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ABSTRACT. We introduce and study skew product Smale endomorphisms over finitely ir-
reducible topological Markov shifts with countable alphabets. We prove that almost all
conditional measures of equilibrium states of summable Hélder continuous potentials are
dimensionally exact, and their dimension is equal to the ratio of (global) entropy and Lya-
punov exponent. We show that the exact dimensionality of conditional measures on fibers
implies global exact dimensionality of the original measure. We then study equilibrium
states and dimension for skew products over expanding Markov-Rényi transformations,
and settle the question of exact dimensionality of such measures. In particular, we ob-
tain the exact dimensionality of such measures with respect to skew products over the
continued fractions transformation. We then prove two results related to Diophantine ap-
proximation, which extend and improve the Doeblin-Lenstra Conjecture on Diophantine
approximation coefficients for a larger class of measures.
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1. INTRODUCTION

We introduce and explore skew product Smale endomorphisms modeled on countable
alphabet subshifts of finite type. We study the thermodynamic formalism for skew prod-
uct Smale endomorphisms over countable-to-1 maps, in particular natural extensions of
countable-to-1 endomorphisms (such as EMR-expanding Markov-Rényi maps, Gauss map,
etc). Our notion of Smale space is different, although inspired by the respective notion from
[20]. One of our objectives is to develop the thermodynamic formalism of such dynamical
systems. In order to do this, we first recall in Section 2 the foundations of thermody-
namics formalism of one-sided subsifts of finite type modeled on a countable (either finite
or infinite) alphabet, from [8], [7]. Passing on to two-sided shifts in Section 3, we pro-
vide a thermodynamic formalism of Holder continuous potentials with respect to two-sided
subshifts of finite type. It also includes a characterization of Gibbs states in terms of
conditional measures; this has no counterpart for one sided shifts.

We then define in Section 4 skew product Smale endomorphisms, modeled on countable
alphabet subshifts of finite type, and we specify several significant subclasses. Of particular
interest is the projection from the symbol space to the Smale space. If a skew product Smale
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endomorphism is continuous and of compact type, then this projection gives a bijection
between invariant measures for the symbol dynamics and for the Smale endomorphism.

A goal is to deal with conformal Holder continuous Smale endomorphisms modeled on
countable alphabet subshifts of finite type. We define them in Section 5 and in Section 6 we
prove two theorems. In Theorem 6.1 we show that projections of a.e conditional measures
of equilibrium states of summable Hélder continuous potentials are dimensionally exact,
and their dimension is the ratio of the (global) entropy and the Lyapunov exponent. We
prove in Theorem 7.3 a version of Bowen’s formula giving the Hausdorff dimension of each
fiber as the zero of a pressure function; we deal also with the case when pressure function
has no zero. Exact dimensionality of measures has a long history and was studied in various
cases, by Young ([25]), Barreira, Pesin and Schmeling ([1]), and other authors.

We then pass in Section 8 to general skew products over countable-to-1 endomorphisms.
For endomorphisms, the study of Hausdorff dimension is in general different than for in-
vertible systems and specific phenomena appear (for eg [21], [10], [11]). We prove, under
a condition of p-injectivity for the coding of the base map, the exact dimensionality of
conditional measures of equilibrium measures in fibers, building on [12]. We consider gen-
eral skew product endomorphisms F : X xY — X xY, F(z,y) = (f(x),9(z,y)), over
countable-to-1 endomorphisms f : X — X in the base X, where X is a general metric space
(not only Ef), and Y C R% Then f is coded by a shift space with countably many sym-
bols, and we prove in Theorem 8.4 a result about the pointwise dimensions of conditional
measures in fibers of F. Then, in Theorem 8.6 we prove that, if the conditional measures
of an equilibrium measures 1, on fibers are exact dimensional, and if the projection of ji4
in the base is also exact dimensional, then p, is exact dimensional globally.

We then study several main classes of skew product endomorphisms over countable-to-
1 maps, in particular natural extensions (inverse limits). In Section 9 we study EMR
(expanding Markov-Rényi) maps f : I — I (see [17]), and conformal Smale skew product
endomorphisms F': I XY — I xY over f. In Theorem 9.3 we prove exact dimensionality of
conditional measures on fibers for F, for conditional measures of the equilibrium measures.
In particular, we consider the continued fraction transformation fi(z) = {2},z € (0,1]
coded by a countable alphabet; and the Manneville-Pomeau maps fa(z) = z+ 2™ mod 1,
x € [0,1], @ > 0. In Theorem 9.5 we show that a class of equilibrium measures are exact
dimensional globally on I x Y.

In Section 10, we apply our results to Diophantine approximation of irrational num-
bers x, and we generalize the Doeblin-Lenstra conjecture about the approximation coeffi-
cients ©,(x) in continued fractions representation, to equilibrium measures j4 of potentials
—slog|T"|, s > 1 (where T is the Gauss map). If the continued fraction representation of

an irrational number x € [0,1) is z = oy L = [ay, as, . ..], with a; > 1 integers, i > 1,
GQ+W
and if Z”—Eg =lay,...,a,] € Q,n > 1, then the approximation coefficients (see [6]) are:

Ou(z) 1= (oo = 2] n 21

The original Doeblin-Lenstra Conjecture (for eg [2], [6]) gives information about the fre-
quency of having consecutive O (x), Or_1(z) in some set, and involves the lift of the Gauss
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measure fi¢ to the natural extension space [0,1)? of the continued fraction transformation;
thus, it is valid for Lebesgue-a.e = € [0,1). By contrast, in our case we take the numbers z
from the complement of this set. The natural extension ([0,1)2,7) of T is a skew product
which falls in our class. Hence we can apply the results obtained in previous Sections. Using
the exact dimensionality of the lift measure jis of us on the natural extension, we also make
the Doeblin-Lenstra Conjecture more precise. Namely, for irrational z from A; C [0,1)
with pus(As) = 1 and HD(A;) > 0 (but with Leb(As) = 0), we estimate the asymptotic
frequency of having (O (z), ©x_1(z)) r-close to (z,2'), for 1 < k <n and n large.

Several authors studied various related aspects in thermodynamic formalism and dimen-
sion theory, for eg [1], [5], [8], [9], [10], [11], [13], [14], [16], [17], [20], [22], [23], etc.

2. ONE-SIDED THERMODYNAMIC FORMALISM

In this section we collect some fundamental ergodic (thermodynamic formalism) results
concerning one-sided symbolic dynamics. All of them can be found with proofs in [8], [7].
Let E be a countable set and let A : E x E — {0,1} be a matrix. A finite or countable
infinite tuple w of elements of E is called A-admissible if and only if A, = 1 for any two
consecutive elements a, b of . The matrix A is said to be finitely irreducible if there exists
a finite set I of finite A-admissible words so that for any two elements a, b of E there exists
v € F such that the word avyb is A-admissible. In the sequel, the incidence matrix A is
assumed to be finitely irreducible. Given 3 > 0, define the metric dg on EN by

ds((wn)3, (12)3°) = exp(—Pmax{n >0: (0 <k <n) = wy =74})
with the standard convention that e™> = 0. Note that all the metrics dg, 8 > 0, on EN
are Holder continuously equivalent and they induce the product topology on EN. Let
E} = {(wa)§” : Vnen Avpionn = 1}

E7 is a closed subset of EN and we endow it with the topology and metrics dg inherited
from EN. The shift map o : E* — EZ is defined by the formula o ((w,)3°) = ((wat1)52),
and o(E}) C E} and o : Ef — E} is continuous. For every finite word w = wowy . .. wy,_1,
put |w| = n the length of w, and [w| = {7 € E} : Yo<j<n_1) : Tj = w;} is the cylinder
generated by w. Let ¢ : Ef — R continuous, then the topological pressure P (1)) is

o1
P(y) = lim ﬁloglzl_: exp(sup (Snt])))
and the limit exists, as the sequence log szn exp(sup (Snw][w]),n € N, is sub-additive.
The following theorem, a weaker version of the Variational Principle, was proved in [§].
Theorem 2.1. If ¢ : Ef — R is a continuous function and p is a o-invariant Borel

probability measure on E such that [ du > —oco, then hy(o) + fEX wdu < P(y).

We say that the function ¢ : Ef — R is summable if and only if Y-, exp(sup(¢[())) < oo.
A shift-invariant Borel probability measure 1 on E7 is called a Gibbs state of ¢ provided

that there are a constant C' > 1 and P € R such that
91 o1 < ([w]) <
(2.1) = oxp(Sulr) — Pr)
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for all n > 1, all admissible words w of length n and all 7 € [w]. Tt clearly follows from

(2.1) that if ¢» admits a Gibbs state, then P = P(¢).

Definition 2.2. A function g : EY — C is called Holder continuous if it is Holder con-
tinuous with respect to one, equivalently all, metrics dg. Then 3B > 0 s.t g is Lipschitz
continuous with respect to dz. The corresponding Lipschitz constant is Lg(g).

The proofs of the following three results come from [8] and [7].

Theorem 2.3. For every Holder continuous summable potential v : E — R there exists
a unique Gibbs state p,, on EY. The measure p is ergodic.

Theorem 2.4. Suppose v : Ef — R is a Holder continuous potential. Then, denoting
by Pr(v) the topological pressure of w‘FZ with respect to the shift map o : F{ — Fi, we

have P(v)) = sup{Pr(¢))}, where the supremum is taken over all finite subsets F of E;
equivalently over all finite subsets F' of E such that the matriz A|p«p is irreducible.

Theorem 2.5 (Variational Principle for One-Sided Shifts). Suppose that ¢ : Ef — R is a
Holder continuous summable potential. Then

sup {hu(a) + /E+ Ydp, poo t=p and/wdu > —oo} =P(¢) =hy,(0) + /E+ Yy,

and fiy is the only measure at which this supremum is attained.

Any measure that realizes the supremum in the above Variational Principle is called an
equilibrium state for ¢. Then Theorem 2.5 can be reformulated as follows.

Theorem 2.6. If¢) : E} — R is a Holder continuous summable potential, then the Gibbs
state [y 15 a unique equilibrium state for ).

Also due to the irreducibility of the incidence matrix A, we have:

Proposition 2.7. A Hélder continuous v : E — R is summable if and only if P(¢) < oo.

3. Two-SIDED THERMODYNAMIC FORMALISM

As in the previous section let F be a countable set and let A : E x E — {0,1} be a finitely
irreducible matrix. Given 8 > 0 we define the metric dg on EZ by setting

dg((wn)i"oo, (Tn)ofoo) = exp(—ﬁ max{n > 0: Viezlk| <n = w, = Tk}>

with the standard convention that e=> = 0. Note that all the metrics dg, 3 > 0, on EZ
are Holder continuously equivalent and they induce the product topology on EZ. We set

By ={(wn)Z : Vnez Avnimsr = 1}.

Obviously E4 is a closed subset of £ and we endow it with the topology and metrics
dg inherited from E%. The two-sided shift map o : E* — EZ is defined as o((w,)>,) =
((wnﬂ)i"oo). Clearly 0(F4) = E4 and 0 : E4 — E4 is a homeomorphism.
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Definition 3.1. A function g : E4 — C is said to be Holder continuous provided that it
is Holder continuous with respect to one, equivalently all, metrics dg. Then there exists at
least one (in fact an open segment) parameter 3 > 0 such that g is Lipschitz continuous
with respect to dg. The corresponding Lipschitz constant is denoted by Lg(g).

For every w € E4 and all —oo < m < n < 00, we set w|" = wWyWmit - - - Wn-

Let E% be the set of all A-admissible finite words. For 7 € E*, T = 7,741 - . - Tn, We set
[T]n ={we Ea:w|, =7}

and call [7]? the cylinder generated by 7 of size from m to n. The family of all cylinders

of size from m to n will be denoted by C7. If m = 0 we simply write [7] for [7]}.

Let ¥ : E4 — R be a continuous function. The topological pressure P(v)) is defined by

o1
(3.1) P(¢) := lim —log Z exp (sup (Sn?|iw)))

n—oo N
wEC’g)Hl

and the limit exists due to the same subadditivity argument. Similarly we obtain:

Theorem 3.2. If ¢ : E4 — R is a continuous function and p is a o-invariant Borel
probability measure on E4 such that [ dp > —oo, then h, (o) + fEA wdu < P().

A shift-invariant Borel probability measure p on E4 is called a Gibbs state of i provided
that there are a constant C > 1 and P € R such that

pls™)
exp(Spip(w) — Pn)
for all n > 1 and all w € E4. It clearly follows from (3.2) that if ¢ admits a Gibbs
state, then P = P(¢)). Two functions 1; and 1y are called cohomologous in a class G of
real-valued functions defined on E 4 if and only if there exists u € G such that

(3.2) ct<

Yy =Y =u—uoo.
Any function of the form u — u o ¢ is called a coboundary in G. A function ¢ : E4 — R is
called cohomologous to a constant, say b € R provided that ¥ — b is a coboundary. Notice
that any two functions on E4, cohomologous in C'(E4), the class of all real-valued bounded
functions on B4, have the same topological pressure and the same set of Gibbs measures.

A function ¢ : E4 — R is called past-independent if for every 7 € C§° and for all
w, p € [1], we have ¢(w) = ¢(7). To apply the previous Section, we need the following:

Lemma 3.3. Every Hélder continuous function ¢ : E4 — R is cohomologous to a past-
independent Holder continuous function ¥ : E4 — R in the class Hg of all bounded Holder
continuous functions.

Proof. The proof is essentially the same as in [3], Lemma 1.6, page 11. For every e € F
fix an arbitrary € € E4(—o00,—1) such that Az ,. = 1. Then, for every w € E4 put
W = Wow|{°, note that the mapping w — @ is continuous and set

u(w) =Y (0! (W) — (o’ @)).

=0
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We check first that u is well-defined and continuous. Fix § > 0 so that v is Lipschitz con-

tinuous with respect to the metric dg. For every j > 0, [07(w)|>] = [0/ (@)|>]. Therefore
dg(07(w), 0’ (w)) < e, and consequently
(3:3) (07 (w)) = (o’ @))] < La()e™™.

Hence, by the Weierstrass M-test, v : E4 — R is well-defined and continuous. If now
dg(w,7) = e P then [w|",] = [7]",]. Thus, for every 0 < j < n,

(07 (w)) = (o’ ()] < Le(¥)ds(o” (w), 07 (7)) < Ly(w)e "7
and

[0(07 (7)) = (0’ (@)| < Ls(¥)ds(0”(7), 07 (@)) < Lg(w)e P,
Thus using also (3.3), we get |u(w)—u(T)| < 2Lg(1) Zf:(Z/Q) e A=D1 2L5(¢)) 2> E(n/2) e Pl <
4Ls()(1 — e P)"te P2, So u : E4 — R is Lipschitz continuous with respect to the
metric dgs, and by (3.3) it is bounded. So w € Hgs. Hence " = ¢y —u 4 uoo

is Lipschitz continuous with respect to the metric dgj,. Let us show that ¢* is past-
independent. Let w|3® = 75°. Then @ = 7 and ¢*(w) = P(w) — 372 (Y(0? (W) —
U(0?(@)) + 272 (V(07 T (W) — Y (07T (@)) = (@) = ¢ (7). O

In the setting of the above lemma, let @Jr be the factorization of ¢y on E}, i.e. ¥t =

—+ . . .
1 om. As an immediate consequence of this lemma we get,

Lemma 3.4. If¢: E4 — R is a Héolder continuous potential, then P(¢) = P(EJF), where,
we remind, the former pressure is taken with respect to the two-sided shift o : Eq4 — FE4
while the latter one is taken with respect to the one-sided shift o : B — E}

Then from this lemma and Theorem 2.4, we get

Theorem 3.5. Suppose that ¢ : E4 — R is a Holder continuous potential. Then, denoting
by Pr(y) the topological pressure of w\F:{— with respect to o : Ff~ — F{~, we have
that P(¢) = sup{Pr(¢))}, where the supremum is taken over all finite subsets F' of E;
equivalently over all finite subsets F' of E such that the matriz A|p«p is irreducible.

We call the function ¢ : E4 — R is summable if and only if

Z exp (sup(¢)) < oo.

ecE

As in the case of one-sided shift, we have the following.
Proposition 3.6. A Hélder continuous v : E4 — R is summable if and only if P(v) < occ.
From Lemma 3.3 (the coboundary appearing there is bounded), we get the following.

Lemma 3.7. Every Holder continuous summable function v : E4 — R is cohomologous to
a past-independent Holder continuous summable function " : E4 — R in the class Hg of
all bounded Holder continuous functions.

Theorem 3.8. For every Holder continuous summable potential v : E4 — R there exists
a unique Gibbs state 1, on E4. The measure pu; is ergodic.



7

Proof. Let ¥t be the past-independent Holder continuous summable potential ascribed
to 1 according to Lemma 3.7. Treating ¢ as defined on the one-sided symbol space E7},
it follows from Theorem 2.3 that there exists a unique Borel probability shift-invariant
measure p; on [y for which the formula (3.2) is satisfied. In addition u;; is ergodic. Since

the measure ,u;r is shift-invariant, we conclude that the formula

pp(wln]) = pg (0™ (WIh]) = pg (157", lwl =n—m+1,
gives rise to a Borel probability shift-invariant measure p,, on Ey, for which the formula
(3.2) holds. Thus p,, is a Gibbs state for . It is easy to verify that s, is ergodic (remember
that ,1@ was). Passing to the uniqueness, if i is an arbitrary Gibbs state for ¢, then from its

shift-invariance and (3.2), foralln > 0and allw € Ey, C71 < ACEY <C.
exp(Szn+1w(0—"(w))—P(1/1)n)

Any two Gibbs states of 1 are equivalent and, since one of them is ergodic, uniqueness

follows. O

Let us now provide a variational characterization of Gibbs states.

Theorem 3.9 (Variational Principle for Two-Sided Shifts). Suppose that ¢ : E4 — R is a
Holder continuous summable potential. Then

sup {h“(a) + /Ewd,u cpoot =y and /wdu > —oo} =P) =h,,(0) + /E Ydpuy,

A
and fiy is the only measure at which this supremum is taken on.

Proof. We replace 1 by the past-independent Holder continuous summable potential 9™
resulting from Lemma 3.7. Since the dynamical system (o, F4), is canonically isomorphic
to the natural extension of (o, E), the map p — pom~ ! gives a bijection between M~
and M which preserves entropies. Since P(¢)) = P(@+) by Lemma 3.4, and since for every
we M, fEX O dunt = fEA 0 omdy = fEA YTdp, we are done due to Theorem 2.5.D
Any measure that realizes the supremum value in the above Variational Principle is called

an equilibrium state for ¢». Then Theorem 3.9 can be reformulated as follows.

Theorem 3.10. If v : E4 — R is a Holder continuous summable potential, then the Gibbs
state puy 1s a unique equilibrium state for 1.

We will need however more characterizations of Gibbs states. Let the partition
P ={[w[°] :w € Ea}={[w] :w e EL}.

P_ is a measurable partition of 4 and two elements a, 8 € E4 belong to the same element
of this partition if and only if a3 = S|°. If u is a Borel probability measure on E4, we let

{f" : 7 € Es}
be a canonical system of conditional measures induced by partition P_ and measure u (see

Rokhlin [19]). Each 7i" is a Borel probability measure on [7|5°] and we will frequently write

¥, w € Ef, to denote the corresponding conditional measure on [w]. Denote by

w0 Ea — EY, mo(7) = 7|0°, 7 € Ea,
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the canonical projection to E}. The system {fi* : w € E}} is determined by the fact that:

/gduz/ /gdﬁ“d(uoml)(w)
E4 EL Jw]

for every measurable function g € L'(u) ([19]). Tt is evident from this characterization
that if we change such a system on a set of zero u o m; '-measure, then we also obtain a
system of conditional measures. The canonical system of conditional measures induced by
p is uniquely defined up to a set of zero p o 7w, '-measure. We say that a collection

{7 :we B}

defines a global system of conditional measures of p if this is indeed a system of conditional
measures of y and a measure 7i* is defined for every w € E, rather than only on a set of
full iz o 7, '-measure. The first characterization of Gibbs states is the following.

Theorem 3.11. Suppose that ) : B4 — R is a Holder continuous summable potential. Let
it be a Borel probability shift-invariant measure on Ey. Then pn = py, the unique Gibbs
state for ¢ if and only if there exists D > 1 such that

2 ([rw],])
exp (S (p) — P(¥)n) ~

for everyn > 1, pomyt-ae. w € EY, i¥-a.e. Tw € Es(—n,00) with A, ,,, = 1, and
p € [tw|i°]. Also there exists a global system of conditional measures of p, s.t,

(3.4) D '<

([l =)
s (Sui(p) —Pym) =

for everyw € EX, n>1, 7 € Es(—n, —1) with A,_,,, = 1, and every p € [tw|{].

(3.5) D' <

Proof. Suppose (3.4) holds. Then for every w € E4 (note that here indeed ”for every”,
although (3.4) is assumed to hold only for y oy *-a.e. w € E) and every n > 1, we get
(3.6)

pllwls ™) = p(e™([wls ™)) = pllwls ™ |=0]) = /+ A ([wlg ™ =) dp o (T)

By

= /E+.A ﬁr([wm*l’:}lﬂ)du on (1) = eXp(Snz/;(w) — P(w)n) Z 1([e])

wn—170=1
Consequently,
(3.7) p(wlg ™) < exp(Sntb(w) — P(e)n).

In order to prove the opposite inequality notice that because of finite irreducibility of the
matrix A there exists a finite set F' C E such that for every a € F there exists b € F
such that A,, = 1. Since p is a non-zero measure, there exists ¢ € E such that pu([c]) > 0.
Invoking finite irreducibility of the matrix A again, we see that for every e € E there exists
a finite word « such that eac is A-admissible. Put k& = |ea. It then follows from (3.6) that

p(le]) > p(lea]) = exp(Skt(p) — P(¥)k) u([c]) > 0
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for every p € [ea]. Hence T = min{u([¢]) : e € F} > 0. Continuing (3.6), we see that
p(wlg™) = T exp(S,¢(w) — P(¥)n). Combining this with (3.7) we see that y is a Gibbs
state for v, and the first assertion of the theorem is established.

Now, to complete the proof, we need to define a global system of conditional measures
of p1y such that (3.5) holds for every w € Ef, n > 1,7 € Ea(—n,—1) with A, ., =1, and
every p € o "([tw|*,]) = [tw[®]- Indeed, let L : o, — l be a Banach limit. Note that:
(3.8)

g ([rw]51]) _ p ([rwls 1) _ XD (S (p) — P(¥)(n + k) _ Snt(p)-P(®)n

me(@l6T) mp(@lsT) T exp(Siw(am(p) — P()k)
belongs to (o, (comparability constants from Gibbs property of p,). So the sequence

W k—1 o0
(M) belongs to /... We can then define
k=1

#w(WVSA])
S ) A
¢([7—w|—n]) =L (( Mw(w\gfl]) >k1> '

For every g : [w] — R, and a linear combination > 7_, a1,y |, the sequence
<.

Hep <Zj1 ajﬂ[r(j)wVinl,]) S
J
(3.9) = Hy Zaﬁ'ﬂ[fu)}grl ’
j=1

n—1

= Mw([T]O )v

iy (w15 ™1)

with the same comparability constants as above, belongs to ¢,,. We can then define

s Hoap (ijl aj]l[T<j)wk;L;]>
o | 2o ailpow, ) | =L

p (wlo ™))

oo

j=1
k=1
So, we have defined a function 7z from the vector space V' of all linear combinations as
above the the set of real numbers. Since the Banach limit is a positive linear operator,
so is the function 7z : V — R. Furthermore, because of monotonicity of Banach limits,
and because of (3.9), 7z (gn) ¢ 0 whenever (g,);2; is a monotone decreasing sequence of
functions in V converging pointwise to 0. Therefore, Daniell-Stone Theorem gives a unique
Borel probability measure on [w], whose restriction to V' coincides with fy- We keep the
same symbol 7 for this extension. Now, it follows from Martingale’s Theorem that for

iy 0 Ty t-ae. w € B and every T € Ex(—n, —1) with A, ,,, = 1 the limit

I Mw([TWViZI])

m —

k=00 11y, (W lo ])

exists and equals the conditional measure of f,, on [w]. By properties of Banach limits,

Tw|Ft Tw|fot
M = lim M, and thus the collection {7z : w € E1} is indeed a global
po (wlb1) k500 sy (wlb1)
system of conditional measures of ji,,. Using also (3.8) this completes the proof.

O
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Similarly, let
Py = {[wl=] : w € Ea},
and given a Borel probability measure p on Ega, let {u* : w € E4} the corresponding
canonical system of conditional measures. As in Theorem 3.11, we prove the following.

Theorem 3.12. Suppose Y : E4 — R is a Holder continuous summable potential. Let p
be a Borel probability shift-invariant measure on E4. Then p = py, the unique Gibbs state
for 1 if and only if there exists D > 1 s.t for allw € Eq(—oc0,—1), n>1, 7 € E4(0,n—1)
with A,_, = 1, and p € [wT|"2L], we have

P (wr "))

o (Sui(p) — Ploym) =7

4. SKEW PRODUCT SMALE SPACES OF COUNTABLE TYPE

(3.10) D' <

Keep notation from the previous two sections.

Definition 4.1. Let (Y,d) be a complete bounded metric space, and take for every w € E}
an arbitrary set Y,, CY and a continuous injective map T, : Y,, — Y (. Define
V= |J{w} xY, CEf xY.
wEE;‘L
Define the map T :Y — Y by T(w,y) = (0(w), Tu(y)). The pair (Y, T :Y —Y) is called

a skew product Smale endomorphism if there exists X > 1 such that T is fiberwise uniformly
contracting, i.e for allw € E} and all y;,y2 € Y.,

(4.1) d(To(y2), T () < A 'd(ya2, 1)

Note that for every 7 € E4(—n,00) the composition 77" = Trjec 0Ty, 0...0T e 1 Yy —
Y e is well-defined. Therefore for every 7 € E4 we can define the map

T7 =Tle =Trm 0T, 0... 0T = Yo = Yoo

T T

Then the sequence (TT” (%z))i consists of descending sets, and

0
(4.2) diam (77 (Yrp= )) < A "diam(Y").

The same is then true for the closures of these sets, i.e. we have that the sequence
(T (YT@”))ZO:O consists of closed descending sets, and  diam (77 (Y~ )) < A™"diam(Y).

Since the metric space (Y, d) is complete, we conclude that its intersection (2, 17 (YT|3°n)
is a singleton. Denote its only element by 72(7). So, we have defined the map

ﬁ'g B4 — Y,
and next define the map # : F4 — E§ x Y by the formula
(4.3) (1) = (7[5, ®2(7)),
and the truncation to the elements of non-negative indices by

mo 1 Ea — EY, mo(1) = 7|3°
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In the notation for my we drop the hat symbol, as this projection is in fact independent of
the skew product on Y. For all w € E define the #y-projection of the cylinder [w] C Ejy,

J, =m(lw]) €Y,
and call these sets the stable Smale fibers of the system T. The global invariant set is:
Ji=#(Es) = | {w} x J,CEf xY,
wEE‘7L

called the Smale space (or the fibered limit set) induced by the Smale pre-system T

For each 7 € E4 we have 73(7) € 7T|g°; therefore J,, C Y,, for every w € Ejl. Since
all the maps T, : Y,, — Y, (. are Lipschitz continuous with a Lipschitz constant AL all
of them extend uniquely to continuous maps from Y,, to ?U(w) and these extensions are
Lipschitz continuous with a Lipschitz constant A7*.

Proposition 4.2. For every w € E} we have that

(44) Tw(Jw) - Jo(w)7

(45) U Tew(Jew) = Jwa and
eEE,Aewozl

(4.6) Tomr=moo

Proof. Let y € J,; then 31 € Eq(—00,—1) s.t A, ,,, =1 and y = 7a(7w). Then
(4.7)

{T.(y)} = T.( ﬂ (V1) [jT (V1) ﬂj’ (Y1)

ﬂ Tn+1 (Y1, m Tn+1 Tliiowo(g(w))) = 7o (7] Zwo(0(w))) C Jo)

Thus T,(J.) C Jy() meaning that (4.4) holds, and, as {T.,(y)} and {72 (7|~swo(o(w)))},
the respective sides of (4.7), are singletons, we therefore get

(4.8) T, 7ro(Tw) = Ty 0 o(TW),
meaning that (4.6) holds. The inclusion U e Tew(Jew) C J,, holds because of (4.4). In

ﬁwo =

order to prove the opposite one, let z € J,,. Then z = 7(yw) with some v € Ea(—00,—1),
where A7 wo = 1. Formula (4.8) then yields z = & o o(v|227-1|%w) = T 0 ©
o (V) 27110 ) €Ty u(Jy1w)- So J, C U cek Tew(Jew), and (4.5) is proved. O

=1

Similarly we obtain J, = |J res

A
Arpwg=1

TW<JW), for all w € E}, and n > 0. By formula (4.4)
we have T'(J) C J, so consider the system
T:J—J

VAvhichAwe call the skew product Smale endomorphism generated by the Smale system T :
Y — Y. By formula (4.5) we have the following.
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Observation 4.3. The map T : J — J is surjective.

Observation 4.4. If T : ¥ — Y is a skew product Smale system, then the following
statements are equivalent:

(a) For every & € J, the fiber #71(£) C Ea is compact.
(b) For every y € Y, the fiber 75 (y) C E4 is compact.
(c) For every & = (w,y) € J, the set {e € E: Aeyy =1 and y € Tou(Je,)} is finite.

If either of these three above conditions is satisfied, we call the skew product Smale system
T :J— J of compact type.

Remark 4.5. In item (a) of Observation /.J one can replace J by Y.

Observation 4.6. If for every y € Y the set {e €eF:Au, =1 and yc¢€ Tew(Jew)} 18
finite for every w € EX, then T : J — J is of compact type.

From now on we assume 7 : Y — Y is a skew product Smale system of compact type.
If for every £ € Y (or in J), the fiber 771() C E, is finite, we call the skew product
Smale system T of finite type.

Observation 4.7. If the skew product Smale system T : Y =Y s of finite type, then it is
also of compact type.

The Smale system 7T : Y — Y is called of bijective type if, for every € € J the fiber 771(€) is
a singleton. Equivalently, the map 7 : E4 — J is injective; then also T : J — J is bijective.
A Smale skew product of bijective type is clearly of finite type, and thus of compact type.

Definition 4.8. We call a Smale endomorphism continuous if the global map T : J — J
is continuous with respect to the relative topology inherited from E} x Y.

Later in this section, we will provide a construction scheme giving rise to continuous Smale
endomorphisms. In fact all of them will be Holder continuous.

Lemma 4.9. For every n > 1 and every 7 € E4(—n,0), we have that
#ao([7]) = T2 (J;), and equivalently for every T € Ea, #2([7|,]) = T2 (J

)
Proof. From (4.6) we get T (Jy= ) = Trody ([7]%5,]15°) = @z00™ ([7]%,]15°) = w2 ([r]5]) O
As an immediate consequence of (4.2), we get the following

Observation 4.10. For every w € E4, the map [w|§° 3 7+ 7a(T) € Jy C Y is Lipschitz
continuous if 4 is endowed with the metric dy-1.

Note that for every 7 € E7}, n > 1, we have #([7]) = U ¢ {w} x Jo.

Let M(E4) be the topological space of Borel probability measures on E4 with the topol-
ogy of weak convergence, and M,(FE4) be its closed subspace consisting of o-invariant
measures. Likewise, let M (J) be the space of Borel probability measures on J with the
topology of weak convergence, and let Mr(.J) be its closed subspace of T-invariant mea-
sures. The following fact is well known; we include its simple proof for completeness.
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Lemma 4.11. Let W and Z be Polish spaces. Let p be a Borel probability measure on Z,
let i be its completion, and denote by BM the complete o-algebra of all fi-measurable subsets
of Z. Let f : W — Z be a Borel measurable surjection and let g - W — R be a Borel
measurable function. Define the functions g.,g* : Z — R respectively by

g.(2) ;== inf{g(w) :w € f1(2)} and g.(2):=sup{g(w):w e f(2)}.

Then these two functions are measurable with respect to the o-algebra Bu- If in addition
the map f: W — Z is locally 1-to-1, then both g. and g* : Z — R are Borel measurable.

Proof. Replacing g by —g¢ suffices to prove our lemma for the function ¢* : Z — R only.
Fix t € R. Then for any z € Z we have that ¢g*(z) € (¢,00) if and only if g(w) € (¢, 00)
for some w € f~!(z). Thus (¢*)"*((t,00)) = f(g7'((t,00))). Hence (¢g*)~'((t,00)) is an
analytic set since g~!((¢,00)) is a Borel set, f : W — Z is a Borel map, and both spaces
W and Z are Polish. The first assertion now follows from the fact that all analytic subsets
of Z belong to Bu. If in addition the map f : W — Z is locally 1-to-1, then the f-images
of all Borel subsets of W are Borel in Z, so f(g7!((¢,00))) C Z is Borel. O

Now we prove the following.

Theorem 4.12. If T : J — J is a continuous skew product Smales endomorphism of
compact type, then the map M,(E4) 3 p— poa~t € Myp(J) is surjective.

Proof. Fix u € My(J). Let By(E4) and B,(J) be the vector spaces of all bounded Borel
measurable real-valued functions defined respectively on E4 and on J. Let Let B, (E4)
and B, (J) be the respective convex cones consisting of non-negative functions. Let

By(Ey) :={go#:geBy(J)}
Clearly By(E4) is a vector subspace of By(E4) and, as 7 : E4 — J is a surjection, for

each h € By(E,) there exists a unique g € By(.J) such that A = g o #. Thus, treating, via
integration, u as a linear functional from By(J) to R, the formula

By(Ea) 3 go &t — fi(go#) = p(g) €R,

defines a positive linear functional from Bb(E 1) to R. Since, by Lemma 4.11 applied to the
map f being equal to 7 : E4 — R, for every h € Bb(EA), the function h, o7 : B4 — R
belongs to By(E,), and since h — h, o & > 0, meaning that h — h, o # € By (E,), Riesz
Extension Theorem produces a positive linear functional p* : By(E4) — Rs.t u*(h) = fi(h),
for every h € By(E4). But p* restricted to the vector space Cy(E4) of bounded continuous
real-valued functions on E 4, remains linear and positive.

Claim 1°: If (g,)°, is a monotone decreasing sequence of non-negative functions
in Cy(E4) converging pointwise in E4 to the function identically equal to zero, then
lim,, o p*(gn) exists and is equal to zero.

Proof. Clearly, (g})>2, is a monotone decreasing sequence of non-negative bounded func-
tions that, by Lemma 4.11, all belong to B(J), thus to B (J). Fix y € J. Since our
map T : J — J is of compact type, the set #7!(y) C E4 is compact. Therefore Dini’s

Theorem applies to let us conclude that the sequence (gn|ﬁ-1(y)):°:1 converges uniformly to
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zero. Since all these functions are non-negative, this just means that the sequence (g;)%,
o

converges to zero. In conclusion (g¥)°, is a monotone decreasing sequence of functions in
B, (J) converging pointwise to zero. Therefore, as also g, < g o 7, we get

0< lim p*(ga) < lim p*(g; 0 %) = lim fa(g;, o #) = Lim 4u(gy) = 0.
n—o0 n—oo n—00 n—o00
So, lim,, o pt*(gy,) exists and is equal to zero. The proof of Claim 1° is complete. U

Having Claim 1°, Daniell-Stone Representation Theorem applies to tell us that u* extends
uniquely from C,(E4) to an element of M (E,). We denote it also by u*.

Claim 2°: For every € > 0 there exists K, a compact subset of F4 such that 771 (7(K.)) =
K. and p(7(K.)) > 1— 5.

Proof. Fix k € Z and let p, : ET~ — FE the canonical projection on the kth coordinate,
ie. pe((1m)5% o) = Yk Fixe > 0. In the sequel we will assume without loss of generality
that £ = {1,2,...}. Since the map T : J — J is of compact type, each set #71(y) C Ea,
y € J, is compact, and consequently, the function p; : J — R, defined in Lemma 4.11,
takes values in R. So pj; : J — E' is Borel measurable by Lemma 4.11; thus pj o7 : E4 — N
is also Borel measurable. So there exists n; > 1 such that

(4.9) 1((pr) ([ 4+ 1,00))) < 9~ k=4,

Since p is inner regular, by Lusin’s Theorem, Borel measurability of the function p; : J — N
yields the existence of closed subsets J, C J such that u(Jy) > 1 — 27 K= and pi|,, :
Ji. — N is continuous. Define J := ﬂkez Ji.. Then J, is a closed subset of J, and

(4.10) MUSESESS
and each map pi|s. : Joo — N is continuous. Define also

. . -1

Ko := () (Pilsw 0 Fla-100m) " ([La])
keZ
By the definition of the maps p; we have that
(4.11) A (R (KL)) = K., and #(K.) = Joo 0 [ (05) " ([1,m4))
kEZ

Therefore, utilizing (4.10) and (4.9), we get
(4.12) I\ F(EL)) < p(T\ o) + D () (I +1,00))) <

keZ

+€_€
4 2

]

Since all the maps pi|;., k € Z, are continuous, K. is a closed subset of E4. Since also
K. C []iez[1,nk) and this Cartesian product is compact, we conclude that K. is compact.
Along with (4.11) and (4.12) this completes the proof of Claim 2°. O

Using that p is T-invariant, and Urysohn’s Approximation Method, we prove,

Claim 3% If ¢ > 0 and K. C E, is the compact set produced in Claim 2°, then
prooI(K.) > 1—e¢, for all integers j > 0.
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Proof. Fix € > 0 arbitrary. Fix an integer 5 > 0. Since measure u* o 07 o 7! is outer

regular and 7(K.) is a Borel (since compact) set, there exists an open set U C J such that
#(K.)cU and p*oo7on '(U\#(K.)) <e/2

Now, Urysohn’s Lemma produces a continuous function u : J — [0, 1] such that u(7(K,)) =
{1} and u(E4 \ U) C {0}. Then, by our construction of u* and by Claim 2°,

proo (K.)=p oo’ oﬁ_l(ﬁ(Ka)) >proodor Y U) — g = p*(lly o7t oo?) —g
= (Lo TY) = 5 = p(wo TV o &) = = = p(u) — 5 = p(r(K.) = 5 2 1—¢
0
Now, for every n > 1 set
n—1
1
= — * J
i oo

It directly follows from Claim 3° that uf(K.) > 1 — ¢, for every € > 0 and all n > 1.
Also, since, by Claim 2°, each set K. is compact, the sequence of measures ()2, is tight
with respect to the Weak topology on M,(E4). There thus exists (nx)52,, an increasing
sequence of positive integers such that (p; )72, converges weakly, and denote its limit by
v € M(E,). A standard argument shows that v € M,(E4). By the definitions of /i and

w*, we get for every g € C’b(EA) and every n > 1, that

n—1
phorHg) = pui(go) Z/L oo I(go) Z,u (gorod!) = lZu goT] o7T)
7=0

n
1 n—1 1 n—1 1 n—1
== ﬂ((goT])OW)ZEZu(goT])ZE w(g) = n(g)
=0 =0 =0
So pi o™t = p for every n > 1, hence, v o #7! = lim o, = lim i o7 ! =y,
k—o00 k—oo K
which finishes the proof of the Theorem. 0

Observation 4.13. If T is a Smale endomorphism (no additional hypotheses) and p €
My(Ey4), then hyoz—1(T) = h,(0).

Proof. We have two standard inequalities hyo—1(T) < h,(0), and h,oz15-1(0) < hyor—1(T).
But 7wy : B4 — EJ, mo(7) = 7|3 is the canonical projection from E4 to EJr So the mea-
sure yt € M,(E,) is the Rokhlin’s natural extension of the measure yo7tom,' € M, (E}).
Hence, h 1(0) = hy,(0). So from the above inequalities, h,oz-1(T) = h,(0).

port—1 omy

O

Now, we define the topological pressure of continuous real-valued functions on J with
respect to the dynamical system T : J — J. Since the space J is not compact, there is no
canonical candidate for such definition and we choose the one which will turn out to behave
well on the theoretical level (variational principle) and serves well for practical purposes
(Bowen’s formula). For every finite admissible word w € E1* let

lw]r = 72([w]) € J.
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If ¢ : J — R is a continuous function, we define

1
P(¢) =Pr(v) = lim —log > exp(sup(Snt|iiy ),
weCn—1
where S, = Z?:—é W oT7, n > 1. The limit above exists since the sequence N > n —

log ) com-1 €xp (sup(Snwhw]T) is subadditive. We call Pr(v) the topological pressure of the
potential ¢ : J — R with respect to the dynamical system T : J — J. As an immediate
consequence of this definition and Definition 3.1, we get the following.

Observation 4.14. Ifv{ : J — R is a continuous function, then
Pr(y) =Py(¢ o).

The following theorem follows immediately from Theorem 3.9, Observation 4.14, Theo-
rem 4.12, and Observation 4.13, and we will provide such proof.

Theorem 4.15. If b : J — R is a continuous function, and u € Mr(J) is such that
Y e LY(J,p) and [ dp > —oo, then h,(T) + [, du < Pr(v).

Proof. By Theorem 4.12 there exists v € M,(F,) such that v o #7! = pu. The other
theorems listed immediately above give: h,(T) 4+ [;¢dp = hyer—1(T) + [;epd(von™t) =
hl,(a)—i-fEAlpofrdﬁng(wofr) = Pr(v). O

We have the following two definitions.

Definition 4.16. The measure p € Mry(J) is called an equilibrium state of the continuous
potential ¢ : Y — R, if [ dp > —o0 and h,(T) + [, dp = Pr().

Definition 4.17. The potential ¢ : J — R 1is called summable if
Zexp(sup(w\[e]T)) < 00.
eckl
Observation 4.18. ¢ : J — R is summable if and only if Yo7 : Ex — R is summable.

Definition 4.19. We call a continuous skew product Smale endomorphism T : VY > Y
Holder, if the projection 7 : E4 — J is Holder continuous.

We now establish an important property of Holder skew product Smale endomorphisms of
compact type, and then will describe a general construction of such endomorphisms.

Theorem 4.20. If T' : J — J is Holder skew product Smale endomorphism of compact
type and ¢ : J — R is a Holder summable potential, then b admits a unique equilibrium
state, denoted by . In addition py = ppor © T 1, where fuyor is the unique equilibrium
state of o @ : Eq4 — R with respect to 0 : Ex — E4.

Proof. v onm : E4 — R is a summable Holder continuous potential, so it has a unique
equilibrium state fiy07 by Theorem 2.6. By Observation 4.14 and Observation 4.4 we have

By (ftgor 0 71 ) + /Ji/f d(prgor 07 1) = holpiger) + | 0@ d(pyor) = Polth 0 7). = Pr(¥)

Ea
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So we have to show that if 4 is an equilibrium state of ¢, then u = oz o 771, Assume
that p is such equilibrium. It then follows from Theorem 4.12 that u = v o =1 for some
v € M,(E4). But then by Observation 4.14,

hy(o)+ [ Yomdv > h,e-1(T) —|—/wd(yo7%1) =h,(T) —|—/wdu =Pr(v) =P, (¢Yor).
Ea J J

Hence, v is an equilibrium state of the potential ¢y o7 : E4 — R and the dynamical system
o0:E4y— E4 Thus v = piper (see Theorem 2.6).
OJ

Now we provide the promised construction of Holder Smale skew product endomor-
phisms. Start with (Y, d), a complete bounded metric space, and assume given for every
w € E} a continuous closed injective map T,, : Y — Y, satisfying the following conditions

(4.13) d(To(y2), To(yn)) < A7 d(y2, 1),
for all y1,y, € Y and some A > 1 independent of w,
(4.14) doo (T, Ta) 1= sup {d(T5(€), Ta(§)) : £ € Y} < Cdu(B, )
with some constants C' € (0,00), k > 0, and all o, 3 € E. Then
Y = Ef xY,
and call T : Y — Y a skew product Smale system of global character. We may assume
without loss of generality that
(4.15) Kk < %log A

Theorem 4.21. Fach skew product Smale system of global character is Holder.

Proof. Let T : Ef x Y — E} x Y be such skew product Smale system. We first show
that T : Ef x Y — E} x Y is continuous. Enough to show that ppo T : Ef x Y — Y is
continuous, with ps the projection to second coordinate. For all o, 5 € EF and z,w € Y/,

d(pz o T(a,2), p2 0 T(B,w)) = d(Ta(2), Ts(w)) < d(Tu(2), Ts(2)) + d(Ts(2), Ts(w))
< doo(To, Tp) + X 1d(2,w) < Cdy(a, B) + A (2, w),

and continuity of the map p,oT : E; xY — Y is proved. So the continuity of T : Ef xY —
E} x Y is proved, and thus T : J — J is continuous too. We now show that T': J — J is
Holder. So, fix an integer n > 0, two words o, 8 € EF4 and £ € Y. We then have

(4.16)

A(T©), T57(©) = d (T2 (T, (). T3 (Top,, ()

<d <T§ (Tar,,,,,(8), T (T5|i°(n+1)(€))> +d <TZZ (T, (€). T§ (Tﬁ|i°(n+1>(5))>

< Aind(TaBo(nH) (5)) ’ T5|go(n+l> (5)) +deo (TOTtL’ Tg) < ATCd, (oz‘of(n+1), m(io(mrl)) +doo (Tg’ T;)
Let p > —1 be uniquely determined by the property that

(4.17) de(o, B) = e ",
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Consider two cases. First assume that d.(«, §) > e *". Then using also (4.15), we get

(4.18) A (@), B Zrn) < €7 < 7@, B).
So, assume that
(4.19) de(o, B) < e ™.

Then n < p, so n+ 1 < p, whence d,@(a|‘i°(n+1),5|°°n+l)) =exp(—k((n+1)+1+4p)) =
e "t emrp — =Rt (o, B) < e*"d.(a, 3). Hence, \7"d, (a| (i) ,B| nt1) )
e *d,(cv, 8). Inserting this and (4.18) to (4.16) in either case yields d(T2+!(€), T"+1( )
doo (T2, T}) + Ce™*d,(cv, ). Taking supremum over all £ € Y, we get dy (T;”rl T”H)
doo (T2, Tf) + Ce™"d,(ar, ). Thus, by induction

IA A A

(4.20)  doo (T2, T}) < Cd,( Z e " < Ody( Ze’”" =C(1—e ™) d(a, B)

for all o, B € E4 and all integers n > 0. Recall that the integer p > —1 is determined by
(4.17). Assume that p > 0. Then using (4.20), (4.19), and (4.2), we get

d(7y(@), (o)) < diam (TE(Y)) + diam (T5(Y)) + doo (T2, T75)

log A C
< A Pdiam(Y) + A Pdiam(Y) + | d(a, p) < 2diam(Y)d." (o, B) + ] d.(a, )
— e—:“i _ e—l{
As d is a bounded metric and d,(«, 5) = e if p = —1, we get that 7o : E4 — Y is Holder
continuous, so 7 : K4 — Y is Holder continuous. U

5. CONFORMAL SKEW PRODUCT SMALE ENDOMORPHISMS

In this section we keep the setting of skew product Smale endomorphisms. However we
assume more about the spaces Y,,, w € £}, and the fiber maps T, : Y, — Y;(w), namely:

(a) Y, is a closed bounded subset of R, with some d > 1 such that Int(Y,) =Y.

(b) Each map T,, : Y, = Y,(,) extends to a C' conformal embedding from Y to Ya*(w),
where Y* is a bounded connected open subset of R? containing Y,,. The same

*

symbol T;, denotes this extension and we assume that T, : Y.J — Y, satisfy:

(c) Formula (4.1) holds for all y;,y» € Y5, perhaps with some smaller constant A > 1.

(d) (Bounded Distortion Property 1) There exist constants & > 0 and H > 0 such that
for all y, z € Y7 we have that: |log|T,(y)| — log|T,,(2)|| < H]ly — z[|*.
(e) The function E4 3 7+ log |T7(72(w))| € R is Hélder continuous.

(f) (Open Set Condition) For every w € E} and for all a,b € E with A,y = Apy, = 1
and a # b, we have T,,,(Int(Y,,)) N Ty, (Int(Vy,)) = 0.
(g) (Strong Open Set Condition) There exists a measurable function 6 : Ef — (0, 00)
such that for every w € E}, J, N (Y, \ B(Yy, d(w)) # 0.
Any skew product Smale endomorphism satisfying conditions (a)—(g) will be called in
the sequel a conformal skew product Smale endomorphism.
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Remark 5.1. The Bounded Distortion Property 1, i.e (d), is always automatically satisfied
if d > 2. If d = 2, this is so because of Koebe’s Distortion Theorem and because each
conformal map in C is either holomorphic or antiholomorphic. If d > 3 this follows from
Liowville’s Representation Theorem asserting that each conformal map in R, d > 3, is
either a Mdbius transformation or similarity, see [8] for details.

A standard calculation based on (c), (d), and (e), yields in fact the following.
(BDP2) (Bounded Distortion Property 2) For some constant H, we have that

[1og | (77)' ()] — 10g | (72)'(2)
forall 7 € Ea, y,2 € Y:\i"n’ and all n > 0.

< Hlly — =[]

An immediate consequence of (BDP2) is the following version.
(BDP3) (Bounded Distortion Property 3) For all 7 € E4, all n > 0, and all y, z € Y} , if

K := exp(Hdiam®(Y')), then we have that
n /
K*l S |(TT),(y)| S K
(7))
Recall also that we say that a conformal skew product Smale endomorphism is Hdélder,
if the condition of Holder continuity for 7 : 4 — J is satisfied, see Definition 4.19.

Remark 5.2. Note that condition (e) is satisfied for instance if T : Y > Y is of global
character (then by Theorem 4.21, it is Holder) and if in addition

(51) ||Tc,y - TéHOO < Cdn(av 6)

for all o, € FEf. Actually if the conformal endomorphism T : Y = Y is of global
character, then (5.1) also automatically follows in all dimensions d > 2. For d = 2 this is

gust Cauchy’s Formula for holomorphic functions, and for d > 3 it would follow from the
Liouville’s Representation Theorem, although in this case the proof is not straightforward.

As an immediate consequence of the Open Set Condition (f) we get the following.

Lemma 5.3. Let T:Y —» Y a conformal skew product Smale endomorphism. If n > 1,
0,8 € Ba(—n,0), aly = BI5, and a|~L # B7L, then

T2 (Int(Yy)) N Th (Int(Ys)) = 0
In fact we have more: TJ(Int(Y,)) NTF(Ys) =0 = T3 (Ya) N Tg(Int(Yp)).

Lemma 5.4. Let T:Y — Y be a conformal skew product Smale endomorphism. Ifn > 1
and T € Es(—n,0), then 73 ' (T (Int(Y;))) C [7].

Proof. Let v € @ty ' (T2 (Int(Y7))), hence 7|5 = 7|§° and @2(7) € T2 (Int(Y;)) C Y. Also,
() € T (Yyj ). From Lemma 5.3 it follows that 7|%, = 7, so vy € [7]. O

We will also use the following:
(h) (Uniform Geometry Condition) 3(R > 0) V(w € E}) (& € Vi) B(&,, R) C Y,
The primary significance of Uniform Geometry Condition (h) lies in:
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Lemma 5.5. If T : Y — Y is a Holder conformal skew product Smale endomorphism
satisfying Uniform Geometry Condition (h), then for every v > 1, 3T, > 0 such that:

If F C E%(—o0,—1) is a collection of mutually incomparable (finite) words, so that
A; o =1 for some w € E% and all T € F, and so that for some § € Y,

TI(Ye) N B(E,7) # 0 with y~'r < diam (T)7)(Yz,)) < 7,
then the cardinality of F is bounded above by I',.
Proof. The family {T: I (Int(Y,,,)) : 7 € F} consists of mutually disjoint sets in Y,,. We get
TH (Int(Yre,)) D TEH(B(€rws R)) D B(TH0 (bres K R|(TH) (61)]) D B(Tru(6r)s K2Ry 7)),
from the Uniform Geometry condition. Also T (Int(Y,,,)) C B(&, (1 + 7)r). O
6. VOLUME LEMMAS

We keep the setting of Section 5, with T : ¥ — Y a conformal skew product Smale
endomorphism, i.e. satisfying conditions (a)-(g) of Section 5. We emphasize that Uniform
Geometry Condition (h) is not required in this section; it will be used in the next one.

If ;v is a Borel probability o-invariant measure on E4, then by x,(c) we denote its Lyapunov
exponent, defined by the formula

Xu(0) = — /E log TT’|6.O(7“r2(T))‘du(T) _— /E ) /M log | T2, (702(7)) | di® (7) dm(w),

where m = p o7y = . is the canonical projection of i onto E. We shall prove:

Theorem 6.1. Let T :Y — Y be a Hélder conformal skew product Smale endomorphism,
and let ¢ : E4 — R be a Hélder continuous summable potential. Then for the projection
Toufly, = My O 7y b, of the conditional measure onto the fiber J,,, we have that

huy(0) _ Po() = [ duy
Xt (o) X (o)

for my-a.e w € EY, where my = o my'. Moreover for my-a.e w € E} the measure

HD (15 0 73 ') =

g 07ty U is dimensional exact, and its pointwise dimension is given by:
log ¥ o 75 Y(B, 7 h, (o
61 o BT 07 (B) By (o)
r—0 log r Xpy (0)

formy-a.e. w € E} andﬁzofrgl—a.e. z € J, (and equivalently for pyor*-a.e. (w,z2) € J).

Proof. We only need to show that (6.1) holds. Since gy is ergodic, Birkhoff’s Ergodic
Theorem applied to 0! : B4 — E4 gives a measurable set Exp CEast py(Eay) =1,

(6.2) lim llog|(TT”)/(frg(cr_”(T)))‘ = —Xu,(0), and lim lS,ﬂ/J(U_n(T)) = Y dpuy

n—oo N, n—oo N Ea

for every 7 € E4,. For arbitrary w € E} denote now:

) ~—1
Vy = MwOWQ s
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which is a Borel probability measure on J,,. FixT € E . Fixaradiusr € (O dlam( ) / 2)
Let z = 79(7), and consider the least integer n = n(z,r) > 0 so that

(6.3) TH Yy ) C B(z,7).
If r > 0 is small enough (depending on 7), then n > 1 and 77! (YTIi‘J(n,l)) ¢ B(z,r). Since
zeTr ! (YTl‘i‘)(n_l))’ this implies that
(6.4) diam (T2 (Yo, ) =7
Write w := 7|3°. It follows from (6.3), Lemma 4.9, and Theorem 3.11 that
vu(B(z,1) 2 v (2([r|%,])) = w OWz ( ([ =) = m([r1%))

> D" exp(Spi(o~ b)n).
By taking logarithms and using (6.4), this gives that

logv,(B(z,1)) <= log D + S,¢(c~"(7)) — Po(¢¥)n
logr 7 1og (diam (771 (Vi ))
So applying (BDP3), we get that
logv,(B(z,1)) < —log D + S, (c (1)) — Py(¥)n
logr T log K + log (diam (Kﬁo(n_l))) +log |(Tr—1Y (7 (0(7))|

(6.5)

so by dividing both numerator and denominator by n, and using that diam (YTBO(H_U) =

diam(Y') and (6.2), this yields,
log v, (B(2,1)) _ limy, o  Snth(0~ ( ) ( ) _Po) = [ddpy

( ) | Xuw(o)

" (g
To prove the opposite inequality, note that the set 75" (J,\B(Y, 8(w))) is open in [w] C Ea,
it is not empty by (g), and thus

g (73t (o \ B(YS,6(w)))) >0
for every w € EJ. Consequently, py(Z) > 0, where Z := UweEj 73 (Jo \ B(YS,6(w))).
Since 0 : Ef — (0,00) is measurable, there exists R > 0 s.t py(Zg) > 0, where

Zr = |J %' (J.\ B(YS,R))

wGEj;

6.6)  lim
(6.6) 0 logr lim,, 00 nlog! (Tr—1)

Consider the set N(7) := {k > 0 : 07 %(7) € Zr}. Represent this set N(7) as a strictly
increasing sequence (k,(7))52;. By Birkhoff’s Ergodlc Theorem there is a measurable set
Eay C Epy with py(Eay) = 1 and for every 7' € E 4,

. Card{0<i<n, oY ez
lim S () € Zr} _ |, (25)

n— o0 n
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Now we put k,(7) > n, instead of n above, and notice that Card{0 < i < k,(7), o~(7') €
Zr} = n. Therefore as p,(Zg) > 0, we obtain for every 7 € E4 4 and any n large, that:
ky, 1
lim (7) =

Hence for every 7 € EA,¢7

(6.7) lim Fr1(7)

n—00 ]{;n(T)

Fix 7 € Eay, w=7|3°, and let the largest n = n(r,7) > 1 s.t with k; := k;(1), j > 1,

=1

(6.8) KL )(Tfn)’ (a(o (7)) ‘ R>r
Then
(6.9) K ‘(wa)’ (7?2(0_’“”“(7)))‘ R<r

It follows from (6.8) and (BDP3) that B(z,r) C T% (B(i(0~* (1)), R)) C Tk <Int (YT@C )) .
Hence, invoking also Lemma 5.4 and Theorem 3.11, we infer that
vo(B(z,7)) <1 ([71%%,]) < Dexp (S, (07" (7)) = Po(v)kn) .
By taking logarithms and using (6.9), this gives
log v,(B(z,1)) - log D + Sg, (07" (7)) — Py(h)ky

g (1) Galoton )

Dividing both numerator and denominator above by k,, and using (6.2), (6.7), it yields

lim 10g Vw(B(Za T)) > lim,, o ésknw(gikn (T>) - PU(I/)) _ PO’(¢) - f ¢ diuw .

o logr (T5) (s (0’“"“(7)))‘ el

—log K + log

lim,, oo ﬁ log

From (6.6), it follows that (6.1) holds for all 7 € E4 .
U

If 1 is now a Borel probability T-invariant measure on the fibered limit set .J, then by
xu(T') we denote its Lyapunov exponent, which is defined by the formula

W)= = [ Tog| T dnter2) = = [ [ o | T2 2) (2 dm(e),

where m = pom; ! is the projection of u onto Ef, and (ﬁw) is the canonical system

wEEX
of conditional measures of y for the measurable partition {{w} x J,}, cp+. Now we prove

Corollary 6.2. Let T : Y — Y be a Hélder conformal Smale endomorphism of compact
type. Let ¢ : J — R be a Holder continuous summable potential. Then

() Pr) — [ dug
D) = Lo = )
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for my-a.e. w € EY, where my = py o py'. Moreover, for my-a.e. w € E} the measure
g, is dimensional exact, and for my-a.e. w € E} and [ij-a.e. z € J,,,

. log 1, (B(z,7)) _ h,, (T)
r—0 log r Xy (1)

(6.10)

Proof. Let @Z i=1yom: By — R. By Theorem 4.20 p1, = pu50 #~1 is the unique equilibrium
state of the potential ) and the shift map o : E4 — E4. By Observation 4.14, Pr(¢) =

~

P5(¢), and by Observation 4.13, hy,, (T) = h,,_ (). Since in addition x,,, (T') = X%(U), the
proof follows immediately from Theorem 6.1 applied to 1& Ey— R O

7. BOWEN’S FORMULA

We keep the setting of Sections 5 and Section 6, so T : Y — Y is a conformal skew product
Smale endomorphism, i.e. satisfies conditions (a)—(g) of Section 5. We however emphasize
that in Section 7, Condition (h) i.e. the Uniform Geometry Condition, is assumed.

For every t > 0 let ¢, : J — R be the function ¢;(w,y) = —tlog |7’ (y)|.
Define F(T') to be the set of parameters ¢ > 0 for which the potential ¢, is summable, i.e.

Z exp (sup (¢, ) < oo.

eck
This means that >, sup {||Te-||% : 7 € Ea(1,00), Aer, = 1} < 00. For every t > 0, let
P(t) := Pr(y),

and call P(t) the topological pressure of the parameter t. From Proposition 3.6, we have
F(T)={t>0:P(t) < co}. We record the following basic properties of this pressure.

Proposition 7.1. The pressure function t — P(t), t € [0,00) has the following properties:

(a) P is monotone decreasing
(b) Plrr) is strictly decreasing.
(c) Plrer) is convex, real-analytic, and Lipschitz continuous.

Proof. All these statements except real analyticity follow easily from definitions, plus, due
to Lemma 3.4 and Observation 4.14, from their one-sided shift counterparts. OJ

Now we can define two significant numbers associated with the Smale endomorphism 7'
Or :=inf {t > 0: P(t) < oo} and Bp:=inf{t>0:P(t) < 0}.

The number By is called the Bowen’s parameter of the system T'. Of course 07 < Br. The
main result of this section is the following.

Theorem 7.2. If T : Y — Y is a Holder conformal skew product Smale endomorphism
satisfying the Uniform Geometry Condition (h), then for every w € E},

HD(J,) = By
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We first shall prove this theorem under the assumption that the alphabet E is finite. In
this case we will actually prove more. Recall that if (Z, p) is a separable metric space, then
a finite Borel measure v on Z is called Ahlfors reqular (or geometric) if and only if

Crh < v(B(z,r)) < CT‘h,

for all » > 0, with some independent constants h > 0, C' € (0, 00). It is well known and easy
to prove that there is at most one h with such property and all Ahlfors regular measures
on Z are mutually equivalent, with bounded Radon-Nikodym derivatives. Moreover

h=HD(Z) = PD(Z) = BD(2),

the two latter dimensions being, respectively the packing and box-counting dimensions of
Z. In addition, the h-dimensional Hausdorff measure Hj,, and the h-dimensional packing
measure Pj, on Z, are Ahlfors regular, equivalent to each other and equivalent to v.

Now, if the alphabet F is finite, then the Smale endomorphism 7 : Y = Yisof compact
type, and in particular, for every ¢ > 0 there exists y;, a unique equilibrium state for the
potential ¢ : J — R. Since 0 < P(0) < oo it follows from Proposition 7.1 that P(Br) = 0.

Theorem 7.3. If T : Y — Y is a Hélder conformal skew product Smale endomorphism
satisfying the Uniform Geometry Condition (h) and the alphabet E is finite, then 1%, is
an Ahlfors reqular measure on J,,, for every w € EY. In particular, for every w € E},

HD(J,) = Br

Proof. Put h := By. Fix w € Ef and 2z = 7y(7) € J, arbitrary. Let n = n(z,7) be given
by (6.3), and denote v, := 11 o 7, *. The formula (6.5) gives, for ¢ = ¥y,

(7.1) Vu(B(z,7)) > D™ exp(Sutb(o (7)) = DY(T) (oo " (m))|".

Now, since F,4 is compact (as F is finite) and since E4 > 7 — |T.(72(7))| € (0,00) is
continuous, we conclude that there exists a constant M € (0, 00) such that

(7.2) M~ <inf {|T.(72(7))| : 7 € Ea} <sup {|T}(72(7))| : 7 € Ea} < M.
Having this and inserting (6.4) to (7.1), we get
(7.3) vy(B(z,1)) > (DM")~1rh,

In order to prove an appropriate inequality in the opposite direction let
Feur)i= {00, 1) TV N Br/2) £0.

diam (7)7/(V,,)) < r/2 and diam<T‘T' (Y |71>w)> > 7“/2}.

7'|:1 W
(IT1-1)
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By its definition F(z,r) consists of mutually incomparable elements of E%(—oo, —1), so
using (7.2) along with (BDP3), we get for every 7 € F(z,r), with n := |7, that

(et ) | diam(Tru (7))

I fny®

diam (17, (Ys,,)) = d1am<T" ! (TW(YW))) > K1

77! (n—1)®

> K| (Y |72 aiam(ye) > 20200 R|| (17 L)

T| (n—1)¥ | (n—1)%

oo

> 2K M~ Rdiam(Y)" 1d1am<T"_11 (T (Y-

7 (n—1) Tl—(n—l)

)) = KM Rdiam(Y) "'

Thus Lemma 5.5 applies with the radius equal to /2 given that #F(z,r) < I',, where
v := max{1,2K* MR~ 'diam(Y)}. Since also 75 ' (B(z,7)) C U, e pppmlTw], we therefore get

Vo(B(z,1)) < fiyofy U Z ayofy H[rw]) < K" Z diam” T'T‘ Vo)) < 2"K "
TEF(2,1) TEF (z,r) TEF (z,r)
along with (7.3) this shows that v, is Ahlfors regular with exponent h = By. O

Proof of Theorem 7.2: Fixt > By arbitrary, then P(t) < 0, so for every integer n > 1
large and w € E}, we have Y -eps a1 || ( m) H < exp (3P(t)n) . Thus by (BDP2),

Ar_jwg=1
1
(7.4) > diam!(T7,(Vow)) < K'exp (§P(t)n) .
TEE:Z(_TL’_U
Ar_qwg=1
Since P(t) < 0, since {17 (Yr,) : 7 € E4(—n,—1), A, o, = 1} is a cover of J,, and since

the diameters of this cover converge to zero (diam (77, (Yr,)) < A"diam(Y")), it follows
from (7.4), by letting n — oo, that Hy(J,) = 0. So HD(J,) <t, and, thus HD(J,)) < Br.
In order to prove the opposite inequality fix 0 < ¢ < Bp. Then P(¢) > 0 and it thus
follows from Theorem 3.5 that Pg(t) > 0 for some finite set F' C E such that the matrix
Alpxp is irreducible. It then further follows from Theorem 7.3 that HD(J,(F')) > t for all
w € EF. Since J,(F) C J,, this yields HD(J,,) > ¢. Thus, by arbitrariness of ¢ < Br, we
get that HD(J,,) > Br. Hence this completes the proof of Theorem 7.2. U

8. GENERAL SKEW PRODUCTS OVER COUNTABLE-TO-1 ENDOMORPHISMS.

We want to enlarge the class of endomorphisms for which we can prove exact dimen-
sionality of conditional measures on fibers. For general thermodynamic formalism of en-
domorphisms related to our approach, one can see [20], [12], [11], [10], [13], etc. Our
results on exact dimensionality of conditional measures in fibers extend a result on exact
dimensionality of conditional measures on stable manifolds of hyperbolic endomorphisms
(see [12]). We want to apply the results obtained in the previous sections to skew prod-
ucts over countable-to-1 endomorphisms. This includes EMR maps, continued fractions
transformation, etc.

First, we prove a result about skew products whose base transformations are modeled by
1-sided shifts on a countable alphabet. Assume we have a skew product F': X xY — X xY,
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where X and Y are complete bounded metric spaces, Y C R? for some d > 1, and

F(x,y) = (f(x),9(z,y)),

where the map Y 3 y —— g(x,y) is injective and continuous for every y € Y. Denote the
map Y 3y — g(z,y) also by ¢,(y). Assume f: X — X is at most countable-to-1, and its
dynamics is modeled by a 1-sided Markov shift on a countable alphabet E with the matrix
A finitely irreducible, i.e there exists a surjective Holder continuous map, called coding,

p: E} — X suchthat poo=fop

Assume conditions (a)—(g) from Section 5 are satisfied for T, : Y, = Y, , w € E}. Then
we call F': X xY — X XY a generalized conformal skew product Smale endomorphism.

Given the skew product F' as above, we can also form a skew product endomorphism in
the following way: define for every w € E, the fiber map F, : Y — Y by

F(y) = g(p(w),y).

The system (Y, F) is called the symbolic lift of F'. If Y = E} x Y, we obtain a conformal
skew product Smale endomorphism F': Y — Y given by

A

(8.1) Fw,y) = (c(w), Fu(y))

As in the beginning of Section 4, we study the structure of fibers J,, w € E} and later
of the sets J,, x € X. From definition, J, = T2 ([w]) and it is the set of points of type

~

ﬂ Ftlw o thlw o...oF._ . .,(Y).

n>1

Let us call n-prehistory of the point z with respect to the system (f, X), any finite se-
quence of points in X: (x,7 1,7 9,...,0_,) € X" where f(z_1) = x, f(z_o) =
T 1y, f(x_p) =x_ny1. Call a complete prehistory (or simply a prehistory) of x with re-
spect to (f, X), any infinite sequence of consecutive preimages in X, i.e. & = (z,2_1,2_9,...),
where f(x_;) = x_;y1, i > —1. The space of complete prehistories is denoted by X and is
called the natural extension (or inverse limit) of (f, X). We have a bijection f:X =X,

f(@) = (fx),z,x_1,...).

In this paper, we use the terms inverse limit and natural extension interchangeably, without
having necessarily a fixed invariant measure defined on the space X.

We consider on X the canonical metric, which induces the topology equivalent to the one
inherited from the product topology on X~. Then f becomes a homeomorphism. For more
on the dynamics of endomorphisms and their inverse limits, one can see [20], [11], [13], [10].

In the above notation, we have f(p(7_jw)) = p(w) = z, and for all the prehistories of x,
= (x,x_1,2_9,...) € X, consider the set J, of points of type

ﬂ Gz, 9Gs_,0...0G, (V)

n>1
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Notice that, if §# = (19, m1, .. .) is another sequence in E} such that p(7}) = z, then for any
n_1 so that n_;7 € Ef, we have p(n_17) = 2’_, where 2/, is some 1-preimage (i.e preimage
of order 1) of z. Hence from the definitions and the discussion above, we see that

(8.2) L= U L
wEE:’;,p(w):x
Let us denote the respective fibered limit sets for 7" and F' by:
(8.3) J=JA{wxJcEfxY and J(X):= | J{z} x , C X xY

weEY zeX
So F(J) = J and F(J(X)) = J(X). The Holder continuous projection p; : J — J(X) is

pi(w,y) = (p(w),y),

we obtain F'op; = pJoﬁ. In the sequel, 71y : F4 — Y and 7 : E4 — E} X Y are the
maps defined in Section 4 and,

(1) = (7]5°, ®2(7))-

Now, it is important to know if enough points z € X have unique coding sequences in E7.

Definition 8.1. Let F': X xY — X XY be a generalized conformal skew product Smale
endomorphism. Let i be a Borel probability measure X. We then say that the coding
p: B — X is p-injective, if there exists a u-measurable set G C X with u(G) = 1 such
that for every point x € G, the set p~'(x) is a singleton in E}.

Denote such a set G by G,, and for x € G, the only element of p~!(x) by w(z).

Proposition 8.2. If the coding p : EX — X is p-injective, then for every x € G, we have

Proof. Take x € G, and let x_; € X be an f-preimage of z, i.e f(x_1) = . Since
p : Ef — X is surjective, there exists n € E} such that p(n) = r_;. But this implies
that f(x_1) = fop(n) = poo(n) = x. Then, from the uniqueness of the coding sequence
for z, it follows that o(n) = w(x), whence x_; = p(w_jw(x)), for some w_; € E. Since

J:c - mn21 921992 5C ... 090Gz, (Y)7 it follows that Jx = J"-’(w) -

In the sequel we work only with p-injective codings, and the measure p will be clear
from the context. Also given a metric space X with a coding p: E; — X, and a potential
¢: X — R, we say that ¢ is Holder continuous if ¢ o p is Holder continuous.

Now consider a potential ¢ : J(X) — R such that the potential

gg::gbopJoﬁ:EA—)R

is Holder continuous and summable. For example, qg is Holder continuous if ¢ : J(X) — R
is itself Holder continuous. This case will be quite frequent in certain of our examples given
later, when we will have Holder continuous potentials ¢ on a set in R? containing J(X).
Define now

(8.4) fo = pigo (pyom) ™,
and call it the equilibrium measure of ¢ on J(X) with respect to the skew product F'.
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Now, let us consider the partition ¢’ of J(X) into the fiber sets {z} x J,, x € X, and
the conditional measures jig associated to jig with respect to the measurable partition &'

(see [19]). Recall that for each w € E}, we have p([w]) = J,.

Denote by p; : X X Y — X the canonical projection onto the first coordinate, i.e.
Y4 (I‘, y) =

Theorem 8.3. Let F: X XY — X XY be a generalized conformal skew product Smale
endomorphism. Let ¢ : J(X) — R be a potential such that éﬁ\ =¢gopsjon: Ey — R is
a Holder continuous summable potential on E4. Assume that the coding p : Ef — X is
o o p; ' ~injective, and denote the corresponding set Gu, C X by Gy. Then:

(1) Jp = Ju) for every x € Gy.
(2) With iy}, w € E the conditional measures of pg, we have for pg op;'-a.e. ¥ € Gy,

M¢> = /_ﬂ( g o(pyo 7AT>71>

or equivalently, if pg and /15 are viewed on J, and Ey, g = [Lg(@ ofy 1.

Proof. Part (1) is just Proposition 8.2. We thus deal with part (2) only. By the definition
of conditional measures, we have for every pi,-integrable function H : J(X) — R that

J(X) Ea E} Jw]
and
(3.6) Hing= [ [ Hdpgdnopi'(a)
J(X) X J{x}xJ,

But from the definitions of various projections:
(8.7) poopy' = pgo(psoit) oprt = pgo(propso) ™ = pgo(pom) ™ = pgom top™
Therefore, remembering also that 14 0 p;' (G4) = 1, we get that

(8.8)
/ [ Hopsondas dugoriiw / ) / Hdp o (py 0 7)™ djigomy ()
[w] E) J{p(w)}xJIpw)
/ / HAf™ o (py o ) dpgom top™ / / HAp™ o (py o )™ dpg oy (2).
G¢ {ZL‘}XJI G¢ {(E}XJI
Hence this, together with (8.5) and (8.6), gives
/ / H dyis day o p / / HAi2™ o (py o 7)™ dpg o p (2).
G¢ {CE}XJx G¢ {LIJ}XJ;C
Thus, the uniqueness of the system of Rokhlin’s canonical conditional measures yields

= [LZ(I) o (pyo#)t for ugop;'-ae x € Gy This means that the first part of (2) is

established. But py o7 = (pom) X 72, and thus py o 7|w@) = {2} X 72| (@)
OJ
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As in the previous Section, define a Lyapunov exponent for an F-invariant measure p on

the fibered limit set J(X) = U {z} x J,, by:

zeX
u(F) = / log |¢,(y)| dy(z, y).
J(X)

In conclusion, from Theorem 8.3, Theorem 6.1, and definition (8.4), we obtain the following
result for skew product endomorphisms over countable-to-1 maps f : X — X:

Theorem 8.4. Let F : X XY — X XY a generalized conformal skew product Smale
endomorphism. Let ¢ : J(X) — R be a potential such that

Vv:=¢opyjom:Ey— R

is Holder continuous summable. Assume the coding p: E} — X is jug o p; ' ~injective.
Then for pg o p;t-a.e x € X, the conditional measure g s exact dimensional on J., and
o Jog g (Bly:r)) by (F)

_ — HD (4"
a0 logr Xuy (F7) (13).

for pg-a.e y € J,; hence, equivalently, for jg-a.e (z,y) € J(X).
As an immediate consequence of this theorem, we get the following.

Corollary 8.5. Let FF : X xY — X XY a generalized conformal skew product Smale
endomorphism. Let ¢ : J(X) — R be a Hélder continuous potential such that

ZGXP(SHP(¢!n([e])xy)) < 0.
eck
Assume that the coding p : Ef — X is pg o py ' —injective. Then, for jigop;'-a.e v € X,
the conditional measure g is exact dimensional on J, and for pg-a.e y € Jy,
o Jog g (Bly:r)) by (F)
r—0 logr Xy (F)

= HD ()

By using Theorem 8.4, we will prove exact dimensionality of conditional measures of
equilibrium states on fibers for many types of skew products.

First, let us prove a general result about global exact dimensionality of measures on
fibered limit sets J(X).

Theorem 8.6. Let F : X xY — X XY a generalized conformal skew product Smale
endomorphism. Assume that X C R? with some integer d > 1. Let u be a Borel probability
F—invariant measure on J(X), and (14*)zex be the Rokhlin’s canonical sytem of conditional
measures of p, with respect to the partition ({x} X Jf’f);peX' Assume that:

a) There exists a > 0 such that for pop;'-a.e v € X the conditional measure yu® is
exact dimensional and HD(u,) = «,

b) The measure juop;" is evact dimensional on X.
Then, the measure v is exact dimensional on J(X), and for p-a.e (z,y) € J(X),

HD (1) — lim 28 B(:9), 1))

— -1
r—0 log,,,. —OK“‘HD(MOPl )
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Proof. Denote the canonical projection to first coordinate by p; : X x Y — X. Let then
v := pop;’. Denote the Hausdorff dimension HD(v) by . From the exact dimensionality
of the conditional measures of u, we know that for v—a.e x € X and for p*-a.ey €Y,

i 108 (B(y,7))
r—0 log r

Then for any € € (0, ) and any integer n > 1, consider the following Borel set in X x Y

log pu*(B(y,r))
log r

A(n,e) == {z:(x,y)GXXY: a—e< < a+e forall TE(O,I/n)}.

From definition it is clear that A(n,e) C A(n+1,¢) for all n > 1. Moreover, setting X3 :=
Neso Uy A(n, ), it follows from the exact dimensionality of almost all the conditional
measures of p and from the equality of their pointwise dimensions, that u(X3) = 1. For
e > 0 and n > 1, consider also the following Borel subset of X:

logv(B(z,r))

D(n,e) := {:UEX: v—e<
logr

<~v+e¢e forall re (0,1/n)}.

We know that D(n,e) C D(n+ 1,¢) for all n > 1, and from the exact dimensionality of
v, we obtain that for every ¢ > 0, we have v (|J7_, D(n,¢)) = 1. For € > 0 and an integer
n > 1, let us denote now

E(n, <) = A(n,£) N pi (D(n, 2)).
Clearly from above, we have that for any € > 0,

(8.9) lim pu(E(n,e)) = 1.

n—oo

From the definition of conditional measures and the definition of A(n,e) and D(n,¢), we
have that, for any z € E(n,¢), x = m(z) and any n > 1,6 > 0,0 <r < 1/n,
(8.10)

W(E(n,€) N B(z.1)) = / W (B(zr) 0 ({g} X Y) 1 A(n, <)) du(y)

D(n,e)NB(z,r)
< / r“ = dv(y) = v(D(n,e) N Bz, 1)) < potr—2e
D(n,e)NB(z,r)

Since p(FE(n,e)) > 0 for all n > 1 large enough, it follows from Borel Density Lemma -
Lebesgue Density Theorem that, for py-a.e z € E(n,¢), we have that

L p(B(zr) 0 En,0))
=0 w(B(z,7))
Thus for any 6 > 1 arbitrary, there exists a subset F(n,¢e,0) of E(n,e¢), such that
w(E(n,e,0)) = u(E(n,e)),

and for every z € E(n, ¢, 0) there exists r(z,6) > 0 so that for any 0 < r < inf{r(z,6),1/n},
we have from 8.10:

= 1.

1(B(z,7)) < Ou(E(n,€) N B(z,1)) < 0 - r*F~%
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Thus for z € E(n,¢,0), we obtain lim, W > a+vy—2¢. Now, since u(E(n,e,0)) =

w(E(n,e)), it follows from (8.9) that pu(U E(n,e,0)) = 1. Hence

(NN Useen) -1

e>060>1n=1

and for z € N N UZE(n,e,0), we have lim,_,, % > a + . Conversely, from the
e>00>1 n
exact dimensionality of v and of the conditional measures of p, and with x = m(2), we

have that for r € (0,1/n),
(8.11)
p(B(z,r) N E(m2)) = [ O (Bzr) 0 Al ) 1 {y) x V) diy) = 707+
D(n,e)NB(z,r)
Thus, u(B(z,7)) > u(B(z,r)NE(n,)) > r*™+2% for 2 € E(n,e) and r € (0,1/n). Making
use of (8.9) we deduce that u is exact dimensional, and for p-a.e z € X x Y we obtain the

log(Bzir)) _ 4 - O

conclusion lim ;
Og T

r—0

9. SKEW PRODUCTS OVER EMR-ENDOMORPHISMS.

We now consider EMR (expanding Markov-Rényi) maps on the interval, and we con-
struct skew product endomorphisms over these maps which contract in fibers. This EMR
class contains important examples of endomorphisms coded by a shift space with countable
alphabet, like the continued fractions transformation, and the Manneville-Pomeau map. In
particular, the Manneville-Pomeau transformation is an example of a non-uniformly hy-
perbolic system with an indifferent fixed point (parabolic point), but one can associate to
it a countable uniformly hyperbolic system by inducing using the Schweiger jump transfor-
mation ([23], [8]). Let us first give the definition of EMR maps from [17].

Definition 9.1. Let I be an interval in R, and assume I = U,>ol,, where I,,n > 0 are
closed intervals with mutually disjoint interiors. A map f : I — I is called EMR if:

a) f is C* on U,sint(1,).

b) there exists an iterate of f which is uniformly expanding, i.e 3K > 1 and m a positive
integer, so that |(f™) (z)| > K > 1,Vx € Up>pint(1,).

c) the map f is Markov, i.e for anyn >0, fliu1,) 15 a homeomorphism from the interior
of I, to the interior of a union of some of the I;’s, j > 0.

d) f satisfies Rényi condition, i.e AK' > 0 such that sup sup If’(lz]/c)l]% <K' < o0.
n  xy,z€I0,

For an EMR map f, there exists a coding with a shift space on countably many symbols,

NN T, w((ky, ks, ...)) = ngof_”(]kn)

Every point & which never hits the boundary of some interval I,, under an iterate of f, has
a unique such coding, i.e there exists a unique (ky, ko, ...) € NY with 7((ky, ko,...)) = 2.
Thus, 7 : E} — X is injective outside a countable set.
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Two important examples used in the sequel, are the continued fractions map and the
Manneville-Pomeau maps. The continued fractions (Gauss) map is f; : [0,1] — [0, 1],

fi(z) = i — %] = {é}, x#0, and f1(0) =0

The Manneville-Pomeau map fs : [0,1] — [0, 1] is defined by:
fo(z) =+ 2 mod 1,

for some o > 0; we fix such an arbitrary o > 0 and, for simplicity of notation, will not
record it in the notation for f,. Notice that f5 has an indifferent fixed point at 0, so f, is
not strictly EMR. It was shown that an induced map of f; is EMR. First, f; is injective on
two maximal intervals [0, ag] and [ag, 1], where aq is given by 1 = ag+af. The induced map
of fy on [ag, 1] is hyperbolic, since we are far from the indifferent point 0. Take a decreasing

sequence (an)n 8.t fo(any1) = an,n > 0, and let I, := [an,a,_1],n > 1, and Iy = [ay, 1].
Then f3'(I,41) = Iy, for all n > 0, so the induced map (first return time) to Iy is:
(9.1) for,(x) = f3(z), v € I,s1,n >0

Proposition 9.2. a) From [23] it follows that the Gauss map fi is an EMR map.
b) From [24] it follows that the induced map fa 1, of the Manneville-Pomeau map is EMR.

Consider now a general EMR map f: I — I, and a skew product FF: I xY — I xY,
where Y C R? is a bounded open set, with F(z,y) = (f(z),g(z,y)). Recall that the
symbolic lift of F'is FF: N¥ x Y - NV x Y,

F(w,y) = (0w, g(r(w),y), Y(w,y) e N"x Y

If the symbolic lift F'is a Holder conformal skew product Smale endomorphism, then we
say by extension that F'is a Holder conformal skew product endomorphism over f.

Recall now the observation after Definition 9.1, that the coding 7 of an EMR map is
injective outside a countable set; and, from (8.3) the fibered limit set of F'is J(I) =
UI{:E} x Jy. Let ¢ be a Holder continuous summable potential on J(I), and p, be its
Te

equilibrium measure. Then 7 is easily shown to be j4 o py '-injective (as [tg 1S Invariant,
ergodic and has full topological support). So, from Theorem 8.4 follows:

Theorem 9.3. Let an EMR map f : I — I, an open bounded set Y C R, and a Hélder
conformal skew product endomorphism over f, F: I XY — I xY. Let ¢: J(I) = R be a
Holder continuous potential, such that ) exp(sup(d|x(e)xy)) < 0.

Then, for (mi.jty)-a.e x € I, the conditional measure pg s exact dimensional on J, and

| log pe(B(y: ) _ hyy (F)
r=0  logr Xy (£)

for pg-a.e y € Jo; equivalently for pgy-a.e (x,y) € J(I).

For the continued fractions transformation f; and the induced map f z, of the Manneville-
Pomeau map, we can use Theorem 9.3, and Theorem 8.6, to prove the exact dimensionality
of certain equilibrium measures for skew products over f; or fs . Here the intervals I,
from EMR definition are, respectively:
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efor fi:1—1, I,=[- 1 n>1

n+1l’n

o for for, : Ip = Iy, I, = [an,an—1],n > 1 as defined in (9.1).

Corollary 9.4. a) Let f be either the continued fraction map fi, or the induced map of the
Manneville-Pomeau map fa1,. Take an open bounded set Y C R, and a Holder conformal
skew product endomorphism over f, F': I XY — I xY. Let ¢ : I — R a Hélder continuous
potential 5.t Y yexp(sup(o|r,) < 0o, and Y :=pom: I xY — I xY. Then, for us-a.c
x € I, the conditional measure py, is exact dimensional on J,, and

o Jog g (B(y, 1))y, (F)

0 log r X, (F)

for pij-a.e y € J,; hence, equivalently for jy-a.e (x,y) € J(I).
b) If 1y is exact dimensional on I, then iy is exact dimensional on I x'Y.

Proof. a) If ¢ : I — R is a potential on I and if ©) = ¢ o7, then the projection of y,, on the
first coordinate is ji,. We then apply Theorem 9.3 for f; or the induced map fs,. Notice
that if ¢ is Holder continuous on I, then ¢ = ¢ o 7 is Holder continuous on I x Y.

b) If pu4 is exact dimensional, apply part a) and Theorem 8.6. ([l

In [17] Pollicott and Weiss studied multifractal analysis for a class of potentials. Given
an EMR map f: I — I and ¢ : I — R with exp ¢ continuous, ¢ belongs to the class W iff:
W1) there exists a constant C' > 0 with: > expo¢(y) < C, Vx € I.
y.f(y)=x

W2) the function Cy(z,2') = > S ST o(fly) — é(f7y')| is bounded

n>1lyef-—nzy ef "z 0<j<n-1
above by a constant C, and Cy(z,2’) — 0 when |z — 2’| — 0.

For any ¢ € W, from conditions W1) and W?2) it follows that there exists a unique
equilibrium measure y, for ¢ with respect to f on I (see Prop 7 of [17], or Section 8 above).
For allm > 1 and x € I, p, satisfies the usual estimates on the set I, (z) containing x of
the partition \/  f7"({Ln}m>0). Namely 3 a constant C' > 0 s.t forallz € I, y € I,,(x),

02) Gew( Y 6() —nP) < allu(e) < Cexp (3 6 1) —nP(©))

Now, for a potential ¢ € VW and real parameters ¢, t, one can form the family of potentials

(9.3) Oqt = —tlog|f'| + q(¢ — P()),

and define the number ¢(q) by the condition P(¢gq)) = 0. We see that P(¢19) = 0, so
t(1) = 0. Let p4 be the equilibrium measure of the potential ¢, € W.

Consider a skew product ' : I xY — I XY over f; or over f;, as in Corollary 9.4, and
let ¢ € W. If m; is the projection on the first coordinate, define the potentials on I X Y,

Pgr = Qg 0, and Py = qut(q)

As in Sections 4 and 5, from conditions W1) and W2), it follows that there exists a unique
equilibrium measure fy, for 1, with respect to F' on I x Y. Consider skew product
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endomorphisms F' as above. We prove that the equilibrium measures of certain potentials
1, with respect to F', are exact dimensional on I X Y.

Theorem 9.5. a) In the above setting, if F': I xY — I XY is a Hélder conformal skew
product endomorphism over the continued fractions transformation fi, and if ¢ € W, then
[y, @5 exact dimensional on I XY, for all parameters q satisfying t(q) > %

b) In the above setting, if F is a Holder conformal skew product endomorphism over
the induced map fay, of the Manneville-Pomeau map, and if ¢ € W, then py, is exact
dimensional on I XY, for all parameters q satisfying é <t(q) < 1.

Proof. We have that the estimates (9.2) for equilibrium measures on intervals I,, (and thus
on cylinders), hold when ¢ € W. Thus we have Theorem 6.1 and Corollary 9.4, and obtain
the exact dimensionality of a.e conditional measure of j,, on the fibers contained in Y.
From Theorems 1 and 2 and Proposition 3 of [17], we obtain the exact dimensionality
of measures 4, on I, for the respective ranges of parameters ¢ for fi, and fo;. But
T1+(fly,) = Mg, is thus exact dimensional. So, from Theorem 8.6 fiy, is exact dimensional
on I xY. U

10. DIOPHANTINE APPROXIMANTS AND THE DOEBLIN-LENSTRA CONJECTURE

We want to apply the results about skew products to certain properties of diophantine
approximants, making the conjecture of Doeblin and Lenstra more general and precise.
Consider an irrational number z € [0, 1], whose continued fraction representation is:

1
x = lay,ag,...] =

-
Mt T

where a; > 1,7 > 1. Recall also that the associated continued fraction transformation is
1
T:00,1] = [0,1], T(z) ={=}, x#0, and T(0) =0
T

If we truncate the representation at n, then we obtain a rational number Zq’—z (called the
n-th convergent of x), where p,,q, > 1,n>1, (pa,q,) = 1, and
Pn
dn

When need be, we shall also denote a,, pn, @, by an(x), pa(x), g.(z), respectively, in order
to emphasize their dependence on z. Let us now denote (see for eg [6]) by

@n::|x—& 2, n>1
q

n

=la1,...,an)

This number ©,, depends on z, so we will also denote it by 6,,(z).
Notice that the Gauss map 7" above can be coded by the shift on a symbolic space with a
countable set of generators Ey, and that Tz = [ag,as,...]. Denote by T), := T"(x), hence

Ty = [ani1, Gnyo,y .. .], and V,, = [ap, ..., a1], n >1

Hence T,, represents the future of x, and V,, represents the past of . Now, for every n > 1,

anl Vn Tn
S TR ON A 1+ T,V,

Va
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The natural extension of ([0,1),T) is given by (see for eg [6]):
1
,———), (z,9) €[0,1)?
) ) e )
From this, it follows that 7 (x,0) = (Tx, —), and T?(z,0) = (T?(x), ———). By

? a1 (x)

T(x,y)=(Tx

induction, we obtain that in general, for every n > 1,
T"(x,0) = (Th, [an, ..., a1]) = (T,, V,)

The coefficients ©,, were the object of an important Conjecture by Doeblin and reformu-
lated by Lenstra (see [6]), that for Lebesgue-a.e x € [0,1) and all z € [0, 1], the frequency
of ©,(z) appearing in the interval [0, z] is given by the function F(z) defined on [0, 1] by

1
F(z) = @,z € [0,5], and F(z)

1
= 1-— log 2 -1
10g2( Z+ Og 2)726[27 ]

The Doeblin-Lenstra Conjecture says that for a.e x € [0,1] and all z € [0, 1], the limit
1<k< <
lim Card{l <k <n,0,(z) <z}

n—00 n

exists, and equals the above distribution function F'(z). This conjecture was solved by
Bosma, Jager and Wiedijk in the '80’s ([2]), and they needed the natural extension ([0,1)%, T, i),
of the continued fraction dynamical system with the Gauss measure pg.

Let us see how we can apply our results on skew products for the natural extension
([0,1)%,7) of the continued fraction transformation ([0,1),T), and to the lifts of certain
invariant measures. First, notice that the natural extension map of T', namely

1 2
T(r.9) = (Te, i), () €01
falls into our class of skew products. From the representation of real numbers in continued
fraction, it follows that the endomorphism 7 is coded completely by the shift map on a
symbolic space with infinite alphabet Ey;. Consider now the potentials

ds(x) = —slog|T' ()], = € [0, 1),
1

for s > 5. As discussed above, the potential ¢ belongs to the class W, and it has an
equilibrium measure denoted by ps on [0, 1). Let us now denote by

bs(@,y) = ¢s(2), (2,9) €[0,1)?
and let ji, be the equilibrium measure of ¢, w.r.t 7 on [0, 1)?. From Theorem 9.8, we know
that fis is exact dimensional on [0, 1) x [0, 1). Our purpose is now to describe the asymptotic
frequencies with which ©,,(z) come close to arbitrary values, when z is ps-generic (instead
of z in a set of full Lebesgue measure as in the original Doeblin-Lenstra conjecture).

Theorem 10.1. Consider the measure fi; on [0,1)* and the measure ps on [0,1). Then
Jor ps-a.e x € [0,1) we have that for all z,z € [0,1), and r,r" > 0,
Card{k,0<k<n-—1,(T, Vi) € B(z,r) x B(z',r’
lim {ko<ks (0. Vo) € Ble,r) x B )} fis(B(z,7) x B(', 1))

n—00 n




36 EUGEN MIHAILESCU AND MARIUSZ URBANSKI

Proof. First recall that T"(x,0) = (T,,,V,,),n > 1. It is enough to prove the result for the
set A = (a,b) x (¢,d) for a dense set of ¢, d, instead of B(z,7) x B(Z',r"). Let us consider
e > 0 arbitrary and denote A(e) = (a,b) X (¢ —¢e,d+¢) and A(—¢) = (a,b) X (c+¢&,d—¢).
Thus A(—¢) C A C A(e).

If 2 = [ay,a9,...] ¢ Q, then there exists ng(¢) > 1 such that for any y € [0,1],
l[ans Gn-1,...;a1 +y] — [an,...,a1]] < e. But then, if T"(z,y) = (T"(z), [an,...,a1 +
y]) € A(—e¢), it follows automatically that (T,,V,) € A. And, if (7,,V,) € A, then
T™(x,y) € A(e).

Thus, we compare the condition of existence of an iterate of (x,y) in a slightly modified
rectangle with the existence of an iterate of (z,0) in A. But then, from above, it follows:

minf = S Lo (THwy) <lminf = S 14(T4(x,0))

n—oo N n—oo 1
0<k<n—1 0<k<n—1
. 1 . 1
< limsup — E 1A(T"(x,0)) < limsup — E La—o)(T* (2, y))
n—oo N n—osoo N
0<k<n—1 0<k<n—1

Now we know that the equilibrium measure fi, is ergodic on [0,1)? w.r.t 7, hence from
Birkhoff Ergodic Theorem it follows that for ps-a.e x € [0, 1),
(10.1)
1 1
fis(A(—€)) <liminf = Y~ 14(7%(z,0)) <lmsup— Y 14(7%(z,0)) < fu(A(e))

n—oo N n
0<k<n—1 n—reo 0<k<n—1

But outside a set of {¢,d}’s which is at most countable, the measure jis is zero on (a,b) x

{c,d}. Hence from (10.1), liminf L 3> 14(T%, Vi) = fis(A). O
n—

o 0<k<n—1

Let us denote the Lyapunov exponent associated to the measure ug, by
Ao = (1o T\ (@) da (o)
I

Denote also by Ag the Lyapunov exponent of the Gauss measure, i.e \g = [log |T"|dug =

72

Then, from Pollicott-Weiss, we have that for each A € [\, 00), there exists s =

6log2-
s(A) > % and an uncountable dense set A; C [0, 1), so that A(us) = A, and

1 T
(10.2) Ao ={z € [0,1), lim ~log|e - z:((g| = A}, and HD(A,) = hu}( )

We want to prove now that for z € Ay, the approximation coefficients ©,,(x),0,_1(x)
behave very erratically, and we estimate the asymptotic frequency that (O(x), O_1(x)) is
r-close to some (z, 2'), independently of x.

Theorem 10.2. In the above setting, for any A € [Ag,00), there exists s > % and a

set Ay C [0,1) with HD(A;) = h“sT(T), such that for any ¢ > 0, x € Ay, and fis-a.e
(2,2') € [0,1)2, there exists r(x,z,2') > 0 so that for any 0 <r < r(z,z,2, ), we have the
following asymptotic estimates:

- < Jin Card{k,0 <k <n—1, (O4(z),0_1(z)) € B(i%7,7) X B(57: 1)} < ili)+e

— — Y

n—00 n
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where §(fis) is the Hausdorff dimension of fis, and where for fis-a.e (z,2') € [0,1)?, we have
. h, (T he (T
o(fis) = wd) w(T)
A 2 [lo1y2 log(ar(z) +y) dits(z,y)

Proof. First, for any A € [\, 00), there exists an s > % and a set Ay is defined in (10.2),
and by [17] we know that its Hausdorff dimension is given by the formula in (10.2).

We now want to use Theorem 9.5 and the formula for the Hausdorff dimension of the
measure [is. The measure fi, is exact on [0, 1)?) since pu, is exact for s > % (from [17]) and
since by Theorem 8.4 and Theorem 9.3 the conditional measures of jis on fibers are also
exact dimensional. Given an arbitrary point z € A, we will work with the associated num-
bers Ty(x), Vi(z), ©k(x), but for simplicity of notation will denote them just by T}, Vi, Ok
respectively. We use Theorem 10.1 to show that the asymptotic frequencies of (Tk, Vi) be-
ing in certain set A is given by the measure fis(A). In our case A = B(z,r) x B(2/,r), and
if (Tk, Vi) € B(z,7) x B(#',r), then there exist constants C,C’" > 0 so that (O, Or_1) €
B(1%;,Cr) % B(f;Z,,CT), and vice-versa if (O, Oy—1) € B(i5;,7) X B(f;z,,r), then
(T, Vi) € B(z,C'r) x B(2',C'r). Thus, there exists some constant C; > 0, such that from
Theorem 10.1, the asymptotic frequency behaves as:

Cilis(B(z,7) x B(2,7)) <

Card{k,k <n—1, (04(x),O)_ € B(—=5,7) x B(+2=,
ar { n ( k<x> k 1(1’)) (1+zz T) (1+zz T)} SCL&S(B(Z,T’) % B(Z/,T’)>

< lim
n—0o00 n

But we know from Theorem that the measure fi5 is exact dimensional, hence fis(B(z,7) x
B(#',7)) ~ rot) where 0(ji,) is the pointwise dimension of i,
log fis(B x B(2
t—0 logr

In our case, by Theorem 8.6, the pointwise dimension (/i) is given as the sum between
the dimension of tu, and the dimension of the conditional measures on the vertical fibers.
From the fact that ji, is exact dimensional, it follows also that for small r > 0,

P < o (B(z,r) x B(Z,r)) < r¥te

The final formula for §(jis) follows then from Theorems 8.4 and 9.5, where we compute the

Lyapunov exponent of the contraction y — Wl)ﬂ; in the fiber over x. Thus we obtain,
y . h#s (T) hﬂs(T)
5(:us) - A 2f[071)2 log(a1(x)+y) dis(z,y)*

O
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