fixed point x,, of ¢, is in B if
i =p.
The following result is based on Theorem 2.4.9 for attracting conformal GDMSs and Theorem 3.3.2
for parabolic systems.

THEOREM 1.2.1 (Asymptotic Equidistribution Formula for Multipliers). Suppose that S is either a
strongly reqular finitely irreducible D-generic attracting conformal GDMS or an irreducible parabolic con-
formal GDMS. Let § = 05 = HD(Js) be the Hausdorff dimension of the associated limit set Js.

Fiz pe EY. Let B C X be a Borel set such that msz(0B) =0, then

NP(B7T> _ '(/}5(p)

li mes (B
Totee €T X s ms(B)
and N(B.T)
1
1. P 3 _ ~
T5Heo €T X s fis(B),

where 15 = dps/dmg and X, is the Lyapunov exponent of the measure fis.

This result, and essentially all counting results which follow, can be rephrased in terms of weak—star
convergence of appropriately defined and normalized counting measures.

We will formulate more counting results in the present subsection and in the next one we will discuss
representative examples of conformal dynamical systems where the appropriate counting results will be
obtain by associating to them either attracting or parabolic GDMSs and applying the above theorem.

Our proof of Theorem 1.2.1 for attracting systems is based on following five steps:

(1) Describing the spectrum of an associated complexified Ruelle-Perron-Frobenius (RPF) operator;
done at the symbolic level, culminating in the results of Section 2.3,

(2) Using this information on the RPF operator in order to find meromorphic extensions of associated
complex 7 functions, i.e., Poincaré functions (or series), see Section 2.5,

(3) Using the information on the domain of the Poincaré series to deduce the asymptotic formulae
(Theorem 2.4.8) for A, (&) on the mixture of the symbolic level (the words wp are required to
belong to a symbolic cylinder [7] rather than ¢, (7s(p)) or z, to belong to B) and GDMS level,
by classical methods from prime number theory based on Tauberian theorems.

(4) Having (3) derive the asymptotic formulae for —log |¢/,(x,)[; i.e. for periodic points z,, of ¢, by
means of sufficiently fine approximations.

(5) Deducing the asymptotic formulae for the Borel sets B C X (Theorem 2.4.9) from those at the
symbolic level (Theorem 2.4.8).
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We can leverage our results for attracting systems to prove the corresponding results for the more
delicate case of parabolic systems. This is done by associating with a parabolic system (by a form of
inducing) a countable alphabet attracting GDMSs and expressing the corresponding Poincaré series for
parabolic systems as infinite sums of the Poincaré series for those associated attracting systems. The
rewards for this extra work is that our results then apply to a wide class of interesting examples (see next
subsection).

It is interesting to note that whereas the D-generic hypothesis of Theorem 1.2.1 needed for attracting
systems is very mild, in the case of parabolic systems, or more precisely the attracting systems naturally
associated to them, they are automatically D—generic (see Theorem 3.1.7), so no genericity hypothesis is
needed for them at all.

We would like to stress again that parabolic systems are of equal importance to the attracting systems.
Indeed, many of the applications, such as to Farey maps or Apollonian packings for example, are based
on parabolic GDMSs. The parabolic systems frequently generate more complex and intriguing counting
phenomena, particularly in regard to counting diameters, which we will now address.

We now describe the corresponding results for asymptotic counting of diameters. These are more
geometrical and more complex than those for multipliers, and counting multipliers is intrinsically more of
a “dynamical process”.

We bring up the appropriate counting definitions related to diameters of sets. We fix p € EY, put
§ =7s(p) and fix a set Y C X;(,). We denote

A(w) = Ay (w) := —logdiam(p,(Y)), w € £},

with the natural convention that for w = ¢, being the empty (neutral) word:

Ay () = —logdiam(Y),
and further, for any 7" > 0,

DY(B,T):={w e E,: Ay(w) < T and ¢,(§) € B},

D{.(B,T) = #D{(B,T).

Also
EV(B,T):={weE,: Ay(w) <T and ¢,(Y)NB # 0}

and

B{(B,T) = #E{(B,T).
We refer the reader to the appropriate sections for further relevant definitions and concepts, and to the next

subsection for, already mentioned, examples of conformal dynamical systems. However, for the present,
we note that € denotes the set of all parabolic elements of F, that for every e € E,

Qe ={aeN: Age =1}
and that

2pq,
Do = Ve (S) = e N: >ds .
(S) {a S s}

The following theorem comprises Theorem 2.7.1, Theorem 2.7.4, Remark 2.7.5, Theorem 3.4.1, Theo-
rem 3.4.2, and Remark 3.4.3.

THEOREM 1.2.2 (Asymptotic Equidistribution Formula for Diameters). Suppose that S is either a
strongly reqular finitely irreducible D-generic attracting conformal GDMS or an irreducible parabolic con-
formal GDMS.

Denote by ¢ the Hausdorff dimension of the limit set Js. Fiz p € EY° and then a set Y C X;(,y having
at least two elements. If B C X is a Borel set such that ms(0B) = 0 then,

. DY(B,T N
Jm PO o, i)
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and
. EY(B,T) _
pim YBT = C,, (Y)ms(B),
where Cp, (Y) € (0,+00] is a constant depending only on the system S, the letter p1 and the set Y.

In addition C,,(Y) is finite if and only if either
(1) YNQs =10 or
(2) 6 > max{p(a):a €, and z,€Y}.
In particular C,, (Y') is finite if the system S is attracting.

The proofs of the results in Theorem 1.2.2 for diameters are based on those for multipliers. The subtlety
in the attracting case is that the basic bounded distortion property alone does not suffice to pass from
the case of multipliers to the case of diameters; one needs additional approximating steps. For parabolic
systems, even the basic bounded distortion property is weaker and more involved and a careful analysis of
parabolic behavior is needed.

It is worth emphasizing once again the importance of parabolic systems for many applications and
classes of examples, including that of Apollonian packings. This is even more transparent in the case of
diameters than multipliers, since the diameters often appear more frequently in the geometric setting.

1.3. Examples

Now we would like to describe some classes of conformal dynamical systems to which we can apply
Theorem 1.2.1 and Theorem 1.2.2. Often applying these results requires some non-trivial preparation.

Our first class of examples is formed by conformal expanding repellers, see Definition 5.1.1. The
appropriate consequences of Theorem 1.2.1 and Theorem 1.2.2 are stated as Theorem 5.1.8. The primary
examples of non-linear conformal expanding repellers are formed by expanding rational functions of the
Riemann sphere C. The consequences of Theorem 1.2.1 and Theorem 1.2.2 in this context, are given by
Theorem 5.1.22.

Perhaps the the most obvious example related to attracting GDMSs are the Gauss map

1 1
Glz)=—— |-
@=3-[3].
and the corresponding Gauss IFS G consisting of the maps
1

Theorem 5.1.15 summarizes the consequences of Theorem 1.2.1 and Theorem 1.2.2 stated for the Gauss
map G itself.

Now let describe some well known parabolic GDMSs to which our results apply. We start with 1-
dimensional systems. Our primary classes of such systems, defined and analyzed in Subsection 5.2, are
illustrated by following.

a) Manneville-Pomeau maps f, : [0,1] — [0, 1], where o > 0 is a fixed number, defined by
fa(z) =2+ 2 (mod 1),
and the Farey map f : [0,1] — [0, 1] defined by

€T x

The appropriate asymptotic counting results, stemming from Theorem 1.2.1 and Theorem 1.2.2,
are provided by Theorem 5.2.1 and Theorem 5.2.2.
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b) A large class of conformal parabolic systems is provided by parabolic rational functions of the
Riemann sphere C. These are those rational functions (see Subsection 5.2.2) that have no crit-
ical points in the Julia sets but do have rationally indifferent periodic points. The appropriate
asymptotic counting results, consequences of Theorem 1.2.1 and Theorem 1.2.2, are stated as
Corollary 5.2.10. Probably the best known example of a parabolic rational function is the poly-
nomial

. 1 -
C92>—>f1/4(z):=Z2+i€(C.

It has only one parabolic point, namely z = 1/2. In fact this is a fixed point of fi/,, and
11 / 4(1/2) = 1. Another explicit class of such functions is given by the maps of the form

Cozr—2+1/2+t

where t € R.
¢) A separate large class of examples is provided by some classes of Kleinian groups, namely by
finitely generated classical Schottky groups and essentially all finitely generated Fuchsian groups.
Convex co-compact (no tangencies) Schottky groups are described and analyzed in detail in
Section 6.1 while general Schottky groups (allowing tangencies) are dealt with in Subsection 6.2.
The appropriate asymptotic counting results, stemming from Theorem 1.2.1 and Theorem 1.2.2,
are provided by Theorem 6.1.10 and Theorem 6.2.3.

As a particularly famous example, the counting problem of circles in a full Apollonian packing reduces
to an appropriate counting problem for a finitely generated classical Schottky group with tangencies. The
full presentation of asymptotic counting in this context, stemming from Theorem 1.2.1 and Theorem 1.2.2,
is given by Corollary 6.2.9. We present below a more restricted form (see Theorem 6.2.13) involving only
the counting of diameters; it recovers results from [36] (see also [56]—[58]), obtained by entirely different
methods.

THEOREM 1.3.1. Let Cy, Cs, C3 be three mutually tangent circles in the FEuclidean plane having mutually
disjoint interiors. Let Cy be the circle tangent to all the circles C1,Cy,Cs and having all of them in its
interior; we then refer to the configuration (Ci,Cs,Cs,Cy) as bounded. Let A be the corresponding circle
packing.

Let § = 1.30561... be the Hausdorff dimension of the residual set of A and let mgs be the Patterson-
Sullivan measure of the corresponding parabolic Schottky group T.

If No(T) denotes the number of circles in A of diameter at least 1/T then the limit

lim Na (T)
TS5%00 T

exists, is positive, and finite. Moreover, there exists a constant C € (0, +00) such that if N4(T'; B) denotes

the number of circles in A of diameter at least 1/T and lying in B, then
. Na(T;B)
T1—1>I-f-loo eéT

= Cmg(B)

for every open ball B C C.

Closely related to A is the curvilinear triangle T (or Apollonian triangle) formed by the three edges joining
the three tangency points of Cy,Cs, C5 and lying on these circles. The collection

G={CeA:CCT}

is called the Apollonian gasket generated by the circles C1,Cs, C3. As a consequence of Theorem 1.3.1,
taking B = T, we get the following (see Corollary 6.2.14); it overlaps with results from [36] (see also
[66]-[58]), obtained with entirely different methods.
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COROLLARY 1.3.2. Let C1,Cy,C5 be three mutually tangent circles in the FEuclidean plane having
mutually disjoint interiors. Let Cy be the circle tangent to all the circles C1,Csy,Cs and having all of them
in its interior; we then refer to the configuration Ci,Cy,Cs,Cy as bounded. Let A be the corresponding
circle packing.

If T is the curvilinear triangle formed by Cy, Co and Cs, then the limit

. Na(T;T)
lim —/———=
T—+o0 edT
exists, is positive, and finite and counts the elements of G. Moreover, there exists a constant C € (0,400),
in fact the one of Theorem 6.2.13, such that
NA(T; B
lim .A( ) )
T—+o0 edT
for every Borel set B C T with ms(0B) = 0.

= Cms(B)

FIGURE 1. (i) The Standard Apollonian Packing; (ii) The Apollonian Gasket

In fact we can provide a more direct proof of Corollary 1.3.2, by appealing directly to the theory of
parabolic conformal IFSs and avoiding the intermediate step of parabolic Schottky groups. Indeed, it
follows immediately from Theorem 3.4.6.

In the context of limit sets, such as circle packings, there is scope for finding error terms in the above
asymptotic formulae, see ex. [39] and [60]. It could be also done using the techniques worked out in our
present manuscript. However, in the general setting of conformal graph directed Markov systems quite
delicate technical hypotheses might well be required.

1.4. Statistical Results

A second aim of this monograph is to consider the statistical properties of the distribution of the
different weights \,(w) and diam(¢,, (X)) corresponding to words w with the same length n. This is a very
specific mathematical problem, but is set against the backdrop of a vast literature dealing with different
statistical properties of dynamical systems.

The classical Central Limit Theorem for Gibbs measures and uniformly hyperbolic dynamical systems
(originally due to Sinai, Ratner, etc.) were inspired by the classical theorems for independent identically
distributed random variables. In particular, in this context there are two particularly fruitful approaches:
Firstly, the spectral approach based on perturbation theory for the maximal eigenvalue; and, secondly, the
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martingale method of Gordin [22]. An excellent account of Central Limit Theorems in this setting appears
n [14]. Stronger results based on invariance principles were pioneered by Denker-Philipp [15].

In the broader setting of non-uniformly hyperbolic systems and natural invariant probability measures
there have been a number of important contributions by different authors, including Young [94], [95], Sarig
[80] Liverani-Saussol-Vaienti [40] and Gouézel [25]. In the case of transformations with only a sigma finite
natural invariant measures there are results on stable limit laws, see [97] and the references therein.

Since our aim is to develop Central Limit Theorems to deal specifically with the distribution of diam-
eters of sets, not only typical points in a measurable sense (Theorem 1.4.2) and also in terms of counting
averages (Theorem 1.4.4), we cannot apply the results above directly, but they provide a key blueprint for
us to follow.

There are many other statistical properties that might be considered (e.g., Berry-Essen estimates,
Shrinking targets, Large Deviations, Local Limit Theorems, Extremal theory, Multifractal analysis, etc.)
but these are beyond the scope of this monograph.

In the context of attracting and parabolic GDMSs we have the following Central Limit Theorem, see
Part 4. We refer the reader to the appropriate section for a detailed definitions of the hypothesis.

THEOREM 1.4.1. If S is either a strongly reqular finitely irreducible D—generic conformal GDMS or a
finite alphabet irreducible parabolic GDMS with s > pipf L then there exists 0> > 0 such that if G C R
is a Lebesgue measurable set with Leb(0G) = 0, then

—log ¢, (ms(o™(w)))| — Xusn 1 2
lm ps|SweEY: ‘ (s (7 )M gl = / e 307 dt.
n—-+oo \/ﬁ o2ro Ja

1

In particular, for any o < f8
—log |, (ms(0"(w)))] = Xusn 1 [P e
lim ps weEY a< ‘ |”( ))| o <p = / e 2.2 dt.
n——+oo \/ﬁ 2o o

The following result is an alternative Central Limit Theorem considering instead the logarithms of the
diameters of the images of reference sets.

THEOREM 1.4.2. Suppose that there S is either a strongly regular finitely irreducible D—generic con-

formal GDMS or a finite alphabet irreducible parabolic GDMS with és > pipfl' Let 02 := P"(0)(#£0). For

every v € V let Y,, C X, be a set with at least two points. If G C R is a Lebesgue measurable set with
Leb(0G) = 0, then

—log di ol (Yiew — 1 2
lim 15 ({w e py » 1oBdAm el W) = X G}) - / e 5 dt.
n——+oo \/FL 2o G

In particular, for any o <
—log diam(p,. (Yi(w — n 1 B 2
lim g ({w e B+ o < 0BdRNL (i) ~ Xug Sﬁ}> _ / o dt.
n——+oo \/ﬁ 210 Jo

There are more theorems in this vein proven in Part 4, for example the Law of Iterated Logarithm. In
order to formulate other statistical results of a slightly different flavor, we define the following measures

—0Ap(w)
ZwEH € g

-0, (w
Sy €

for integers n > 1 and H C E}}. We also consider the function A, : E} — R given by

pn(H) =

An(w) = W

Lthis hypothesis means that the corresponding invariant measure ps is finite, thus a probability after normalization
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THEOREM 1.4.3. If S is either a finitely irreducible strongly reqular conformal GDMS or a finite

alphabet irreducible parabolic GDMS with 6s > pzsp_fl, then for every p € EY we have that

tim [ 22, = x = = [ 1ol (ns(o()) dus(e)

n—+00 Jpn N
P

The following theorem describes precisely the magnitude of deviations in this convergence, and is another
form of Central Limit Theorem.

THEOREM 1.4.4. If S is either a strongly reqular finitely irreducible D—generic attracting conformal
graph directed Markov system or a finite alphabet irreducible parabolic GDMS with §s > —2£S then

ps+1 7
the sequence of random variables (Ay)52, converges in distribution to the normal (Gaussian) distribution
No(o) with mean value zero and the variance o® = P"(8). Equivalently, the sequence (pn, o A1),

converges weakly to the normal distribution No(0?). This means that for every Borel set F C R with
Leb(0F) = 0, we have

4 Ap(Wln)—xsn
S eny |9 (ms(p)| 1p (Relelzien

lim 2
n—-4o0o ZWGE;L

In particular all these theorems hold for all classes of examples described in subsection 1.3, in the case
of parabolic systems under the additional hypothesis that § > %, which ensures that the corresponding
invariant measure g is finite, thus probabilistic after normalization. In the case of continued fractions
these take on exactly the same form, in the case of Kleinian groups, including Apollonian circle packings,
as for associated GDMSs.

However, in giving statements of the Central Limit Theorems for examples, we have chosen rational
functions to best illustrate them. The first result is a Central Limit Theorem for the distribution of the

derivatives of an expanding rational function along orbits.

) 1 2 2

= lim p, (AN (F)) = / et /27 dt,
5 n

¢l (ms (o)) noee 2o Jr

THEOREM 1.4.5. Let f : C — C be either an expanding rational function of the Riemann sphere C

or a parabolic rational function of(E with 0 > pip_fl. Then there exists o > 0 such that if G C R is a

Lebesgue measurable set with Leb(0G) = 0, then

i <{ e rig) - ETIGI e G}> e

In particular, for any a < 8

n\/ _ B 2

B

n—s-o00 Vn 2no
The second result is a Central limit Theorem describing the diameter of the preimages of reference
sets.

THEOREM 1.4.6. Let f : C — C be either an expanding rational function of the Riemann sphere C or
a parabolic rational function of C with ds > pip_fl. Then for every e € F let Y, C R, be a set with at least
two points. If G C R is a Lebesgue measurable set with Leb(0G) = 0, then

—logdi " (Yezm))) — 1 2
lim s ({Z e J(f) : og diam(f, " (Ye(em)) = Xus? € G}) = / € 207 dt
G

n—y-Fo0 Vn o2no

where f™ is a local inverse for f™ in a neighborhood of x = f™(2). In particular, for any o <

—log di " Yean))) — B 2
lim s ({Z cJ(f) :a< 0g lam(fm ( (z, ))) XpsT SB}) — 1 / e 2.2 (t.
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THEOREM 1.4.7. If f: C — C is either an expanding rational function of the Riemann sphere Cora
parabolic rational function of C with 8 > —2E5- then for every & € J(f), we have that

ps+17
i log | (f™)']
11m —_—

n=too Jron(e) n

dﬂn = Xs-

The final result concerning central limit theorems is a Central Limit Theorem which describes the
distribution of preimages of a reference point.

THEOREM 1.4.8. If f: C — C is either an expanding rational function of the Riemann sphere Cora
parabolic rational function of(E with s > pip_fl , then the sequence of random variables (Ap)S2, converges
in distribution to the normal (Gaussian) distribution No(o) with mean value zero and the variance o > 0.
Equivalently, the sequence (i, o A; 1), converges weakly to the normal distribution No(o2). This means

that for every Borel set F' C R with Leb(0F) = 0, we have

n _ 1 ny\/ -
Seesnio U7 ()0 1p (B D) L L[ e
m — 5 = lim p, (A, (F)) = e dt.
n—rtoo Zzef—n(g) |(f™) (2)] n—+o0 2no JF

We complete this section by putting our results in Parts 4 and 5 into context.

1.5. Historical Overview of Applications and Examples

At the heart of this monograph is a new general method, based on the concept of conformal graph
directed Mrkov systems of [47], which serves to provide a unified approach to both counting problems
(Theorem 1.2.1 and Theorem 1.2.2 ) and statistical results (Theorem 1.4.1 and Theorem 1.4.2), which can
then be applied to many different examples. Although many of our applications are new, it is only to
be expected that some of these touch upon the work of others, particularly for some of the better known
examples. For the benefit of the reader, and to place our results into context, in this subsection we briefly
describe how our results relate to the existing literature.

In subsection 1.3 (and later in Example 5.1.14) we began with the historically important examples
of the uniformly expanding Gauss map and non-uniformly expanding Manneville-Pomeau map, and our
asymptotic counting results for these appear as Theorems 5.2.1 and 5.2.2. Indirectly, one could relate the
counting results for periodic orbits for these maps to those for closed geodesics on the Modular surface, by
the use of appropriate sections to the flow [48]. Then the corresponding asymptotic counting results for
closed geodesics are well known by use of the Selberg trace formula (see [30]). In fact, the results for this
special example are even stronger in that they also have error terms for the counting function, something
we have not considered. There is an alternative dynamical approach for counting closed geodesics in [52],
[63]. A version of the metric central limit theorem (Theorem 5.2.4) and Law of the Iterated Logarithm
Theorem (Theorem 5.2.4 ) for the Manneville-Pomeau map can be found in the classical works of Philipp
[64]and Doeblin [19]. We are not aware of earlier work on the statistical results for closed orbits and
preimages of the Manneville-Pomeau map in Theorem 5.2.5.

In the same subsection (subsection 1.3, and later in subsection 5.2.2) we consider the example of the
parabolic rational functions. In this case a metric Central Limit Theorem (related to Theorem 1.4.5)
appears, for example, in the paper [18] for Gibbs measures. An earlier version for hyperbolic rational
function follows from the work in Bowen’s book [4] with the aid of Markov partitions. There are various
results on the equidistribution of preimages, starting with Lyubich’s result [41]. However, we do not know
of any previous results related to Theorem 1.4.8, Corollary 5.2.10 or the subsequent results.

Finally, we considered the case of Kleinian Schottky groups I'. In this context, in much the same
was as in the case of the Gauss map, some of the counting results can be reformulated in terms of closed
geodesics, this time on the manifold H!/T" with all sectional curvatures equal to —1. Unfortunately,
most of the known counting results where I is a lattice (where HY*!/T" has finite volume) due to Huber,
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Selberg and others (see [30]) do not apply. In the case of a classical hyperbolic Schottky group some of the
easier counting and distribution results from Theorem 6.1.10 for fixed points could probably be deduced
from counting closed orbits for Axiom A flows (see [61]), and the simpler results for displacements might
be derived from work in [37] or [71]. In the case of convex cocompact groups there is also a metric Central
Limit Theorem, which essentially comes from the work of Ratner [76]. (Ratner’s statement is for Anosov
flows, but since the proof uses symbolic dynamics the same approach works for hyperbolic flows and thus
applies here). For the case of lattices the metric Central Limit Theorem was established in [38]. However,
the Central Limit theorem in Theorem 6.1.12 appears new.

The model example of the Apollonian Circle packing introduced in subsection 1.3, and described in
subsection 6.2.2, has received considerable attention in recent years. Kontorovich and Oh [36] proved
the original asymptotic counting result for circles (Theorem 1.3.1) and our contribution is an alternative
approach. There are generalizations and refinements due to Oh and Shah [56], [57] and others, including
error terms by Lee and Oh for the counting fuctions, which again we have not considered [39]. An
alternative approach to the equidistribution results appears in the [63] which, in common with[36], works
with the dynamics in Ht!, in contrast to our approach which works on the boundary. We are not aware
of any previous Central Limit Theorems or other related statistical properties in this context.

We would like to say that apart from many other results of our monograph, several of which mentioned
above, all the results of Parts 1-4, concerning asymptotic distribution and statistics of diameters, are up
to our best knowledge, new. Also, all the counting results, for multipliers and diameters alike, of Parts 1
and 2 (conformal graph directed Markov systems), seem to us to be formulated and proved here for the
first time.

Now, we present our systematic exposition of the above mentioned (an more) results along with their
proofs. We start with thermodynamic formalism for countable alphabet subshifts of finite type.






CHAPTER 2

Attracting Conformal Graph Directed Markov Systems

2.1. Thermodynamic Formalism of Subshifts of Finite Type with Countable Alphabet;
Preliminaries

In this section we introduce more completely than in the introduction the symbolic setting in which
we will be working. Furthermore, we will describe the fundamental thermodynamic concepts, ideas and
results, particularly those related to the associated Ruelle-Perron-Frobenius operators, which will play a
crucial role throughout the monograph.

Let N = {1,2,...} be the set of all positive integers and let E be a countable set, either finite or
infinite, called in the sequel an alphabet. Let

o: EN — EN

be the shift map, i.e. cutting off the first coordinate and shifting one place to the left. It is given by the
formula

U((wn)fle) = ((wn-i-l)vozozl)'

We also set
E =] E"
n=0

to be the set of finite strings. For every w € E*, we denote by |w| the unique integer n > 0 such that
w € E™. We call |w]| the length of w. We make the convention that E° = {#}. If w € EN and n > 1, we put

Wp=wi...w, € E™

If 7 € E* and w € E* U EN, we define the concatenation of 7 and w by:

TL o T | W1W2 - - W]y if we E*,
TW = . N
T, oo Tr|W1W2 - - - if we EY,.

Given w,7 € EN, we define w A 7 € EN U E* to be the longest initial block common to both w and 7. For
each o > 0, we define a metric d, on EV by setting

(2.1) do(w,7) = e7lenl,

All these metrics induce the same topology, known to be the product (Tichonov) topology. A real or
complex valued function defined on a subset of EN is uniformly continuous with respect to one of these
metrics if and only if it is uniformly continuous with respect to all of them. Also, this function is Holder
with respect to one of these metrics if and only if it is Holder with respect to all of them although, of
course, the Holder exponent depends on the metric. If no metric is specifically mentioned, we take it to be
d.

Now consider an arbitrary matrix A : E x E — {0,1}. Such a matrix will be called the incidence
matrix in the sequel. Set

EY ={weE": A, =1foralliecN}.

15
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Elements of EY are called A-admissible. We also set
Bt ={weE": Ay, =1foralll<i<n-1}, neN,

and

o0

Ey = E4.

=0

The elements of these sets are also called A-admissible. For every w € E%, we put
w):={reEX: 7, =w}

The set [w] is called the cylinder generated by the word w. The collection of all such cylinders forms a base
for the product topology relative to ES°. The following fact is obvious.

PROPOSITION 2.1.1. The set EY is a closed subset of EN | invariant under the shift map o : EN — EN,

the latter meaning that
o(EY) C EX.

We recall that the matrix A is said to be finitely irreducible if there exists a finite set A C E% such that
for all 4,j € E there exists w € A for which iwj € £7. If all elements of some A are of the same length,
then A is called finitely primitive (or aperiodic).

The topological pressure of a continuous function f : EY — R with respect to the shift map o : EY —
E is defined to be

(2.2) P(f) := lim flog Z exp | sup Zf (o7 (1

n—oo N
wEE™ relwl 520

The existence of this limit, following from the observation that the “log” above forms a subadditive se-
quence, was established in [46], comp. [47]. Following the common usage we abbreviate

n—1

Suf =Y fool

§=0

and call S, f(7) the nth Birkhoff’s sum of f evaluated at a word 7 € EY.

Observe that a function f : EY — R is (locally) Hélder continuous with an exponent o > 0 if and only
if

Va(f) = S‘ili{va,n(f)} < +00,
where B
Van(f) = sup{|f(w) — f(D)e*™ Vw7 e EP and |w A 7| > n}.
Observe further that H, (A), the vector space of all bounded Hélder continuous functions f : EX — R (or C)
with an exponent o > 0 becomes a Banach space with the norm || - ||, defined as follows:
1o := 1[flloc 4+ Va(f)-

The following theorem has been proved in [46], comp. [47], for the class of acceptable functions defined

there. Since Holder continuous ones are among them, we have the following.

THEOREM 2.1.2 (Variational Principle). If the incidence matriz A : ExXE — {0, 1} is finitely irreducible
and if f : E — R is Holder continuous, then

P(f) —Sup /fdu

where the supremum is taken over all o-invariant (ergodic) Borel probability measures p such that [ f du >
—00.
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We would like also to mention that this theorem was proved in [78] for Holder continuous functions f
though with a different definition of topological pressure.

We call a o-invariant probability measure p on E® an equilibrium state of a Holder continuous function
[ EF - Rif [—fdu < +oo and

(2.3) (o) + [£du=P().

If f: E® — R is a Holder continuous function, then following [46], and [47] a Borel probability measure
won EY is called a Gibbs state for f (comp. also [4], [29], [74], [77], [81], [92] and [91]) if there exist
constants @ > 1 and P, € R such that for every w € E’ and every 7 € [w]

- p(lw))
(2.4) Q' < <Q.
exp (Sju|f(7) = Pplwl)
If additionally p is shift-invariant, it is then called an invariant Gibbs state. It is readily seen from this
definition that if a Hélder continuous function f : EY — R admits a Gibbs state p, then

P, =P(f).
From now on throughout this section f : E®® — R is assumed to be a Holder continuous function with an
exponent « > 0, and it is also assumed to satisfy the following requirement

(2.5) Z exp(sup(fl)) < 4o0.

ecE

Functions f satisfying this condition are called (see [46], and [47]) in the sequel summable. We note that
if f has a Gibbs state, then f is summable. This requirement of summability, allows us to define the
Ruelle—Perron—Frobenius operator

Ly Co(ET) = Cy(ET),

acting on the space of bounded continuous functions Cy(E) endowed with || + ||oo, the supremum norm,
as follows:
Lig)w)= > exp(f(ew)g(ew).
e€E:Acy, =1

Then || Lflloo <D ccpexp(sup(f|)) < +oo and for every n > 1
LHgw) = > exp(Suf(rw))g(rw).
TEEY:Ar, 0w =1

The conjugate operator L} acting on the space Cj (EY) has the following form:

£3(n(9) = n(Ls(0) = [ £5(9)dn

Observe that the operator L£; preserves the space H,(A), of all Holder continuous functions with an
exponent a > 0. More precisely
£1(Ha(A)) € Ha(A).

We now provide a brief account of those elements of the spectral theory that we will need and use in
the sequel. Let B be a Banach space and let L : B — B be a bounded linear operator. A point A € C
is said to belong to the spectral set (spectrum) of the operator L if the operator AIgp — L : B — B is not
invertible, where Iz : B — B is the identity operator on B. The spectral radius (L) of L is defined to be
the supremum of moduli of all elements in the spectral set of L. It is known that (L) is finite and

— 7 n|l/n
ML) = Tim L],

A point X of the spectrum of L is said to belong to the essential spectral set (essential spectrum) of the
operator L if X is not an isolated eigenvalue of L of finite multiplicity. The essential spectral radius 7ess(L)
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of L is defined to be the supremum of moduli of all elements in the essential spectral set of L. It is known
(see [54]) that

ress(L) = n@o inf {HL” — Klll/”}’

where for every n > 1 the infimum is taken over all compact operators K : B — B. The operator L : B —+ B
is called quasi-compact if either r(L) = 0 or

Tess(L) < 1(L).

The proof of the following theorem can be found in [46] and [47]. For the items (a)—(f) see also Corol-
lary 4.3.8 in [8].

THEOREM 2.1.3. Suppose that f : E — R is a Holder continuous summable function and the incidence
matrix A is finitely irreducible. Then

(a) There exists a unique Borel probability eigenmeasure my of the conjugate Perron-Frobenius oper-
ator L% and the corresponding eigenvalue is equal to el

b) The eigenmeasure my is a Gibbs state for f.
f
(c) The function f: EY — R has a unique o-invariant Gibbs state py.

(d) The measure pif is ergodic, equivalent to my and if ¢ = dpy/dmy is the Radon-Nikodym deriv-
ative of py with respect to my, then logs is uniformly bounded.

(e) If [—fdus < +oo, then the o-invariant Gibbs state py is the unique equilibrium state for the
potential f.

(f) In case the incidence matriz A is finitely primitive, the Gibbs state py is completely ergodic.

(g) The spectral radius of the operator Ly considered as acting either on Cy(EY) or Ho(A) is in both
cases equal to e¥ ().

(h) In either case of (g) the number eP'V) is a simple (isolated in the case of Hy(A)) eigenvalue of
Ly and the Radon—Nikodym derivative 1y € Ho(A) generates its eigenspace.

(i) The remainder of the spectrum of the operator Ly : Hy(A) — Hy(A) is contained in a union of
finitely many eigenvalues of finite multiplicity (different from eP' () ) of modulus e®) and a closed
disk centered at 0 with radius strictly smaller than eP).

In particular, the operator Ly : Hy(A) — Hy(A) is quasi-compact.

In the case where the incidence matrixz A is finitely primitive a stronger statement holds: namely,
apart from ePF) | the spectrum of Ly : Hy(A) — Ha(A) ds contained in a closed disk centered at
0 with radius strictly smaller than e/,

In particular, the operator Ly : Hy(A) — Hy(A) is quasi-compact.

We are indeed concerned with Gibbs states and these suffice for us in this monograph. Theorem 2.1.3
gives us a full power of thermodynamic formalism resulting from a spectral gap. For this we do assume
finite irreducibility. Indeed, we would like to add that Omri Sarig proved in [81] that finite irreducibility
is also necessary for the existence of Gibbs states. Other papers of Sarig on countable shifts include [78],
[79], [82]. The reader may also consult [11] and [10]. We are far from claiming that the above list of the
works on the subject of countable shift is complete.
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2.2. Attracting Conformal Countable Alphabet Graph Directed Markov Systems (GDMSs)
and Countable Alphabet Attracting Iterated Function Systems (IFSs); Preliminaries

In this monograph we consider conformal countable alphabet graph directed Markov system (abbr.
GDMS) as defined and extensively studied in [47]. These are quite far going generalizations of conformal
countable alphabet iterated function systems (abbr. IFS) of [42], which in turn generalize the finite
alphabet ones. All of them contain appropriate similarity systems and each step of the above generalizations
gives rise to new dynamical and geometric phenomena.

The highest level of flexibility, the countable alphabet GDMSs, are interested on their own, of course
in this manuscript with respect to the counting phenomena, and are well suited to modeling the dynamical
examples in which we are interested. In later sections we will prove the results in this context and explain
how they can be used to derive different geometric and dynamical results, such as those already mentioned
in the introduction.

Let us define a graph directed Markov system (abbr. GDMS) relative to a directed multigraph
(V,E,i,t) and an incidence matrix A : E x E — {0,1}. As said, such systems have been defined and
first studied at length in [42] and [47]. We recall that directed multigraph consists of a finite set V' of
vertices, a countable (either finite or infinite) set E of directed edges, two functions

iLWwt: B —V,
and an incidence matric A: E x E — {0,1} on (V, E,4,t) such that
Agpy =1 implies t(a) =i(b).

Now suppose that in addition, we have a collection of nonempty compact metric spaces {X,},cv and a
number x € (0,1), such that for every e € £, we have a one-to-one contraction ¢, : X;) — Xj) with
Lipschitz constant (bounded above by) k. We recall that the collection

S= {SDe : Xt(e) — Xi(e)}eGE

is called an attracting graph directed Markov system (or GDMS). We will frequently refer to it just as a
graph directed Markov system or GDMS. We will however always keep the adjective ”parabolic” when, in
later sections, we will also speak about parabolic graph directed Markov systems. We extend the functions
1,t : E — V in a natural way to E% as follows:

t(w) ==t(w) and i(w) = i(w).
For every word w € I, say w € B, n > 0, let us denote

Puw = Puwy © 0Py, - Xt(w) — X?(w)
We now describe the limit set, also frequently called the attractor, of the system S. For any w €
EY, the sets {¢,), (Xt(wn))}nzl form a descending sequence of nonempty compact sets and therefore
N>t Pl (Xt(w,)) # 0. Since for every n > 1,

diam (¢y|, (Xi(w,))) < £"diam (X)) < £" max{diam(X,) : v € V},
we conclude that the intersection
M Pl (Xe(w)

neN
is a singleton and we denote its only element by 7ms(w) or simpler, by 7(w). In this way we have defined a
map

ms=nm:EY — X = ]_[Xv7
veV

where [, oy X, is the disjoint union of the compact topological spaces X,, v € V. The map 7 is called
the coding map, and the set

J=Js:=7n(EY)
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is called the limit set of the GDMS S. The sets
Jy=m({w € EY :i(w1) =v}), veV,
are called the local limit sets of S.

We call § mazimal if for all a,b € E, we have A, = 1 if and only if ¢(b) = i(a). In [47], a maximal GDMS
was called a graph directed system (abbr. GDS). Finally, we call a maximal GDMS S an iterated function
system (or IFS) if V| the set of vertices of S, is a singleton. Equivalently, a GDMS is an IFS if and only if
the set of vertices of S is a singleton and all entries of the incidence matrix A are equal to 1.

DEFINITION 2.2.1. We call the GDMS S and its incidence matrix A finitely irreducible if there exists
a finite set 2 C £% such that for all a,b € E there exists a word w €  such that the concatenation awb is
in £%. S and A are called finitely primitive if the set {2 may be chosen to consist of words all having the
same length. If such a set ) exists but is not necessarily finite, then S and A are called irreducible and
primitive, respectively. Note that all IFSs are symbolically irreducible.

REMARK 2.2.2. For every integer ¢ > 1 define §9, the gth iterate of the system S, to be
{Sow : Xt(w) — Xi(w) we E%}

and its alphabet is E%. All the theorems proved in this monograph hold under the formally weaker
hypothesis that all the elements of some iterate S, ¢ > 1, of the system S, are uniform contractions. This
in particular pertains to the Gauss system of Example 5.1.14 for which ¢ = 2 works.

With the aim of moving on to geometric applications, and following [47], we recall that we called a
GDMS conformal if for some d € N, the following conditions were satisfied.

(a) For every vertex v € V, X, is a compact connected subset of R?, and X, = Int(X,).
(b) (Open Set Condition) For all a,b € E such that a # b,

Ya(Int( X)) N ep(Int(Xy(p))) = 0.

(¢) (Conformality) There exists a family of open connected sets W,, C X, v € V, such that for
every e € F, the map ¢, extends to a C' conformal diffeomorphism from Wiey into Wy with
Lipschitz constant < k.

(d) (Bounded Distortion Property (BDP)) There are two constants L > 1 and « > 0 such that for
every e € E and every pair of points z,y € Xy(),

/
P8 1] < oy -l
|0t (@)]
where |/ (z)| denotes the scaling factor of the derivative ¢/ (z) : R? — R¢ which is a similarity

map.

REMARK 2.2.3. When d = 1 the conformality is automatic. If d > 2 and a family S = {¢. }ccp satisfies
the conditions (a) and (c), then it also satisfies condition (d) with & = 1. When d = 2 this is due to the
well-known Koebe’s Distortion Theorem (see for example, [9, Theorem 7.16], [9, Theorem 7.9], or [32,
Theorem 7.4.6]). When d > 3 it is due to [47] depending heavily on Liouville’s representation theorem
for conformal mappings; see [34] for a detailed development of this theorem leading up to the strongest
current version, and also including exhaustive references to the historical background.

For every real number s > 0, let (see [42] and [47])

n—4+oco n

. 1 s
P(s):= lim —log | Y ll¢lll% |
jwl=n
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where ||¢'||c denotes the supremum norm of the derivative of a conformal map ¢ over its domain; in
our context these domains will be always the sets X,,, v € V. The above limit always exists because the
corresponding sequence is clearly subadditive. The number P(s) is called the topological pressure of the
parameter s. Because of the Bounded Distortion Property (i.e., Property (d)), we have also the following
characterization of topological pressure:

) 1 s
P(s) : ngrfooﬁlog Z loe, (20)1° ]

lw|=n

where {2z, : w € E} is an entirely arbitrary set of points such that z, € Xy, for every w € E%. Let
¢ : E® — R be defined by the formula

(2.1) ((w) =log ¢, (1(o(w))].
The following proposition is easy to prove; see [47, Proposition 3.1.4] for complete details.

PROPOSITION 2.2.4. For every real s > 0 the function s¢ : EX — R is Hélder continuous and

P(s¢) = P(s).
DEFINITION 2.2.5. We say that a nonnegative real number s belongs to I's if
(2.2) S llgLlz, < +oc.
ecE

Let us record the following immediate observation.

OBSERVATION 2.2.6. A nonnegative real number s belongs to I's if and only if the Holder continuous
potential s¢ : Y — R is summable.

We recall from [42] and [47] the following definitions:

vs :=infT'g = inf{s >0: Z lloLllse < +oo}.

e€E

The proofs of the following two statements can be found in [47].

PROPOSITION 2.2.7. If S is an irreducible conformal GDMS, then for every s > 0 we have that

IFs={s>0:P(s) < 400}
In particular,
vs :=inf {s > 0:P(s) < +o0}.

THEOREM 2.2.8. If S is a finitely irreducible conformal GDMS, then the function T's 3 s — P(s) € R

is
(1) strictly decreasing,

(2) real-analytic,
(3)

(4) limg_, 400 P(s) = —00.

convex, and

We denote

[:s = Es(
acting either on Cp(EY) or on H,(A). Because of Proposition 2.2.4 and Observation 2.2.6, our Theo-
rem 2.1.3 applies to all functions s¢ : £ — R giving the following.

THEOREM 2.2.9. Suppose that the system S is finitely irreducible and s € T's. Then
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There exists a unique Borel probability eigenmeasure mg of the conjugate Perron-Frobenius oper-
ator L% and the corresponding eigenvalue is equal to el (),

The eigenmeasure mg is a Gibbs state for sC.
The function s¢ : E — R has a unique o-invariant Gibbs state pis.

The measure s is ergodic, equivalent to mg and if s = dus/dmg is the Radon—Nikodym derivative
of s with respect to ms, then logs is uniformly bounded.

If X, = — [ Cdps < 400, then the o-invariant Gibbs state s is the unique equilibrium state for
the potential sC.

In case the the system S is finitely primitive, the Gibbs state us is completely ergodic.

The spectral radius of the operator Ly considered as acting either on Cy(EY) or Ho(A) is in both
cases equal to e¥(®).

In either case of (g) the number (%) is a simple (isolated in the case of Hy(A)) eigenvalue of L

and the Radon—Nikodym derivative s € H,(A) generates its eigenspace.

The reminder of the spectrum of the operator Ls : Hy(A) — Ho(A) is contained in a union of
finitely many eigenvalues (different from eP(S)) of modulus e¥®) and a closed disk centered at 0
with radius strictly smaller than %) (if A is finitely primitive, then these eigenvalues of modulus
smaller than e©®) disappear). In particular, the operator Ly : Ho(A) — Hy(A) is quasi-compact.

Given s € I's it immediately follows from this theorem and the definition of Gibbs states that

(2.3)

Cite POl 15 < my([w]) = ps([w]) < Cse POl 15,

for all w € E%, where Cy € [1,4+00) is some constant. We put

(2.4)

Mg = Mg O ng and fig := pus o7r§1.

The measure my is characterized (see [47]) by the following two properties:

(2.5)

a(pe(F)) = ¢ PO / oL | dite
F

for every e € E and every Borel set F' C X;(), and

(2.6)

s (Pa(Xi(a) N eo(Xiw))) =0

whenever a,b € F and a # b. By a straightforward induction these extend to

2.7)

(o (F)) = e PO / | i
F

for every w € £} and every Borel set ' C X;(,,), and

(2.8)

M (Spa(Xt(a)) N @B(Xt(ﬂ))) =0

whenever «, f € E% and are incomparable.
The following theorem, providing a geometrical interpretation of the parameter ds, has been proved
in [47] ([42] in the case of IFSs).

THEOREM 2.2.10. If S is an finitely irreducible conformal GDMS, then

0 =ds:=HD(Js) =inf{s > 0:P(s) <0} > vs.
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Following [42] and [47] we call the system S regular if there exists s € (0, +00) such that

P(s) = 0.
Then by Theorems 2.2.10 and 2.2.8, such zero is unique and is equal to ds. So,
(2.9) P(ds) = 0.
Formula (2.3) then takes the following form:
(2.10) Cra lloLl1%8 < mss (W]) = s ([W]) < Css [l L1138

for all w € E%. The measure m;, is then referred to as the ds—conformal measure of the system S.
Also following [42] and [47], we call the system S strongly regular if there exists s € [0, +00) (in fact
in (vs,+00)) such that
0 < P(s) < +o0.
Because of Theorem 2.2.8 each strongly regular conformal GDMS is regular. Furthermore, we record the
following two immediate observations.

OBSERVATION 2.2.11. If s € Int(T's), then x,, < +oc.
OBSERVATION 2.2.12. A finitely irreducible conformal GDMS § is strongly regular if and only if
Vs < ds.
In particular, if the system S is a strongly regular, then ds € Int(T's).
These two observations yield the following.
COROLLARY 2.2.13. If a finitely irreducible conformal GDMS S is strongly regular, then x,; < +o0o.

We will also need the following fact, well-known in the case of finite alphabets E, and proved for all
countable alphabets in [47].

THEOREM 2.2.14. If s € Int(T's), then
P/(S) = 7XIL5'
In particular this formula holds if the system S is strongly reqular and s = ds.

We end this section by noting that each finite irreducible system is strongly regular.

2.3. Complex Ruelle-Perron—Frobenius Operators; Spectrum and D—Genericity

A key ingredient when analyzing the Poincaré series 7¢(s) and 7,(s), mentioned in the introduction,
is to use complex Ruelle-Perron-Frobenius or transfer operators. These are closely related to the RPF
operators already introduced, except that we now allow the weighting function to take complex values.
More precisely, we extend the definition of operators Ly, s € I's, to the complex half-plane

't :={s € C:Res> s},
in a most natural way; namely, for every s € I“Jg, we set
(2.1) Lipw)= > letlr(w))]*glew).
e€E:Acy =1

Clearly these linear operators £ act on both Banach spaces Cy(EY) and H,(A), are bounded, and we
have the following.

OBSERVATION 2.3.1. The function
I't 550 L, € L(HL(A))

is holomorphic, where L(H,(A)) is the Banach space of all bounded linear operators on H,(A) endowed
with the operator norm.
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PROPOSITION 2.3.2. Let S be a finitely irreducible conformal GDMS. Then for every s = o + it € Fl:

(1) the spectral radius r(Ls) of the operator Lq : Hy(A) — Hy(A) is not larger than @) and

(2) the essential spectral radius ress(Ls) of the operator Ls : Ho(A) — H,(A) is not larger than
e~ ePo)

PROOF. Assume without loss of generality that E = N. For every w € E% choose arbitrarily & € [w].
Now for every integer n > 1 define the linear operator

E,:H,(A) = Hy,(A)
by the formula
(2.2) En(g) == Y 9(@)1p.
weER
Equivalently
En(g) = g((':’)v w€E EY.
Of course ||En(9)|la < llglla and E, is a bounded operator with ||E, ||« < 1. However, the series (2.2) is

not uniformly convergent, i.e. it is not convergent in the supremum norm || - ||, thus not in the Holder
norm || - ||, either. For all integers N > 1 and n > 1 denote
EZ(N) = {w S EX ZVanwJ‘ < N}
and
EX(N—F) = {OJ € Ez : ngn Wi > N}
Let us further write

En,Ng = Z g(dj)]l[w]
w€eE%(N)

and

Efng:= Y 9@l

wEER (N+)
Of course E, n : Ho(A) — Hy(A) is a finite-rank operator, thus compact. Therefore, the composite
operator L;E, n : Ho(A) — Hy(A) is also compact. We know that
1L = LeBpnlla = (L3 = LIEn) + LI(En = Enn)lla = 1£7(I = En) + LYE] o
<NLe(I = En)lla + 1£5E; ylla-

We will estimate from above each of the last two terms separately. We begin first with the first of these

two terms. In the same way as for real parameters s, which is done in [47], one proves for all operators
Ls:Hy(A) —» Hy(A) the following form of the Tonescu—Tulcea—Marinescu inequality:

(2.4) 1£2g]la < Ce™ " (llglloo + " lglla)

with some constant C' > 0. This establishes item (1) of our theorem. Since a straightforward calculation
shows that ||g — Englla < 2||glle and ||g — Englloo < [|glae™®" , we therefore get that

I£2(I = En)glla < Ce” O (|lgllae™" + 27" g]la) = 3C™ "™ g]a.

(2.3)

Thus,
(2.5) [[LM(I — Ep)|la < 3CeP(@meman,
Passing to the estimate of the second term, we have

LIE o) = Y gD (n(o(w)))).

TEEZ(N‘F)

TWEER

A
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Therefore,
122 B yglla < > lo)|||eh o m ool
TEET (N+) «
<lole Y ||leromool
rEEL (N+) &
< lglles Z H‘(p;_oﬂ'oa”s .
TEET(N4) ¢
Hence,
(2.6) 1B x> |lehemed] .
TEEL (N+)
But

lleromoal|| <clet.

for all 7 € E% with some constant C' > 0. Since the matrix A : E x E — {0,1} is finitely irreducible,
there exists a finite set Aog C EY such that for every e € E there exists (at least one) é € Ay, such that
ee € E. We further set for every 7 € E7,

For every k € E = N let

(2.7) &= sup{||@lllo :m >k} — 0 as k — oo.

Fix an arbitrary € > 0 so small that 0 — ¢ > 7s. By the Bounded Distortion Property and (2.7), we then
have

R A S W A G () (- S S S A G (5N

TEEL (N+) TEEL(N+) WENAoe TEEZ(N)

oo
rwGEA

=K7Y N el @)l (m(w)|7

WENA TEER(N+)
TwEE%C

(28) <K Y, Y W)

WEAs TEETR(N+)

TWwEEQP

A
< KO#AGENLY_ M (w) < KO#HAGEVIILE oo
< KO#AENIIL —clla
< CKU#AocgjsveP(a—s)n’

where the last inequality was written due to (2.4) applied with s = 0 — 1 and g = 1. Inserting this to (2.7)
and (2.8), we thus get that

ICLES ylla < CK#AEiyel ",

Now, take an integer N,, > 1 so large that £ < (K°#A. ) le~". Inserting this to the above display, we
get that

H‘CZEJFN 0 < CeP(o—e)ne—om_
Along with (2.5), (2.3), and the fact that P(o) < P(o — €), this gives that

12 = £ B, llo < ACEPEEmemen,
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Therefore,
Pes(£2) < T (L7 — £ 0 By, |47 < Pem
n—oo

Letting e — 0 and using continuity of the pressure function I't > ¢ — P(t) € R, we thus get that
Tess(Ls) < e %P,

The proof of item (2) is thus complete, and we are done. O

We recall that if Ao is an isolated point of the spectrum of a bounded linear operator L acting on a

Banach space B, then the Riesz projector Py, : B — B of Ay (with respect to L) is defined as
1

— [ (M- L) tdx

27i J,

where, v is any simple closed rectifiable Jordan curve enclosing Ay and enclosing no other point of the
spectrum of L. We recall that Ay is called simple if the range Py, (B) of the projector Py, is 1-dimensional.
Then g is necessarily an eigenvalue of L. We recall the following well-known fact.

THEOREM 2.3.3. Let Ay be an eigenvalue of a bounded linear operator L acting on a Banach space B.
Assume that the Riesz projector Py, of Ao (and L) is of finite rank. If there exists a constant C' € [0, 4+00)
such that

L[] < ClAol"
for all integers n > 0, then (of course) r(L) = |Xo|, and moreover
Py, (B) = Ker(AoI — L).
What we will really need in conjunction with Proposition 2.3.2 is the following.

LEMMA 2.3.4. If S is a finitely irreducible conformal GDMS and if s = o + it € F}', then every
eigenvalue of L : Hy(A) — Hy (A) with modulus equal to eF () is simple.

PROOF. Since [|£L7 o < 3||£2|a < CeP@™ for every n > 0 and some constant C' > 0 independent
of n, and since the Riesz projector of every eigenvalue of modulus eF(?) of £, is of finite rank (as by
Proposition 2.3.2 such an eigenvalue does not belong to the essential spectrum of L), we conclude from
Theorem 2.3.3 that in order to prove our lemma it suffices to show that

dim (Ker(M — £,)) =1

for any such eigenvalue A. Consider two operators Ly, L : H,(A) — H,(A) given by the formulae

w) = e T w

(2.9) L,g(w) %(w)ﬁa(g%)( )
and

Cog(w) = e_P(‘T)i1 w

(2.10) Lsg(w) : %(w)ﬁs(gwa)( )

Both these operators are conjugate respectively to the operators e F(?) £, and e~ P L, r(ﬁg) =1,
(2.11) Lo =1 (so £P1 =1 forall n>0),
and in order to prove our lemma it is enough to show that

dim (Ker(A\I — L)) =1

for every eigenvalue A of £, with modulus equal to 1. We shall prove the following.
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Claim 1°: If u € H, (A), then the sequence
n—1
1 P
o
n =

converges uniformly on compact subsets of £ to the constant function equal to f oo UWdfhg-
A

[eS)
n=1

PROOF. The same proof as that of Theorem 4.3 in [47] asserts that any subsequence of the sequence

AL oo
(% > j;ol Eﬁ,u) B has a subsequence converging uniformly on compact subsets of ES to a function which

is a fixed point of £,. By (2.11) and Corollary 7.5 in [47] each such function is a constant. Since the
operator L, preserves integrals (L%, = u,) against Gibbs/equilibrium measure p,, it follows that all
these constants must be equal to [ oo Wdpy. The proof of Claim 19 is thus complete. |
A
Now, fix A € Ker(A — L) arbitrary and let g # 0 € Ker(A — L) be arbitrary.

Claim 2°: The function EY 3 w ~ |g(w)| € R is constant.

PROOF. For every w € EY and every integer n > 0 we have |g(w)| = |£7g(w)| < L£7|g|(w), and
therefore

=

n—

1 Ny
gl < — ) Lzlgl(w).
§=0

So, invoking Claim 1°, we get that
9@ < [ loldn.
By

Since ¢ is continuous and supp(u,) = E, this implies that

s = [ loldr

A

for all w € EY. The proof of Claim 2° is thus complete. O

Formulae (2.9)—(2.11) give for every 7 € EY® that
Lrg(r)= Y exp(Suh(wr))g(wr)

wEBTR
Awpry =1

and

Ng(r)=Lig(r) = Y exp (Suh(wr))|pl,(n(r))|*g(wr),

weEET
Awpry=1

where h: E® — (—00,0) is some Holder continuous function resulting from (2.11) and

Z exp (Sph(wr)) = 1.

n
weBy
Awpy =1

Since A" = 1, it follows from the last two formulas and Claim 1° that

ol (m (7)) g(wr) = A"g(7)
for all w € E} with A, , = 1. Equivalently:

g(wr) = N[l (m (7)) " g(7).
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This implies that if g1, g2 are two arbitrary functions in Ker(Al — L) such that
91(7) = g2(7),

then ¢y coincides with go on the set {wr : w € E% and Aw|omm = 1}. But since this set is dense in EY
and both g1 and go are continuous, it follows that

g1 = g2.
Thus the vector space Ker(AI — L) is 1-dimensional and the proof is complete. ]
Now we define
E; = {weFEy;: A yyon = 1}
This set will be treated in greater detail in the forthcoming sections and will play an important role
throughout the monograph, primarily in regard to periodic points of GDMSs.

For all t,a € R we denote by G,(t) and G%(t) the multiplicative subgroups respectively of positive
reals (0,+00) and of the unit circle S* := {z € C : |z| = 1} that are respectively generated by the sets

{em N (zu)|" 1w € B} € (0,400) and {e “l|¢/ (z)|" 1w e Ef} C S,

where x, is the only fixed point for ¢, : Xj,) — Xjw,)- The following proposition has been proved in
[68] in the context of finite alphabets F, but the proof carries through without any change to the case of
countable infinite alphabets as well.

PROPOSITION 2.3.5. Let S = {@etecr be a finitely irreducible conformal GDMS. Ift € R and a € R,
then the following conditions are equivalent.

(a) Gu(t) is generated by €™ with some k € Ny.
(b) exp(ia + P(0)) is an eigenvalue for Lyt : Co(EY) — Co(EY) for some o € T's.
(¢) exp(ia + P(0)) is an eigenvalue for Lot : Ho(A) = Hy(A) for all o € Ts.
(d) There exists u € Cp(EY) (Ho(A)) such that the function
EY swr t((w) —a+u(w) —uoo(w)
belongs to Co(EY, 2nZ) (Ho(EY, 27Z)).
(¢) G = {1}.

As a matter of fact [68] establishes equivalence (in the case of finite alphabet) of conditions (a)—(d) but
the equivalence of (a) and (e) is obvious.

We call a parameter t € R S-generic if the above condition (a) fails for a = 0 and we call it strongly
S—generic if it fails for all a € R. We call the system S D—generic if each parameter ¢ € R\ {0} is S—generic
and we call it strongly D-generic if each parameter ¢ € R\ {0} is strongly S-generic.

REMARK 2.3.6. We would like to remark that if the GDMS S is D-generic, then no function ¢¢ : £} —
R, t € R\ {0}, is cohomologous to a constant. Precisely, there is no function v € Cy,(EY) such that

t¢(w) + u(w) —uoo(w)
is a constant real-valued function.

The concept of D—genericity will play a pivotal role throughout our whole article. We start dealing
with it by proving the following.

PROPOSITION 2.3.7. If S is a finitely irreducible strongly D-generic conformal GDMS and if s = o+it €
s with t € R\ {0}, then r(Ls) < P,
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PrOOF. By Proposition 2.3.2 the set
a(Ls) N (C\ B(0,e*/2eP)y)
is finite and consists only of eigenvalues of L;. So, by Proposition 2.3.5,
a(Ls) N (C\B(0,e7*/2P@)) n{r e C: |\ =P} =0.
Therefore, using also Theorem 2.2.9 (g), we get that
r(Ls) < max {e*a/er(“),maxﬂM :Aeo(Ls)n (C\ B0, e*a/zep(")))}} < P,

The proof is complete. O

We now shall provide a useful characterization of D-generic and strongly D-generic systems.

PROPOSITION 2.3.8. A finitely irreducible conformal GDMS S = {@c}ecr is D—generic if and only if
the additive group generated by the set
{log|gpi,(xw)| fwE E;}
is not cyclic.
PROOF. Suppose first that the system S = {p,}ecr is not D—generic. This means that there exists

t € R\ {0} which is not S-generic. This in turn means that the group Gy(t) is generated by some
non-negative integral power of €27, say by €29™, ¢ € Ny. And this means that for every w € E;,
|0 ()| = exp (2mqk)
with some (unique) k,, € Z. But then tlog |/, (x,,)| = 2mgk,, or equivalently

2
log ¢, (@) = = k.

This implies that the additive group generated by the set

{log |¢l,(x,)] s w € E;} CR

2mq

1), the cyclic group generated by @, and is therefore itself cyclic.

is a subgroup of (
For the converse implication suppose that the additive group generated by the set
{log |, (z)] s w € B3}
is cyclic. This means that there exists v € (0,400) such that

log |¢[, ()| = 27yl
for all w € £ and some [, € —No. There then exists ¢ € R\ {0} such that ¢y € N. But then

|%0:.;(33w)|t = exp ((27Tt7)lw>v
implying that the multiplicative group generated by the set
{len (@)l s w € Ep}
is a subgroup of < 2™ >, the cyclic group generated by 2™, and is therefore itself cyclic. This means

that ¢ € R\ {0} is not S-generic, and this finally means that the system S is not D-generic. We are
done. O

REMARK 2.3.9. The D—genericity assumption is fairly generic. For example, it holds if there are two

values i,j € E (or the weaker condition 4,j € E%) such that % is irrational; where we recall that
FASE]

x; and x; are the unique fixed points, respectively, of ¢; and ¢;. On the other hand, it is easy to construct

specific conformal GDMSs for which it fails. For example, we can consider maps ¢;(z) = ”Q—H fori>1

and than we can deduce that log|¢}(z)| € (log2)Z.
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PROPOSITION 2.3.10. A finitely irreducible conformal GDMS S = {pc}ecr is strongly D—generic if
and only if the additive group gemerated by the set

{log|wg,(zw)| = Blw| :w € By }
is not cyclic for any B € R.

PROOF. Suppose first that the system S = {¢,}ccp is not strongly D—generic. This means that there
exists t € R\ {0} which is not S-generic. This in turn means that for some a € R the group G,(¢) is
generated by some non-negative integral power of e2™, say by 29", ¢ € Ny. And this means that for every
w e Ej,

e” gl (w0)|" = exp (2mgk)
with some (unique) k., € Z. But then tlog |l (x,)| — a|lw| = 2mqk,, or equivalently

a 2mq
10g|<Pfu(l’w)| - ;|W| = Tkw

This implies that the additive group generated by the set
a *
{1og |l ()] ~ Tl s w € B})
is a subgroup of < 2% >, the cyclic groups generated by ?, and is therefore itself cyclic.
For the converse implication suppose that the additive group generated by the set
{log g, ()| = Blw| :w € By }
is cyclic for some 8 € R. This means that there exists v € (0, +00) such that
log|f, (2w)| — Blw| = 2wyl
for all w € £} and some [, € Z. There then exists ¢t € R\ {0} such that ¢y € N. But then
el (0)|" = exp ((2mt7)L),
implying that the multiplicative group generated by the set
{e_tﬁ|“’||g0:J(xw)|t twe By}

is a subgroup of < 2™ > the cyclic group generated by e2™*7, and is therefore itself cyclic. This means
that t € R\ {0} is not strongly S-generic, and this finally means that the system S is not strongly D-generic.
We are done. ]

2.4. Asymptotic Results for Multipliers; Statements and First Preparations

In this section we keep the setting of the previous one. In this framework we can formulate our main
asymptotic result, which has the dual virtues of being relatively easy to prove in this setting and also having
many interesting applications, as illustrated in the introduction. In a later section we will also formulate
the general result for C? multidimensional conformal contractions, although the basic statements will be
exactly the same. We can now define two natural counting functions in the present context corresponding
to “preimages” and “periodic points” respectively.

DEFINITION 2.4.1. We can naturally order the countable family of the compositions of contractions
¢ € EY in two different ways. Fix p € E} arbitrary and set § := ns(p) € Js. Let

E; ={we FE} :wp € EY},
and, as we have already defined, for all integers n > 1 let

By ={weE} wpe EY}.
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We recall from the previous section the set
E; = {we FE}: Apjwor = 1},
and for all integers n > 1 we put
By = {weE}: Ay w =1},
i.e., the words w in £’ such that the words w™> € E, the infinite concatenations of ws, are periodic points
of the shift map o : EY — EY with period n.

(1) Firstly, we can associate the weights
Ap(w) == —log|¢,(§)] >0, we Ey,
and
(2) Secondly, we can use the weights
Mp(w) 1= —log |, (z.)] > 0, we E,
where we recall that z,,(= ¢ (7)) is the unique fixed point for the contraction ¢, : Xj(,,) —
Xi(wy); we note that t(w) = i(wy).
We can associate appropriate counting functions to each of these weights, defined by
mpo(T) :={we E} : \(w) <T} and my(T):={weE;: \(w) <T},
respectively, and their cardinalities
N,(T) := #n,(T) and N,(T) := #mp(T),
respectively, for each T > 0, i.e. the number of words w € E} for which the corresponding weight \;(w)

doesn’t exceed T for i = p, p.

The functions 7,(T") and m,(T) are clearly both monotone increasing in T'.
We first prove the following basic result, showing that the rates of growth of these two functions are both
equal to the Hausdorff Dimension of the limit set Js.

PROPOSITION 2.4.2. If the (finitely irreducible) conformal GDMS S is strongly regular, then
. 1 . 1
0s = T1_1>r_~r_1oO T log N,(T') = T1—1>I4r-loo T log N,(T').
PrOOF. Fix i € {p,p}. Write 0 := Js. Assume for a contradiction that
— 1
Tgrfoo T log N;(T) > 0.
There then exists € > 0 and an increasing unbounded sequence T,, — 400 such that
Ni(T,,) > e+ T,
We recall from the definition of a conformal GDMS that ||¢l|lec < & € (0,1) for all e € E, and then
¢, ]loo < Kl€! for all w € E%. Since
(2.1) Ai(w) +log [0 ]lc = 0

for all w € E%. we conclude that whenever w € m;(T},), i.e. whenever \;(w) < T,,, then

T, T,
w| < 2 < ky = 41,
| log & | log x|

where [] denotes the integer part. Therefore, we can also bound

k:Tl,

Do el = D0 el = Ni(T)e T > e

i=1 we wemry(T,)
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Hence, there exists 1 < j, < k,, such that
1
> el = e
. n
weEn

In particular, lim, _,« j, = +00. Recalling that each strongly regular system is regular and invoking (2.9),
we finally get

0=P@) = lim —lo ST lgLl% > Tm L og (£
= = - g Puw = o o T g

n—+o0 Jp i kn
weEn

n——+oo n kn n—-+oo "

— 1 ¢Tn — 1
> lim log(e ): lim k—(eTn—logkn)

T,
:EngrfooE = ¢llog k| > 0.

This contradiction shows that

— 1
. i — i <o.
(2.2) TEIEOO T log N;(T) <6

For the lower bound recall that

X == [ logleL, (o)l dus > 0
EF

is the Lyapunov exponent of the measure ;5 with respect to the shift map o : E® — ES°. Since the system

S is strongly regular, it follows from Observations 2.2.12 and 2.2.11 that y; is finite. It then further follows

from Theorem 2.2.9 (e) that h,, is finite and

he
X

Recall that along with (2.1) the Bounded Distortion Property, yields

(2.3) 0 < Ai(w) +log ||y [l < logC

for all w € E% and some constant C' > 1. Using this and (2.10) we then get for every € > 0 and all integers
n > 1 large enough that

h
we EY : A\(w) < (g‘;—i-(s)n}

1 h 1
weE}: —glog,ug([w]) < ((‘;5 +€> n+ 0g505 - logC}

1 h
2 {w e £y -5 log ps(Jw]) < <§5 + 25) n}
={w € E} :log pus([w]) > —(hy, + 2¢6)n}.
Having this, it follows from Breiman-McMillan-Shannon Theorem that
#{w € E} : A\ij(w) < (xus +€)n} > exp ((hy, — 3e)n)
for all integers n > 1 large enough. Since we also obviously have

Wi((Xus + 5)”) 2 {w € Efx : )‘i(w) < (X/Aa + 5)”}7



2.4. ASYMPTOTIC RESULTS FOR MULTIPLIERS 33

we therefore get for every T' > 0 large enough,

log N;(T) = log N; ((x,m + e)wid) > log N; ((Xua +e) {(Xﬂis)])

> (b, — 326) [T] .

(Xw + 5)
Therefore,
1 h,, —
lim —log N;(T) > —*—— 365.
T—+oco X}Ls +e
So, letting & \, 0 yields
1 h
lim = log N;(T) > —X> = .

e Xps

Along with (2.2) this completes the proof. O

In particular, this proposition gives one more characterization of the value of 4.

One of our main objectives in this monograph is to provide a wide ranging substantial improvement of
Proposition 2.4.2. This is the asymptotic formula below, formulated at level of conformal graph directed
Markov systems, along with its further strengthenings, extensions, and generalizations, both for conformal
graph directed Markov systems and beyond. Our first main result is the following.

THEOREM 2.4.3 (Asymptotic Formula). If S is a strongly regular finitely irreducible D-generic confor-
mal GDMS and p € EY, then with § = 6s = HD(Js), we have that

i NolT) _ vslp)

Totoo €T Gy,
and
N, (T 1
lim L — .
T—~+oco oT 6Xl1«6

The proof of this theorem will be completed as a special case of Theorem 2.4.8 (which is proved in Sec-
tion 2.6).

REMARK 2.4.4. If the generic D-genericity hypothesis fails, then we may still have an asymptotic
formulae, but of a different type, e.g., there exists N;(T) ~ Cexp(da[(logT)/a)) as T — +oo. This is
illustrated by the example in Remark 2.3.9 with a = log 2.

As a preparation for the proof of Theorem 2.4.3 we now introduce a version of the main tool that will
be used in the sequel. Our strategy, stemming from number theoretical considerations of distributions of
prime numbers, is to use an appropriate complex function defined in terms of all of the weights A,(w) and
then to apply a Tauberian Theorem to convert properties of the function into the required asymptotic
formula of N,(T), i.e. the first formula of Theorem 2.4.3. The asymptotic formula for N,(T), i.e. the
second formula of Theorem 2.4.3 will be derived from the former, i.e. that of N,(T"). The basic complex
function in the symbolic context is the following.

DEFINITION 2.4.5. Given s € C we define the (formal) Poincaré series by:

n,(s) = Z =5 (w) :i Z e 5Xo (W)

weEL? n=1 wEET
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In fact we will need a localized version of this function, which will be introduced and analyzed in Section 2.5.
For the present, we observe that since
N T DR R S LR S A
weEy weEy weEp w€eE}
and since
.1
lim — log Z @l IR | = P(Res) < 0

n—oo N,
wEE;}

whenever Res > ds, we get the following preliminary result.

OBSERVATION 2.4.6. The Poincaré series

77p(3) = Z Z e e )

n=1 wEE;}
converges absolutely uniformly on each set {s € C: Res > t}, for t > ds.

For notational convenience to follow we introduce the following set
AL :={s € C:Res > ds}.

As have said, the series 7,(s) will be our main tool to acquire the asymptotic formula for the cardinalities
of the sets m,(T), i.e. of the numbers N,(T"). An appropriate knowledge of the behavior of the series 7,(s)
on the imaginary line Re(s) = ds is required for this end. Indeed, in fact one needs to know that the

function 7),(s) has a meromorphic extension to some open neighborhoods of AL ={s€C:Res > ds} with
the only pole at s = ds, that this pole is simple and the corresponding residue is to be calculated. This
extension of 7,(s) functions will come from an understanding of the spectral properties of the associated
complex RPF operators.

With some additional work, we can actually get finer asymptotic results than those of Theorem 2.4.3.
These count words subject to their weights being less than T" and, additionally, their images being located
in some, fairly arbitrarily prescribed, parts of the limit set.

DEFINITION 2.4.7. Let p € EY and let 7 € E%. Fix any Borel set B C X. Having 7' > 0 we define:
m)(B,T) :={w e E} : p,(rs(p)) € B and \,(w) < T}
and
(B, T) :={we Ey : x, € Band \(w) <T}.
We also define
mpo(1,T) i={we E} : \p(rw) <T} and my(7,T) :={w e Ey : \p(tw) <T}.
The corresponding cardinalities of these sets are denoted by:
N,(B,T) := #7,(B,T) and N,(B,T) = #m,(B,T),

and

N,(7,T) := #m,(r,T) and N,(7,T) = #m,(7,T),
i.e. the first pair count the number of words w € E for which the weight \;(w) does not exceed T and,
additionally, the image @, (7s(p)) is in B if i = p, or the fixed point z,, of ¢, is in B if i = p, while the
second pair count the number of words w € E} for which the weight A;(7w) does not exceed T' (for i = p, p)
and an initial block of w coincides with 7.
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The following are refinements of the asymptotic results presented in Theorem 2.4.3, whose proof will be
completed in Section 2.6.

THEOREM 2.4.8 (Asymptotic Equidistribution Formula for Multipliers I). Suppose that S is a strongly
regular finitely irreducible D-generic conformal GDMS. Let § = 6s = HD(Js). Fiz p € EY.
If T € E7 then,

NP<T7 T) _ %(P)

4 lim =
(2.4) T_1>+OO 0T X oes ms([7]),
and
. Ny(7,T) 1
2' 1 P i =
(2.5) T_lffoo 0T X ps([7])

THEOREM 2.4.9 (Asymptotic Equidistribution Formula for Multipliers IT). Suppose that S is a strongly
regular finitely irreducible D-generic conformal GDMS. Let § = 0s = HD(Jg). Fix p € EY.
If B C X is a Borel set such that ms(0B) = 0 (equivalently jis(0B) = 0) then,

NP(B’T) o %(P) ~

(2.6) Jim Se) = L (5)
and

. NP(B,T)_ 1
(2.7) Jlim S = ()

After establishing the results of the next section (2.5), we will first prove in Section 2.6 formula (2.4).
Then, in the same section, we will deduce from it formula (2.5). Finally, still within Section 2.6, we will
deduce Theorem 2.4.9 as a consequence of Theorem 2.4.8. The asymptotic estimates for N,(B,T') given in
this theorem, will turn out to have wider applications than the basic asymptotic results in Theorem 2.4.3.
This will be apparent, particularly in Section 2.7 and Section 3.4 where we apply these results to deduce
asymptotics of the diameters of circles.

REMARK 2.4.10. Theorem 2.4.8 is formulated for a countable state symbolic system. In fact it could be
formulated and proved with no real additional difficulty for ergodic sums of all summable Holder continuous
potentials rather than merely the functions A,(w). In the particular case of a finite state symbolic system
this would recover the corresponding results of Lalley [37].

2.5. Complex Localized Poincaré Series 7,

In order to prove the asymptotic statements of Theorem 2.4.8 we want to consider a localized Poincaré
series, which in turn generalizes the Poincaré series introduced in the previous section. Again we denote
by p € EY our reference point and set £ := ws(p) € Js.

DEFINITION 2.5.1. Given s € C we define the following localized (formal) Poincaré series. Fixing
T € E% and denoting ¢ := |7|, we formally write

np(7'7 S) = Z 6_S>\p(7w).

weB}
Arguwy =1
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We formally expand the series 7,(7, s) as follows.

mp(rys) = D eI = YT QL Pwp) = Y e (w(wn))lll (n(p))

* * *
weE} weEB] wEeER
A,.qwlzl Arguwy=1 Argquwy =1
P57 o m(wp)lpy * (m(p)
- SDT p QDW
weE”
Aqulfl

=Y LI(|e, I o) (p).

n=1
Defining the operator £g 7 from H,(A) to Hy(A) by
Ho(4) 3 g+ L{)g = LL(g - (g7 [* o m)) € Ha(4),

we then formally write

3 £1(p)
n=1

The same argument as that leading to Observation 2.4.6 leads to the following corresponding result.

OBSERVATION 2.5.2. For every 7 € EJ the localized Poincaré series n,(T, ) converges absolutely
uniformly on each set
{s € C:Res >t} (C AY),

t > ds, thus defining a holomorphic function on A;.

Our main result about localized Poincaré series, which is crucial to us for obtaining the asymptotic behavior
of N,(7,T), is the following.

THEOREM 2.5.3. Assume that the finitely irreducible strongly reqular conformal GDMS S is D-generic.
If T € £, then

a) the function AL > s +— 1,(1,s) € C has a meromorphic extension to some neighborhood of the
s o
vertical line Re(s) = ds,

(b) this extension has a single pole s = ds, and
(c) the pole s =6 = ds is simple and its residue is equal to ‘Z;?T(f)mg([ﬂ).

PRrROOF. By Observation 2.5.2 and by the Identity Theorem for meromorphic functions, in order to
prove the theorem it suffices to do the following.

(1) Show that for every sy = &s + ity € I'S with t5 # 0 the function 7,(7,-) has a holomorphic
extension to some open neighborhood of sy in C.

(2) Show that the function 7,(7,-) has a meromorphic extension to some open neighborhood of ds in
C with a simple pole at ds.

(3) Calculate the residue of this extension at the point s = ds to show that it is equal to w‘;(p L ([7]).

We first deal with item (1). Let A C C be the set of all eigenvalues of the operator L, : H,(A) — H,(A)
whose moduli are equal to 1. By Proposition 2.3.2 this set is finite, and, by Lemma 2.3.4, it consists of
only simple eigenvalues. Write

A = {)\J}?:lﬂ
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where ¢ := #A. Then, invoking Observation 2.2.6, Observation 2.3.1, and Proposition 2.3.2 (along with
the fact that P(ds) = 0), we see that the Kato—Rellich Perturbation Theorem applies and it produces
holomorphic functions
Uss—A(s)eC, j=1,2,...,q

defined on some sufficiently small neighborhood U C ng of so with the following properties for all j =
1,2,...,¢:

L] )‘j (50) = )‘jv

e )\;(s) is a simple isolated eigenvalue of the operator £ : Hy(A) — H,(A)
Invoking Proposition 2.3.2 for the third time, we can further write, perhaps with a smaller neighborhood
U of sg, that

£5 = ZAj(S)PS,j -+ As,
j=1
where

e P, ;i:Hy(A) = Hy(A) are projections onto respective 1-dimensional spaces Ker()\j(s)l — L’S),
e all functions U 3 s — Ay, P j, 7 =1,2,...,q, are holomorphic,

o 7(A,) < e /2 for every s € U, and

e P, ;P ; =0 whenever i # j and AP, ; = P jA, =0forall s € U.

In consequence
q
(2.1) Ll =Y N(s)P,; + Al
j=1

for all integers n > 0. Shrinking U again if necessary, we will have that
1AL ]Ja < Cem5"

for all integers n > 0 and some constant C € (0,400) independent of n. Since the system S is D-generic,
it follows from Proposition 2.3.5 that A;(s) # 1 for all s € U and all j = 1,2,...,q. Denoting by Su(s)
the holomorphic function

U s Auo(s) = Y AL(L om)(p)

and summing equation (2.1) over all n > 1, we obtain

no(ros) = Y Le(l@h om)(p) = Y Xi(s)(L = Aj(8) ™ P (I 0 ™) (p) + Ao (s)
n=1 7

q
=1

for all s € UN{s € C: Re(s) > ds}. But (remembering that A;(s) # 1) since, all the terms of the
right-hand side of this equation are holomorphic functions from U to C, the formula

U350 3 N()(1 = A5(5) " Pa(I9f 1 o m) + Ase(s) € C

provides the required holomorphic extension of the function 7,(7, s) to a neighborhood of s.

Now we shall deal will items (2) and (3). It follows from Theorem 2.2.9 (h) and (i), and the Kato-Rellich
Perturbation Theorem that

(2.2) LY =AQs+SY, n>0,
forall s e U C 1"}, a sufficiently small neighborhood of §, where
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(4) As is a simple isolated eigenvalues of L, : H,(A) — Hy(A) and the function U 3 s — A\, € C is
holomorphic,

(5) Qs : Ho(A) — Hy(A) is a projector onto the 1-dimensional eigenspace of s, and the map
U>s— Qs € L(Hy(A)) is holomorphic,

(6) 3ke(0,1) Jo>0 Vsev Va0
155 ]la < CK",

and the map U 3 s — S5 € L(H4(A)) is holomorphic, and
(7) All three operators L, Qs, and S5 mutually commute and QS = 0.
Let us write
H‘r,s = Qs(ls‘jﬂs © 7T)'

It follows from (5) that the function U 5 s — H, s, € Hy(A) is holomorphic, whence the function valued
map U 3 s — Hg(p) € C is holomorphic too. It follows from (6) that the series

Soo(8) :== i S
n=1

converges absolutely uniformly to a holomorphic function, whence the function U 3 s — X.(s) € Hy(A)
is holomorphic too. Since, by Theorem 2.2.8, the function s +— A, is not constant on any neighborhood of
d, it follows from (4) that shrinking U if necessary, we will have that

As #1
for all s € U \ {¢}. It follows from Theorem 2.2.8, the definition of §, and Proposition 2.3.2 (1) that
IAs| <1
for all s € UN{s € C:Re(s) > ds}. It therefore follows from (2.2) that
1p(s) = As(1 = Xs) " Hr 5(p) + Soo(s)
for all s e UN{s € C:Re(s) > s}, and consequently, the map
(2.3) U3 s As(1—= X)) Hy 5(p) + Soo(s)

is a meromorphic extension of 7,(7,-) to U. We keep the same symbol 7,(7, s) for this extension. Now,
using Theorem 2.2.14, we get

1 —1
iy - (mhs) --(misF) -7
_ (d
ds
1
_Xﬂa.

5_66P(5)> _ 7(P/(5)6P(5))* _ 7(P/(5))71

Since A\s = 1 and

Hs+(p) = Qs(|¢L|° o) (p) = </Em |7 |% o de5> Ws(p) = vs(p)ms([7]),

we therefore conclude that

The proof is thus complete. O

ress (n,(7, 7)) =
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We can take 7 to be the neutral (empty) word and deduce the corresponding results for the original Poincaré
series

COROLLARY 2.5.4. Assume that the finitely irreducible strongly regular conformal GDMS S is D-
generic. Then

(a) the function n,(s) has a meromorphic extension to some neighborhood of the vertical line Re(s) =
687
(b) this extension has a single pole s = ds = HD(Js), and

(¢c) the pole s = = ds is simple and its residue is equal to wxé—(p).
1

2.6. Asymptotic Results for Multipliers; Concluding of Proofs

We are now in position to complete the proof of Theorem 2.4.8 and then, as its consequence, of Theorem
2.4.9. We aim to apply the Ikehara-Wiener Tauberian Theorem [93], which is a familiar ingredient in the
classical analytic proof of the Prime Number Theorem in Number Theory.

THEOREM 2.6.1 (Ikehara-Wiener Tauberian Theorem, [93]). Let M and 6 be positive real numbers.
Assume that a : [M,4+00) — (0,400) is monotone increasing and continuous from the left, and also that
there exists a (real) number D > 0 such that the function

+00 D
s / x %da(z) — eC
M s—40

is analytic in a neighborhood of Re(s) > 0. Then

. a(z)y D
1 —t =
:c—1>51-100 20 0
We can now apply this general result in the present setting to prove the asymptotic equidistribution results.
We begin with the proof of formula (2.4) in Theorem 2.4.8.
PROOF OF FORMULA (2.4) IN THEOREM 2.4.8. Let 7 € E% be an arbitrary. We define the function
M,(7,-) : [1,400) = Ny by the formula
M,(7,T) := Ny(r,1og T) = {1w € E} : |0, (§)| 7 < T}

We then have for every s > § that

np(r,s):/ T7°dM,(7,T).
1

Now Theorem 2.5.3 tells us that Theorem 2.6.1 applies with the function a being equal to M,(7,-) and
with 0 := dg, to give
Mp(T7 T) _ %(P)

PN v, M)
Consequently
. Ny(r,T) .. M,(r,eT) ~ Ys(p)
(2.1) TLHEOO T = Tgffoo T Gy ms([7]).
This means that (2.4) is proved. 0

Now we move onto the proof of (2.5). However the first step to do this is of quite general character
and will be also used in Section 2.7. We therefore present it as a separate independent procedure. Fix an
integer ¢ > 0. Let H C E be a set representable as a (disjoint) union of cylinders of length ¢. Let

Ryt p(T) 1= {w € my(T) : || > g and w|¥]_ € H}
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and the corresponding counting numbers

Ry m,p(T) == #Rq,1,0(T).
We shall prove the following.

LEMMA 2.6.2. If ¢ > 0 is an integer and H C EY is a (disjoint) union of cylinders of length g, then
the limit below exists and

(2.2) lim Bonp(T) < K2 (6xp5) tms(H).

PROOF. As in the proof of formula (2.4) in Theorem 2.4.8, the Poincaré series corresponding to the
counting scheme #R g ,(T) is the function 7 ,(s), where for any v € EY,

Ma(s)= Y b= Y X lelas()P

wEE,*;,\WIZQ+1 n=q+1 wEET
“"I:Lqﬂ“’ “n—at1&H
) [e%s)
=D > emstmr= Y Y lelrst)P
n=q+1 weEIYL n=q+1 weE;l
on—d(wy)EH wyeo— (M=) (H
)
= 3 Y twoo" U w) - el (rs()I*
n:‘I‘FleETYL
) 9]
= > Li(lmoo™ ()= > LULT(Lgoo™))(v)
n=q+1 n=q+1
oo [eS)
= > Li(Lg 1 L27L)(y) = L (nH > cw) (7)-
n=q+1 n=q+1

Now, the same reasoning as in the proof of Theorem 2.5.3 shows that the function
s> 1n4(s) == Z L7 (y)
n=q+1

has a meromorphic extension, denoted by the same symbol 7,(s), to some neighborhood, call it G, of
the vertical line Re(s) = ds with only pole at s = ds. This is again a simple pole with residue equal to
Xus¥s(7). Since the operators £ are locally uniformly bounded at all points of G, the function

s — L3 <]1H > cgm) ()
n=q+1

has holomorphic extension, which we will still call 9z ~(s), to G\ {d}. In addition

B (5 = 9 6) = £ (1o i~ o)) 0) = €5 (Wit 0s) ()
= Xps £ (Laps) (V) < Xt 1¥slloo £3 (Lar) ()

< KX, £5 (L) ()

< KQ‘SX;dlm(;(H).
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Therefore, we can apply the Ikehara-Wiener Tauberian Theorem (Theorem 2.6.1) in exactly the same way
as in the proof of (2.4), to conclude that

. Rgm,(T)  ress(fg,m, _
Thféo qeég( ) _ (Z‘q P) SK?é(é‘X”J) 1m5(H).

The proof is complete. O

PROOF OF FORMULA (2.5) IN THEOREM 2.4.8. For every v € E* fix exactly one vt € EY such that

vt € EY.
Observe that for every integer ¢ > 1, every v € E%, and every w € E* such that yw € E}, we have
(2.3) K (m(rr )] < 19l (@) < Koleh, (m(yy ).
It then follows from (2.3) that
(24) 771?(% T) g 7T,Y,Y+ (77 T + IOg Kq)
and
(2.5) T+ (7, 1) C mp(, T + log Ky).
Let
k= |7].
Using (2.5) and applying formula (2.4) of Theorem 2.4.9, we obtain that
N, (r.T Noor T —log K,
lim p(TT7 ) > lim () * (7'7 g q+k) insk
T—oo € T—00 et exXp (5(T — log Kq+k))
rweEiJrk

_ . Noyr *(T’Y’T_IOgK +k)
o g ) V(1) 1
Z Ko Z T%o exp (0(T — log Kq41))

veEY
T'yEEZ{Fk
1
=
=K s > sy ms(im])
Xs ‘YEE%
ryerdtk
1
—26
2 Kq+k57 Z /A(S([T’Y])
Xs ent
-r»yeEZJrk

1
=K 2% — .
g
Therefore, taking the limit with ¢ — oo, we obtain

. Ny(1,T 1
(2.6) im 20T S L),
T—oo € 5X5
Passing to the proof of the upper bound of the limit supremum, we split £%, in a way that will be specified
later, into two disjoint sets Iy, and its complement F/ := E% \ F, (each of which naturally consists of words
of length ¢) with Fj, being finite. In particular,

E% = F,UF..

So far we have not imposed any additional hypotheses on the sets Fy; and Fy. This will be done later in
the course of the proof. We set

Ryp(T) == 7-‘)'q,F; (T)
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and
Rq,p (T):= #Rq,p (1),

and note that because of (2.4), we have

(1, T) = U Ty (ryy+ (77, T + log Kg11) U U Ty () (77, T 4 log Kqi1;)

~EFg YEFS
YTEEYR YTEEY
g U 7rT'y(T'y)+ (T’Y> T+ IOg Kquk) U U Trr+t (% T+ IOg Kq+k + log K)
YEFq 'YquC
YyTEEY

= U Ty e+ (77, T 4 log Kgis) URy 77+ (T + log Kgpp, + log K).

YEFq
*
"M'EEA

Therefore, using finiteness of the set Fq7 Theorem 2.4.9, and (2.2), we further obtain
Ry 7+ (T 4 log Ky + log K)

i Nor 7v,T +log K
lim ———— Z uil ’Y)+ i 8 Ko K6+k+ lim ST
T—o0 YEFg eXp T =+ log Kq+k>) T— 00 e
’YTGE
1
<Ko 3 Ui ma(ira]) + KK ms (F)
ress
1 1 .
K2+k5 > Ma([TW])+K35K3+k57m5([F )
X3 veEY
etk

< Kilug—nsllr]) + KKz oms(1F5).

Hence, taking finite sets Fy, , with ms([Fy,,]) converging to one, so that ms([Fy ,]) converges to zero, we
obtain

N (T, T) 28 1
— < _— .
A s < Kb g —na([7])
Therefore, taking the limit with ¢ — oo, we obtain
Er. Np(’r, T) 1
< — .
T, G < )
Along with (2.6) this yields
. Ny(r,T) 1
(2.7) . el ——nus([7]).
The proof of formula (2.5) in Theorem 2.4.8 is thus complete. This simultaneously finishes the proof of all
of Theorem 2.4.8 |

PRrROOF OF THEOREM 2.4.9. The same proof, as a consequence of Theorem 2.4.8 goes through for
i = p and i = p. We therefore denote

s tslp) i i=p
- if 7=np,

mg if i=p . mg if i=p
v = ) and ;=< _ o
= s if 1= p-
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We shall first prove both formulae (2.6) and (2.7) for all sets B that are open. To emphasize this, let us

denote an arbitrary open subset of X by V. We assume that 7;(0V) = 0. Then for every s € (0,1) there
exists a finite set I's(V) consisting of mutually incomparable elements of E% such that

U eXm)cv and w| U =5 U e &Xn) | =sm(V)

Tels (V) Tels (V) Tels (V)
where the “=" sign in this formula is due to (2.8). So, for both i = p, p, using (2.1), we get that
N;(V,T . Ny(7,T
lim Ni(V. T) > Z lim L: Z Civi([7])
T—400 el T—4o00 et
Tl (V) Tl (V)
= CZ'VZ‘ U [’T]
7€l (V)
Letting s ' 1, we thus obtain
N;(V,T ~
(2.8) im YD 05w,
T—+oco €
Therefore, we also have
NV, T U
(2.9) lim % > Cipy(V7).
T—+o0 €
But since ;(8V) = 0, we have v;(V) + 1;(V°) = 1, whence
N,(V°,T _
(2.10) im YD) S o).
T—+o00 €

Therefore, using (2.1) and (2.7), both with 7 replaced by EY, we get

Co— pim N NOAT) 4+ N(VET)
T—+o00 e T—+o0 eéT
— N,(V,T . N (VOT
(2.11) > lim %—F lim (7)

T T4 e Todeo €T

> g MED G -nw)).
Thus,
i VD e,

T—+o00 €5T

Along with (2.8) this implies

. Ni(V,T)
(2.12) P T

Finally, let B be an arbitrary Borel subset of X such that 7;(0B) = 0. Then B = BUdB and
v;i(B) = v;(B).

= Cin(V).

Since the measure v; is outer regular, given € > 0 there exists an open set G C X such that B C G and

(2.13) 7i(G) < (B) +e.
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Now, for every x € B there exists an open set V,, C G, in fact an open ball centered at z, such that = € V,,
and

v;(0Vy) = 0.
In particular, {V,}_ .5 is a open cover of B. Since B is compact, there thus exists a finite set F C B such
that
BCV:=|JV. CG.

zEF
Since F is finite, OV C (J,cp OV,, whence v;(0V') = 0. Therefore, (2.12) applies to V' to give
A Sl Rl A o) < B EpAS 2
T1—1>I}rloo efT = ng}oo T T To4eo €T Cita(V)

< Civi(G)

< Ci(v(B) +¢).
Letting € N\, 0, we therefore get

— Ny(B,T _

TS4o T

Now, we can finish the argument in the same way as in the case of open sets. Since B¢ = B, we have

mgs(0B°) = 0. In particular, (2.14) also yields
T N7 BC’ T ~ c ~
Tgr}rloo % < Civy(B°) = Ci(1 — 13(B)).

Therefore, using Theorem 2.4.3 we can write

N(T ) N;(B,T)+ N;(B°,T
C; = lim (gT) = lim ( )—ZT ( )
T—+oc0 € T—4oc0 e
. N;(B,T) — Ny(B<T)
< 1 — 1 —_—
< lm =4 Im =5
. N;(B,T) ~
< Th7m zeT =+ Oi(l - Vi(B))~
— 400
Thus,
N;(B, T
lim % > Cigi(B)~
T—+cc €
Along with (2.14) this gives
. N’L(B7T) _ ~
i g = OB
and the proof of the theorem is complete. |

2.7. Asymptotic Results for Diameters
In this section we obtain asymptotic counting properties corresponding to the functions
— logdiam(cpw(Xt(w)), w e Ey.

These are relatively simple consequences of Theorem 2.4.9, but not quite so simple as one would expect.
The subtle difficulty is due to the fact that the functions N;(B,T), i = p,p are very sensitive to additive
changes. In fact it follows from Theorem 2.4.9 that for every u > 0,

NAB,T—FU) _ bu

AN ¢ Tl
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In fact we will do something more general, namely for every v € V we fix an arbitrary set Y, C X, having
at least two points, and we look at asymptotic counting properties corresponding to the functions

—log diam (¢, (Yy(w))), w € Ej.

Such a generalization is interesting in its own right, but will turn out to be particularly useful when dealing
with asymptotic counting properties for diameters in the context of parabolic GDMSs, see Section 3.4.

So, again S is a finitely irreducible conformal GDMS, we fix p € EY and put £ = ms(p). We furthermore
fix

Y € Xigpy)-
We denote
Aw) = Ay (w) := —logdiam (¢, (Y)), w € E7,
with the natural convention that for w = ¢, being the empty (neutral) word:
Ay (e) = —logdiam(Y'),
and further, for any B C X and T > 0,
Dy (B,T) :=D"(B,T):={w € E, : Ay(w) < T and ¢,(§) € B},
DB, T) = #D4(B,T).
The main result of this section is the following.

THEOREM 2.7.1. Suppose that S is a strongly regular finitely irreducible conformal D-generic GDMS.
Let § = s = HD(Js). Fiz p € EY and Y C X;(,) having at least two points.
If B C X is a Borel set such that ms(0B) = 0 (equivalently jis(0B) = 0) then,

(2.1) i 2Y(ET)

Totoo 0T oY )5(B),

where C,(Y) € (0,+00) is a constant depending only on the system S, the word p (but see Remark 2.7.5),
and the set Y. In addition
(2.2) K2 (6xs) " tdiam® (V) < C,(Y) < K2 (§x5) " tdiam®(Y).
We first shall prove the following auxiliary result. It is trivial in the case of finite alphabet FE but
requires an argument in the infinite case.
LEMMA 2.7.2. With the hypotheses of Theorem 2.7.1, for every integer ¢ > 1 let
(B, T) := m(B,T)NE%, i=p,p,

and
N9(B,T) := #x9(B,T).
Then w
: Nz’q (B7T)
AT e O

PROOF. Since Ni(q)(B,T) < Nz-(q)(T) = Ni(Q)(X7 T), it suffices to prove that
N@ (T)

lim — =0.
T—oo 97T

By considering the iterate S? of S it is further evident that it suffices to show that
N(1)

lim —* =0.
T— o0 €5T
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To see this consider the Poincaré series
s () = L (p),

notice that it is holomorphic throughout {s € C : Re(s) > 7s} 2 Ai‘; and conclude the proof with
the help of the Tkehara-Wiener Tauberian Theorem (Theorem 2.6.1), in the same way as in the proof of
Theorem 2.4.3. ]

Denote also
D9 (B,T) :=D’(B,T)N EL=D’(B,T)N E%.
By (BDP)
Nz’(pﬂ) (B, T —log K) < DP9 (B,T) < Ni(ﬂvq)(B,TJr log K).
Therefore, as an immediate consequence of Lemma 2.7.2, we get the following.

COROLLARY 2.7.3. With the hypotheses of Theorem 2.7.1, for every integer ¢ > 1, we have

D9 (B,T)

= 0.

lim 3
T— o0 e

Now we can turn to the actual proof of Theorem 2.7.1.

PRrROOF OF THEOREM 2.7.1. Fix an integer ¢ > 0 and define:

vy .
K, = sup{:(p, Ex;|| 7€ EY, z,y € Conv(p-(Xy(r)), w € ET} >1,

where Conv(F) is the convex hull of a set FF C R?. In particular Ko = K, the distortion constant of the
system S. (BDP) yields

(2.3) lim K, = 1.

q—o0

(BDP) again, along with the Mean Value Theorem, imply that for all 7 € £ and all w € E}, we have that
diam (., (V) = diam (¢ (9-(Y))) < Kql¢l, (- (€))ldiam (- (V)

and
diam (pu- (Y)) 2 K¢, (97 (€))|diam(p- (V).
Equivalently
(2.4) Arp(w) + Ay (1) —log Ky < Ay (wr) < Ap(w) + Ay (1) + log K.
Denote
D?(B,T):={w e E;:wr € D’(B,T)}
and

D2(B,T) i= #D2(B,T).
Formula (2.4) then gives

(2.5) Trp(B,T) CD2(B, T + Ay (1) +log K)
and
(2.6) D?2(B,T) C mrp(B, T — Ay (1) +log K,).

The former equation is equivalent to
D2(B,T) D mp(B, T — Ay (1) — log K).
This formula and (2.6) yield
(2.7) Nop(B,T — Ay (r) —log K,;) < D?(B,T) < Nyy(B, T — Ay (7) + log K,).
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since
(2.8) D*(B,T)= | J DB, T)rU UD<M> (B,T)
TEE] 7=0
and since all the terms in this union are mutually disjoint, formula (2.8) yields
T)> > DZ(B,T).
TEE]

By inserting it into formula (2.7), we get
DP(B,T) > Y Nyp(B,T—Ay(r) —log K,).

TeES
Therefore,
D*(B,T) S N:p(B,T — Ay (1) —log K, ) exp (6(T — Ay () — log K,))
S reps P (0(T — Ay(7) — log K, ) ST
_ N:p(B, T — Ay (1 logK)K v (")
regy P (6(T = Ay (r) —log Kg)) *

_ - Nrp(B;T_AY(T) _IOgK‘])
=K, ’ Z exp (§(T — Ay (1) —log K,))

TEE]

e—(SAy(T) )

Hence, applying Theorem 2.4.9, we get

lim Dr(B,T) > K9 Z e—0AY () i N;p(B, T — Ay (1) —log K,)
T = By T oo €XP (5(T — Ay (1) — log Kq))

o
(&
T—o00 TeES

(2.9) > K0 ) e (x56) s (1p)ms(B)

TEE]
= (xs0) "'ms(B)K;° Z e =02 (Maps(1p).
TEE]

This is a good enough lower bound for us but getting a sufficiently good upper bound is more subtle. As
in the proof of formula (2.5) in Theorem 2.4.8, we split E%, at the moment arbitrarily, into two disjoint
sets Iy and its complement Fy := E% \ Fy, (each of which naturally consists of words of length ¢) with F
being finite. In particular,

EY = F,UF_.
So far we do not require anything more from the sets Fy, and F7. We will make specific choices later in the
course of the proof. We are now primarily interested in the sets
Ryp(T) i= Ry e p(T) = {w € mp(T) : [w| > gand w|l®|__ ., € Fg,}

and the corresponding counting numbers

Ry p(T) == #Rq,p(T).
We are interested in estimating from above, the upper limit

— DY(B,T)
o, =
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First of all, Lemma 2.6.2 yields
. R f (T) 26 ¢—1 c
(2.10) Tlgr;oqe# < K*6 Y ,,ms ([FS]).
Denote now
Ry, (T) = {w € D°(T) : |w| > q and o.)|m7qJr1 IS Fq°}
and the corresponding counting numbers
Ry (T) = #R; ,(T).

It follows from (2.4), applied with 7 being empty (neutral) word, that

Ry ,(T) € Ry p(T +log Ay (e) +log K).
Along with (2.2) this yields

— R (T

lim Rip(D) < K6 'x,,ms Ay () ([FS]).

Tooo T e

Now we write
U peB,1)yr= ) DB, T)TUR; (T).
TEE] TEF,NE}]

Together with (2.8) and (2.7) this yields

q
DY(B,T)< >  DEBT)r+R;,(I)+> D¥)(B,T)
r€F, ,NEL §=0
q
< ) Ny(B,T—Ay(r) +log Ky) + R; (T) + Y _ D" (B,T).

TEF, ,NE} Jj=0

Hence, invoking also Corollary‘2.7.3 and finiteness of the set Fy ,, we get

— DY(B,T — N (B,T—-A log K, — R (T
lim Y( ) ) SK(S E e—Ay(T) lim TP( ) Y(T)+ 0g q) + Lim ‘LP( )
Tooo €T d v T—00 eXp (§(T — Ay (1) + log Kq)) Tooo 7T
(2.11) €0 N B
< (xs6) " 'ms(B)K] Y e Dus(rp) + K¥(5x5) ™ Ay (e)ms ([Fy)).

TEE]

Hence, taking finite sets Fy , with mg([qup]) converging to one, with m(;([FqﬁP]) converging to zero, we
obtain

— DY(B,T
lim 71/( 7)

(2.12) T—oo €T

< K2 (xs0) 'ms(B) Z e 0% Maps(7p).
TEE]

Since
Ys(p) = Ls(p) < D e 2 Dys(rp) < Lis(p) = ¢s(p),
TEE]

we conclude from (2.9) and (2.12) that both lim,._, % and limp_, oo Di(ji’T) are finite and positive

numbers. Furthermore, we conclude from these same two formulae that for every ¢ > 1,

oy D?.(B,T)
limy o0 YeéT

— . Df, (B,T)

himT_mo 3T

26
< K%,
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Formula (2.3) then yields that the limit limp_, o Dpye(ﬁ’T) exists and is finite and positive. Invoking (2.9)
and (2.12) again along with (2.3), we thus deduce the limit

lim Z e 08y (Maps(7p)

g—o0
TEE]

also exists, is finite and positive. Denoting this limit by C%, we thus conclude that
DY(B,T) 1
5T " oxs

and so, in order to complete the proof of Theorem 2.7.1, we only need to estimate C'. Indeed,

> et Oys(rp) = Y diam® (0 (V))vs(rp) < [l lI5diam® (V)5 (7p)

lim

T—00 €

—Csm;(B),

TEE] TEE] TEE]
< Kodiam’ (V) Y [¢] (ms(p))| vs(7p)
TEE]
= K°¢5(p)diam’ (Y)

< K2 diam®(Y),
and similarly,
Z 676AY(7)¢5(7’/)) > K*%diam‘S(Y).
TEE]
The proof is complete. O

We can now consider a slightly different approach to counting diameters. Still keeping p € E,
Y C Xj(,,), aset BC X, and T' > 0, we define:

EQ(B,T):={we E,: Ay(w) <T and ¢,(Y)NB# 0}

and
EY(B,T) := #&)(B,T).

THEOREM 2.7.4. Suppose that S is a strongly regular finitely irreducible conformal D-generic GDMS.
Let 6 = 0s = HD(Js). Fiz p € EY and Y C X;(,) having at least two points and such that ms(p) € Y.
If B C X is a Borel set such that ms(0B) = 0 (equivalently 11s(0B) = 0) then,

. EY(B,T) -
(2.13) Jlim S = C,(V)iis(B),

where C,(Y') € (0,+00) is a constant, in fact the one produced in Theorem 2.7.1, depending only on the
system S, the word p (but see Remark 2.7.5), and the set Y. In addition

(2.14) K2 (8x5) " tdiam’ (V) < C,(Y) < K (5x5) " tdiam®(Y).
PROOF. Since 7s(p) € Y we have that
D{.(B,T) < E{(B,T).
It therefore follows from Theorem 2.7.1 that

EL(B,T)

(2.15) lim inf =

ToYoo €9
Since E(T) = EL(X,T) = DY (T), Theorem 2.7.1, also yields
By (T)

: Y _
(2.16) Jlim =Y = Og().

> Cp(Y)ﬁlé(B)




50 2. ATTRACTING CONFORMAL GRAPH DIRECTED MARKOV SYSTEMS

Now fix (€,)%2 4, a sequence of positive numbers converging to zero such that for all n > 1
ms(0B(B,€,)) = 0.

Then ms(0B°(B,€,)) = 0 and ¢, (Y) intersects at most one of the sets B or B°(B;ei) N B° if Ay (w) >
log(1/€,). Hence applying formula (2.15) to the sets B¢(B, €,) N B and using (2.16) we get for every n > 1
that

EY(B,T) + EY(B(B,n), T)

0T
: EY(B,T) .. . .EY%(B%(B,e,),T)

- 1}21&5 EEE S T

v(B,T)
0T

C,(Y) > limsup
T—+o0

> lim sup + C,(Y)ms(B¢(B, €)).

T—400
But lim,— 1 oo Ms(B(B, €,)) = ms(B¢) = 1 — ms(B), (remembering that ms(0B) = 0), and therefore

EY.(B,T)

C,(Y) > limsup o7

T—+oo

+C, (V)1 —ms(B)).

Hence )

, EY(B,T)

lim sup YT < C,(Y)ms(B).

T—+o0 €
Along with (2.15) this finishes the proof of the first part of the theorem. The second part, i.e. (2.14), is
just formula (2.2). O

REMARK 2.7.5. Since the left-hand side of (2.13) depends only on pi, i.e. the first coordinate of p,
we obtain that the constant Cy (p) of Theorem 2.7.4 and Theorem 2.7.1, also depends in fact only on p;.
We could have provided a direct argument of this already when proving Theorem 2.7.1 and this would not
affect the proof of Theorem 2.7.4. However, our approach seems to be most economical.

We say that a graph directed Markov system S has the property (A) if for every vertex v € V there
exists a, € F such that
i(ay) =v
and
Aca, =1
whenever t(e) = v. As an immediate consequence of Theorem 2.7.1, Theorem 2.7.4 and Remark 2.7.5, we
get the following.

THEOREM 2.7.6. Suppose that S is a strongly regular finitely irreducible D-generic conformal GDMS
with property (A). Let § = 6s = HD(Js). For any v € V let Y, C X, having at least two points fized.

If B C X is a Borel set such that ms(0B) = 0 (equivalently fis(0B) = 0) and p € EY is with p1 = ay,
then,

D% (B, T Ef (B,T
(2.17) lim DyvBT) _ lim By, (B,T)

T—+o00 eST TS 400 edT = CU (Y’U)m5 (B)7

where Cy(Y,) € (0,+00) is a constant depending only on the vertex v € V and the set Y,. In particular,
this holds for Y, = X,, ve V.

Recall, see [8] for example, that a GDMS S is maximal if A,, = 1 whenever t(a) = i(b). Since every
iterated function system is maximal and finitely irreducible and since each maximal GDMS has property
(A), as an immediate consequence of Theorem 2.7.6, and Remark 2.7.5 (improved to claim that now C,(Y")
depends only on i(p;) and V) we get the following two corollaries.
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COROLLARY 2.7.7. Suppose that S is a strongly regular finitely irreducible D-generic mazimal confor-
mal GDMS. Let 6 = s = HD(Js). For anyv € V let Y, C X, having at least two points be fized.

If B C X is a Borel set such that ms(0B) = 0 (equivalently fis(0B) = 0) and p € E is withi(p1) = v,
then,

. Dy (BT) . EY(BT) _

(2.18) im0 i SV (1, )ig(B),
where Cy,(Y,) € (0,400) is a constant depending only on the verter v € V and the set Y,. In particular,
this holds forY, = X,, ve V.

COROLLARY 2.7.8. Suppose that S is a strongly reqular D-generic conformal IFS acting on a phase
space X. Let § = 6s = HD(Js). Fiz Y C X having at least two points.
If B C X is a Borel set such that ms(0B) = 0 (equivalently fis(0B) =0) and p € EY, then,
DY (B,T) EY(B,T)

2.19 li ———— =1
( ) TﬁlIJrrloo €5T T%H%I}oo eéT

where C(Y) € (0,4+00) is a constant depending only on the set Y. In particular, this holds for Y := X.

= C(Y)ms(B),






CHAPTER 3

Parabolic Conformal Graph Directed Markov Systems

We want to apply the previous results (Theorem 2.4.8, Theorem 2.4.9, Theorem 2.7.1, Theorem 2.7.4)
to prove counting theorems for a variety of dynamical and geometric examples. In particular, these theo-
rems can be applied to prove geometric counting results for Apollonian packings and many other systems
naturally arising in the realm of Kleinian groups and one-dimensional conformal, holomorphic and real,
dynamical systems. But such systems do not really fit into the framework of previous sections. These
however fit into the framework of conformal parabolic iterated function systems, and more generally of
parabolic graph directed Markov systems. Therefore, and because parabolic systems are interesting on their
own, following [45] and [47], we recall the definition of parabolic systems, bring up their basic properties,
and, based on mentioned above results from previous sections, i.e attracting GDMSs, we prove appropriate
counting results for them. This primarily means Theorem 3.3.1 and Theorem 3.3.2 for multipliers i. e.
analogues of Theorem 2.4.8 and Theorem 2.4.9 in this setting, along with several of its quite involved,
corollaries, primarily about counting diameters.

3.1. Parabolic GDMS; Preliminaries

In present section, following [45] and [47], we describe the suitable parabolic setting, we canonically
associate to a parabolic system an ordinary (uniformly contracting) conformal graph directed Markov
system (a kind of inducing), and we prove Theorem 3.1.7, which is a somewhat surprising and remarkable
result about parabolic systems.

Similarly as in Section 2.2 we assume that we are given a directed multigraph (V, E, 4, ¢) with V finite
and E also finite (though in Section 2.2 F was merely assumed to be countable), an incidence matrix
A: Ex E — {0,1}, and two functions i,t : E — V such that Ay, = 1 implies ¢(b) = i(a). Also, we have
nonempty compact metric spaces {X,},ev. Suppose further that we have a collection of conformal maps
©e : Xi(e) = Xi(e), € € E, satisfying the following conditions (which are more general than in Section 2.2
in that we do not necessarily assume the maps @, to be uniform contractions).

(1) (Open Set Condition) ¢, (Int(X)) N @p(Int(X)) = @ for all a,b € F with a # b.

(2) |¢L(z)| < 1 everywhere except for finitely many pairs (e, z.), e € E, for which z. is the unique
fixed point of ¢, and |, (z.)| = 1. Such pairs and indices ¢ will be called parabolic and the set
of parabolic indices will be denoted by €. All other indices will be called hyperbolic. We assume
that A.. = 1 for all e € Q.

(3) ¥n > 1 Vw = (wiwz...w,) € E7% if w, is a hyperbolic index or w,_1 # wy,, then ¢, extends
conformally to an open connected set Wy, ) C R? and maps Wi(w,) Into Wiy, )-

(4) If e € E is a parabolic index, then

M eer (X) = {zc}

n>0

and the diameters of the sets @en (X) converge to 0.

53
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(5) (Bounded Distortion Property) 3K > 1 Vn > 1 Vw € E} Va,y € Wy, if w, is a hyperbolic
index or w,_1 # wy, then
/
L) _
ol ()] —
(6) Ik <1Vn>1Vw e E% if w, is a hyperbolic index or w,,—1 # wp, then ||¢l || < .

(7) (Cone Condition) There exist v, [ > 0 such that for every z € X C R? there exists an open cone
Con(z, o,1) C Int(X) with vertex z, central angle of Lebesgue measure «, and altitude I.

(8) There exists a constant L > 1 such that
A

e ()]

for every e € E and every pair of points z,y € V.

—1\ < Liy - 2|,

We call such a system of maps
S={p.:ec E}
a subparabolic conformal graph directed Markov system.
Let us note that conditions (1), (3), (5)—(7) are modeled on similar conditions which were used to
examine hyperbolic conformal systems.

DEFINITION 3.1.1. If  # (), we call the system S = {¢; : i € E'} parabolic.

As stated in (2) the elements of the set E \ © are called hyperbolic. We extend this name to all the
words appearing in (5) and (6). It follows from (3) that for every hyperbolic word w,
00oWiw)) € Wiy

Note that our conditions ensure that ¢, (z) # 0 for all e € E and all € X;(;). It was proved (although
only for IFSs nevertheless the case of GDMSs can be treated completely similarly) in [45] (comp. [47])
that

(3.1) lim sup {diam((pw(Xt(w)))} =0.

n— oo UJGEZ

As its immediate consequence, we record the following.

COROLLARY 3.1.2. The map m =7s: EY — X := @,y Xo,
{r@)} = ] eu. (X),
n>0

is well defined, i.e. this intersection is always a singleton, and the map w is uniformly continuous.

As for hyperbolic (attracting) systems the limit set J = Jgs of the system S = {©e }ece is defined to be
JS = F(Ezo)
and it enjoys the following self-reproducing property:
J = ee(J).
eckE

We now, still following [45] and [47], want to associate to the parabolic system S a canonical hyperbolic
system S&*. We will then be able to apply the ideas from the previous section to S*. The set of edges is
defined as follows:

E.={i"jin>1,i€Q,i#4j€E, A;=1}U(E\Q) C E}.

We set
Vi =t(E,) Ui(Ey)
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and keep the functions ¢ and ¢ on E, as the restrictions of ¢ and ¢ from E%. The incidence matrix
A*: B, x E, —{0,1} is defined in the natural (and the only reasonable) way by declaring that A%, =1 if
and only if ab € E7. Finally

S* = {(pe : Xt(e) — Xt(e)l e e E*}
It immediately follows from our assumptions (see [45] and [47] for more details) that the following is true.

THEOREM 3.1.3. The system S* is a hyperbolic (contracting) conformal GDMS and the limit sets Js
and Jg+ differ only by a countable set. If the system S is finitely irreducible, then so is the system S*.

The price we pay by replacing the non-uniform “contractions” in S with the uniform contractions in §* is
that even if the alphabet F is finite, the alphabet E* of S* is always infinite. In particular, already at the
first level (just the maps ¢, w € E*,), we get more scaling factors to deal with. In order to understand
them, we will need the following quantitative result, whose complete proof can be found in [88].

PROPOSITION 3.1.4. Let S be a conformal parabolic GDMS. Then there exists a constant C' € (0, +00)
and for every i € Q there exists some constant p; € (0,400) such that for alln > 1 and for all z € X; :=
Ujenyiy i (X),

_pitl _pitl
C™iIn™ 7 <|ph(2)] <Cn™ #i .

Furthermore, if d = 2 then all constants p; are integers > 1 and if d > 3 then all constants p; are equal to
1.

Let us also introduce the following auxiliary system:
ST i={pe:e€ E\Q}.
As an immediate consequence of Proposition 3.1.4 we get the following.

ProroSITION 3.1.5. If S is a conformal parabolic GDMS, then

Ps ps
I's« = 400 . =
S <p$+13 >7 s pS+17

where
ps = max{p; : i € Q}.

and the system S* is, in the terminology of [47], hereditarily (co-finitely) regular, in particular, strongly
reqular.

We set
0s := 0%,
mss ==my,, and Mg =mj_, .
Given e € E, we set
Qe:={aeQ: A, =1}

and

Q,:=Qy,
for every p € EY. We will need the following facts proved in [45], comp. [47].

THEOREM 3.1.6. If S is an irreducible conformal parabolic GDMS, then

(1) ds =HD(Js),
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(2) The measure msg is d—conformal for the original system S in the sense that

s (9o (F / || diftss
for every w € Ea and every Borel set F' C Xy, and
Mos (Pa(Xi() N ps(Xigg)) =0
whenever a, B € B and are incomparable.

(3) There exists a, unique up to multiplicative constant, o—finite shift—invariant measure pss on B,
absolutely continuous with respect to msy. The measure ps5¢ 1s equivalent to mss and

(a) The Radon—Nikodym derivative of puss with respect to mg is given by the following formula:

Ui () = 295 () — gz ()£ 3 Il ()05 (ap).

dm
ds a€Q, k=1

(b) The measure pss (and Jiss = pss © T ') is finite (we then always treat it as normalized so
that it is a probability measure) if and only if
2ps
ps+1
More precisely, the following conditions are equivalent:

2pa
(bl) 05 > pfjH’

(b2) There exists an integer | > 1 such that uss([a']) < +o0, and

0s >

(b3) For every integer | > 1, pss([a']) < +o0.

(4) Furthermore, we have that
Xos i= —/ log‘gowl (rs(w }du(; X35 € (0,+00)

and, as for attracting GDMSs, we call x5s the Lyapunov exponent of the system S with respect
to measure s -

For future use we denote

2pq
Qoo = No(S) := eN: >ds .
(s) { e s}

A crucial feature of the hyperbolic systems arising from parabolic systems is that they are automatically
D-hyperbolic. We have already seen that this is not necessarily true for hyperbolic systems.

THEOREM 3.1.7. If S is an irreducible conformal parabolic GDMS, then 8*, the associated contracting
(hyperbolic) GDMS, is D-generic.

PROOF. Assume for a contradiction that S* is not D-generic. According to Proposition 2.3.8 this
means that the additive group generated by the set

{ —loglg,(zu)|:we Ei .} CR

is cyclic. Denote its generator by M > 0. Fix b € Q and then take a € E% such that o; # b and
ab’a; € E%. Note that then ab’a; € Ef,. and moreover ab™ay € E* ,. for all integers n > 2. For every
integer n > 2 denote by x,, € Js- the only fixed point of the map @apra, : Xi(ay) = Xi(a,)- We know from
the above that for every n > 2 there exists an integer k, > 1 such that

(32) 108 [y, ()| = M
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By Proposition 3.1.4 we have that

_pptl

(3.3) |90;b"a1(xn)| |90a1 )| |‘Pb" Yo (Tn) | |90a Pora (Tn) | =Chn 7

with some C,, € (C~1,C), where C is the constant coming from Proposition 3.1.4. Combining this with
(3.2) yields

1 YU 1
ky, =——1 ' I .
Y ogCy, + M, ogn

On the other hand
lim z, = hm Pabmaq (xn) = (pa(nh—{jgc 901?(9001 (xn))) = @a(mb)

n—oo
and

nll)rréo Obray (Tn) = Tp.

Keeping in mind that ¢,(zp) = 3 and |} (2p)] = 1 and using the Bounded Distortion Property, we
therefore get

lim ’SO;b"Jrlal <$n+1)‘ = lim |(‘0ab"+1a1 Po xb))’

n— 00 “p:lb"ul (Jjn)‘ n—>oo ’@ab"al 9004 Tp )’
= lim |<poz( n+1(30a1o¢(1'b) )| |90b(50b Sﬁala(xb))ﬂ
n—o00 ‘(pa((p (Pozla .’L‘b )‘
/ .
= lim_ M(x;),'(x'gbl(xb)' = |gp(an)| = 1.

Equivalently:
lim (—1og |4y s14, (@nt1)| = (=108 [@hpna, (@n)]) = 0.

n—oo
Using (3.2) this gives that lim,, o (kn+1 — k) = 0. Since all k,,, n > 1, are integers, this implies that the
sequence (k,)>2; is eventually constant. However, it follows from (3.2) that lim,,_,. k, = 400, and the
contradiction we obtain finishes the proof. O

REMARK 3.1.8. We could generalize slightly the concepts of subparabolic and parabolic systems by
requiring in item (2) of their definition that not merely some elements ., e € E, have parabolic fixed
points but some finitely many elements ¢,,, w € E%, have such points. In other words it would suffice to
assume that some iterate of the system S in the sense of Remark 2.2.2 is parabolic. Indeed, this would not
really affect any considerations of this and any forthcoming section involving parabolic GDMSs, and such
generalization will turn out to be needed in Subsection 5.2.1 for the Farey map, Subsections 6.2 and 6.2.2
when we deal respectively with Schottky groups with tangencies and Apollonian circle packings.

3.2. Poincaré’s Series for §*, the Associated Countable Alphabet Attracting GDMS

In this section we again let S be an irreducible conformal parabolic GDMS. Our goal is to describe the
Poincaré series and the associated asymptotic (equidistribution) results for the system S. This is achieved
by means of the transfer operator associated to the associated hyperbolic system S*.

We begin by formulating the required notation. Fix first p € EQ arbitrary. Denote £ := mg+(p).
Treating p in an obvious way as an element of EY, we can also write £ = ms(p). Fix next an arbitrary
TEE ..

Let nf(r,s), i = p,p, be the corresponding Poincaré series for the contracting system S*, and we
continue to use

771‘(7'75)7 1= 2y 2
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to denote the Poincaré series for the original (now parabolic) system S. This allows to deduce the an-
alytical properties of n; from those for the 7], to which we can apply the results already established in
Proposition 2.5.3.

We show that the Poincaré series 7);(7, s) for the parabolic system S can be expressed in terms of the
Poincaré series for 7} (7, s) for the hyperbolic system S*. In particular, we can deduce properties for n; (7, s)
which are the analogue of those for 7);(7, s), already established in Proposition 6.3. We can formally write

n(rs)= D (o)’

wEE;:TwEEZ

= D @I+ DT e (T ()

weB} , a€Q, k=1 weET 4.
-rweE:A* TwaEEY
. = > @)+ D Z D 1k (m (@ )l (m(p))I*
(3 ) WEE*p a€Q, k=1 weEY .
TwEE* Tax 7-waEEjﬁ4
= > @)+ D ZI% Y e (w(a )l
weE}, a€Q, k=1 WEBY 4.
‘rwGE A* rwaeEA
=)+ 3 D ) ey .9),
acQ, k=1

Since by Theorem 3.1.7 we have that §* is D-generic it follows from the proof of Theorem 2.5.3 that for
every sg = s + itg € ]."‘JSr with ty # 0 all functions n:kp(T, -) have holomorphic extensions on a common

neighborhood, denoted by U, of sy € 'L, of the form

q
U5 s S N()(1 = A5()) P (941 o m)(akp) + 82 (s) € C,
j=1

Wy

where all the symbols “x” indicate that the appropriate objects pertain to the system S*. Since

P2 (151" o) (@ p)| < (1P (1ol 0 ) loo < P25 (195]° 0 T*)lla < +o0,

it follows that all the functions nZkP(T, -) are uniformly bounded on U. Since also ds > pp 47 and since

Patl
Pa 58

(3-2) [l (@(E))IF] < L (m(p)IS = (k +1)~

we eventually conclude that the series in (3.1) converges absolutely uniformly on U, thus representing a
holomorphic function. We are therefore left to consider the case of sg = ds. By virtue of (2.3) we then
have for every k£ > 0 that

Moo (7,8) = AL (1= ND)THHS (0" p) + oo (s).
Substituting this into (3.1), we therefore get
Bo(9) = 1378 X (L= A0 S S e (RO HE (a) + 3 3 et () e (),
a€Q, k=1 a€, k=1

and by (3.2) both series involved in the above formula converge absolutely uniformly on U. Looking up
now at the calculations from the end of the proof of Theorem 2.5.3 and invoking Theorem 3.1.6 (3) and
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(4), we conclude that the function U > s — 0,(7, s) is meromorphic with a simple pole at s = ds whose
residue is equal to

UsslO) e 1) 30 Il ()P (e gy, () =

X5s a€Q, k=1
(%S £ Y 3 et (m(0) P, (@) ) mas ()
a€f), k=1
_ Mm .
= 2 Emag (7).

We have thus proved the following.

THEOREM 3.2.1. If S is an irreducible parabolic conformal GDMS, p € EX., and T € E,., then

(a) The function A% > s — n,(7,s) € C has a meromorphic extension to some neighborhood of the
vertical line Re(s) = ds,

(b) This extension has a single pole s = 0s, and

(¢) The pole s = ds is simple and its residue is equal to ¢;sip) mss ([T]).

3.3. Asymptotic Results for Multipliers

Now that we have established Theorem 3.2.1, we are ready to prove the following theorem which, along
with its two corollaries below, constitutes the main results of this section.

THEOREM 3.3.1 (Asymptotic Equidistribution of Multipliers for Parabolic Systems I). Suppose that S
1s an trreducible parabolic conformal GDMS. Fixz p € EY. If T € E7 then,

Np(, T) _ ¢ss(p)

Nl li =
(3.1) T_lffoo 00sT 05X sus mss ([7]),
and
. N,(7,T) 1
(32 Pl S = e

PRrROOF. We first prove formula (3.1). If p € E5. and 7 € E} ., this formula follows from Theorem
3.2.1 in exactly the same way as formula (2.5) in Theorem 2.4.8 follows from Theorem 2.5.3.

Now keep 7 € E},. and let p € EY be arbitrary. Then for every ¢ > 1 large enough there exists
pq € E. such that

Plg = pqlg-
Since limg—,o0 d(p, pq) = 0, the Bounded Distortion Property (BDP) for the attracting system S* yields a
function ¢ — K, € [1,+00) such that

(3.3) qlggoK
e _ Ieh(ms(o))
_ o (rs(p =
K < 1 mston] < Ko

for all ¢ > 1 large enough as indicated above. Hence

N, (1, T —log K;) < N,(1,T) < N, (r,T + log K,).
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Therefore, dividing by 7 we get that
Npq(T,T—logIN(q) I?;‘SS < NpgT,TT) < Npq(T,T+logI~(q) I/(\'gs.
exp(0s(T —log Ky)) e’s exp(ds(T +log Ky))

Since pg € EY. and 7 € E} 4. we thus obtain

s Yo (P) e Np(nT) No(T: T) _ 7555 Y55 (P)
Ko™ Soxag oD = fiminf =G < limeup =55 < K S e 1)
Invoking (3.3) we now conclude that
- N T)  hss(p)
(34) TEIJI:OO eosT 5SX6.5 m5s([T])'

Working in full generality, we now assume that p € EY and 7 € E%. Then there exists 7., a countable
collection of mutually incomparable elements of E} 4., each of which extends 7, such that

mas (m v U M) ~o.

weF,

Noting that then the family {[w] : w € F;} consists of mutually disjoint sets, we thus get that from (3.4)

that
N.(r.T N,(w,T T
liminfL7> > lim inf ZWEE ol ) > lim inf p(w )
Totoo e9sT TS +00 edsT Totoo 98T
weF,
Vs (p) Vss(p)
=) = mag([w]) = s s([7)
WEF. SXILJS SX;U«SS

Having this (and already knowing that the neutral word () belongs to EZ,.) then (3.4) gives that
N,(T
lim P( ) _ wtss (P) ms ([@]) o ¢5s (P) mé,g( 00 ) %s (p)

T—+too 9T 0sXss 08 Xss A

5SX6$ ’

we deduce that (r.T) )
. Np T,T wé 1Y
L o s ([7])
in the say way (although it is now in fact simpler) as formula (2.12) is deduced from (2.8) and (2.1), the
latter applied with 7 = @ (i.e., the empty word). The proof of formula (3.1) is then complete.
Now we prove formula (3.2). First assume that 7 is not a power of an element from . This means

that either

T=ad'p
where a € 2, j > 1, and f; # a or
r=p
where §; ¢ Q. In either case, _
r=alB,

with j > 0. As in the proof of formula (2.5) in Theorem 2.4.8, for every v € E% fix v© € EY (which in
fact can be selected to depend only on 7},|) such that

vyt € EY.
Fix ¢ > 1 and v € EY arbitrarily. Consider an arbitrary element wb® € E%, w € EZ 4« b € Q2 such that
a’ Bywbk € E;. Consider two cases:

Case 1°. Assume b # a if j > 1. Then
|t vt (Tai gyt )| = |0t s (w5 (070 B70) )| - |l (s (a7 Bryed®™) )
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and

|00 g (T (07 BYy D)) | = | @3 gy (s (0507 B3 H)) | - | (s (a? By ™)) |-
Since w € E¥ 4. and since either b # a if j > 1 or 1 € Q if j = 0, by the (BDP) we get that
=1 _ [P (rs((BFa?Br0)®))| _ -

K : <K
T @ g (s(0FaI By )| T

and
~ 1 @b (s ((af BywbF)>=)|
Ko< ot (ms (a7 ByyH)) |

with some “distortion” function ¢ — f(q € [1,+00) such that lim,_, IA(q = 1. Consequently,

<K,

= |(plj k(xaj,B wbk)’ ~
3.5 K?2< ol ywh al < K2
3:) o s (@77 = 0
Case 29. Assume j > 1 and b = a. Then
(36) |<p:1jﬁ'ywbk (ma-76'ywb’“)| = |<p:1jﬂ'yw (WS((ajJrkﬁ’Yw)oo)” ' |<p;k (WS((ajBVka)OO)H
and
(3.7) |00 gyt (T8 (07 BV )| = |0hi gy (s (@7 T B9y ) || (s (07 By ) |-

Again by (BDP) we have that

[0 5 (75 (@75 B0)®)) |

3.8 K;' < , < K,
(38) ! |5 o (s (@T TR By ) | !
By the Chain Rule
(3.9) |l (ms (@7 BYR))| = |@anss (s (BY))| - |1l (ms (Bye))|
for every k € E’ such that vk € E%. Since 51 # a we have that

=1 _ | (ms((Bywa®) @) | _ =
ot < b sl
|‘Paj+k (7TS (Byy )) |
and
1 o | s (Bywa)))| _
T el (rs(B )] T
Hence, invoking (3.9) we get that
~ o _ |l (ms((a Bywa®)®))| _ ~
Kq 2 S | ks - - )| S Kg
¢! i (ms (a7 By H)) |
Along with (3.8), (3.6) and (3.7) this yields
~ |L)0Ij bk(xajﬁ wbk)| =~

3.10 K73 < e ! < K3.

(310 C T P g (Ts(aI By )| T

Now it follows from (3.5) and (3.10) that

(3.11) Tai gyt (@7 By, T — 3log IN{q) C mp(a? By, T) C Toigyy+ (a7 By, T + 3log IN(q).
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Therefore, applying (3.1) we get that

N,(a?8, T N, IB~,T — 3log K,
lim inf Np(@’8,T) > lim inf Z spyyt (@B 08 Ky)
T—+o0 edsT T—+o00 edsT
WEEZ
alByEEY
o Najﬁ,w+(aj5'y7T — SIOgI?q)
> ), lminf s
WEE%
ajﬁ'yeEZ
(3.12) _ Z lim inf Nai gyt (a/Bv,T — 3log Kq)f(—:sés
T—s 400 eés(T—SlogIN(q) 4q
WEEZ
aijeE"Z
= Yss(a Byy ) ;
=K Y s mas(@B))
YEER S
alByeEY
> K7 (@ 8)——pss (a7 8],
65X6s

with some function ¢ — K,(a’3) € [1,+00) for which lim,—, . K,(a’3) = 1 and which exists because a’ 3
is not a power of an element from (. Taking the limit in (3.12) as ¢ — +o0, we thus get that

.. Np(a?B,T)
. >
(3 13) ljlrgfg edsT ~ 0sXs

pss ([a B]).

In the general case, i.e., making no assumptions on 7 € E% we proceed in the same way as in the proof
of formula (3.1). We can fix F,, a countable collection of mutually incomparable words extending 7, not
being powers (concatenations) of elements from €2, and such that

/%(M\U>=0

weF,

Noting that then the family {[w] : w € F;} consists of mutually disjoint sets, we thus get that from (3.13)
that

w, T ,T
lim inf o(7,T) > lim inf Luer, Mol ) > lim inf p(@.T)
To4oo e9sT T—+o0 edsT T To+oo 95T
(3.14) . 1”6 T
= 3 ) = s ([
sXos 57 SXs

For the upper bound we again deal first with words a’f3, i.e., the same as those leading to (3.13). Since
the alphabet F is finite it follows from the left hand side of (3.11) and from (3.1) that
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a’ By, T + 3log [?q)

lim sup —~—~ ( 6’ T) < lim sup Z Naipry+ (@

T— 400 Totoo Che edsT
ajﬁ'yEEz
N, iBy, T + 3log K,
S Y timop ot @OV T 4 3105 Re)
sepy Tt ers
al ByeEY
(3.15) - ¥ hmsupNamww(aJﬂ%TJE310qu)[~(355
< Tteo eds(T+3log Kg) a
YEES
aj[-}'yeE*
s (a? Byt j
SNl DI G AP
s SXos
afﬁweEg
igy_1 i
< Ko@) -——pas (075,
ds

Taking the limit as ¢ — 400 in (3.15) we thus get that
N(@?5.T) _

J
lim inf —=~-7— < Sorne tss ([a” B]).-
Along with (3.13) this gives
. N,(a?B3,T) 1 j
(316) T1—1>I-f-loo e0sT - 5SX55 ,ués([a‘ B])

Passing to the upper bound in the general case, we only need to deal with powers of parabolic elements.
Because of (3.14) and Theorem 3.1.6 (bl) (b3), formula (3.2) holds for all words 7 = a!, | > 1, where a €

2Pa

ds > .

S patl
Then for every integer j > —1, we have
(3.17) CARNICARES U{ [a’'e] e € E\ {a} andA,. = 1}.
Since the set E \ {a} is finite it thus follows from (3.16) that

Np([a” ]\ [7+2], T) 1 : 1 : :

3.18 P == J+1 J+2 JHIy _ J+27))
(318) ot e o (0 742) = 5 s (1) = s ()

Now if w € [a/ ']\ [a7*?] then w = a/ (ara') with k1, k| € E\{a}, Aax, =1, Ag, o =1, and [ > 0. Then

—(pa+t1)/Pa

eiT < |<P;] (aral) (xaj (ana")) ’ = |80:1,€al (xaj (anal)) ‘ . |<)0:7,J' (xaﬁaj‘*'l ) | = (.] + 2) @:,mal (xaj (ama’)) ’ .

o
=

Denoting by @@ > 1 the multiplicative constant corresponding to the sign above, we thus get

(3.19) [Phat (Tas (ara)| = Q71 +2) 750 e
Now fix a word 8 € EY with 51 = a and (2 # a. Then

pa+1 .Patl

|90:1/.;al (xaj(a/{al))| = ‘(plal (xaj(anal))‘ : |Lp:zn($aj+l )l - (.] +1+ 2) ©J Pa
It therefore follows from (3.19) that

|oha(ms(B)] = Q2 +1+2) "% e 7.

(p/cm (WS(B)) |
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Equivalently,
—log |, (ms(8))| < 21og Q — (p‘gl) log(j +1+2)+T.
Hence
ak € mg ([(ml],QlogQ _ Pt log(j +1+2)+ T) .
Therefore,

(3.20) Ny([@? T\ [a?2)) < Z ZN@ ( [ab],2log Q —

bEE\{ } =0
Agp=1

log(j +1+2) +T>

a

By formula (3.1), and since the alphabet E is finite, there exists 77 > 0 such that

’(/}55 (6) ms

3.21 e 955 Ny([ab], S) <
(3.21) s([ab], 5) < Ssxoe = Fovxae

for every b € E'\ {a} with A,, =1 and every S > T;. Now

ol
210gQ — P log(j 1142+ T > Th
p

a

if and only if

. _2Pa_ Pa
3.22 [+2< = (QPratT T —T; .
(3.22) JHI+2<s7:=Q exp (pa n 1( 1))

In addition, if

(3.23) Q—p“ Log(j+1+2)+T < -1,
then
(3.24) Ng ([ab],?log@— log( +l+2)+T) 0.

Formula (3.23) just means that

(3.25) G142 > up = eQrettentiT
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Therefore, returning to formula (3.20), for every ¢ > 1 we get that
(3.26)

> e STN ([0 T\ [a?2)) <

J=q+1
Z i Z Npg ([ab},ZlogQ—p‘;—jllog(j+l+2)+T>
bEB\{a} j=ql: JHI+2<s7EXD ((53(2 log @Q — p‘;ijl log(j + 1+ 2) + T))

Agp=1
+ > e~ 9T Ny ([ab], T})
sT+1<j+l+2<ur

26 V55 (B) o —Batlg —6sT, 2
S QB TS kR g Ny T

Qs (j +1+2) "5 054

Jj=q k=j

~ > . pa 2p
< 1- B2 0s o _
,Q1j§:;1] +Q2€XP(<pa+1 53>T>

~ _Ppatl P 2
< Q3q> P %% 4+ Qo exp ((p Tl _55) T) ’

where N, := max{Ng([ab],Tl) : b e E\{a}, Awp, = 1}, @1,@2,@3 > 1 are universal constants, and the

Applying (3.18) and (3.26) we obtain for all integers ¢ > k + 2 the following estimate

N,(a",T) 1 i
T—>+oo‘ e‘ssT B 0sXss Hos ((a7])] =
q . ,
T Np([@” 1]\ [0/ 2], T ([ 1]\ [a?*2],T) 1
~ Tim 2 + — — pss (a*])
TS0 j;l edsT J%l 65ST dsXss °
q . , o , ,
. Np([@” 1]\ [a7+2], T) 1 T Np([a” ]\ [a?+2], T))
< lim P LA s<([d*D] +  Tim P ’
Torbeo j:;—l e’sT §5X5SM (o) Tooee jz;‘l ebsT
< S @ ) )|+ e Y e (22 6 )7
- 55)(58 : ° T—+too Pa+1
j=k—1 a€
— s 1\ 72— ()|
1
— s aq+2 .
Sorss " s([@™7)
But since ds > pzfi‘;l we have that lim,,  pss([a?72]) = 0 and therefore
To NP([ak]7T) 1 k _
N e e Call B
This just means that
_ Np([a"],T) 1 K
A TR T T Gaas Pas ([@7):

The proof of our theorem is thus complete. |
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The proof of the following theorem, based on Theorem 3.3.1, is exactly the same as the proof of
Theorem 2.4.9 based on Theorem 2.4.8.

THEOREM 3.3.2 (Asymptotic Equidistribution of Multipliers for Parabolic Systems IT). Suppose that S
is an irreducible parabolic conformal GDMS. Fiz p € E®. If B C X is a Borel set such that msg(0B) =0
(equivalently [iss(0B) = 0) then,

NP(B7T> _ %S(P) ~

2 li = B
(3.27) Tobeo €8T 08X psg mss (B)
and

. N(BT) 1 _
(3.28) pim = = 55 xm fiss (B).

We have as an immediate corollary the following:

THEOREM 3.3.3 (Asymptotic Equidistribution of Multipliers for Parabolic Systems). Suppose that S
is an trreducible parabolic conformal GDMS. Fiz p € EY. Then

NP(T) _ "/}55 (p)

(3.29) T1—1>r-f-1<>0 edsT 58)(”55
and

. ON(T) 1
(3.30) L S, fss (Js)-

3.4. Asymptotic Results for Diameters

We now want to use the asymptotic results established in the previous section to show the asymptotic
formulae for diameters of images of a set.

In this section, as in the previous one, we assume that S is an irreducible conformal parabolic GDMS.
Our task here is, for parabolic systems, the same as the one in Section 2.7 for attracting systems, i.e. to
obtain asymptotic counting properties corresponding to the function —logdiam(p,(Y)), w € E%. The
notation here is the same as in Section 2.7. Our strategy now is to use the full generality of Theorem 2.7.1
and to deduce from it the first main result of the current section, which is the following.

THEOREM 3.4.1 (Asymptotic Equidistribution Formula of Diameters for Parabolic Systems, I). Suppose
that S is an irreducible parabolic conformal GDMS. Fix p € EX andY C X;(,) having at least two points.
If B C X is a Borel set such that mss(0B) = 0 (equivalently fiss(0B) = 0) then,

(3.1) im 25T

Toiteo  edsT = CP(Y)ﬁLtSs (B),

where Cp(Y') € (0,400] is a constant depending only on the system S, the word p (but see Remark 3.4.3),
and the set Y. In addition C,(Y') is finite if and only if either
(1) B B
YNQo =Y NQeNQ,) =0
or
(2)
6s > max {p(a):a €, and z, €Y}

Then the function [p1] D w — C,(Y) is uniformly separated away from zero and bounded above.
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PROOF. Recall that
Oy, ={acQ:A,, =1}

=E;,u | D E*,a"

a€Q, k=1

We know that

and this union consists of mutually incomparable terms. Therefore,

DY(B,T) =D s.(B,T)U UDq) ? s (BT,
a€Q, k=1

and this union consists of mutually disjoint terms. Therefore,

DY (B,T) DYS* (B, T) Ln).s (B.T)
2 (B.T) oy y Pane B0
a€f), k=1
and for every g > 1:
oo a*p
Dg(B,T) Dys* (B,T) y) 5* B,T) D%k(y),s*(BaT)
(3:3) s S DY 32 e DD e
a€Q, k=1 a€Q, k=q+1

Assume first that p € EY,.. Then, a*p € EY,. for every a € Q, and for all integers k > 0, whence we can
invoke Theorem 2.7.1 and 3.2, to conclude that

k:
D? (B T) DQS*(BaT) > D<p e (Y), S*(B T)
lim X222 > |jm —=2—~ li
(3.4) =(csm+ Y ZC’ (¥)))mi, (B)
a€Q, k=1
(CS* Z ank (Pa )mgS(B).
acQ, k=1

Since for every a € €2, and for all integers £ > 0
2 _
k+1) ra if YNQ,NQ ,
diam (.. (Y)) =< (k1) patl - o 70
(k+1)"% if YNQenQ, =0,

formula (3.4) along with (2.2), complete the proof of Theorem 3.4.1 if neither (1) nor (2) hold. So, for the
rest of the proof of the present case of p € EY,., we assume that at least one of (1) or (2) holds. Then

(3.5) )+ > ZC ) < 400,
a€Q, k=1

and in addition, this number is bounded away from zero and bounded above independently of p € EY,
because of (2.2).

Now fix a € Q,. IfweD“ (B,T), then

diam (@, (@qr (Y))) > e 7,

R (YV),S*

and, as
dinm (s (9ar (¥))) < 6]l sediam (s (¥)) < Qadiam(g (Xy()diam (0,0 (1))
= Qldiam(ww ()(i(a)))diarn(<pa’C (Y)),
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with some constant ()7 > 0, we thus conclude that

diam(pu(Xiw))) > Q7 te” Tdiam ™ (pqr (V).
Equivalently,

Ax,

i

(o (W) <log Q1 + log diam (. (Y)) + T.
Thus
w € DY s (logQ1 +logdiam (g (Y)) +T).

In conclusion,

ak a .
(3.6) D}’ yy,s-(B.T) SDY | s (log Q1 + log diam (¢, (Y)) + T).
By virtue of Theorem 2.7.1 there exists 77 > 0 such that

D%(a)vs* (B,5)
— s =

(3.7
for all S > T1. Now, let ko(7T') be the least integer such that

log Q2 + log diam (p,+ (Y)) + T < 0.
Then
(3.8) DY, s+ (log Q2 +log diam (g, (Y)) +T) = 0

for all k > ko(T) and

ka(T) < Qb epe (1) if (2) holds
QT en T (1) holds

with some constant Qo € (0, +00), which in general depends on Y if (1) holds. Furthermore, let k1(T") be
least integer such that

log Q2 + log diam (¢« (Y)) + T < T7.
Then, on the one hand,
log Q2 + log diam (.« (Y)) + T < T,

for all k > k1(T") and (so) it follows from (3.6) that

ak a
DSaa:), (Y),S* (.B7 T) g DX/:;(Q) ,S* (Tl)

On the other hand,

log Q2 + log diam (¢« (Y)) + T > Ty
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for all 0 < k < k1 (T). All of this, together with (3.6)—(3.8), yield

< D . (B,T)

Z Pk (V),S* A0 _
§$T -

k=q+1
B k1(T) Da s (B, T) . ko (T) Da p(Y) o (B, T)
N osT —
k=q+1 e’s ke hor (T)+1 eos
[QoePa(T=T)] DY s (log Qa2 + log diam ¢,k (Y)) + T)
< Xi(a)> . Q2 dlam (SDIL (}/))+
(3.9) k=q+1 exp (55 ( log Q2 + log diam (gpak (Y)) 4 T))
k2 (T) Dap T )
l(‘”"s* I (Ti=T
+ Z (53T1 s(Th )
k= k1(T)+1
k1(T)
< Qgs Z (Cf; (Xi(a)) + 1)dlam ((pa (Y)) + (Cf; (Xi(a)) + 1)€5S(T1_T)k2(T)
k=g+1

S Qgs Z (C:zS; (Xl(a)) + 1)dlam ((pa (Y)) + (Cf; (Xl(a)) + 1)665(T1_T)k2(T)‘
k=q+1

Denote by X1(g,T) the maximum over all a € Q, of the first term in the last line of the above formula and
by ¥o(T') the second term. Because we are assuming either (1) or (2) from our current theorem, we have
that in either case

(3.10) lim ¥,(¢,T) =0 and lim ¥,5(T) =0.

q—00 T— o0
Keeping ¢ > 1 fixed, inserting (3.9) to (3.3), and applying Theorem 2.7.1, we obtain
P
— DY(B.T) _

Th—r};o edsT =
— DY s-(B,T) D, i(YLS*(B’T)
< i B 35 ST 0, () + D)

a€Q, k=1

q

<O W)+ DYDY G (war (V) | ss(B) + #Q(S1(a, T) + (1)),

a€Q, k=1

Therefore, invoking (3.10), we obtain by letting ¢ — oo, that

DL(B,T) . _
hm W S CS Z ZC m5$(B).

T—o00
a€Q, k=1
Along with (3.4) this shows that formula (3.1) holds. The number
CS W)+ ) Z (o
a€Q, k=1

is finite because of (3.5). Invoking also the sentence following this formula, we conclude the proof in the
case of words p € EY,.
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Now, we pass to the general case, i.e., all we assume is that p € EY. For every k > 1 choose p®) € EN,.
such that
P = pli.

We already know that there exists a constant M > 1 such that
M~ < Cy(p®) <M

for all integers k > 1. So, passing to a subsequence, we may assume without loss of generality that the
limit "
. k
kgrfoo CY (p )

exists and belongs to the interval [M~1, M]. We denote this limit by Cy (p).

Assume first that B C X is an open set. In order to emphasize the openness of the set B and in order
to clearly separate the present setup from the next one, we now denote B by V. Fixing € > 0, there then
exist F;, a compact subset of ¥V and a number 7(g) > 0 such that

(3.11) mss (V\F:) <e and mss(B(V,r(e))\V) <e
and
(3.12) mss(0F.) =0 and msg (0B(V,r(e))) =0,

where in writing the latter of these four requirements we used the fact that mss(0V) = 0. Hence there
exists k > 1 so large that for every w € E, (simultaneously meaning that w € E,, , we have that

Puw (WS(p(k)» € FE — @w(WS(p) € V)
and
eu(ms(p) €V = u(rs(p™)) € B(V,r(e))).
Therefore, for every T > 0,
Dy (F..T) C DY(V.T) € DY (B(V,r(e)), T)
S0,
pe" (B, T) < DE(V,T) < D" (B(V, T
Y(€7)— Y(?)— Y((,T’(E)), )

Hence, applying the already proven assertion for words in EJ5. one gets

(r™) (p) (p)
- .. Dy (F,T) . . . Dy(V.T) Dy’ (V,T)
Coon (Y )iss (Fe) = TgToo  edsT < ljlr—%j-{g C ebsT = I}Ti‘if CedsT
()
. Dy (B(V,r(e),T)) ~
< lim T 5ot = Cou (Y)mss (B(V,7(e))).

So, letting k — +o0o and invoking (3.12) we obtain that

_ DLV DLV _

Hence, letting ¢ — 0 and invoking 3.11 we get that

p 13

T—+00 edsT Tostoo edsT < CP(Y)més (V)7

and the theorem is fully proved for all open sets B. Having shown this, the general case can be taken care
of in exactly the same way as the part of the proof of Theorem 2.4.9, starting right after formula (2.12).
This completes the proof. O

Having established Theorem 3.4.1, by proceeding in a similar way to the way Theorem 2.7.4 was based
on Theorem 2.7.1, we derive from Theorem 3.4.1, the following second main result of the current section.
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THEOREM 3.4.2 (Asymptotic Equidistribution Formula of Diameters for Parabolic Systems, IT). Sup-
pose that S is an irreducible parabolic conformal GDMS. Fiz p € EY and Y C X;(,) having at least two
points and such that ms(p) € Y. If B C X is a Borel set such that mss(0B) = 0 (equivalently fiss (0B) =0)
then,

p
(3.13) tim 25T

To400  e9sT - CP(Y)ﬁLéS (B)’

where C,(Y) € (0,+00] is a constant (the same as that of Theorem 3.4.1) depending only on the system
S, the word p (but see Remark 3.4.3), and the set Y. In addition C,(Y) is finite if and only if either

1
W YNQo=Y NN, =0
or
(2)
6s > max {p(a):a €, and z,€Y}.
Then the function [p1] D w +—— C,(Y) is uniformly bounded away from zero and bounded above.

REMARK 3.4.3. We now can essentially repeat Remark 2.7.5 verbatim with the only change being the
replacement of Theorem 2.7.4 and Theorem 2.7.1, respectively, by Theorem 3.4.2 and Theorem 3.4.1. For
the sake of completeness, convenience of the reader, and ease of referencing we summarize:

Since the left-hand side of (3.13) depends only on py, i.e. the first coordinate of p, we obtain that the
constant Cy (p) of Theorem 3.4.2 and Theorem 3.4.1, depends in fact only on p;. Again, we could have
provided a direct argument for this already when proving Theorem 3.4.1 and this would not affect the
proof of Theorem 3.4.2. Thus our approach seems most economical.

The last three results of this section are derived from the, already established, results, in the same way
as the last three results of Section 2.7 were derived from the earlier results of that section.

THEOREM 3.4.4. Suppose that S is an irreducible parabolic conformal GDMS with property (A). For
any v € V let Y, C X, having at least two points. If B C X is a Borel set such that mss(0B) = 0
(equivalently fiss (0B) =0) and p € EY is with p1 = a,, then,

Dy.(B,T) E{(B,T) ~
.14 i At e Yool
(3.14) Tl—lg-loo edsT T1—1>I-Eoo edsT Co(Yo)ss (B),
where Cy(Y,) € (0,+00] is a constant depending only on the vertex v € V and the set Y,. In particular,
this holds for Y, := X, v € V. In addition C,(Y') is finite if and only if either

(1) _ _
YNQo =Y NQuu Ny, ) =10
or
(2)

6s > max {p(a):a € Qy, and z,€Y}.

COROLLARY 3.4.5. Suppose that S is an irreducible maximal parabolic conformal GDMS. For any
veVietY, CX, having at least two points be fized. If B C X is a Borel set such that mss(0B) = 0
(equivalently fiss (0B) =0) and p € EY is with i(p1) = v, then,

DY (B,T) EY(B,T)

(3.15) lim = = lim

TS5 o 9T T r5Yeo 98T =0y (Yv)m5s (B),

where Cy(Yy) € (0,+00] is a constant depending only on the vertex v € V and the set Y,. In particular,
this holds for Y, := X,, v € V. In addition C,(Y") is finite if and only if either
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(1)
YNQe =Y NQonNQ,) =0
or
(2) _
6s > max{p(a):a €, and z,€Y}.

COROLLARY 3.4.6. Suppose that S is a conformal parabolic IFS acting on a phase space X. FixY C X
having at least two points. If B C X is a Borel set such that mss(0B) = 0 (equivalently fis;(0B) =0) and
p € EY, then,

. Dy(B,T) . E9(BT)
(316) T1~1>I}rloo edsT o Tglfoo edsT

where C(Y) € (0,400] is a constant depending only on the set Y. In particular, this holds for Y := X. In
addition C(Y') is finite if and only if either

(1)

= C(Y)mss(B),

YNQe =0
or
(2)

6s >max {p(a):a € Q and z,€Y}.



CHAPTER 4

Central Limit Theorems

We now consider the distribution of weights and the Central Limit Theorems. In this section we will
formulate the results in full generality and provide their applications in subsequent sections.

Let us consider a conformal, either attracting or parabolic, GDMS. As we did in previous sections, we
can associate to finite words w € E% both the weights A;(w) (i = p, p) and the word length |w|. We would
like to understand how these quantities are related for typical orbits, which leads naturally to the study of
Central Limit Theorems. The most familiar and natural formulation of Central Limit Theorems (CLT) is
with respect to invariant measures. However, in the present context it is equally natural to give versions
for preimages and periodic points.

4.1. Central Limit Theorems for Multipliers and Diameters: Attracting GDMSs with
Invariant Measure 5,

As an immediate consequence of Theorem 2.5.4 (which easiliy follows from Theorem 7.1 in [65]),
Lemma 2.5.6, Lemma 4.8.8 from [47], and Remark 2.3.6 from our present monograph, we get the following
version of the Central Limit Theorem for attracting systems and Gibbs/equilibrium states.

THEOREM 4.1.1. If S is a strongly reqular finitely irreducible D—generic conformal GDMS !, then there
exists 02 > 0 (in fact 0® = P"(0) # 0 because of Remark 2.5.6 and since the system S is D—generic) such
that if G C R is a Lebesgue measurable set with Leb(0G) = 0, then

—log | (ms(c™(w)))| — Xus.7 1 .2
lim pss |{we€ EY - | EACCIG I = X €eGy | = / e 2.7 dt.
n—r+o00 vn 2mo Ja

In particular, for any a < 8
—log |, (ms(o™(w)))| = Xus. 1 1 B e
lm g ({w €EEY :a< i (s (o 2l Ps <l = / e 257 dt.
n—-+o00 \/’ﬁ 210 Ja
Since by the Bounded Distortion Property (BDP) of the definition of attracting GDMSs, the numbers
| log diam (¢, (Yi(w))) — log g, (ms(o™ (w))]|

are uniformly bounded above and since lim,,_, { oo v/ = +00 we immediately obtain from Theorem 4.1.1
its version with — log |<p;|n(7r5(o”(w)))| replaced by —log diam (¢l (Yi())). This gives the following.

THEOREM 4.1.2. Suppose that S is a strongly reqular finitely irreducible D—generic conformal GDMS?.
Let 02 := P"(0)(# 0). For everyv € V let Y, C X, be a set with at least two points. If G C R is a
Lebesgue measurable set with Leb(0G) = 0, then

—log diam (¢, (Yi(w = Xps T 1 2
lim pu55 ({w e EY : g (P, (Vi) = Xiass € G}> = / e 207 dt.
n—-+oo \/ﬁ 2o G

Un fact ts g below can be replaced by the (unique) Gibbs/equilibrium state of any Holder continuous summable potential
f+EY =R

2In fact ts g below can be replaced by the (unique) Gibbs/equilibrium state of any Holder continuous summable potential
frEX =R

73
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In particular, for any a < 8
—log diam (¢, (Yi(w — n 1 B
lim  ps, <{w €EEY :a< g (¢ I”( e "))) Xpsg < /3}) = / e 202 (t.
n—-+oo \/’ﬁ 27T0 o

Also, as an immediate consequence of the appropriate results from [47] and Remark 2.3.6 from our present
monograph, we get the following Law of Iterated Logarithm.

THEOREM 4.1.3. Suppose that there S is a strongly regular finitely irreducible D—generic conformal
GDMS®. Let 0% := P"(0) > 0. For everyv € V let Y, C X, be a set with at least two points. Then for
Uss—a.e. w € B, we have that

—log |(¢],), (ms (0™ (@))] = Xuss
I o " _ Vam
;Eitg) vnloglogn e
and
—logdiam(w,, (Y — n
lim sup s (et Vo)) Xss =2n0.

n—+o0 vnloglogn

REMARK 4.1.4. It is possible to reverse the roles of the word length and the weights. More precisely,
given w € E4 and t > 0 we can define n = n(t,w) to be the only integer for which

AMwln) <t < Mw|pt1)-

Ergodicity of measure 5, and Birkhoff’s Ergodic Theorem then yield
li !
im —— =
t—+o0 n(t,w) Xuss

for pss—a.e. w € EY. We claim that there exists o2 > 0 such that for any a < 3

)‘(w|n(t w)) — Xus t 1 B 2 2
: oo ., > s _ —u” /20
thgp s s ({wGEA ta< i SB})— 271_0/(1 e o du.

This is obtained by reinterpreting an approach of Melbourne and Té6rok, originally applied in the case
of suspended flow [49]. In particular, they showed that if a discrete system satisfies a central limit
theorem with variance o2, then a suitable suspension flows also satisfy the CLT. * In the present case
one takes o : E4 — E4 as the discrete transformation and a roof function r : E4 — R defined by
r=—log|¢l, (ms(o(w)))|. For the suspension space E% = {(w,u) : 0 < u < r(w)} with the identifications
(w,m(w)) ~ (ow,0) one can consider the suspension flow o} : E? — E’ defined by o} (w,u) = (w,u+1t), up
to the identifications. We can associate to the o-invariant probability measure a @-invariant probability
measure fi, defined by dfi, = dp, x dt/ [ rduss. Given a function F : E, — R the CLT for the flow gives

that
o fOtFogos(w,u)ds—tfdﬂas 1 B a2
1 Ey:a< < = w/Rei g
P s ({W“) €faias Vi =0 \/ﬂa/a ‘ v

where 0} = U%/XMS cf. [49], §3.We would like to choose F' so that fOtF o s(w,u)ds corresponds to

A(Wn(t,w))- To this end one chooses a function F' which integrates to unity on fibers, i.e., for(w) F(w,u)du =
1 for all w € ¥4, and has support close to E4 x {0}. Thus the Central Limit Theorem for the suspension
flow corresponds to the Central Limit Theorem formulated above in ¢. The variances are related by a factor
of [rduss.

We now turn the the parabolic setting.
3In fact tsg below can be replaced by the (unique) Gibbs/equilibrium state of any Holder continuous summable potential

f+EY =R
4There is a mild hypothesis on the roof function r which is satisfied if 7 € L*, say. This is the case in our present context.
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4.2. Central Limit Theorems for Multipliers and Diameters: Parabolic GDMSs with Finite
Invariant Measure ys;g

Through this whole section we assume that the invariant measure usg is finite, so normalized to be
probability one. We want to consider analogous comparison results in the context of parabolic GDMSs.
Following the approach described in Section 3.1, given a parabolic conformal GDMS S we associate to
it a conformal GDMS S*. In this case the Central Limit Theorem for the measure uj_ associated to S*
translates into a Central Limit Theorem for the parabolic system S and its measure p5,. This leads to the
following results, the first of which is the analogue of Theorem 4.1.1.

THEOREM 4.2.1. If S is a finitely irreducible parabolic conformal GDMS with és > 1%5, then there
exists 02 > 0 such that if G C R is a Lebesgue measurable set with Leb(0G) = 0, then

—log ¢/, (ms(o™(W)))| — Xus. 1 1 .2
lim  psq w€EEY : | l"( il )))’ Ms e @ = / e 2.7 dt.
n—-+oo \/ﬁ 2o G

In particular, for any a < 8

—log |¢,, (ms(0™(W))| = Xusgn 1 [F e
i . a< Dln s < = T30
nll)ffooﬂés ({wEEA ca< T <g 2770/a e 202 dt.

PROOF. By Theorem 3.1.6, the hypothesis that s > % precisely means that measure s is finite,
and, as always, we normalize it to be a probability measure. Because of Theorem 3.1.7 and Remark 2.3.6
Theorem 4.2.1 then is a standard consequence of L. S. Young’s tower approach [94], [95], comp. [26], [26],
and [26]. O

The second result is the parabolic analogue of Theorem 4.1.2.

THEOREM 4.2.2. Let S be a finite alphabet irreducible parabolic GDMS with ds > %6, Then there

exists 02 > 0 such that if for every v € V, a set Y, C X, is given having at least two points and whose
closure is disjoint from the set of parabolic fized points €, then for every Lebesgue measurable set G C R
with Leb(0G) = 0, we have that

_1 d w Y w. - + 1 _
lim pss | qw € B - o8 diam(pu, Vicw,)) = Xput eG; | = / e 12t
n—+o00 \/ﬁ mJ G

In particular, for any o < f8
- 1Og diam(@w\ (i/t(w ))) = Xp T 1 A 2
1. c Eoo . < n n t < — —t /QUdt.
nﬁuq{loo Hss <{w A *= \/’ﬁ <8 Amo L ¢
PROOF. Because of Theorem 4.2.1, it suffices to show that

lim 15 <{w € BY : |log diam(pu), (Yi(w,))| —log|@y, (rs(0" ()| = nl/“}) =0.

n—-+o0o

To show this, write

gn(w) := [log diam(p,|, (Yyw,))| = log|@l,, (rs(a”(w))].
Since the set EY \ EY. is countable and the measure 54 is atomless, it suffices to deal with the elements
of EY\EY. only. Each such element w has a unique representation in the form

w=Td’o"(w),

5By Theorem 3.1.6, this precisely means that measure usg is finite, and, as always, we normalize it to be a probability

measure.
6As above



76 4. CENTRAL LIMIT THEOREMS
where 7 € E 4., a € Qand j = j(w) € {0,1,--- ,n — |7[}. Then for every n > 0 either
diom(pu, (Vi) = I@hIG + D7/ o diam(pu,, (Viga,)) = o4l G + 1)/,
respectively, depending on whether a € ?t(wn) or not. In either case
diam (e jn (Yiw,))) = l¢7 1+ 1)~
where o € {1/pa, (pa +1)/pa}. Since w € EY \ E'., there exists a largest (finite) k& > 0 such that
w € [ra?t].

Then

Patl Pa+1

|, (ms (@™ (W) [ < NIl (G 4k + 1) v (b +1) 7

Hence
Pat1

a

gn(w) < (log(k+ 1) +log(j +k+1)+alog(j +1)+Ty) <Tlog(j +k+1)

where I'y € [0, +00) and T" € [1,400) are some universal constants independent of w and n. Then

/EEOO_, gn(@)dpss (@) <Tj=T > > > N log(j + k + 1)pss ([ra’ D)),

axi(w)=j rEE) I (x) €D bre k=0
where Ez_j (%) denotes the set of all finite words of “real” length n— j that belong to E ,,. Now represent

each element 7 € E'\"7 () uniquely as cdy, where I > 0, ¢ € Q, d # c¢. Then both c¢!d and 7 belong to
E} 4., and we can write

n 1

5-TY Y Y Y XY Slosti+ b+ D (v ).

s * = bra k=
ceQ Acdil YEE! .« =0 a€Q Aabil k=0

Now since the Radon-Nikodym derivative j::l ZS is comparable to I + 1 on c¢!d and since the three words
S

cd, v and a’**b, belong to E, 4-, we obtain

n 1

R > i D> D og(f + k4 1)(1+ 1)myg ([c'dya’ b))

ceR jire VEEL 4 I=0 a€Q b#a k=0
Aca=1 PR At
n—j—1 00
Y Y Y S D w1+ D (s, (] m ()
ce) d#c YEET 4u =0 a€Q b#a k=0
Aca=t d'yEEz_k_l_l Agp=1

Pa+1 Ss

+1
SO (k)T

=< ZZiilog(j DI+

ceENaeN 1=0 k=1

=3 "N log(j+k+ 1)+ k+ 1)

a€Q k=0
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where the last comparability sign we wrote because 1 — p‘;}—“ég < —1 for all ¢ € Q. Therefore,

J

weBL.:j(w)=4}

<S03 S T tog(j + R) BT

j=0 aeQ k=1

=D =" log(j +k)(j + k)70 < +oo,
=0 k=1

oo
A

gnd/l&s = Z/{ gn(w)du(w)
=0

where, we recall, p = max{p, : a € Q} and the constant D is finite since ’%153 > 2. Therefore,
Tchebyschev’s Inequality tells us that

szo gnd/lés

~1/4
i/ Dn ,

pss({w € EX : gn(w) > n'/"}) <
and the proof is complete. O

REMARK 4.2.3. There are a variety of even stronger results, e.g., Functional Central Limit Theorems
and Invariance Principles, based on approximation by Brownian Motion, which should also hold with a
little more work. Similarly, there are other complementary results such as large deviation results.

REMARK 4.2.4. There are possible stronger results of other kinds as well. For example, in both the
hyperbolic and parabolic settings there is the possibility of estimating error terms and obtaining local limit
theorems as in [24] and [25].

4.3. Central Limit Theorems: Asymptotic Counting Functions for Attracting GDMSs

In this subsection we work in the setting of attracting GDMSs. We again fix p € E. For any n > 1
and w € E7 consider the weights

7052 = |l (m(p))|°.
More precisely, for every set H C E, we define

ZwEH ei&SAp(w) _ Egs]l[H] (p)
ZweE;; e~9s A (W) ‘Cgsﬂ(/’)

Define the function A : Y — R by the formula:

(4.1) o (H) =

Aw) = —log|ey, (o(w))]-
In particular, for every 7 € E7, say 7 € ],

n—1

Ao(1) =Y A(o?(7p)).

§=0
We first prove the following.

THEOREM 4.3.1. If S is a finitely irreducible strongly regular conformal GDMS, then for every p € EY
we have that

) A
(42) lim id,un = Xpsg — / )\d,u(;s.
B

n—+00 Jpn N
P
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PROOF. The idea of the proof is to represent the integral

Ao
/ id,udn
gr N

as the ratio of (sums of ) Perron—Frobenius operators, and then to use the spectral properties of the operator
Lss. However, there is a difficulty in such an approach which does not appear in the case of a finite alphabet.
The character of this difficulty is that although the function X : E}® — R is always Holder continuous, in
the case of infinite alphabet it is unbounded. The remedy comes from the fact that L5 (1) is a Holder
continuous bounded function. Beginning the proof, we have

/“ A TL3 (i Ao ad)(p) _ 230750 L (Ao a?)(p)

b, =TT o () £z (1))

Ly S0 L57(L] (Mo o)) (p)
Lz (1)(p)
>0 La (AL 1) (p)
c:g(n)( )
LS Ly U (L5 (AL 1)) (p)
2 (1)(p)

Now a straightforward calculation based on the strong regularity of the system S shows that the Holder
norms of the functions L ()\Lés 1), i > 0, are uniformly bounded above. With the fact that the sequence

( fss 9)$2, converges uniformly (in fact exponentially fast) to | gdmsg1ss for every bounded Holder con-

tinuous function g : EY — R we conclude that the sequence (Lsg ()\Lfgs]l));?‘;o converges uniformly to
Lss(Mpsg ). So, fixing € > 0, we can find k; > 1 such that

L ALL ) — Lsg(Mbsg)lla < €

for all j > k. Furthermore, there exist N > ko > k; such that for all n > N and all j < n — ko,

|

But [ Lss(Mss)dmss = [ Mpssdmss = [ Adpss and M := sup{[| L5 1| : n > 0} is finite. So we can

conclude that
iz es i n) ~ [ adusevss|, <

for allm > N and all k&1 < j <n — k. Hence

<e.

E;S_]()\,C'Z;S]l) - /E(SS ()‘1/}65>dm65w55 o

(1+M)e

A A
/)\dugs —(1+M)e< liminf/ 28 gy < limsup/ 208 gy < /)\d,u(;s + (M + 1)e.
n n

n—-+o0o n n——+o0 n

Letting € — 0, then concludes the proof. O

Now we are next going to prove versions of the Central Limit Theorem (CLT) that involve counting.
This requires some preparatory steps.
We define the functions A,, : E? — R by the formulae

)‘P<w) — Xésh

(4.3) An(w) = NG
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and consider the sequence (p, o A,;1)% ;| of probability distributions on R. Observe that for every Borel

set F' C R, we have that
fin 0 ATY(F) = L3 Uaz1 ) (P) _ L5 (r o An)(p)
" £5,1(0) £5,1(0)
B ZweE'g e %2 (1 p (A, (W)
(4.4) - > epn o—05Ap(w)
I3
_ w Ap(w)— n
ZweE;; e 952 W (%)

ZwGE” eiésAp(w)
P

where in the third term the function A,, is considered as defined on E'} by the formula

An(w) = AP(“’M\/%X‘;S”.

Our last counting result for attracting systems is the following.

THEOREM 4.3.2. If S is a strongly regular finitely irreducible D—generic attracting conformal graph
directed Markov system, then the sequence of random variables (A,)22, converges in distribution to the
normal (Gaussian) distribution No(o) with mean value zero and the variance o? = P"(ds) (the latter
being positive because of Remark 2.3.6 and since the system S is D—generic). Equivalently, the sequence
(pn © A1), converges weakly to the normal distribution No(o?). This means that for every Borel set
F C R with Leb(0F) = 0, we have

]. 2 2
4.5 lim  p,(AZNF)) = /e_t 1207 q¢.
(4.5) Hmu( n (F)) Norel i

PROOF. This theorem is equivalent to showing that the characteristic functions (or Fourier transforms)
of the measures y,, o A,;! converge to the characteristic function of Ap(a?), i.e., to the function R > t —
e=o°**/2 By the formula (2.2) we have for every t € R that

. ) n eitAn
/ e dpy 0 AL (w) = / 8@ gy () = Zos @ )P)
R n

- L3 1(p)
A |
g s (p)
L5 1(p)

N Qoo s (D) + 53, 1(p)

— e~ tXog vV n
Vss(p) + S5 1(p)

It therefore follows from items (4), (5) and (6) following formula 2.2 that

lim e dp, 0o AN (z) = lim e Xos V)
n—-+o0o R n—-+4oo

n

bs— 2k

Denote by log Ag, s belonging to some sufficiently small neighborhood of ds, the principle branch of the
logarithm of A;, i.e., that determined by the requirement that log Ass = 0. Since log As = P(s) for real
s > 75 and since P'(0) = —xs5, we therefore get that

2

1)
As = exp(log Ag) = exp <—X55 (s—06)+ %(s - (55)2 +O0(]s — 55|3)> .
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Sofors:zsg—%weget

S txss 0t -3/2
Aés_%—exp (l\/ﬁ o +0Mn =) .

Therefore,
. . 0'2t2
e X5 \/ﬁ)\g;i% = e—ztx(ss\/ﬁexp (ithSs\/ﬁ -5 + O(n_1/2))
2t2
= exp (—0-2 + O(n_1/2)> .
So finally

: i -1 2,2

nEI—&r-loo Re”xdun o AN (z) = exp (—0°t?/2) .
Thus since R > ¢t — exp (—02752/2) is the characteristic function of the Gaussian distribution Ny(o?), the
proof is complete. 0

4.4. Central Limit Theorems: Asymptotic Counting Functions for Parabolic GDMSs

We want to extend the Central Limit Theorem for counting functions from the previous (attracting
GDNSs) subsection to the case of parabolic GDMSs. We are in the same setting as in Section 3.1 i.e.,
S = {pc}eck is an irreducible conformal parabolic GDMS. Furthermore, the functions A,, and measures .,
have formally the same definitions as their “attracting” counterparts given in Subsection 4.1 respectively
by formulae (4.3) and (4.1). We start with the following analogue of Theorem 4.3.1.

THEOREM 4.4.1. If § is an irreducible parabolic conformal GDMS for which

2ps
ps+1’

0s >
i.e the invariant measure psg s finite (so a probability after normalization), then for every p € EX

A
lim ;pd,un = Adiss = Xos-

n—-+00 £
A

PROOF. Since the behavior of iterates of the Perron—Frobenius operator Ls, is now (in the parabolic
context) more complicated than in the attracting case, we need to provide a conceptually different proof
than that of Theorem 4.3.1. We will make an essential use of Birkhoft’s Ergodic Theorem instead.

Firstly, we fix ¢ > 0. Then it follows from Birkhoff’s Ergodic Theorem, along with both Lusin’s
Theorem and Egorov’s Theorem, that there exists an integer N, > 1 and a measurable set F'(¢) C EY
such that mgs(F(e)) > 1 — € (remembering that ms, is equivalent to us,) for every 7 € F(e) and every
integer n > N,

S Aoad(r)

— Xss| S €
n Xos

For all n > Ny let

Fyle,n) :={weE}:wpeF(e)} and Fj(e,n):={we L) : wpe F(e)}
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Then
> Ao (W) |l (m(p))]’s Y |l (m(p)I*s |
n S n
wEF,(e,n) L‘;S 1 (p) wEF,(e,n) £65 1 (p)
- (Ap(w) e ) L, (m(p))|°s
S n
(41) WEF,(e,n) " Eés]l(p)
Ap(w) L, (m(p))|°s
X we§,n> £z 1(p)
_ )<
n

Now given a positive number M and an arbitrary function g : E®® — R for which |g| < M, we have that

IR0 DY e _—
> glwp) L) | gs]l(p)wel%(:w)l%( (p))l <1 > mas((w])

M/

= mmgs (F5(e,m))

M/
< -
~ Ly 1(p)

€

with some appropriate constant M’ > 0. Now it follows from Theorem E of [33] that there exists a constant
Q, > 1, depending on p (in fact depending only on dist(7(p),2)) such that

Q, <Ly (p) <Q,

for every integer n > 0. We therefore get

|, (m(p))|°8 ,

. T VL <M .

(42) > olon) | < MQue
WEFS(e,n) s
Since
1 n—1
0< =) Nool <M
< n; ool <

for every n > 1, applying (4.1) and also (4.2) for both

n—1

1 ;
= — )\ J d = s
9= E 00" and g = Xss

J=0
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we get the following bound:

)\P
20 i,y —
‘/n o 1% Xés
P
A A
S (/ ld,un */ X(ssd,un> + (/ idﬂn 7/ Xésdﬂn>|
F,(en) n F,(en) F;(e,n) n Fg(e,n)

A A
/ “Ldpy, — / Xosdtin / Ly, — / Xosdpin
F,(en) n F,(en) F,(e,n)e¢ n F,(en)e

Mo (@) [ (m(p) (e ()
2 NI DR w7y

<

IN

+

IN

+

3

wEF,(en) w€EF,(e,n)

A
/ “Ldy, / Xosdptu
Fg(e,n) n Flf(e,n)

ol (m(p))]%s
2 s Ly 1(p)

+ +

Ap(w) |l (m os
> (W) |l (m(p))|

<€+
L3 1(p)

+
wWEFS(en)

<e+MQye+ MQye
< (142M'Q,)e.

Hence, letting ¢ — 0 we obtained

wWEFS(e,n)

A
/ Ldun, = Xss
En N

and the proof is complete. O
Our main theorem in this subsection is the following.

THEOREM 4.4.2. If § is an irreducible parabolic conformal GDMS for which
2ps
ps+1’
i.e the invariant measure [i55 18 finite (so a probability after normalization), then the sequence of random
variables (A,,)22, converges in distribution to the normal (Gaussian) distribution No(o?) with mean value

zero and the variance 0® = P/'(ds) > 0. Equivalently, the sequence (pi,, o A1), converges weakly to the
normal distribution No(o?). This means that for every Borel set F C R with Leb(OF) = 0, we have

1 2 2
4.3 lim  j,(AZNF)) = /e*t /207 gt
(4.3) n;mu( o (F)) Norel i

Proor. Using our previous notation recall that

0s >

dpiss

Vs = dmsg’
Then

Lssthss = s,
and we can define the operator Ls, : L' (iss) — L' (pis5) by the formula

Lsel9) = 7 Lo (9052
Vss

Then

~

Lss(1)=1
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and EA(; s 1s the Perron-Frobenius operator associated to the measure-preserving symbolic dynamical system
(0, s ). Following Gouézel [27], for every integer ¢ > 1 we consider the set
Z, = U U {bke: 1<k<qtU(E\Q)

beEQ e€E\{b}
Ape=1

and the first return map o, : Z, — Z,. Still following [27], given an integer n > 1 we define an operator
EA((;Z : LY (uss) — L' (uss) by the formula

EE;Z)(Q) = 1z,L5,(91z,).
Now our setting entirely fits into the hypothesis of section 2, 3 and 4 of Gouézel’s paper [27]. In particular,

Theorem 2.1 (especially its formula (2)), Theorem 3.7 and Lemma 4.4 of [27] apply to give (compare the
last formula of the proof of Proposition 4.6 in [27]) for any 7 € Z; and any ¢ € R that

. A i —o? 2
(4.4) lim |25 (127 (p) = o (Z,)%¢ 1

n—-+o0o

=0.

Now there exists go > 0 such that p € Z,,. Fix € > 0. Take ¢ > qo sufficiently large, say, ¢ > ¢1 > qo that
(45) 1— s (Zq)2 < e
Then by (4.4)

(4.6) lim sup Egz)(eim")(p) _ et < pmot/2t

n—-+o0o

€e

Now define p, analogously to (4.1), i.e., for H C E?

() = 3 5,
weH

Then the same calculation as (4.5) gives

/}R cdur, 0 Ayt (x) = L3 ("4 (p) = Ly (e"47)(p) + Las (L2 ") (o).
But
(4.7) |Zos (Mzge™)(0)] < |Bss (M2;) ()| = Lss (125 (),
and according to Theorem E in [33] we can write

lim Lsg (1) (p) = pos (Lzg) = 1= s (1 z,).

n—-+oo

Combining this along with (4.4), (4.6) and (4.7) gives

lim sup / eitmdM;L o A;l(l‘) _ 8_02/2t2 < Ee—g2/2t2 +1— pss (Zq) < (1 + e—g2/2t2)€.
n—-+4o0o R
Hence
Jim [ e o A7 w) = =2

Therefore, formula (4.3) holds with u, replaced u!,. Because of this, because the measures p,, and p, are

equivalent for all n > 1, and since, by Theorem E of [33] again, for the sequence (u},)2 4,

uniformly with respect to all z € R, we finally conclude that the formula (4.3) holds for measures puy,,
n > 1. Thus the proof of Theorem 4.4.2 is complete. (|






CHAPTER 5

Examples and Applications, I

5.1. Attracting/Expanding Conformal Dynamical Systems

In this section we deal with a class of conformal dynamical systems that are expanding and we show
that their, appropriately organized, inverse holomorphic branches form conformal attracting GDMSs. We
also examine in greater detail some special countable alphabet conformal attracting GDMSs.

5.1.1. Conformal Expanding Repellers. In this section we deal with conformal expanding re-
pellers. We do it by applying the theory developed in the previous sections. In fact it suffices to work here
with conformal GDMSs modeled on finite alphabets E. However, most of the results proved in this section
are entirely new.

Let us start with the the definition of a conformal expanding repeller, the primary object of interest
in this subsection.

DEFINITION 5.1.1. Let U be an open subset of R? d > 1. Let X be a compact subset of U. Let
f: U — R be a conformal map. The map f is called a conformal expanding repeller if the following
conditions are satisfied:

1) f(X) =X,
2) |f'lx>1,
(3) there exists an open set V such that V C U and

X=)f"w),
k=0
and
(4) the map f|x : X — X is topologically transitive.

Note that f is not required to be one-to-one; in fact usually it is not one-to-one. Abusing notation slightly
we frequently refer also to the set X alone as a conformal expanding repeller. In order to use a uniform
terminology we also call X the limit set of f.

Typical examples of conformal expanding repellers are provided by the following.

ProrosITION 5.1.2. If f: C — C is a rational function of degree d > 2, such that the map f restricted
to its Julia set J(f) is expanding, then J(f) is a conformal expanding repeller.

The basic concept associated with such repellers which will be used in this section is given by the
following definition.

DEFINITION 5.1.3. A finite cover R = {R. : ¢ € F'} of X is said to be a Markov partition of the space
X for the mapping T if the following conditions are satisfied.

(a) R.=IntR. forallee€F.
(b) IntR, NIntR, =0 for all a # b.

85
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(¢) IntRyN f(IntR,) #0 = Ry C f(R,) whenever a,be F.

The elements of a Markov partition will be called cells in the sequel. The basic theorem about Markov
partitions proved, for ex. in [74], is this.

THEOREM 5.1.4. Any conformal expanding repeller f : X — X admits Markov partitions of arbitrarily
small diameters.

Fix 8 > 0 so small that for every € X and every n > 0 there exists f;" : B(f"(z),48) — R4,
a unique continuous branch of f~" sending f"(x) to x. Theorem 5.1.4 guarantees us the existence of
R ={R; : j € F}, a Markov partition of f with all cells of diameter smaller than 5. Having such a Markov
partition R we now associate to it a finite graph directed Markov system. The set of vertices is equal to
R while the alphabet E' is defined as follows.

E:={(i,j) € F x F:IntR; N f(IntR;) # 0}.

Now, from the above for every (i,j) € E there exists a unique conformal map ;]1 : B(R;,8) — R? such
that
fiH(R;) C R;.

4,J
Define the incidence matrix A : E x E — {0,1} by

1 if l=i
A =
(a0 {0 if 1#1.
We further define:
t(i,j) =7 and (i, j) =i
Of course
(5.1) Sr={f}:(i,j) € E}
forms a finite conformal directed Markov system, and Sg is irreducible since the map f : X — X is
transitive. Let
TR ‘= TSp :E?%X
be the canonical projection onto the limit set Js of the conformal GDMS S which is easily seen to be equal

to X.

Returning to the actual topic of the paper, i.e., counting inverse images and periodic points, we fix a

point ¢ € X, a Markov Partition
R={Rc:e€F},
with
(5.2) ¢e |J mt(Re).
ecF
So, there exists a unique element e(§) € F such that £ € Int(R.()), and we fix a radius o > 0 so small that
B(&,a) C Regey-
Furthermore, there exists a unique code of ¢, i.e. a unique infinite word p € E} such that
Tr(p) =&

Using our usual notation we set
(5-3) A(z) = log | (f"#)) (=),

where z is an inverse image of £ under an iterate of f and the integer n(z) > 0 is uniquely determined by
the following two conditions:

(5-4) frAz) =¢
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and
(5.5) f¥(2) #£ € for every integer 0 <k < k(2).

We immediately note that if £ is not periodic then condition (5.4) alone determines n(z) uniquely. We
further note that that if wp is a (unique by (5.2)) coding of z (w € E}) then

Az) = Ap(w).
We denote the set of all inverse images of ¢ under iterates of f by f~*(¢), i.e.

1= ©.
n=0

We call z := (z,n) € X x N, a periodic pair of f (of period n) if
f(x) ==

We then denote z by 2 and n by n(z). Of course x is a periodic point of f (of period n). We emphasize
that we do not assume n to be a prime (least) period of . We set

Ap(2) = log [(f"19)'(2)]-

We denote by ﬁe\r(f) (respectively ﬁ&n(f)) the set of all periodic pairs (of period n) and by Per(f)
(respectively Per, (f)) the set of all periodic points (of period n) of f.
Given T > 0 we set

me(f,T) :={z € f77(§) : M2) < T}
and -

mp(f;T) = {z € Per(f) : \p(2) < T}
Furthermore, given a set B C X, we denote

me(f,B,T) = BNme(f,T) and m,(f;B,T) :=BNnmy(f,T).
As in the case of graph directed Markov systems we denote
and
Np(f,T) = #mp(f, 1), Np(f, B, T):=#mp(f, B, T).

Given a set Y C B(€, ) we denote

DS (f; B,T) := {z € f*(€) N B : logdiam(f; "7 (Y)) < T},

ES(f;B,T) := {z € f7(¢) : logdiam (f; "D (Y)) < T and f;"F(Y)n B 0},
and then
Dy (f:B,T) = #D5(f:B.T) and Ey(f;B.T) := #&(f: B,T).

Now we record a straightforward, but basic observation which links this section to the previous ones.
It is the following.

OBSERVATION 5.1.5. If f: X — X is a conformal expanding repeller, then with the notation as above

Ne(f: B,T) = N,(B,T), D5 (f;B,T) = Dyp(B,T)
and
I'N,(B,T) < Np(f; B,T) < N,(B,T)
with some universal constant I € (0, +00). In addition,
N,(f; B,T) = N,(B,T)

whenever B C |J_. » Int(R.).

ecF
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We call a conformal expanding repeller f : X — X D-generic if and only if the additive group generated
by the set
() : = € Per(f))
is not cyclic. It is immediate from the definition of the graph directed Markov system Sz and Proposi-
tion 2.3.8 that we have the following.

PROPOSITION 5.1.6. A conformal expanding repeller f : X — X is D—generic if and only if the
conformal graph directed Markov system Sg is D—generic.

A concept of essentially non—linear conformal expanding repellers was introduced by Dennis Sullivan in
[87], Section 3, although the terminology used there was “non-linear C—analytic expanding systems”. This
was explored in detail in [74], where they were called “non-linear conformal expanding repellers”. The
additional adjective “essentially” is to indicate that the system is not merely non-linear but in fact is not
even conformally conjugate to a linear system. One of many characterizations (see Chapeter 6 of [74] for
these) of essentially non-linear conformal expanding repellers is that there is no conformal atlas covering
X with respect to which the map f is affine, i.e. a similarity composed with a translation. Analogously, as
for graph directed Markov systems, with the help of Chapter 10 from [74], we get the following proposition,
which adds considerably to our knowledge that D—generic conformal expanding repellers abound.

PROPOSITION 5.1.7. An essentially non-linear conformal expanding repeller f : X — X is D—generic.
As a fairly direct consequence of Theorem 2.4.9 and Theorem 2.7.1, we get the following.
THEOREM 5.1.8. Let f : X — X be a D—generic conformal expanding repeller and let § := HD(X).

(1) Let ms be the unique d-conformal measure for f on X, which coincides with the normalized
d—dimensional Hausdorff measure on X.

(2) Let ps be the unique f-invariant Borel probability measure on X absolutely continuous (in fact
known to be equivalent) with respect to ms. It is also known to be the unique equilibrium state of
the potential X > x — —dlog|f'(x)| € R.

(3) Let o5 := e

dmgs *

(4) Fiz & € X arbitrarily and' Y C B(&, @), an arbitrary set consisting of at least two distinct points.
(5) Let B C X be an arbitrary Borel set such that ms(0B) = 0 (equivalently that pus(0B) = 0).

Ne(f; B, T) _ 5(8)

(5.6) Plim ST = 1 S (B),
. N(f;B,T) 1
(57) e e WO
and
. DYL(f;B,T) .  ES(f;iBT)
(5-8) P G = i e = Ce(V)ma(B),

where Ce(Y) € (0,+00) is a constant depending only on the repeller f, the point § € X, and the setY. In
addition

(5.9) K2 (5xs5) " tdiam® (V) < Ce(Y) < K2 (8x5)  diam®(Y),

and the function
§r— Ce(Y) € (0, +00)

is locally constant on some sufficiently small neighborhood of Y.
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PRrROOF. By making use of Observation 5.1.5, formulae (5.6) and (5.8) are immediate consequences of
formula (2.6) of Theorem 2.4.9, along with Theorem 2.7.1 and Theorem 2.7.4, once we notice that the
measures mg and pu, are respectively d-conformal and invariant, equivalent to ms, for both the conformal
expanding repeller f: X — X and the associated conformal GDMS Sg. In order to get formula (5.7) one
uses formula (2.7) of Theorem 2.4.9, and also, in a straightforward way, the fact that us(0R) = 0. The
fact the function £ — C¢(Y") is locally constant follows from Remark 2.7.5. O

From the results of Section 4, in particular the versions of the Central Limit Theorem, proved for
attracting conformal GDMSs, we directly get the following consequences for expanding repellers.

THEOREM 5.1.9. Let f : X — X be a D—generic conformal expanding repeller. With notation of
Theorem 5.1.8, there exists 0® > 0 (in fact 0% = P"(0) > 0) such that if G C R is a Lebesgue measurable
set with Leb(0G) = 0, then

1 n\/ _ +2
lim ps(<z€eX : og|(/)'(2) Xusl e g b) = 1 /efmdt.
n—+oo 2o Ja

In particular, for any o < f8

1 ny/ _ ﬁ +2
ngrfmua ({zeX o< o8 |(f )\(/Zﬁ” XpsTt <ﬁ}> = \/21770/u e 20% dt.

For every point z € X and every integer n > 0 let e(z,n) € F be such that
f"(z) € R..

THEOREM 5.1.10. Let f : X — X be a D—generic conformal expanding repeller. With notation of
Theorem 5.1.8, there exists 0® > 0 (in fact 0% = P"(0) > 0) such that if G C R is a Lebesgue measurable
set with Leb(0G) = 0, then

—logdiam (f. " (Ye(2n))) — 1 42
lim s ze X : os A (fz ( (z, ))) Xist c@G = / e 2.2 (t.
n—+40oo \/'H 2mo Ja

B

In particular, for any o < f8

—log di “(Yosm)) — 1 B e
lim g zeX :ra< o8 1am(f$ ( (2, ))) Xuus™ <pB = 7/ e 2.2 (t.
n—+o00 \/ﬁ \/ﬂo «

The next result is a law of the iterated logarithm.

THEOREM 5.1.11. Let f : X — X be a D—generic conformal expanding repeller. Assume the some
notation as in Theorem 5.1.8, For every e € F let Y, C R be a set with at least two points. There exists
02 >0 (in fact 0% := P"(0) > 0) such that for us—a.e. z € X, we have that

log [(f")(2)| = xpusn
li =2
71113.55_1;5 vnloglogn me

and

- IOg dlam(f_n (Ye(z n))) — XusT
lims w : =V27o.
fﬂi‘i}? nloglogn i

Let £ € X be fixed. For every set H C f~"(£), define

Sen () (2) .
D ief-n(e) }(f">’<Z>|_§

ra

(5.10) o (H) =
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THEOREM 5.1.12. If f : X — X is a conformal expanding repeller, then for every £ € X, we have that

(5.11) lim log |(/")']

dﬂn = Xs-
oo Jr-n(e) n

Analogously to (4.3) we define the functions A,, : f~"(£) — R by the formulae

o (/) ()] — xiwgm
NG

of probability distributions on R.

(5.12) An(z) :

o

and consider the sequence (u, o A1),

We have the following.

THEOREM 5.1.13. If f : X — X is a D—generic conformal expanding repeller, then the sequence of
random variables (A,)S2 | converges in distribution to the normal (Gaussian) distribution Ny(o) with mean
value zero and the variance o® = P"(8) > 0. Equivalently, the sequence (pn o A1), converges weakly

to the normal distribution No(o?). This means that for every Borel set F C R with Leb(dF) = 0, we have

1 2 2
(5.13) lim pn(AY(F)) = / et /27 .
F

5.1.2. 1-Dimensional Attracting Conformal GDMSs and 1-Dimensional Conformal Ex-
panding Repellers. In this subsection we briefly discuss 1-Dimensional systems. We start with the
following.

ExXAMPLE 5.1.14. Theorem 2.4.9, Theorem 2.7.1, and Theorem 2.7.4 hold in particular if a system S
in one—dimensional, i.e., if X is a compact interval of R. Perhaps the the best known and one of the most
often considered, is the infinite IFS G formed by all continuous inverse branches of the Gauss map

G(z) =z — [z].
So G consists of the maps
1
[0,1] 5 . +— gn(z) == porpeg n € N.
and with ¢ = 2 in the sense of Remark 2.2.2 it becomes a conformal IFS. The corresponding conformal
measure my is just Lebesgue measure Leb on [0, 1] (or somewhat more precisely on the set of irrational

numbers of [0, 1] being Jg, the limit set of the Gauss system G. The corresponding invariant measure pu1,
is in this case the well-known Gauss measure defined by

d/.n 1 1
(z) = : :
log2 1+«

Looking at the fixed points of g1, g2, and g3 one immediately concludes that the Gauss system G is D—
generic. It is also known (see ex. [44]) to be strongly regular, even more, in the terminology of [47], it
is hereditarily regular. So, Theorem 2.4.9, 2.7.1 and 2.7.4 do indeed apply to this system. Because of
importance of the Gauss map we formulate below all the above mentioned applications expressed in the
language of the Gauss map itself rather than the associated IFS G. We adopt the, naturally adjusted,
notation of Subsection 5.1.1.

We begin with the growth estimates.

dm1

THEOREM 5.1.15. If G : [0,1] — [0,1] is the Gauss map, then with notation of subsection 5.1.1 we
have the following. Fiz ¢ € [0,1]. If B C [0,1] is a Borel set such that Leb(0B) =0 and Y C [0,1] is any
set having at least two elements, then

Ne(GiB,T) _ t1(€)

lim
T X1

T—+o00 e

Leb(B),
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N,(G:B,T) 1

li = —u (B
T—1>I-f-loo eT X1 Ml( ),
and
D%(G; B, T ES(G;B,T
lim M = lim M = CO(Y)Leb(B),
T—~+o00 €T T—4oc0 eT

where C(Y') € (0,400] is a constant depending only on the map G and the set Y.
We next formulate a Central Limit Theorem for diameters.

THEOREM 5.1.16. Let G : [0,1] — [0,1] be the Gauss map. Let o* :== P"(0) > 0. With the notation
of Theorem 5.1.8 we have the following. Let Y C [0,1] be a set with at least two points. If H C R is a
Lebesgue measurable set with Leb(OH) = 0, then

) —log diam (G;™(Y)) — xyun 1 _ 42
nggpwm ({z €[0,1] : NG €cH,; | = —/He 352 dt.

In particular, for any o < f3

. —log diam(G;"(Y)) — X1 1 A _ 2
ngﬂf_loo/ll ({z €0,1] : a< NG <p = /a e 2.7 dt.

The law of the iterated logarithm takes the following form.

THEOREM 5.1.17. Let G : [0,1] — [0,1] be the Gauss map. Let o := P"(0) > 0. With notation of
Theorem 5.1.8 we have the following. Let Y C [0,1] be a set with at least two points. Then for Leb-a.e.
z € 10,1, we have that

log |(G")’(2)’ — X
li =12
ggi&? nloglogn e

and

=V 27o.

. flogdiam(G;"(Y)) — XM
lim sup
n—s+o00 vnloglogn

Finally, we have a Central Limit Theorem for counting functions.

THEOREM 5.1.18. If G : [0,1] — [0,1] is the Gauss map, then for every & € [0,1], we have that

n\/
lim @],
noteJane M
THEOREM 5.1.19. If G : [0,1] — [0,1] is the Gauss map, then the sequence of random variables
(A)5%, converges in distribution to the normal (Gaussian) distribution No(o) with mean value zero and
the variance o® = P"(8) > 0. Equivalently, the sequence (pi, o A1), converges weakly to the normal
distribution No(o?). This means that for every Borel set F C R with Leb(0F) = 0, we have

1 2 2
5.14 lim (A N(F)) = /e*t 1297t
(5.14) Jum g (A (F)) Norel i

REMARK 5.1.20. Theorem 5.1.8 holds in particular if f : X — X is a conformal expanding repeller
with X a compact subset (a topological Cantor set) of R.
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5.1.3. Hyperbolic (Expanding) Rational Functions of the Riemann Sphere C. One of the
most celebrated conformal expanding repellers are hyperbolic (expanding) rational functions of the Rie-
mann sphere C restricted to the Julia sets and already mentioned in subsection 5.1.1. For the sake of

completeness and convenience of the reader, let us briefly describe them. Let f : C — C be a rational
function of degree d > 2. Let J(f) denote the Julia sets of f and let

Crit(f) :={ce C: f'(c) =0}
be the set of all critical (branching) points of f. Put
PC(f) = £(Crit(£))
n=1

and call it the postcritical set of f. The rational map f : C — C is said to be hyperbolic (expanding) if
the restriction f ;¢ : J(f) — J(f) satisfies

(5.15) inf{|f'(2)|: z€ J(f)} > 1
or, equivalently,
(5.16) If'(2)]>1
for all z € J(f). Another, topological, characterization of expandingness is the following.
Fact 5.1.21. A rational function f : C—Cis expanding if and only if
J(f) NPC(f) = 0.

It is immediate from this characterization that all the polynomials z — z¢, d > 2, are expanding along
with their small perturbations z — 2% + ¢; in fact expanding rational functions are commonly believed
to form a vast majority amongst all rational functions. This is known at least for polynomials with real
coeflicients.

It is known from [96] (see also Section 3 of [73]) that the only essentially linear expanding rational
functions are the maps of the form

Cozr— fa(z) = 2%€C, |d>2.

In consequence the only non D-generic rational functions of the Riemann sphere C are these functions fa
So, as an immediate consequence of Theorem 5.1.8, we get the following.

THEOREM 5.1.22. Let f: C—Cbea hyperbolic (expanding) rational function of the Riemann sphere
C not of the form C > z+— 2% € C, |d| > 2. Let 6 := HD(J(f)).

(1) Let ms be the unique 0-conformal measure for f on the Julia set J(f), which coincides with the
normalized 0—dimensional Hausdorff measure on J(f).

(2) Let ps be the unique f-invariant Borel probability measure on J(f) absolutely continuous (in fact
known to be equivalent) with respect to ms. It is also known to be the unique equilibrium state of
the potential J(f) > x — —dlog|f'(z)| € R.

(3) Let oy := s

dm5 .

(4) Fiz & € J(f) arbitrary and Y C B(§,a) (where o > 0 is sufficiently small as described in
subsection 5.1.1), an arbitrary set consisting of at least two distinct points.

(56) Let B C J(f) be an arbitrary Borel set such that ms(0B) =0 (equivalently that us(0B) = 0).
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Then
. Ne(fsB,T)  5(6)
(5.17) lim =S5 = T 2 (B),
. NJ(f;B,T) 1
(5.18) A e = 5B
and
. DY(f;B,T) . Ey(f;B,T)
(5.19) P = = i == = Ce(V)ma(B),

where Ce(Y') € (0,400) is a constant depending only on the repeller f, the point & € J(f), and the set Y.
In addition

(5.20) K2 (6xs) " tdiam® (V) < Ce(Y) < K2 (5xs) " diam®(Y),
and the function
§r— Ce(Y) € (0, +00)

is locally constant on some sufficiently small neighborhood of Y .

Fixing a Markov partition for the map f : J(f) — J(f), as immediate consequences of Theorems 5.1.9
—5.1.13 we get the following stochastic laws, primarily Central Limit Theorems, for the dynamical system

(fv ,u(;)

We begin with a Central Limit Theorem for the expansion on orbits.

THEOREM 5.1.23. Let f : C—>Cbea hyperbolic (expanding) rational function of the Riemann sphere
C not of the form C > z +— 2% € C, |d| > 2. With notation of Theorem 5.1.8 there exists 0> > 0 (in fact
02 =P"(0) > 0) such that if G C R is a Lebesque measurable set with Leb(0G) = 0, then

| log () (2)] = xem R
ngrfooug ({ze](f) K EG}) —\/%U/Ge 207 (L.

In particular, for any a < 8

1 n\/ _ B 2
nﬂffm”6<{Z€J<f> o< D) X"énw}): e ]

We next have a Central Limit Theorem for diameters.

B

THEOREM 5.1.24. Let f: C—Cbea hyperbolic (expanding) rational function of the Riemann sphere
C not of the form C 3 z +—— 2% € C, |d| > 2. Let 0 := P"(0) > 0. With the notation of Subsection 5.1.1

for every e € F let Y. C R be a set with at least two points and if G C R is a Lebesgue measurable set
with Leb(0G) = 0, then

“log diam (£ (Yar. 1)) — e
lim ps ({z e Jf) : og diam (£, " (Ye(z.n))) — Xpus™ c G}) _ 1 / e 2.2 dt.
G

n—+o00 Vn 2o
({z cJf) a< —logdlam(fz (YG(Z,n))) — XpusT

1 B t2
= e 242 dt.
Vvn p 2w /a

The following is a version of the law of the iterated function scheme.

In particular, for any o < 8

IN

lim
n—-+oo Hs
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THEOREM 5.1.25. Let f : C—Cblea hyperbolic (expanding) rational function of the Riemann sphere

C not of the form C 3 z — 2¢ € C, |d| > 2. Let 0 :=P"(0) > 0. With the notation of Subsection 5.1.1
for every e € F let Y. C R be a set with at least two points and if G C R is a Lebesque measurable set
with Leb(0G) = 0, then for ps—a.e. z € J(f), we have that

log [(f")'(2)| = Xusm
li =2
ﬂiﬂf nloglogn "

and ( )
—logdiam (f; " (Ye(zn))) — Xus™
li i =/270.
ﬁi‘iﬁ’ vnloglogn "

THEOREM 5.1.26. If f : C—Cisa hyperbolic (expanding) rational function of the Riemann sphere
C, then for every & € J(f), we have that

(5.21) lim log| (/Y]

dun =X
n=+00 Jron(g) n

Finally, we have a Central Limit Theorem for counting.

THEOREM 5.1.27. If f : C—>Cisa hyperbolic (expanding) rational function of the Riemann sphere
C not of the form C > z —» 2% € C, |d| > 2, then the sequence of random variables (A, )2, converges
in distribution to the normal (Gaussian) distribution No(o) with mean value zero and the variance o>
P"(8) > 0. Equivalently, the sequence (u, o A1) | converges weakly to the normal distribution No(o?).
This means that for every Borel set F' C R with Leb(OF) = 0, we have

(5.22) lim g, (A H(F)) = ! / e 2% gt
F

5.2. Conformal Parabolic Dynamical Systems

Now we move onto dealing with parabolic systems. We consider first 1-dimensional examples.

5.2.1. 1-Dimensional Parabolic IFSs. Theorems 3.3.1, 3.4.1 and 3.4.2 hold in particular if a
parabolic system S is 1-dimensional, i.e., if X is a compact interval of R. Perhaps the best known, and
one of the most often considered, are the 1-dimensional parabolic IF'Ss formed by (two) continuous inverse
branches of Manneville-Pomeau maps f, : [0, 1] — [0, 1] defined by the

falz) = 24+ 21T (mod 1),

where a > 0 is a fixed number and by the (two) continuous inverse branches of the Farey map (for this
one Remark 2.3.6 applies with ¢ = 2)

Observe that for parabolic points,
for all @ > 0. Furthermore,

for all & > 0, and

QOO(fa):{@ if o<l
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while
Qs (f) = {0}
Of course for both systems, arising from f, and f, the corresponding  number is equal to 1 and myg is the
Lebesgue measure Leb.
Another large class of 1-dimensional parabolic maps, actually comprising the above, whose continuous

inverse branches form a 1-dimensional parabolic GDMS can be found in [90]. In conclusion, using also
Corollary 3.4.6, we have the following results which apply to all of them.

THEOREM 5.2.1. If f :[0,1] — [0,1] is the Farey map, then with notation of subsection 5.1.1 we have
the following. Fix & € [0,1]. If B C [0,1] is a Borel set such that Leb(0B) = 0 and Y C [0,1] is any set
having at least two elements, then

Ne(£:B.T) _ (6)

(5.1) Tl_l)Iiloo T " Leb(B),
(52) T1—1>1—li’-loo T - Y1 H1 (B)7
and

- DY(fBT) . ES(fiBT)

where C(Y') € (0,400] is a constant depending only on the map f and the set Y. In addition C(Y') is finite
if and only if
0¢7.
Although this is not needed for our results in this monograph, it is interesting that a simple calculation
reveals that the attracting “*” IFS of Section 3.1 associated with the Farey IFS is just the Gauss IFS G
described in Remark 5.1.14.

As the next theorem shows, the counting situation is more complex in the case of Manneville-Pomeau
maps.

THEOREM 5.2.2. If a« > 0 and f, : [0,1] — [0,1] is the corresponding Manneville-Pomeau map, then
with the notation of subsection 5.1.1 we have the following. Fiz ¢ € [0,1]. If B C [0,1] is a Borel set such
that Leb(0B) =0 and Y C [0,1] is any set having at least two elements, then

Ne(fai B,T) _n(8),

(5.4) i T o (B),
. Np(f; B,T) 1
(5.5) B ;m(B),
and
. DS(fa;B,T) . ES(fa;BT)
59 plim TR i SRS = O Leb(5),

where C(Y) € (0,400] is a constant depending only on the map fo and the set Y. In addition C(Y) is
finite if and only if either

(1) 0¢Y or

(2) a<1.

In general, we have the following.
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THEOREM 5.2.3. If f is generated by a parabolic Cantor set of [90], then with notation of subsection
5.1.1, we have the following.

Fix & belonging to the limit set of the iterated function system associated to f. If B C X is a Borel set
such that ms(0B) = 0 and Y C [0,1] is any set having at least two elements and contained in a sufficiently
small ball centered at &, then

Ne(f; B, T) _ ¢s5()

(5.7) Plim SEEERE (5,
. N(fsB,T) 1
(5.8) TLHEOO T or TX(SM(S(B%
and
. DYL(f;B,T) . ES(fiBT)
9 P, g =l S = G ms(B)

where Ce(Y') € (0,400] is a constant depending only on the map f, the point £, and the set Y. In addition
Ce(Y) is infinite if and only if
£€0L(f)NY and p(¢&) < 6.

With respect to the stochastic laws, as an immediate consequence of the results in Subsections 4.2 and
4.4 we get that the following results hold for systems considered in the current subsection.
We begin with a Central Limit Theorem for the expansion along orbits.

THEOREM 5.2.4. Let T be either a Manneville-Pomeau map f, with o < 1, or generally, the map
generated by a parabolic Cantor set of [90] with Qoo (T) = 0. Let J be either the interval [0,1] (Manneville-
Pomeau,) or the parabolic Cantor set. Let o> = P"(0) > 0. With the notation of Subsection 5.1.1 if G C R
is a Lebesgue measurable set with Leb(0G) = 0, then

log [(T)'(2)] = Xpus™ 1 / _ 2
I eJ: eGy| = = dt.

In particular, for any a < 8

1 ") — 1 B
lim s ({ZGJ.’ a< og’( )(Z)} Xpus ™ gﬁ}) :7/ e 357 dLt.
n——+o0o \/ﬁ o

We next have a Central Limit Theorems for diameters.

THEOREM 5.2.5. Let T be either a Manneville-Pomeau map f, with a < 1, or generally, the map
generated by a parabolic Cantor set of [90] with Qoo (T) = 0. Let J be either the interval [0,1] (Manneuville-
Pomeau) or the parabolic Cantor set. Let o> = P"(0) > 0. With the notation of Subsection 5.1.1, for
every e € F' let Y, C R, be a set with at least two points, then if G C R is a Lebesgue measurable set with
Leb(0G) = 0 we have

—log di T (Y, - 1 2
lim ps|({z2€J: og diam (T ™ (Ye(zm)) = X" €EGy | = 7/ e 202 di.
n——+o0 \/ﬁ 20 I

In particular, for any a < 8

—logdiam (T (Ye(zm))) — 1 B
lim s ({w cJ:« < g lam( T ( (2, ))) XpsT < B}) _ 7/ 6_21072 dt.
n——+oo \/ﬁ 210 Jo

Next, we have a Central Limit Theorem for preimages.
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THEOREM 5.2.6. Let T be either a Manneville-Pomeau map f, with a < 1, or generally, the map
generated by a parabolic Cantor set of [90] with Qoo (T) = 0. Let J be either the interval [0,1 (Manneuville-
Pomeau) or the parabolic Cantor set. Then for every & € J, we have that

i log |(T”)’|
im ——

dpn = X
n—-+00 T-7(¢) n

Finally, we have a Central Limit Theorem for counting.

THEOREM 5.2.7. Let T be either a Manneville-Pomeau map f, with o < 1, or generally, the map
generated by a parabolic Cantor set of [90] with Qoo (T) = 0. Let J be either the interval [0,1 (Manneville-
Pomeau) or the parabolic Cantor set. Then for every & € J the sequence of random variables (Ap)S 4
converges in distribution to the normal (Gaussian) distribution No(o) with mean value zero and the variance

2 = P"(6) > 0. Equivalently, the sequence (j1,, o A1), converges weakly to the normal distribution

No(c?). This means that for every Borel set F C R wzth Leb(0F) = 0, we have

1 2 2
(5.10) lim (A Y(F)) = / et 27t
F

5.2.2. Parabolic Rational Functions. Now we pass to the counting apphcatlons for parabolic
rational functions. We recall that if f : C — C is a rational function then ¢ € C is called a rationally
indifferent (or just parabolic) periodic point of f if f7(£) = £ for some integer ¢ > 1 and (f?)'(§) = 1. It is
well known and easy to to see that then & € J(f), the Julia set of f. The number p(§) > 1, closely related
to the one of parabolic GDMSs, comes from the Taylor series expansion of f about ¢:

f9(2) = z + a(z — )P+ 4 higher terms
with a # 0. Another, more geometric, characterization of p(§) is that it is equal to the number of Fatou
petals for f? coming out of £. Let
py = max{p(¢)},
where the maximum is taken over the (finite) set of all rationally indifferent periodic points of f .
The following theorem has been proved in [16].
THEOREM 5.2.8. If f: C — C s a rational function, then the following two conditions are equivalent.
(1) flag : J(f) = J(f) is expansive.
(2) |f'(2)| >0 for all z € J(f), i.e. J(f) contains no critical point of f.

In addition, if (a) or (b) hold then the map f : C — C is not t expanding iff J(f) contains a parabolic
periodic point. Following [16] and [17] we then call the map f C-C parabolic.
Probably, the best known example of a parabolic rational function is the polynomial

N 1 -
Casz1/4(z)::z2+ie(C.

It has only one parabolic point, namely z = 1/2. In fact this is a fixed point of f;,, and f{/4(1/2) =11t
was independently proved in [89] and [96] that

(511) 51/4 = HD(j1/4) > 1.

The GDMS associated to f as in formula (5.1) is now parabolic. The measures mg and ps (being inconsistent
but these now denote the objects on the Julia sets rather than on the symbol space) come either from the
theory of parabolic conformal GDMS of Subsection 3.1, particularly, Theorem 3.1.6, or can be traced back
much earlier to [16], [17] and [1]. Either from these three papers or from Theorem 3.1.6, we have the
following.
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THEOREM 5.2.9. If f: C—>Cisa parabolic rational function then the invariant measure ps is finite
if and only of
2py
pr+1°
With the arguments parallel to those in the proof of Theorem 5.1.8, as a consequence of Theorem 3.3.2,
Theorem 3.4.1 and Theorem 3.4.2, we get the following.

5 =36; = HD(J(f)) >

COROLLARY 5.2.10. If f : C—>Cisa parabolic rational function then with notation of Subsection
5.1.1, we have the following.

Fiz € J(f). If BC C is a Borel set such that ms(0B) =0 andY C C is any set having at least two
elements and contained in a sufficiently small ball centered at &, then

Ne(f; B, T) _ s5(8)

(5.12) TEIEOO edT s ms(B),
(5.13) A T 5B
and
. DYL(f;B,T) . ES(f;iBT)
(5.14) P = = i =g = Ce(V)ma(B),

where Ce(Y') € (0,+00] is a constant depending only on the map f, the point &, and the set Y. In addition
Ce(Y) is infinite if and only if
£€0u(f)NT and ple) <4,

As in the previous subsection, the stochastic laws appear as immediate consequences of the results in
Subsections 4.2 and 4.4.
We begin with a Central Limit Theorem for the expansion along orbits.

THEOREM 5.2.11. Let f : C — Cbea parabolic rational function of the Riemann sphere C with

o> pzjlel. With notation of Theorem 5.1.8 we have the following.

There exists 02 > 0 (in fact 0> = P"(0) > 0) such that if G C R is a Lebesque measurable set with
Leb(0G) = 0, then

w6 <{ e 1(g) - ETIGI e G}> e A

In particular, for any a < 8

n\/ _ B 2
lim s ({z cJ(f) :a< 10g|(f ) (Z)‘ Xps T SB}) — ! / 6_2‘072 dt.

B

n—+oo \/’71 2mo
We next have a Central Limit Theorem for diameters.

THEOREM 5.2.12. Let f : C > Cbea parabolic rational function of the Riemann sphere C with
5> %2. Let 0% := P"(0) > 0. With notation of Subsection 5.1.1 we have the following.
For every e € F let Y, C R, be a set with at least two points. If G C R is a Lebesgue measurable set

with Leb(0G) = 0, then

) —logdiam(f;"(Ye(z n))) — XusN 1 a2
1 J : : G = 202 (dt.
b 0 ({Z €J() vn © 2o /Ge

IThis precisely means that the invariant measure p; is finite, thus normalized to be probabilistic.
2The same as above
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In particular, for any a < 8
. —logdiam (f; " (Ye(z.n))) = Xus™ 1 e
N < - < = o .
JHm s ({zeJ(f) a< T <B QM/Q e 207 dt

Finally, we have a Central Limit Theorem for counting.

THEOREM 5.2.13. If f : C—Cis a parabolic rational function of the Riemann sphere C with § > pipjl‘?,
then for every & € J(f), we have that

10 n\/
(5.15) lim Mdun = Xs-
noteeJpy M
THEOREM 5.2.14. If f : C—>Cisa parabolic rational function of the Riemann sphere C with § >
12)’;—1{4, then the sequence of random variables (A,)52, converges in distribution to the normal (Gaussian)

distribution No(o) with mean value zero and the variance o? = P"(5) > 0. Equivalently, the sequence
(pn © A1), converges weakly to the normal distribution No(a?). This means that for every Borel set
F C R with Leb(0F) = 0, we have

1 2 2
(5.16) lim (A N(F)) = / et 27 e,
F

Note that for the map f /4 : C— @,

p(f1/4) =P1/a = max{p(a) : a € Q} =1,
so by (5.11) we have that,
2101/4
1 5 = -4
(5.17) > P1/4 p(f1/4) 2pijat 1
Thus, Theorem 5.2.9 gives the following.

THEOREM 5.2.15. For the map fi/4 : C — @, Qoo = 0 and the invariant measure s 1s finite, so a
probability after normalization.

Thus, as a consequence of all in this subsection, we get the following.

COROLLARY 5.2.16. If f1/4: C—C is parabolic quadratic polynomial
~ 1 -~
C>z— fia(2) :222—1—1 eC,

then with notation of Subsection 5.1.1, we have the following.
Fiz § € J(fi1/a). If Y C C is any set having at least two elements and contained in a sufficiently small

ball centered at &, then there exists a constant C¢(Y) € (0,400) such that if B C C is a Borel set with
ms(0B) = 0, then

5.18 li = B
(5.18) T b esT 5xs ms(B),
. Np(fiya;B,T) 1
(5.19) TE)I-EOO T er T %Mé(B)’
and
. D%(fl/LB:T) . Eff(fl/4;B,T)
520 plim, G =l S = Oty ().

3The same as above
4The same as above
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REMARK 5.2.17. Because of (5.17) all the hypotheses of Theorems 5.2.11 — 5.2.14 are satisfied for the
map fi/4 : C — C; so, in particular, all these theorems hold for the map f = fi 4.

On the other hand if f : C — C is a parabolic rational function with HD(J(f)) < 1, which is the case
for many maps, in particular those of the form Cszm 2+ 1/z 4+t where t € R or parabolic Blaschke
products, then

0<1<pq
for every point a € Q(f). Thus also
Qoo (f) = S)

and, as an immediate consequence of Corollary 5.2.10, we get the following.

COROLLARY 5.2.18. If f : C—>Cisa parabolic rational function with HD(J(f)) < 1, then with
notation of Subsection 5.1.1, we have the following.

Fiz e J(f). If BC C is a Borel set such that ms(0B) =0 and Y C C is any set having at least two
elements and contained in a sufficiently small ball centered at &, then

Ne(f; B, T) _ ¢s5(8)

(521) TETOO 0T = (SX(g mé(B)a
. N(fsB,T) 1
(5:22) e e WL T2
and
. DL(f;B,T) . EL(f;B,T)
(5:23) A g T i T ar = Ce(V)ma(B),

where Ce(Y') € (0,400] is a constant depending only on the map f, the point £, and the set Y. In addition
Ce(Y) is finite if and only if
£Q(f)ny.



CHAPTER 6

Examples and Applications, II: Kleinian Groups

In this part we apply our counting results to some large classes of Kleinian groups. These include
all finitely generated classical Schottky groups and essentially all finitely generated Fuchsian groups. The
applications described in this section would actually fit into two previous sections: Convex co-compact
(hyperbolic) groups would fit to Section 5.1 while parabolic ones would fit to Section 5.2. However,
because of their distinguished character and the specific methods used to deal with them, we collect all the
applications to Kleinian groups in one separate part.

6.1. Finitely Generated Classical Schottky Groups with no Tangencies

In this section we first recall the definition of hyperbolic finitely generated classical Schottky groups.
Next, we associate to them appropriate conformal graph directed Markov systems and then we express
many concepts pertaining to such groups in the language of such GDMSs. This enables us to apply the
counting results for graph directed Markov systems, obtained in previous parts, to such Schottky groups.

Doing this we also, on the way, associate to a finitely generated classical Schottky group an appropriate
symbolic dynamics, precisely, a countable alphabet finitely irreducible subshift of finite type as defined in
the first sections of our manuscript.

The use of symbolic dynamics to study Schottky groups can be viewed in the more general framework
of convex cocompact Fuchsian and Kleinian groups, which can be traced back to the work of Hedlund.
A specific instance of the coding for (non—classical) Schottky groups, and developing the corresponding
thermodynamic formalism, occurs in Bowen’s famous 1979 paper on the Hausdorff Dimension of quasi-
circles [5]. A nice recent exposition of this construction is given in the book [12]. The coding in Bowen’s
influential paper was used, either implicitly or explicitly, in a number of subsequent works. These include
both the paper of Lalley [37], and its generalization by Quint to higher rank Schottky settings [75]. Further
development of these ideas covers the more general case of infinitely generated Schottky groups described,
for example, in [86]. In a different direction Mark Pollicott in [70] and Dal’bo and Peigné [13] used
symbolic dynamics (based on continued fractions) to count closed geodesics on the non-compact modular
surface in the context of metrics of variable negative curvature.

Fix an integer d > 1. Fix also an integer g > 2. Let
Bj, j=%1,%£2,--- ,%q,
be open balls in R? with mutually disjoint closures. For every j =1,2,--- ,q let
g; : R4 —» R?
be a conformal self-map of the one point compactification of R? (thus making R conformally equivalent
to the unit sphere S¢ C R¥*!) such that
(6.1) 9;(B%;) = Bj.

The group G generated by the maps g;, 7 = 1,...,q, is called a hyperbolic classical Schottky group;
hyperbolic alluding to the lack of tangencies. If there is no danger of misunderstanding, we will frequenly
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skip in this section the adjective “hyperbolic”, speaking simply about Schottky groups. Note that if we set

9 =9-;
for all j = —1,..., —¢q then (6.1) holds for all j = £1,4+2,--- , +q.
Denote by H?*! the space R? x (0, +00) endowed with the Poincaré metric. The Poincaré Extension
Theorem ensures that all the maps g;, j = 1,...,¢q, uniquely extend to conformal self-maps of
™' =R x [0, +00),

also denoted by g;, onto itself. Their restrictions to H?*!, which are again also denoted by g;, are isometries
with respect to the Poincaré metric p on H?. The group generated by these isometries in discrete, is also
denoted by G, and is also called the Schottky group generated by the maps g;, j = 1,...,q. For every
j = +1,4£2,--- ,£q denote by Bj the half-ball in H%! with the same center and radius as those of B;.
We recall the following well-known standard fact.

Fact 6.1.1. The region
q
R:=H""\J(B;UB_))
j=1
is a fundamental domain for the action of G on H%*+! and
q
R\ J(B;UB)

j=1

is a fundamental domain for the action of G on R,

—d+1 . . . .
For any z € H " the set of cluster points of the set Gz is contained in

q
UB;uB_,,
j=1

and is independent of z. We call it the limit set of G and denote it by A(G). This set is compact, perfect,
G(A(GQ)) = A(G) and G acts minimally on A(G). We denote

Vi={£1,£2,...,£q}, E:=V xV\{(i,—i): i€V},
and introduce an incidence matrix A: E x E — {0,1} by declaring that

1 ifb=c
A“““@:{o ifh+#c

Furthermore, we set for all (a,b) € E, t(a,b) := b and i(a,b) := a, and
9(ab) ‘= ga|§b : By — B,.
In this way we have associated to G the conformal graph directed Markov system
S¢:={g9.:e€ E}.
By the very definition of this system, for every w € E%, say w = (a1,b1)(az,b2) ... (an,by), we have that

Y = Y(a1,b1) © Y(az,b2) © - © Y(an,bn) By, Y9a; ©Yaz © - --©° Ya, |§bn : Ebn - Eal'

Of course,
A(G) = Js,

and we make the following observation:
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OBSERVATION 6.1.2. The projection map
T =7g =Tss : By = AG)
is a homeomorphism, in particular, a bijection.
We will now make some preparatory comments on our approach to counting problems for the group

G by means of the conformal GDMS Sg. For any element { € A(G) there exists a unique k € V' such that
& € By, and by Observation 6.1.2, a unique p € EY such that

§=mc(p)
of course i(p) = k. Set
Ge ={gu:weE)} ={g, :we€ L}, t(w) =i(p) = k} := G.
The next obvious observation is the following.
OBSERVATION 6.1.3. The maps
E>wr g, €G and E) 3w gu(§) € G(§)
are both 1-to-1.

For every g = g, € G¢, w € E, we denote
Ae(g) = —log g ()] = —log g, (&) = Ap(w).
Furthermore, for every set Y C B}, we denote
Ay (w) = — log(diam(g.,(Y)))

Now we move onto the discussion of periodic points of the system Sg along with periodic orbits of the
geodesic flow and closed geodesics on the hyperbolic manifold HY*!/G.
Indeed, first of all we recall the following.

OBSERVATION 6.1.4. The map E} 3w+ g, € G is 1-to-1.

Now, if w € E,; then
9w(Bi(w)) C Bi(w)

and the map g, : Et(w) — Et(w) has a unique fixed point. Call it x,,. We know that the map g, : R? — R4
has exactly one other fixed point. Call it y,,. Denoting by —w the word

(=, —an—1)(—n—1, —n_2)(—n_2, —n_3) - - - (—ag, —a1)(—a1, —ay)
and marking that w = (a1, 81)(az, B2) - - - (n, Bn) belongs to Ey, we see that —w € Ey and g, = gt
as elements of the group G. Then z_,, € B_,, # Bg,. So as g,(z_,) = _, we must have y, = r_,.
Therefore, we have the following.

PROPOSITION 6.1.5. Ifw € E then 7, the geodesic in H* joining y,, and x., (oriented from y., to
T), is fized by g,,, crosses the fundamental domain R, 7., /G is a closed geodesic on H /G with length

(6.2) Ap(w) = —log g, ()],

and simultaneously represents a periodic orbit of the geodesic flow on the unit tangent bundle of HI*! /G
with the period equal to \p(w).

On the other hand, if +y is a closed oriented geodesic in H**! /G then its full lift 5 in HY*! consists of
a countable union of mutually disjoint geodesics in H%!. Then the set ¥ 1R is not empty and each of
its connected components is an oriented geodesic joining two distinct faces of R. Fix A, one of the such
connected components. Let A be the full geodesic in H?*! containing A and oriented in the direction of
A. Fix z € A arbitrarily. Denote by I(7) the length of . Let z* be the unique point on A such that
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p(z*,z) = I(v) and the segment [z, z*] is oriented in the direction of A. Since both points z and z* project
to the same element of H9*! /G, there exists a unique element gv.A € G such that g, A(2) = z*. Since v
has no self intersections it follows that

g%A(A) = A.
Denote be za and ya the endpoints of A labeled so that the direction of A is from ya to za. Let a,b be
unique elements of V such that za € B, and ya € By. Let Oa € E% and k € V be the unique elements
respectively of £% and V such that

gyA =go, and t(0a) =k,
the first equality meant in the group G. We will prove the following.

Claim 1. k= —-b

PROOF. By our choice of the endpoints za and ya, ya is an attracting fixed point of g;l(g@)_l =

(9z, © gr) 1. Since also ya € By, we thus conclude that
(6.3) 9k ©(954) "' (Bs) C Bs.
Consequently, —k = b, and Claim 1 is proved. O
Since also a # b as A intersects R, we thus conclude that
(6.4) Wy A i=Wa(=ba) € B} and gy A = Gu, A
In addition, by the same token as (6.3) we get that gz, o gr(Ba) C Bs. Thus i(@a) = a. Consequently
waA € E;.
In addition,
Ap(Wy.a) = Agwr a) = Agr.a) = p(z7,2) = 1(7)
and

’Yw%A/G =7
Denote by C(v) the set of all connected components of ¥ N R. Of course we have the following.

OBSERVATION 6.1.6. The function C(v7) 3 A — w4 A € E} is one-to-one.
We shall prove the following.

PROPOSITION 6.1.7. The map E; — ~.,/G is a surjection from E; onto C(G), the set of all closed
oriented geodesics on Ht!/G. Furthermore, if v is a closed oriented geodesic on Ht1 /G then

Per(y) :={w € B, : 1./G =7} ={w,a € E; : A€C(v)}
and Per(vy) forms a full periodic cycle, i.e. the orbit of any element of w € Per(y) under the map o* :
wr— o(w)ws .

PROOF. The first part of this proposition has already been proved. More precisely, it is contained in
Proposition 6.1.5 and formula (6.1). The inclusion
{wa€E): AeC(y)} C{weE) : 1/G =1}

follows immediately from (6.1). The inclusion

Per(y) ={wa € B} : 7,/G =7} C{w,a € E;: AcC(y)}
follows from the fact that for each w € E; the geodesic v, crosses R. So formula (6.1.7) is established.
Now,

Io(w)en 9, (Tw)) = Gia,! © Gun © Gor(e) (T0) = 955, © () = 955, (@)
Similarly,
Go(w)wr oy W) = o) (Yeo)-
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Also, by the Chain Rule,
l(ga(w)wl) = )‘p(U(w)wl) = /\p(w) = l(gw)'
Therefore, noting also that g, !(7.,) crosses R, we get

Vo@wr = Jan (V) a0d Yo(w)w, /G = 1/G = 1.
So, o(w)wy € Per(y) and we have proved that Per(y) is a union of full periodic cycles. Let w € Per(y) be
arbitrary. Put n := |w|. Since
1
I(Voriy NR) =1(y) = > A,

AeC(v)

n

<.
Il
o

since all elements v, () NR are mutually disjoint, and since {V,+i) MR : 0 < j <n—1} C C(y) we can
conclude

{’Ya.*j(w) NR:0<5<n— 1} :C(’}/)
Along with (6.1.7) and Observation 6.1.6 this yields the last assertion of Proposition 6.1.7 and the proof
of this proposition is complete O

Denote by G C G the set of those elements in G for which g, the oriented geodesic in H! from its
repelling fixed point y, to its attracting fixed point x4 crosses the fundamental domain R. We can now
complete Observation 6.1.4 by proving the following.

PROPOSITION 6.1.8. The map E; > w — g, € G is a bijection from E, onto G.

PROOF. Observation 6.1.4 tells us that this map is one-to-one and Proposition 6.1.5 tells us that its
range is contained in G. Thus, in order to complete the proof we have to show that G is contained in this
range. So fix g € G. Let a be the projection on H?*1/G of the geodesic v, such that (o) = a(g). Then
9 = guw.,an Where A =, N'R. Since wa a € E; we are done. O

Propositions 6.1.5 and 6.1.7 provide a full description of closed oriented geodesics and periodic orbits
of the geodesic flow in terms of symbolic dynamics and graph directed Markov systems. For the picture to
be complete we also describe all periodic points of the group G.

PROPOSITION 6.1.9. The map
Ef 3w (w)={gog,og ' : g G}
has the following properties:
(1) (w)=(1) & (W)N(r)#0 & 7=0"(w) for some j > 0.
(2) Each element go g, o g~ has precisely two fized points g(x.,) and g(y. ). In addition
(9090097 ") (9(2)) = gis(ww) and (g0 gw097") (9(yw)) = 9 ()

(3) For each h € G\ {Id} there exists a unique periodic cycle such that
(a) there exists w € E} in this periodic cycle and a unique g € G, depending on w, such that

h=gogw,og ",
(b) for each w € E} in this periodic cycle there exists a unique g € G, depending on w, such that
h=gog,og '

The proof of this proposition is straightforward and we omit it.

Now we pass to the main goal of this monograph, i.e., counting estimates. We deal with these in the
symbol space and on both H*! and H?*! /G. We start with appropriate definitions.
Let B denote a Borel subset of R?. Set

me(G; T, B) == {g € G¢ : Xe(g) < T and g(¢) € B}
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me(G;T) = me(G; T, RY) = {g € G : Me(9) < T}
(G T, B) i={w € B} : \p(w) =l(w) < T and =z, € B},
(G5 T) == mp(G; T,RY) = {w € B} : Ap(w) = U() < T},

(G, T) :={g € G :l(ny) < T}

Having k € V = {#j}7_, and Y C B, put

Ay (g) = —log (diam(g(Y))).
We further denote

Dg(G,T,B,Y) = {g €Gy: AY(g) <7T and g(g) € B}7

E(G;T,B,)Y):={g€Gr:Ay(g) <T and g¢g(Y)N B # 0},

and
Ep(G5T,Y) := Ep(G;T,RLY) := {g € Gy : Ay (g9) < T}.

We denote by Ne(G;T,B), Ne(G;T), No(G;T,B), N,(G;T), Z\AZZ,(G;T)7 D¢(G;T,B,Y), Ex(G;T,B,Y)

and E(G;T,Y) the corresponding cardinalities.

As an immediate consequence of Theorem 2.4.9, Theorem 2.7.1, and Theorem 2.7.4 along with Ob-
servation 6.1.3, Proposition 6.1.5, Observation 6.1.4, Observation 6.1.6 and Proposition 6.1.8 we get the

following.

THEOREM 6.1.10. Let G = <gj>?:1 be a hyperbolic finitely generated classical Schottky group acting on

Re, d> 2.

o Let d¢ be the Poincaré exponent of G; it is known to be equal to HD(A(Q)).

o Let ms, be the Patterson-Sullivan conformal measure for G on A(G).

o Let us,, be the Sg-invariant measure on A(G) equivalent to ms,, .

o Fizk € {£1,42,--- ,+q} and £ € A(G) N By,.

Let B C RY be a Borel set with ms,(0B) = 0 (equivalently jis,(0B) = 0) and let Y C By, be a set having

at least two distinct points. Then with some constant Cy(Y) € (0,+00), we have that

Ne(GiT,B) _ s (8)

Ne(G:T) _ s(8)

li = B li =
T;IEOO edcT 5@X§G méc( )7 T%HJIrloo edcT 5@X§G ’
N,(G;T,B 1 N,(G;T 1
lim p(G: T, B) e (B), lim WGT) _

T 00 edcT 0 X6 TS50 6T §aXss
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P Npe(é(c;;TT) N 5@1@6’
Jim PLELEY) v yms, (),
pim W = Cp(Y)mys, (B),

pim % = Cr(Y).

Theorem 4.1.1 — Theorem 4.1.3 for the conformal GDMS S¢, associated to the group G, are valid
without changes. Therefore, we do not repeat them here. However, we present the appropriate versions
of Theorems 4.3.1 and 4.3.2 as their formulations are closer to the group G. In order to get appropriate
expressions in the language of the group G itself, given £ € A(G), and an integer n > 1, we set

¢ ={gw:weE)} CGe.

Furthermore, we define a probability measure 11, on G¢ by setting that

—dXe(9)
ZgGH e e

—dA
ZwEG? e—0Ae(9)

for every set H C G?. As an immediate consequence of Theorem 4.3.1 we get the following.

(6.5) o (H) =

THEOREM 6.1.11. If G = <gj>g=1 is a hyperbolic finitely generated classical Schottky group acting on
R, d > 2, then for every € € A(G) we have that

A¢
li 2y, = Xps-
Am o i = Xus

Now define the functions A,, : G¢ — R by the formulae

Anlg) = Ag(g\)/% X2

As an immediate consequence of Theorem 4.3.2 we get the following.

THEOREM 6.1.12. If G = <gj>3:1 s a hyperbolic finitely generated classical Schottky group acting on

Rd, d > 2, then for every & € A(GQ) the sequence of random wvariables (Ap)S2, converges in distribution
to the normal (Gaussian) distribution Ny(o) with mean value zero and the variance o® = P_(8) > 0.
Equivalently, the sequence (pin, o A1) converges weakly to the normal distribution No(o?). This means

that for every Borel set F' C R with Leb(0F) = 0, we have

1
(6.6) Hm i, (A N(F)) = / e 129 gy,
F

n——+00 2mo

6.2. Generalized (allowing tangencies) Classical Schottky Groups

In this section we keep to the same setting and the same notation as in Subsection 6.1. except that we

now do not assume that the closures B;, j = £1,--- , ¢ to be disjoint but merely that the open balls Bj,
j ==1,---,+q themselves are mutually disjoint.
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6.2.1. General Schottky Groups. We also assume that if an element g € G\ {Id} has a fixed point
(call it z,) in OB; for some j € {£1,--- ,£q} then g is parabolic. Then z, is a unique fixed point of g and
there exists a unique j* € {£1,---,+q} \ {j} such that

We refer to z, as a parabolic fixed point of G (and of g). We denote by p(g) > 1 its rank. We further
denote by Q(G) the set of all parabolic fixed points of G. Any such group G is called a generalized Schottky
group (GSG). If G has at least one parabolic element, it is called a parabolic Schottky group (PSG). We
associate to the group G the conformal GDMS S¢ in exactly the same way as for hyperbolic (i.e. without
tangencies) Schottky groups in Section 6.1. Since any generalized Schottky group G is geometrically finite,
the number of conjugacy classes of parabolic elements of G and the number of orbit classes of parabolic
fixed points of G, i.e. Q(G)/G, are both finite. In consequence, we have the following,.

OBSERVATION 6.2.1. The conformal GDMS S associated to G is attracting if G has no parabolic
fixed points and it is (finite) parabolic (in the sense of Remark 2.3.6) if G has some parabolic fixed points.

and

OBSERVATION 6.2.2. We have that:

e Each parabolic fixed point of G has a representative in

U Ej N Ek,
—q<j<k<g
and
[ ]

ASe) =& n |J BjnB

—q<j<k<q

We define

(6.1) pc = p(Sc) :=sup{p(g) : g € UG)}.

So, as an immediate consequence of Theorems 3.3.2, 3.4.1, and 3.4.2, in the same way as Theorem 6.1.10,
i.e., along with Observation 6.1.3, Proposition 6.1.5, Observation 6.1.4, Observation 6.1.6 and Proposition
6.1.8, we get the following.

THEOREM 6.2.3. Let G = <gj>?:1 be a parabolic classical Schottky group acting on R, d > 2.

o Let d¢ be the Poincaré exponent of G; which is known to be equal to HD(A(G)).
o Let ms, be the Patterson-Sullivan conformal measure for G on A(G).
o Let us., be the Sg-invariant measure on A(G) equivalent to ms,, .

o Firke {+1,42,--- ,+q} and £ € A(G) N By,.

Let B C R? be a Borel set with ms,(0B) = 0 (equivalently jis,(0B) = 0) and let Y C By, be a set having
at least two distinct points. Then with some constant C(Y) € (0,+00), we have that

Ne(GiT,B) _ ¢5(8) Ne(G:T) _ s.(8)

T1—1>+oo €5GT N (5@X§G Méa (3)7 Tl—lg-loo e‘sGT B (5(;)((5,3 ’
N,(G;T,B 1 N,(G;T 1
lim p(G: T, B) e (B), lim (G T) _

T 00 edcT 0 X6 TS50 6T §aXss
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Tl—igfl(’o Npe(‘g;TT) - 5G>1(6c;7
Jim PLELEY) o vyms, ),
pim W = Cp(Y)ms, (B),

P % =CL(Y).

In addition, C(Y') > 0 is finite if and only if

(1)
YN Qo (Se) = (70 Doo(Sc)NOB) =0

or
(2)
6c > max {p(g) : zy € OBy }.

As in the case of hyperbolic Schottky groups, there are also Central Limit Theorems on the distribution
of the preimages for parabolic Schottky groups. Theorem 4.2.1 and Theorem 4.2.2 for the parabolic
conformal GDMS Sg, associated to the group G, take the same form. Therefore, we do not repeat them
here. However, we present the appropriate versions of Theorems 4.4.1 and 4.4.2 as their formulations are
closer to the actual group G. As in the case of hyperbolic groups, in order to get appropriate expressions
in the language of the group G itself, given £ € A(G), and an integer n > 1, we set

¢ ={gw:weE}} CGe.

Furthermore, we define a probability measure pu,, on G? by setting that

Z cH 675)‘5(9)
(6.2) () 1= 91
—6X¢(9)

ZwGGg € ¢

for every set H C G¢. As an immediate consequence of Theorem 4.4.1 we get the following.

THEOREM 6.2.4. IfG = <gj>;1-:1 is a parabolic finitely generated classical Schottky group acting on R4,
d>2, and
2pg
pa+1
i.e the invariant measure ps is finite (so a probability after normalization), then for every £ € A(G) we
have that

og >

. Ae
nll)r};loo G? ;d'un o X,u5~
Again as in the hyperbolic (no tangencies) case, we define the functions A,, : G¢ = R, n € N, by the
formulae »
Ae(g) —xn
An(g) = ————.
(9) N

As an immediate consequence of Theorem 4.4.2 we get the following.
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THEOREM 6.2.5. If G = <gj>?:1 is a parabolic finitely generated classical Schottky group acting on R4,
d>2, and
2pc
pg+ 1’
i.e., the invariant measure us is finite (thus a probability measure after normalization), then for every
& € A(G) the sequence of random variables (Ap)S>, converges in distribution to the normal (Gaussian)
distribution No(o) with mean value zero and the variance o = Pgé(é) > 0. Equivalently, the sequence

og >

(pn © A1), converges weakly to the normal distribution No(o?). This means that for every Borel set

F C R with Leb(0F) = 0, we have
1
Hm (A N(F)) = / e 129 gy,
n——+oo 2mo F

6.2.2. Apollonian Circle Packings. We now describe the application of Theorem 6.2.3 to Apol-
lonian circle packings, as explained in the introduction. This can be formulated in the framework we
described in the introduction to this section. Some additional information related to the subject of this
section and the one following it can be found in works such as [2], [7], [21], [23], [36], [28], [51], [56]-[58],
[69], and [83]. Of course we make no claims for this list to be even remotely complete.

Let Cy,Co,C3,Cy be four distinct circles in the Euclidean (complex) plane, each of which shares
a common tangency point with each of the others. We assume that the bounded component of the
complement of one of these circles contains the bounded components of the complements of the remaining
three circles. Without loss of generality Cy4 is this circle enclosing the three other. We refer to such
configuration of circles C1, Cs, C3, Cy as bounded. This name will be justified in a moment. We can now
choose the new four circles K, K5, K3, K4 that are dual to the original four tangent circles, i.e., those circles
that pass through the three of the four possible tangent points between the initial circles Cy, Cs, Cs, Cy.
We label them (uniquely) so that

CiNnK; =10
for all : = 1,2, 3,4. Figure 2 depicts this construction.
We associate to the dual circles K1, Ko, K3, Ky the respective inversions g1, g2, g3, g4 in these four dual
circles. More precisely, if K;, i =1,2,3,4, is a circle with center a; € C and radius r; > 0 then we define

1 z—a;

gz(z) = +ai7

2l=al
Denote by By, Bs, B and By the open balls (disks) enclosed, respectively, by the circles K, Ko, K3, K4.
Let
G = (91,92, 93, 94)
be the group generated by the four inversions g1, g2, g3, g4. Let I' be the subgroup of G consisting of its all
orientation preserving elements. Observe that I' is a free group generated by three elements, for example
by
Y1:=94°91, 72:=940°92, 73:=Gg4°G3.
Now noting that the the balls
By, Bs, Bs; B-1:=g4(B1), B_2:=g4(B2), B_3:=ga(B3),

are mutually disjoint (see Figure 3), and that for every i =1,2,3:
Vi(Bi) = ga 0 9i(B;) = 94(B) = (9a(Bi))* = B,
we get the following.
OBSERVATION 6.2.6. T' = (1, 72,73) is a parabolic classical Schottky group.

In addition,
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FIGURE 1. The Tangent Circles C1,C5, C3, Cy and Dual Circles K1, Ko, K3, K,

OBSERVATION 6.2.7. The parabolic classical Schottky group I' has six conjugacy classes of parabolic
elements whose representatives are

TP C T E P T NS 11 PR P Pt
with the corresponding parabolic fixed points being the only elements, respectively, of
BiNBy, BsNBy, BsNBy, B_.1NB_y, B_.iNB_3, B_oNB_s.
These objects are depicted in Figure 3. We have the following.

OBSERVATION 6.2.8. The limit set A(T") coincides with the residual set of the Apollonian circle packing
generated by the circles Cy, Co, Cs, Cyy. In addition (see [6], [43], and Theorem 3.1.6), we have the following.

(1) dr = HD(A(T)) > 1,
(2) p(g) =1 for every parabolic element of I', and so
dr > sup{p(9)},
where g € T" ranges of all parabolic elements of G,

(3) Qo (Sr) = (), and so ps,., the probability Sp-invariant measure on A(T'), is finite, thus probability
after normalization.

Hence, as an immediate consequence of Theorem 6.2.3, we get the following.
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9391 (01)

FiGure 2. Circles, Disks, and Generators of G

COROLLARY 6.2.9. Let C,Cs,C3,Cy be a bounded" configuration of four distinct circles in the plane,
each of which shares a common tangency point with each of the others. Let I" be the corresponding parabolic
classical Schottky group.

e Let or be the Poincaré exponent of T'; it is known to be equal to HD(A(T)).
o Let mg,. be the Patterson-Sullivan conformal measure for T' on A(T).

o Let us. be the probability Sr-invariant measure on A(T) equivalent to my,..

o Fizk € {£1,£2,£3} and £ € A(T) N By,.

Then for every set Y C By having at least two distinct points there exists a constant Ci,(Y) € (0, +00)
such that for every Borel set B C R with ms.(0B) = 0 (equivalently us.(0B) = 0), we have that

Ne(;T, B) _ s (§) Ne(sT) _ se(6)

P T eorT Srxes ms. (B), P ST Srxer
. N,(I;T, B) 1 _ N,(I;T) 1
lim ) B lim =) o

THHEOO edsrT 6FX5F MJF( )’ Tall}rloo edrT 6FX51~ ’

IBoundedness of the configuration C'1, Cq, C3,Cy guarantees us that the group I' is Schottky in the sense of our previous
section, and, in particular, all the numbers N¢(I';T) and Ny (I'; T') are finite.
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g SO L
P w = C(Y)msq(B),
i BELEY 6, (8),

pim % = C(Y).

Making use of Observation 6.2.8, as an immediate consequence respectively of Theorem 6.2.4 and
Theorem 6.2.5, we get the following two theorems.

THEOREM 6.2.10. Let Cy,C5,Cs,Cy be a bounded configuration of four distinct circles in the plane,
each of which shares a common tangency point with each of the others. If I is the corresponding parabolic
classical Schottky group, then for every & € A(T') we have that

. A
lim —Edun = Xps-
n——+00 FE n

The next theorem is a Central Limit Theorem for diameters of circles in the Apollonian Circle Packing.

THEOREM 6.2.11. Let Cy,Cy, C5,Cy be a bounded configuration of four distinct circles in the plane, each
of which shares a common tangency point with each of the others. IfT is the corresponding parabolic classical
Schottky group, then for every & € A(T) the sequence of random variables (A,)52, converges in distribution
to the normal (Gaussian) distribution No(o) with mean value zero and the variance o = Pg; (6) > 0.

Equivalently, the sequence (pn 0 A1) converges weakly to the normal distribution No(o?). This means

that for every Borel set F' C R with Leb(0F) = 0, we have

lim (A (F)) = — / e 129 gy,
F

In Figure 2 we illustrate the Central Limit Theorem for the diameters in the standard Apollonian
Circle Packing in Theorem 6.2.5.

Now, we consider the actual counting of the circles in the Apollonian circle packing generated by the
bounded configuration of the circles C7,Cy, C3 and C4. The following immediate observation is crucial to
this goal.

OBSERVATION 6.2.12. The elements of A, the Apollonian circle packing generated by the bounded
configuration of the circles Cy, Cy, C3, Cy, is bounded? and coincide with the following disjoint union
3 4

3
(01,0205, 030 Yy 0 g€ w U U (00 i) oa(€)0

Jj=1 S

U{ga(Ca)} UUS_ (T {Id})(!}y 094)(Cy),
and for j =1,2,3 and ¢ € {1,2,3} \ {j} we have that
9;(Cj) C Bj, gi©g;(Cy) C Bi, ga0g;(Cj) CB—j, gjoga(Cs) CB

2This justifies the name “bounded” in regards to the configuration C7,C2,Cs,Cy.
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H!M.“_“

FiGURE 3. We plot a portion of the weighted histogram of the 6,377,292 values — logr
where r is a circle of generation n = 14 for standard Apollonian circle packing. There are
46 bins with a weighting corresponding to 9.

For every T > 0 and every set B C C, we denote
E(T;B)={CeA: —logdiam(C) < T and CN B # 0},
E(T) :=&(T;C)
NA(T;B) :=#E(T; B) and N4(T):=#E(T).

As an immediate consequence of the last two formulas of Corollary 6.2.9 and Observation 6.2.12 we get
the following result proved in [36] (see also [56]-[58]) by entirely different methods.

THEOREM 6.2.13. Let C1,C5,Cs,Cy be a bounded configuration of four distinct circles in the plane,
each of which shares a common tangency point with each of the others. Let A be the corresponding circle
packing.

Let 6 = 1.30561 ... be the Hausdorff dimension of the residual set of A and let ms be the Patterson-
Sullivan measure of the corresponding parabolic classical Schottky group T'.

Then the limit

lim 7NA(T)
T—+oco €6T
exists, is positive, and finite. Moreover, there exists a constant C € (0,4+00) such that
. NAT:)
T—+o0 e
for every Borel set B C C with ms(0B) = 0.

== CTm;(B)

6.2.3. Apollonian Triangle. Now we consider the Apollonian triangle. Let Cp,C5,C3 be three
mutually tangent circles in the plane having mutually disjoint interiors. Let Cy be the circle tangent to all
the circles C, Cs, C5 and having all of them in its interior, i.e. the configuration Cy, Cs, C3, Cy is bounded.

We look at the curvilinear triangle 7 formed by the three edges joining the three tangency points of
C1,Cs,Cs and lying on these circles. The bounded collection

G={CeA:CCT}

is called the Apollonian gasket generated by the circles C1, Cy, Cs. Since 9T N A(I") = 9T has Hausdorff
dimension 1, since § > 1 and since m; is a constant multiple of I—dimensional Hausdorff measure restricted
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to A(T"), we have that ms(0T) = 0. Another, a more general argument for this, would be to invoke
Corollary 1.4 from [20]. Therefore, as an immediate consequence of Theorem 6.2.13 we get the following
result, also proved by Kontorovich and Oh in [36] (see also [56]—[58]) with entirely different methods.

COROLLARY 6.2.14. Let Cy,Co,Cs be three mutually tangent circles in the plane having mutually
disjoint interiors. Let Cy be the circle tangent to all the circles C1,Cs,Cs and having all of them in its
interior, i.e. the configuration Cy,Cs,C5,Cy is bounded. Let A be the corresponding (bounded) circle
packing.

Let § = 1.30561... be the Hausdorff dimension of the residual set of A and let mg be the Patterson-
Sullivan measure of the corresponding parabolic classical Schottky group T'.

If T is the curvilinear triangle formed by Cy, Co and Cs, then the limit

. NaA(T:T)
lim T
T—4oc0 e
exists, is positive, and finite; we just count the elements of G. Moreover, there exists a constant C' €
(0, +00), in fact the one of Theorem 6.2.13, such that

i Na(TiB)
T—l>I-Eoo edT
for every Borel set B C T with ms(0B) = 0.

= Cm5(B)

Now we will provide a somewhat different proof of Corollary 6.2.14, by appealing directly to the theory
of parabolic conformal IFSs and avoiding the intermediate step of parabolic Schottky groups. Indeed, let
Cy be the circle inscribed in 7 and tangent to the circles Cy, Cy and C3. Let x1, x5 and x3 be the vertices
of the curvilinear triangle T, i.e., for i = 1,2,3, x; is the only element of the intersection K; N K. Let

@i:@—ﬂa

be the Mobius transformation fixing the point z; and mapping the other vertices x; and xy, respectively,
onto the only points of the intersections Cy N Cj and Co N Cj. Then

S = {p1, 2,3}
is a parabolic IFS defined on By, x; is a parabolic fixed point of ¢;, i = 1,2,3, and
G ={vu(Co) : we{l,2,3}"},
see Figure 5. We therefore obtain Corollary 6.2.14 immediately from Theorem 3.4.6.

REMARK 6.2.15. In the context of limit sets, such as circle packings, there is scope for finding error
terms in the above asymptotic formulae, see ex. [39] and [60]. It could be also done using the techniques
worked out in our present manuscript. However, in the general setting of conformal graph directed Markov
systems quite delicate technical hypotheses might well be required.

REMARK 6.2.16. For these analytic maps it would be equally possible to work with Banach spaces
of analytic functions, rather than Holder continuous functions. This would have the advantage that the
transfer operator operator is compact (even trace class or nuclear) and might help to simplify some of the
arguments as well as being useful in explicit numerical computations. On the other hand, working with
Holder functions allows the results to be applied to a far greater range of examples.

REMARK 6.2.17. In higher dimensions, we can consider the packing of the sphere S¢ by mutually
tangent d-spheres. The same analysis gives a corresponding asymptotic for the diameters of spheres. In
an overlapping setting and with entirely different methods this question has been addressed in Oh’s paper
[55].
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- ¢1(Co)
p109a(Co)

FIGURE 4. Apollonian Triangle

6.3. Fuchsian Groups

We recall that a Fuchsian group I' is a discrete group of orientation preserving Poincaré isometries

acting on the unit disk
D={zeC: |z| <1}
in the complex plane. A Poincaré isometry means that the Poincaré metric
|dz|
1—|2?

is preserved, equivalently the map is a holomorphic homeomorphism of the disk D onto itself. The limit set
A(T') of T is a compact perfect subset of S' = 0D = {z € C : |z| = 1}. Assume that I is finitely generated
and denote a minimal (in the sense of inclusion) set of its generators by {g; }]i:q 1+, where g; = g;l. Assume
that ¢ > 2, so that I is non-elementary. Following [84] (see also [85]) we call I non-exceptional if at least
one of the following conditions holds (corresponding to conditions (10.1)-(10.3) from [37]):

(1) D/T is not compact;

(2) The generating set has at least 5 elements (i.e., ¢ > 5) and every non-trivial relation has length
5; and

(3) At least 3 of the generating relations have length at least 7.
In particular, every finitely generated parabolic Fuchsian group is non-exceptional as the condition (1)

above is satisfied. In the language of conformal GDMSs, C. Series proved in [84] (see also [66], [67] for an
alternative account and [85] where a more algebraic approach is employed) the following:

THEOREM 6.3.1. If I' is a non-exceptional Fuchsian group then there exists a finite irreducible pre-
parabolic GDMS Sr with an incidence matriz A, a finite set of vertices V. and a finite alphabet E =
{£1,+£2,--- ,+q} such that

(1) For every j € E the corresponding element of Sr is g; : Xy(;) — Xi(j)
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2) All sets X,,, v € V are closed subarcs of S*

(2)

(3) The map Ey > w v+ g, €T is a bijection

(4) A(T) = Tsr

(56) The map s, : EX — Js;. = A(T') is a continuous surjection and it is 1-to-1 except at countably

many points, where it is 2-to-1.
Similarly to (but not exactly) as in Section 6.1, given ¢ € E we define
I.:={yweFE, and w =e}.
Then having p € AY we set
FP = Fm
Again, similarly as in Section 6.1, we denote
Ao(7) = —log |y (mr(p))| = —log |7, (mr(w))| = Ap(w)
for every w € E (v =, €', =T)) and
A(Y) = — log(diam(7,,(Y)))
ifY C Xt(pl)' Also
Ap(w) = —log 76 ()
ifweE,
Let B denote a Borel subset of the set S'. Set
(I3 T, B) :={y €'y : Ap(7) <T and (7 (p)) € B}

(I T) = me(T;T,8") = {v €T, : A\(v) <T}
(DT, B) :={w € B, : \y(w) =1l(y) < T and z, € B},
mp(I5T) i= mp(D3 T, S') = {w € Ejy : Ap(w) = 1(w) < TV,

7p(0,T) :={y €T : i(y,) <T}
With e := p; we further denote

D,(I;T,B,Y) :={y€Tle: Ay(Y)<T and ~(nr(p)) € B},

E(IST,B)Y)={yeTc: Ay(Y)<T and ~v(Y)N B # 0},
and
ET,Y) :=E(I;T, SN Y)={yeT.: A(Y)<T}

~

We denote by N¢(I'; T, B), Ne(TsT), Np(Ts T, B), Np(I; T), Np(I;T'), De(T;T, B,Y), E.(I'; T, B,Y) and
E.(T;T,Y) the corresponding cardinalities.

As immediate consequences of Theorem 2.4.9, Theorem 2.7.1, Theorem 2.7.4, Theorems 3.3.2, 3.4.1,
and 3.4.2, along with Theorem 6.3.1 and Fuchsian counterparts of Proposition 6.1.5, Observation 6.1.6 and
Proposition 6.1.8, following from [84] and [85], we get the following.

THEOREM 6.3.2. Let ' = <'Yj>?:1 be a finitely generated non-exceptional Fuchsian group.

e Let Or be the Poincaré exponent of I'; it is known to be equal to HD(A(T)).

e Let ms. be the Patterson-Sullivan conformal measure for G on A(T).
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o Let us. be the Sp-invariant measure on A(T') equivalent to ms,..

o Fizec E={£1,£2,--- ,+q} and p € EY with p1 =e.
Let B C S* be a Borel set with ms.(0B) = 0 (equivalently ps.(0B) =0) and let Y C Xy be a set having
at least two distinct points. Then with some constant C.(Y') € (0, +00], we have that

TLHJrrloo edrT N 5FX6F Mor (B)7 Tgr}rloo edrT - (5FX51" ’
. N(IT,B) 1 . N, (IyT) 1
T1—1>r£oo edrT N 5FX51~ Hor (B)7 Tl—lg-loo edrT N 5FX51~ ’

lim Np(F;T) _ 1
T—too  erT orXsr
Jim PRI v yms, (8),
. Ek:(F7T7B7Y) _
P~ Cel¥)ma(B),
E(I;TY
im ZEDDY) oy,

T—+o00 edrT
In addition, Ce(Y) > 0 is finite if and only if

Yn Q(Sr) =0,
in particular if T has no parabolic points, i.e. if it is convexr co-compact.

We would like to add that the geodesic flow of a non-compact surface was coded by a sususpension
flow over countable shift in [15] and was, in particular, used to get appropriate counting results.

Theorem 4.1.1 — Theorem 4.1.3 hold for the conformal GDMS Sr, associated to the group I', without
changes. Therefore, we do not repeat them here. However, as in Section 6.1, we present the appropriate
versions of Theorems 4.3.1 and 4.3.2 as their formulations are closer to the group I'. In order to get
appropriate expressions in the language of the group I' itself, given p € EY°, and an integer n > 1, we set

I ={1w:wekE}CT,

Furthermore, we define a probability measure u, on I') by setting that

=0 (v

o Z'yeHe o)
- —dA

ZWEF’; € /()

for every set H C I']. As an immediate consequence of Theorem 4.3.1 we get the following.

(6.1) pin (H) :

THEOREM 6.3.3. IfT' = (v,)?_, is a finitely generated non-exceptional convex co-compact (i. e. without

J
parabolic fixed points) Fuchsian group, then for every p € EX we have that

A
: P
lim —dpn = Xps-
n—-+o0o T n
P
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Now define the functions A,, : I') — R by the formulae

RO E

As an immediate consequence of Theorem 4.3.2 we get the following.

THEOREM 6.3.4. IfT" = <7j>?:1 is a finitely generated non-exceptional convex co-compact (i. e. without
parabolic fized points) Fuchsian group, then for every p € EY the sequence of random wvariables (Ay)22 4
converges in distribution to the normal (Gaussian) distribution No(o) with mean value zero and the variance
0 = Pg.(0) > 0. Equivalently, the sequence (pun, o A )32, converges weakly to the normal distribution

No(0?). This means that for every Borel set ' C R with Leb(dF) = 0, we have

(6.2) lim (AN (F)) = ! /e‘tz/Q"zdt.
F

n—-+oo 2m0

6.3.1. Hecke Groups. A special class of Fuchsian parabolic (so non-exceptional) groups are Hecke
groups. These are easiest to express in the Lobachevsky model of hyperbolic geometry and plane rather
than in the Poincaré one. The 2-dimensional hyperbolic (Lobachevsky) plane is the set

H:={z € C:Imz > 0}

endowed with the Riemannian metric 2]
z

Imz’
Given € > 0 the corresponding Hecke group is defined as follows

Loi=(2——1/2,z— 2+ 14e€).

This group has an elliptic element order 2 which is the map z — —1/z and one (conjugacy class) of
parabolic elements which is the map z — z 4+ 1 4 €. Its (parabolic) fixed point is co. In particular all the
limit sets A(T;) are unbounded, and therefore the Hecke groups I'. do not really fit into the setting of our
current manuscript. However, any Mobius transformation

H:D—-H
is an isometry with respect to corresponding Poincaré metrics and the map
I.oy— H loyoH
establishes an algebraic isomorphism between I'. and the group
[.:={H 'oyoH:yeTl.}.
Of course, the conjugacy H between I, and I'. congregates elements of I, and I'. viewed as isometric

actions. The groups I'c are Fuchsian parabolic (so non-exceptional) groups acting on I and perfectly fit
into the setting of Section 6.3. In particular, Theorem 6.3.2 holds for them.
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