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Abstract. Analyticity results of expected pressure and invariant densities in the
context of random dynamics of transcendental functions are established. These are
obtained by a refinement of work by Rugh [15] leading to a simple approach to
analyticity. We work under very mild dynamical assumptions. Just the iterates of
the Perron-Frobenius operator are assumed to converge.

We also provide Bowen’s formula expressing the almost sure Hausdorff dimen-
sion of the radial fiberwise Julia sets in terms of the zero of an expected pressure
function. Our main application establishes real analyticity for the variation of
this dimension for suitable hyperbolic random systems of entire or meromorphic
functions.

1. Introduction

Answering a conjecture of Sullivan, Ruelle [14] showed for hyperbolic rational func-
tions that the Hausdorff dimension of the Julia sets does depend analytically on the
map and gave a local formula for perturbations of the map z 7→ z2. Since then, there
where several results of this type in various contexts and also different methods of
proof. The monograph [22] treats the local formula and analyticity has been obtained,
for example, in [21] for complex Henon mappings of C2, in [11] for basic sets of surface
diffeomorphisms. In the context of entire and meromorphic functions, the first result
was obtained in [20], further development appeared in [6, 7] and [17].

Whereas the latter papers use holomorphic motions, Rugh [15] introduces the
method of positive cones and complex cones which allowed him to extend analyticity
results to random dynamics of repellers. The present paper refines Rugh’s approach,
avoids complex cones, and allows us to get analyticity results for random dynamics of
transcendental entire and meromorphic functions. The following is a particular case
of our general result Theorem 9.11.

Theorem 1.1. Let fη(z) = ηez and let a ∈ ( 1
3e ,

2
3e) and 0 < r < rmax, rmax > 0.

Suppose that η1, η2, .. are i.i.d. random variables uniformly distributed in D(a, r). Let
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Jη1,η2,... denote the Julia set of the sequence of compositions
(
fηn ◦fηn−1 ◦ . . .◦fη2 ◦fη1 :

C→ C
)∞
n=1

and let

Jr(η1, η2, ...) = {z ∈ Jη1,η2,... : lim inf
n→∞

|fηn ◦ ... ◦ fη1(z)| < +∞}

be the radial Julia set of (fηn ◦ ... ◦ fη1)∞n=1. Then, the Hausdorff dimension of
Jr(η1, η2, ...) is almost surely constant and depends real-analytically on the param-
eters (a, r) provided that rmax is sufficiently small.

The common point in all papers on this topic is the fact that the Hausdorff di-
mension of Julia sets can be expressed in terms of the zero of a pressure function.
This fact goes back to [1] and is now called Bowen’s Formula. This formula also
has been generalized in many contexts and we also provide one (Theorem 9.10). We
would like to mention that the zero of the involved (expected in the random case)
pressure does not really detect the dimension of the whole Julia set but the dimension
of its subset consisting of all radial points. In fact, in the case of hyperbolic rational
functions the radial Julia set and the Julia set itself coincide. However, for transcen-
dental functions, especially for entire functions, there is a definite difference between
these sets. McMullen [9] showed that the Julia set of sine or exponential functions is
always maximal equal to two whereas for such hyperbolic functions the dimension of
the radial Julia set, which is often called hyperbolic dimension, is never equal to two
[18, 19].

The formulation of Theorem 1.1 has been chosen deliberately in analogy with Ex-
ample 1.2 in [15] since our present work stems from Rugh’s papers [15, 16]. However,
we were not able to apply directly his machinery. Instead we worked out a refinement
of Rugh’s elegant approach to analyticity. In particular, we avoid any use of Hilbert’s
distance in positive cones and complex cones. Instead we provide a quite simple and
direct calculation (see Proposition 6.2). The outcome, besides the results concerning
random transcendental dynamics, provides an elementary and general tool. In short,
it says that if the thermodynamic formalism holds and if the normalized iterated
transfer operator converges with a uniform speed, then real analyticity holds. Let us
explain this now in more detail.

We consider arbitrary analytic families of holomorphic functions fj,λ, j ∈ Z, having

the following properties. There exists an open set U ⊂ Ĉ and δ0 ∈ (0, 1/4) such that,
for all w ∈ U , j ∈ Z and n ≥ 1, every inverse branch g of the non-autonomous
composition

fnj,λ := fj+n−1,λ ◦ ... ◦ fj+1,λ ◦ fj,λ

exists on D(w, 2δ0), maps D(w, δ0) inside U and satisfies |g′| ≤ γ−1
n on this disk. Here

(γn)n is any sequence with limn→∞ γn = ∞. As for specific examples, the reader
my have in mind rational functions, functions associated to finite or infinite iterated
function systems or transcendental functions. In such a setting the thermodynam-
ical formalism including a Ruelle-Perron-Frobenius Theorem usually holds (see for
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example [13], [22], [12], [4], [3], [5], [7] and [8]):

Lj,λ,tg(w) =
∑

fj,λ(z)=w

|f ′j,λ(z)|−t
(

1 + |z|2

1 + |w|2

)−τ t
2

g(z) , g ∈ C0
b (U) ,

defines a bounded operator on the space of bounded continuous functions C0
b (U)

equipped with the sup-norm such that, for every j ∈ Z,

- there exists probability measures νj,λ,t and reals Pj(λ, t) such that

(1.1) L∗j,λ,tνj+1,λ,t = ePj(λ,t)νj,λ,t

- and that there exist functions ρ̂j,λ,t ∈ C0
b (U) such that L̂j,λ,tρ̂j,λ,t = ρ̂j+1,λ,t

where L̂j,λ,t = e−Pj(λ,t)Lj,λ,t is the normalized operator.

The functions ρ̂j,λ,t, called invariat densities give rise to an invariant family of mea-
sures µj,λ,t, defined as dµj,t,λ = ρ̂j,λ,tdνj,λ,t. This family is invariant in a sense that
(fj,λ)∗(µj,λ,t) = µj+1,λ,t.

In here, t belongs to an interval I of positive reals and τ ≥ 0. When τ = 0 then
the above operators are just the usual geometric transfer operators used, for example,
for polynomials or iterated function systems. For the infinite to one transcendental
functions we have to use the additional coboundary factor with some well chosen
τ > 0.

In such a setting the iterated normalized operators are uniformly bounded, i.e.
there exists M <∞ such that

(1.2) ‖L̂nj,λ,t‖∞ ≤M for all j ∈ Z , λ ∈ Λ and t ∈ I

where L̂nj,λ,t = L̂j+n−1,λ,t ◦ ... ◦ L̂j,λ,t (see [6] and [8] for the case of transcendental

functions). Also, the densities satisfy the following positivity condition as soon as the
dynamical system is mixing (see for example Lemma 5.5 in [8]): there exists z0 ∈ U
and a > 0 such that

(1.3) ρ̂j,λ,t(z0) ≥ a for all j ∈ Z , λ ∈ Λ and t ∈ I .
We use a bounded deformation property. It is formulated in Definition 3.3 and gives
a uniform control of the variation of local inverse branches. Finally, to η > 0 we
associate the space of Lipschitz functions Lip(U, η) which is the space of bounded
functions g : U → R such that

(1.4) Lip(g, η) = sup

{
|g(z1)− g(z2)|
|z1 − z2|

; z1, z2 ∈ U , 0 < |z1 − z2| < η

}
<∞ .

This space is equipped with the norm ‖g‖Lip,η = ‖g‖∞ + Lip(g, η).

Theorem 1.2. Suppose that fj,λ are of bounded deformation and that the above
thermodynamical formalism holds, in particular with (1.2) and (1.3). Suppose that
the iterated normalized operators have uniform speed: for every η > 0 there exists
ωn → 0 such that

(1.5) ‖L̂nj,λ,tg − νj,λ,t(g)ρ̂j+n,λ,t‖∞ ≤ ωn‖g‖Lip,η for every n ≥ 1 , j ∈ Z and
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every g ∈ Lip(U, η). Let z0 ∈ U . Then, for every j ∈ Z, the function

(λ, t, z) 7→ ρj,λ,t(z) =
ρ̂j,λ,t(z)

ρ̂j,λ,t(z0)

is real analytic.

Theorem 1.2 will be a consequence of Theorem 7.3, Theorem 8.1 is its random
analogue. All these results concern real analyticity of invariant densities. In fact
Theorem 7.3 proves a stronger version of real analyticity than the one in Theorem1.2;
namely that the mapping

(λ, t) 7→ ρj,λ,t

is real-analytic, where ρj,λ,t is considered as a member of an appropriate natural
Banach space.

As it is explained in Remark 8.3, Theorem 8.1 could also include real analyticity of
expected pressure. We worked this out in detail in the case of random transcenden-
tal dynamics and the cumulating result including real analyticity of the hyperbolic
dimension is Theorem 9.11.

2. General setting

We already outlined the setting in the Introduction and present now details. They
will be formulated for the non-autonomous setting since all the sections to follow
including Section 7 are devoted to non-autonomous dynamics. Random dynamics are
the object of Section 8 and 9. We denote by Dz = D(z, δ) the Euclidean disk of radius
δ centered at z ∈ C. Suppose given

an open set U ⊂ C , 0 < δ < δ0 <
1

4
and a sequence γn →∞.

For j ∈ Z, we suppose that fj is a holomorphic function defined on some open set

Vfj ⊂ C with range in Ĉ such that the following holds for every j ∈ Z and n ≥ 1:
the composition fnj = fj+n−1 ◦ ... ◦ fj is defined on some domain such that the range
contains the euclidean 2δ0–neighborhood of U and such that for every w ∈ U every
inverse branch g of fnj is well defined on D(w, 2δ0) and satisfies

(2.1) g(D(w, δ0)) ⊂ U and |g′||D(w,δ0) ≤ γ−1
n .

As often, replacing the functions by some of their iterates, we can assume that
γn > 1 for all n ≥ 1.

Example 2.1. The reader may have in mind the following examples:

- fj,λ(z) = z2+λcj where λ ∈ D(0, 1) and |cj | < 1
8 or other suitable perturbations

of hyperbolic rational functions.
- Functions arising from (finite or infinite alphabet) conformal iterated func-

tions systems.
- Families of transcendental functions such as the exponential family in Theorem

1.1 and all the examples treated in [7, 8].
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From the above definition follows that every function fj has the set U in its range

Vfj and that f−1
j (U) ⊂ U . As a motivation for our non-autonomous setting, note

that the radial Julia set of a hyperbolic meromorphic function f : C→ Ĉ (see [6] and
[7] for a precises definition of this concept) is

Jr(f) =

{
z ∈

⋂
n>0

f−n(U) : lim inf
n→∞

|fn(z)| < +∞

}
,

where U here is a sufficiently small neighborhood of the Julia set J(f). The straight-
forward adaption of this definition to the non-autonomous case is the following:

(2.2) Jr(fj , fj+1, ...) =

{
z ∈

⋂
n>0

(fnj )−1(U) : lim inf
n→∞

|fnj (z)| < +∞

}
,

where U is now as above, for ex. in (2.1). Notice that these radial Julia sets coincide
with the usual Julia sets (of the same sequence) as soon as the open set U is bounded.
This is the case for rational functions (after an appropriate change of coordinates) and
for iterated function systems. Unbounded sets U and radial Julia sets are necessary
for transcendental dynamics.

Our results concern holomorphic families of functions. Let Λ be the corresponding
parameter space. Without loss of generality, we may assume that Λ is one-dimensional
and, the results being of local nature, we can restrict to the case where Λ = D(λ0, r)
is an open disk in C having arbitrarily small radius r > 0.

Definition 2.2. FΛ = {fj,λ , j ∈ Z and λ ∈ Λ} is called a non-autonomous holo-
morphic family if, for every j ∈ Z, fj,λ depends holomorphically on λ ∈ Λ. This
precisely means the following for every j ∈ Z: if Vfj,λ is the domain of fj,λ then

Γj :=
⋃
λ∈Λ{λ} × Vfj,λ is an open subset of C2 and the map (λ, z) 7→ fj,λ(z) is holo-

morphic on Γj.

3. Pairings and bounded deformation

Let FΛ = {fj,λ ; j ∈ Z , λ ∈ Λ} be a non-autonomous holomorphic family. We
are interested in the solutions of the equation fnj,λ(z) = w. A direct application of

the implicit function theorem along with analytic continuation and (2.1) gives the
following observation.

Fact 3.1. If λ′ ∈ Λ, w′ ∈ U and z′ ∈ f−nj,λ′(w
′) are given, then there exists a unique

holomorphic function

Λ× D(w′, δ0) → U
(λ,w) 7→ z(λ,w)

such that z(λ′, w′) = z′ and fnj,λ(z(λ,w)) = w for every λ ∈ Λ and w ∈ D(w′, δ0).

This is simply the proper way of defining an inverse branch f−nj,λ,∗ of fnj,λ. We will use

the inverse branch notation rather than the function z(λ,w). This precisely means
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that f−nj,λ,∗ is a choice of inverse branch defined by a function z given by Fact 3.1:

f−nj,λ,∗(w) = z(λ,w) , λ ∈ Λ , w ∈ D(w′, δ0) .

We can now introduce the notion of pairings used in the sequel. Let us recall that
0 < δ ≤ δ0. The number δ will be specified later on in (6.1).

Definition 3.2. (w1, w2) is a 0–pairing if w1 ∈ U or w2 ∈ U and if |w1 − w2| < δ.
For n ≥ 1, (z1, z2) is called n–pairing if there exists a 0–pairing (w1, w2), j ∈ Z,
parameters λ1, λ2 ∈ Λ and a choice of inverse branch f−nj,λ,∗ such that

z1 = f−nj,λ1,∗(w1) and z2 = f−nj,λ2,∗(w2) .

The following concept of bounded deformation has already been used in [7] but
without the condition (3.2). This was so since for dynamically regular transcendental
functions this second condition automatically is satisfied (see Lemma 9.4). It is also
possible to relax this second condition in the setting of conformal infinite iterated
function systems as it has been done [17].

Definition 3.3. The family FΛ is of bounded deformation if there exists A,D < ∞
such that for every j ∈ Z and for every choice of inverse branch f−1

j,λ,∗ we have

(3.1)

∣∣∣∣∣∂f
−1
j,λ,∗
∂λ

∣∣∣∣∣ ≤ D , λ ∈ Λ and

(3.2)

∣∣∣∣∣f ′j,λ1
(z1)

f ′j,λ2
(z2)

∣∣∣∣∣ =

∣∣∣∣∣f
′
j,λ1

(f−1
j,λ1,∗(w1))

f ′j,λ2
(f−1
j,λ2,∗(w2))

∣∣∣∣∣ ≤ A , λ1, λ2 ∈ Λ , w1, w2 ∈ D(w, δ0) .

Bounded deformation holds for many transcendental families and especially for

fλ(z) = λez (see [7]). Notice that (3.1) is equivalent to the fact that
∣∣∣∂fj,λ∂λ

∣∣∣ ≤ D ∣∣∣f ′j,λ∣∣∣.
This condition is automatically satisfied for all rational functions and for functions
associated to finite iterated function systems subject to possible shrinking of the
parameter space. Also, for all systems with compact phase space such as infinite
iterated function systems one can use the theory of holomorphic motions in order
to show that (3.1) holds for free. So, the bounded deformation condition is mainly
instrumental in the case of transcendental, and especially entire, functions.

Remember that the expanding constant γ1 > 1. This allows us to fix a constant

(3.3) κ ∈ (γ−1
1 , 1) .

Lemma 3.4. If (fj,λ) satisfies (3.1) then there exists a (sufficiently small) choice of
diam(Λ) (depending on δ) such that every 1–pairing (z1, z2) satisfies |z1 − z2| < κδ.

Remark 3.5. Lemma 3.4 implies that every 1–pairing is a 0–pairing and, inductively,
that every n–pairing is a k–pairing for all 0 ≤ k < n.
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Proof. Let a 1–pairing be given by zi = f−1
j,λi,∗(wi), i = 1, 2, and denote z′2 =

f−1
j,λ2,∗(w1). The condition (3.1) implies that∣∣z1 − z′2

∣∣ =
∣∣∣f−1
j,λ1,∗(w1)− f−1

j,λ2,∗(w1)
∣∣∣ ≤ D diam(Λ) .

On the other hand, |z′2 − z2| < γ−1
1 δ. Therefore, |z1 − z2| < δγ−1

1 +Ddiam(Λ) and it

suffices to take diam(Λ) < δ(κ− γ−1
1 )/D. �

A further consequence of bounded deformation, this time of condition (3.2), is the
following.

Lemma 3.6. There exists a constant Ã < ∞ independent of δ ∈ (0, δ0) such that,
for every j ∈ Z and every 1–pairing (z1, z2) = (f−1

j,λ1,∗(w1), f−1
j,λ2,∗(w2)),

(3.4)

∣∣∣∣∣arg

(
f ′j,λ1

(z1)

f ′j,λ2
(z2)

)∣∣∣∣∣ =

∣∣∣∣∣arg

(
f ′j,λ1

(f−1
j,λ1,∗(w1))

f ′j,λ2
(f−1
j,λ2,∗(w2))

)∣∣∣∣∣ ≤ Ã
provided the parameters λ1, λ2 ∈ D(λ0, r/2). In here, the argument is well defined
and understood to be the principal choice, i.e. arg(1) = 0.

Proof. By Koebe’s distortion theorem (see for ex. Theorem 2.7 in [10]) it suffices to
consider pairings for which fj,λ1(z1) = fj,λ2(z2) = w or, in terms of inverse branches,

that zi = f−1
j,λi,∗(w), i = 1, 2. Consider then the function

ϕ(λ) =
f ′j,λ(f−1

j,λ,∗(w))

f ′j,λ0
(f−1
j,λ0,∗(w))

, λ ∈ Λ = D(λ0, r) .

It has the properties ϕ(λ0) = 1 andA−1 ≤ |ϕ| ≤ A by (3.2). The set of all holomorphic
functions having these properties is compact which implies the estimate (3.4). �

In the rest of this paper we suppose that r = diamΛ/2 is chosen such that the
conclusion of Lemma 3.4 holds as well as (3.4) for every 1–pairing, i.e. (3.4) holds for
all parameters λ1, λ2 ∈ D(λ0, r).

4. Mirror extension

One step towards real analyticity is complexification of the transfer operator and
its potential. There are several possibilities for this but the elegant mirror extension
of Rugh is now most appropriate for us. We use mainly the notation he used in his
papers [15, 16]. The mirror of the parameter space Λ and the domain U is the set

(4.1) Υ =
{

(λ1, λ2, w1, w2) : λ1, λ2 ∈ Λ , (w1, w2) is a 0–pairing
}
.

Consider also the w–mirror

Υw =
{

(w1, w2) : (w1, w2) is a 0–pairing
}
.

The initial sets Λ× U and U naturally identify respectively with the diagonals

∆ = {(λ, λ, w,w) : λ ∈ Λ , w ∈ U} ⊂ Υ and ∆w = {(ω, ω) : ω ∈ U} ⊂ Υw .
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Let A = Cωb (Υw) be the space of functions that are holomorphic and bounded on Υw.
This space will be equipped with the sup-norm defined by

‖h‖∞ = sup
(w1,w2)∈Υw

|h(w1, w2)]

and it makes it a Banach space. We also need the following notion of Lipschitz
variation on n–pairings of a function h : Υw → C:

(4.2) Lipn(h) = sup

{
|h(z1, z2)− h(z1, z1)|

|z1 − z2|
, (z1, z2) n–pairing with z1 6= z2

}
.

Lemma 4.1. For every n ≥ 1 and h ∈ A we have Lipn(h) ≤ ‖h‖∞/((κ−γ−1
n )δ), i.e.

for every h ∈ A and every n–pairing (z1, z2)

(4.3) |h(z1, z2)− h(z1, z1)| ≤ ‖h‖∞
(κ− γ−1

n )δ
|z1 − z2| .

with κ the constant from (3.3).

Proof. Let σ = ∂D(z1, κδ). Cauchy’s Integral Formula implies

|h(z1, z2)− h(z1, z1)| ≤

≤ 1

(2π)2

∫
σ

∫
σ

∣∣∣∣ h(ξ1, ξ2)

(ξ1 − z1)(ξ2 − z2)
− h(ξ1, ξ2)

(ξ1 − z1)(ξ2 − z1)

∣∣∣∣ |dξ1||dξ2|.

Elementary estimations give |ξi − z1| = κδ and |ξi − z2| ≥ δ(κ − γ−1
n ), i = 1, 2. The

required estimation follows now easily. �

The space A contains the relevant subspace

AR =
{
h ∈ A : h|∆w

∈ R
}
.

Functions from AR are real on the diagonal and can therefore be identified with a
subclass of real functions defined on U . Up to identification, they belong to the space
of Lipschitz functions Lip(U, η) (see Introduction) provided η < κδ.

Lemma 4.2. If h ∈ AR then z 7→ g(z) := h(z, z) belongs to Lip(U, κδ) and

‖g‖Lip,κδ ≤ C‖h‖∞
where C = 1 + 2/((

√
κ− κ)δ).

Proof. Let h ∈ AR and let z1, z2 ∈ U with 0 < |z1 − z2| < κδ. Consider σ =
∂D(z1,

√
κδ) and use exactly the same argument then in the proof of Lemma 4.1

based on Cauchy’s Integral Formula in order to obtain the estimates

|h(z1, z2)− h(z1, z1)| ≤ 1

(
√
κ− κ)δ

‖h‖∞|z1 − z2| .

The same argument also gives the following symmetric version of this estimaties:

|h(z1, z2)− h(z2, z2)| ≤ 1

(
√
κ− κ)δ

‖h‖∞|z1 − z2| .

It suffices now to combine these two estimations in order to complete this proof. �
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4.1. Potentials and extended operator. The potentials under consideration must
have two properties: they must admit holomorphic mirror extensions and have good
distortion properties. We do not treat the most general setting but focus in the
following on the most important class of potentials and will see that they have the
required properties. So, suppose that τ ≥ 0 is fixed, that I is an open interval
compactly contained in (0,∞), consider

(4.4) ϕj,λ,t(z) = −t log |f ′j,λ(z)| − tτ
2

log

(
1 + |z|2

1 + |fj,λ(z)|2

)
and observe that |f ′j,λ|−tτ = eϕj,λ,t , λ ∈ Λ and t ∈ I, where |f ′j,λ|τ denotes the deriva-

tive with respect to the Riemannian conformal metric |dz|/(1 + |z|2)
τ
2 . The transfer

operator Lj = Lj,λ,t of the function fj,λ and the potential ϕj,λ,t is defined by

(4.5) Ljg(w) =
∑

fj,λ(z)=w

eϕj,λ,t(z)g(z) =
∑

fj,λ(z)=w

|f ′j,λ(z)|−tτ g(z) , w ∈ U ,

where g ∈ C0
b (U) is a continuous bounded function on U . The classical case, par-

ticularly when one deals with polynomials or iterated function systems, is when
τ = 0. For transcendental functions τ > 0, i.e. the additional coboundary term
log(1+ |z|2)− log(1+ |fj,λ(z)|2), is needed since otherwise the transfer operator is not
well defined the series defining it being divergent.

The n-th composition of these operators is

(4.6) Lnj = Lj+n−1 ◦ ... ◦ Lj .

A standard calculation shows that Lnj is the transfer operator as defined in (4.5) of
the potential

Snϕj =

n−1∑
k=0

ϕj+k ◦ fkj =
n−1∑
k=0

ϕj+k,λ,t ◦ fkj,λ .

The potentials defined in (4.4), often called geometric, admit mirror extensions as
we explain now. In the following, I is a complex neighborhood of I ⊂ R. For w ∈ U ,
define Zw = Λ×Λ×Dw ×Dw and notice that Υ ⊂

⋃
w∈U Zw. From Fact 3.1 applied

with n = 1 follows that, to every choice of λ′ ∈ Λ and z′ ∈ f−1
j,λ′(w), there corresponds

a choice of inverse branches f−1
j,λ,∗ defined on Λ×Dw. Consider then on Zw the map

(4.7) (λ1, λ2, w1, w2) 7→ (λ1, λ2, f
−1
j,λ1,∗(w1), f−1

j,λ2,∗(w2))

and denote its range by Z−1
j,w,∗. Notice that Lemma 3.4 and (2.1) imply

Z−1
j,w,∗ ⊂ Zw′ ∩ (Λ× Λ× U × U) for some w′ ∈ U .

Given the definition of the transfer operator in (4.5), it suffices to extend the potentials
to

(4.8) Υ−1 × I :=
⋃
w,∗

Z−1
j,w,∗ × I ⊂ Υ× I .
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The extension of ϕj,λ,t to one of the sets Z−1
j,w,∗ × I is straightforward. Indeed, let

(4.9) Φj,λ1,λ2,t
(z1, z2) = − t

2
log
(
f ′j,λ1

(z1)f ′j,λ2
(z2)

)
− tτ

2
log

(
1 + z1z2

1 + fj,λ1(z1)fj,λ2(z2)

)

where (λ1, λ2, z1, z2, t) ∈ Z−1
j,w,∗ × I. Notice that the expression in the first logarithm

never equals zero. Also, the expression in the second logarithm is well defined and
never equal to zero since (z1, z2) as well as (w1, w2) = (fj,λ1(z1), fj,λ2(z2)) are pairings

and thus their respective distance is at most δ0 ≤ 1
4 . Since, moreover, the set Λ is

simply connected, both logarithms in (4.9) are well defined and we can and will take
the principle branch since for (λ1, λ2, z1, z2) = (λ, λ, z, z) ∈ ∆∩Z−1

w,∗ both expressions
in the arguments of the logarithms are real positives. We thus have a properly defined
map Φj on every set Z−1

j,w,∗.

The map Φj is in fact a global well defined map on the union
⋃
w,∗ Z

−1
j,w,∗ × I. In

order to see this, consider two sets Z−1
j,w,∗ and Z−1

j,w′,∗′ having nonempty intersection.

Then ∆ ∩ Z−1
j,w,∗ ∩ Z

−1
j,w′,∗′ is a non-empty non-analytic subset of Z−1

j,w,∗ ∩ Z
−1
j,w′,∗′ and

Φj restricted to (∆∩Z−1
j,w,∗∩Z

−1
j,w′,∗′)×I is real and coincides with the given potential

ϕj . The map Φj is thus the desired extension of ϕj to Υ−1 × I.
Given this extended potential and using the inclusion in (4.8), we can now consider

the extended operator Lj,λ1,λ2,t
acting on functions g ∈ A by

(4.10) Lj,λ1,λ2,t
g(w1, w2) =

∑
z1,z2

exp
(

Φj,λ1,λ2,t
(z1, z2)

)
g(z1, z2)

where the summation is taken over all 1–pairings (z1, z2) such that fj,λi(zi) = wi ,
i = 1, 2. As for the initial real operator Lj it is convenient to write simply Lj instead
of Lj,λ1,λ2,t

when it is clear that the parameters λ1, λ2, t are fixed.

In the next proposition we will see that the image function Lλ1,λ2,t
g ∈ A provided

the initial real operator Lλ,t is bounded. This will allow us to iterate the operator and
this will be done again in a non-autonomous way: (in (4.11) we use the abbreviated
notation Lk := Lk,λ1,λ2,t

)

(4.11) Lnj = Lj+n−1 ◦ ... ◦ Lj

is the extension of Lnj defined in (4.6). Notice that the cocyle properties of inverse

branches along with Lemma 3.4 show that Lnj can also be defined by formula (4.10)
if one replaces the potential Φj,λ1,λ2,t

by

SnΦj,λ1,λ2,t
(z1, z2) =

n−1∑
k=0

Φj+k,λ1,λ2,t
(fkλ1

(z1), fkλ2
(z2))

and where the summation is taken over all n–pairings (z1, z2) such that fnj,λi(zi) = wi,
i = 1, 2.



REAL ANALYTICITY FOR RANDOM DYNAMICS 11

Proposition 4.3. Suppose that the real operator Lj,λ,t is uniformly bounded for j ∈ Z,
λ ∈ Λ and t ∈ I and that r = diam(Λ)/2 is sufficiently small such that (3.4) holds
for all 1–pairings. Then there exist a > 0 such that, with

I = {x+ iy ∈ C ; x ∈ I , y ∈]− a, a[},

the extended operator Lj,λ1,λ2,t
is a, uniformly for j ∈ Z, (λ1, λ2, t) ∈ Λ × Λ × I,

bounded operator of A. Moreover, if λ1 = λ2 =: λ and if t ∈ I is real, then each
operator Lk := Lk,λ,λ,t preserves AR and there exists K < ∞ such that, for every

function h ∈ A,

(4.12)
∣∣Lnj h(w1, w2)−Lnj h(w1, w1)

∣∣ ≤ Lnj,λ,t11(w1)

(
K +

γ−1
n

δ(1− γ−1
n )

)
‖h‖∞|w1−w2|

where (w1, w2) ∈ Υw and n ≥ 1, and, as in (4.11) Lnj = Lj+n−1 ◦ · · · ◦ Lj.

Proof. Let j ∈ Z, (λ1, λ2, w1, w2) ∈ Υ and let t ∈ I be complex. For every g ∈ A we
have ∣∣∣Lj,λ1,λ2,t

g(w1, w2)
∣∣∣ ≤ ‖g‖∞∑

z1,z2

∣∣∣exp
(

Φj,λ1,λ2,t
(z1, z2)

)∣∣∣
where the summation is again over all corresponding 1–pairings like in (4.10). There-
fore, it suffices to estimate the series on the right hand side of this inequality in order
to get a bound of the norm of the operator Lj,λ1,λ2,t

on A.

Now, if (z1, z2) be a 1–pairing such that fj,λi(zi) = wi, i = 1, 2, then∣∣∣exp(Φj,λ1,λ2,t
(z1, z2))

∣∣∣ =
∣∣f ′j,λ1

(z1)f ′j,λ2
(z2)

∣∣−<t2 exp

{
=t
2

arg
(
f ′j,λ1

(z1)f ′λ2
(z2)

)}
×

∣∣∣∣∣
(

1 + z1z2

1 + w1w2

)−t τ
2

∣∣∣∣∣ .
The choice of r > 0 and (3.4) shows that

∣∣∣arg
(
f ′j,λ1

(z1)f ′j,λ2
(z2)

)∣∣∣ ≤ Ã. Since |=t| ≤ a
it follows that

exp

{
=t
2

arg
(
f ′j,λ1

(z1)f ′j,λ2
(z2)

)}
≤ exp

{a
2
Ã
}
.

Clearly,
∣∣∣arg

(
1+z1z2
1+w1w2

)∣∣∣ is bounded above uniformly with respect to zi, wi, i = 1, 2.

Denote this bound again by Ã. Setting B = exp
{
aÃ1+τ

2

}
it follows that∣∣∣exp(Φj,λ1,λ2,t

(z1, z2))
∣∣∣ ≤ B ∣∣f ′j,λ1

(z1)f ′j,λ2
(z2)

∣∣−<t2 ∣∣∣∣ 1 + z1z2

1 + w1w2

∣∣∣∣− τ2<t .
An elementary calculation shows that there exists a constant C <∞ independent of
zi, wi, i = 1, 2, and t ∈ I, such that∣∣∣∣ 1 + z1z2

1 + w1w2

∣∣∣∣− τ2<t ≤ C
√

1 + |z1|2
1 + |w1|2

1 + |z2|2
1 + |w2|2

− τ
2
<t

.
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Therefore,∣∣∣exp(Φj,λ1,λ2,t
(z1, z2))

∣∣∣ ≤ BC|f ′j,λ1
(z1)|−

<t
2

(
1 + |z1|2

1 + |w1|2

)− τ<t
4

×

× |f ′j,λ2
(z2)|−

<t
2

(
1 + |z2|2

1 + |w2|2

)− τ<t
4

,

and thus the Cauchy-Schwarz inequality implies that∑
z1,z2

∣∣∣exp
(

Φj,λ1,λ2,t
(z1, z2)

)∣∣∣ ≤ BC√Lj,λ1,<t11(w1)
√
Lj,λ2,<t11(w2) .

By our assumptions there exists M <∞ such that ‖Lj,λ,t011‖∞ ≤M for every j ∈ Z,
λ ∈ Λ and t0 ∈ I. This shows that

(4.13) ‖Lj,λ1,λ2,t
‖∞ ≤ BCM .

Suppose now that λ1 = λ2 =: λ and that t ∈ I is real. In this case each operator
Lk,λ,λ,t clearly preserves AR.

It remains to establish the distortion property (4.12). We have∣∣Lnj h(w1, w2)− Lnj h(w1, w1)
∣∣ ≤ I + II

where

I =
∣∣∣∑ expSnΦj,λ,λ,t(z1, z1) (h(z1, z2)− h(z1, z1))

∣∣∣ ≤ Lnj,λ,t11(w1)Lipn(h)γ−1
n |w1 − w2| .

Lemma 4.1 gives an appropriate estimation for Lipn(h) and thus

I ≤ Lnj,λ,t11(w1)
‖h‖∞

δ(1− γ−1
n )

γ−1
n |w1 − w2| .

The second term is equal to

II =
∣∣∣∑(

expSnΦj,λ,λ,t(z1, z2)− expSnΦj,λ,λ,t(z1, z1)
)
h(z1, z2)

∣∣∣ .
The following distortion estimate directly results from the complex version of Koebe’s
distortion theorem in the case τ = 0 and from Lemma 4.7 in [7] if τ > 0:∣∣∣∣∣∣expSnΦj,λ,λ,t(f

−n
j,λ,∗(w1), f−nj,λ,∗(w2))

expSnΦj,λ,λ,t(f
−n
j,λ,∗(w1), f−nj,λ,∗(w1))

− 1

∣∣∣∣∣∣ ≤ K|w1 − w2| , w1, w2 ∈ D(w, δ).

Consequently,

II ≤ Lj,λ,t11(w1)‖h‖∞K|w1 − w2|

and, combining this estimate with the one of I, the desired Lipschitz property follows.
�
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5. Complexification of the invariant density

We have to consider appropriate rescaled versions of the operators defined in the
previous section. This section deals with the case where λ1 = λ2 =: λ and t ∈ I is
real. Moreover, here and in the next section both parameters λ, t are fixed and so we
will frequently surpress them:

(5.1) L̂j = e−Pj(t)Lj and L̂j = e−Pj(t)Lj , j ∈ Z .

The number Pj(t) is usually called the topological pressure. Assume that for these
rescaled operators there exist strictly positive functions ρ̂j ∈ C0

b (U) such that, for
some M <∞ and for every j ∈ Z and n ≥ 1,

(5.2) ‖L̂nj ‖∞ ≤M and L̂n−n+j11→ ρ̂j .

where the limit is with respect to the sup-norm as n→∞. Then clearly

L̂j ρ̂j = ρ̂j+1, j ∈ Z ,

and, for this reason, these functions are called invariant densities. The aim now is
to extend the invariant densities to holomorphic functions of AR such that (5.2) still
holds.

Proposition 5.1. Suppose (5.2) does hold. Then, for every j ∈ Z, the sequence

L̂n−n+j11 converges uniformly on compact sets to some function of AR. These limit
functions are extensions of ρ̂j and they will be denoted by the same symbol. Moreover,

|ρ̂(w1, w2)− ρ̂(w1, w1)| ≤M(K + 1)|w1 − w2| , (w1, w2) ∈ Υw ,

and the invariance property

(5.3) L̂j ρ̂j = ρ̂j+1 holds on Υw for every j ∈ Z.

Proof. Let (w1, w2) ∈ Υw. The distortion property (4.12) implies that there exists
n0 ≥ 0 such that for every n ≥ n0

(5.4)
∣∣∣L̂n−n+j11(w1, w2)− L̂n−n+j11(w1, w1)

∣∣∣ ≤ L̂n−n+j11(w1)(K + 1)|w1 − w2| .

Since L̂n−n+j11(w1, w1) = L̂n−n+j11(w1) it follows that∣∣∣L̂n−n+j11(w1, w2)
∣∣∣ ≤ L̂n−n+j11(w1)

(
1 + (K + 1)|w1 − w2|

)
≤M

(
1 + (K + 1)δ

)
≤M(K + 2) for every n ≥ n0 .

Therefore, the sequence
(∣∣∣L̂n−n+j11(w1, w2)

∣∣∣)∞
n=0

is uniformly bounded above. Mon-

tel’s Theorem thus applies and yields normality of the family
(
L̂n−n+j11

)∞
n=0

. Since

the limit of every converging subsequence coincides with ρ̂j on the non-analytic set

∆w the whole sequence
(
L̂n−n+j11

)∞
n=0

converges to one and the same limit and this

limit belongs to AR.
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The invariance property (5.3) holds since it holds on the non-analytic set ∆w.
Finally, the limit functions have the required Lipschitz property because of (5.2) and
(5.4). �

The obvious modification of this proof, where 11 is replaced by an arbitrary element
of AR, also shows that the normalized extended operators and invariant densities are
uniformly bounded above. Whenever (5.2) holds we may assume, increasing M if
necessary, that

(5.5) ‖L̂nj ‖∞ ≤M and ‖ρ̂j‖∞ ≤M for every j ∈ Z , n ≥ 0 .

In the condition (5.5), ρ̂j is the extended density and the sup-norms are taken on the
whole mirror Υw.

In the sequel we will need a different normalization. Let l : C0
b (U) → R be a

bounded functional. It naturally acts on functions of AR: if h ∈ AR then g(z) =
h(z, z), z ∈ U , defines a function g ∈ C0

b (U) and thus we can define

l(h) := l(g) .

In particular, l(ρ̂j) is well defined regardless of whether ρ̂j is understood as the initial
function of C0

b (U) or the extended function that belong to AR.
The functional l is assumed to be uniformly positive on the density functions mean-

ing that there exists a > 0 such that

(5.6) l(ρ̂j) ≥ a for every j ∈ Z.

Example 5.2. Fix any point ξ ∈ U and consider the functional l defined by l(g) =
g(ξ). Such a functional is uniformly positive on the functions ρ̂j in the sense of
(5.6) as soon as the system is mixing. This holds in particular for the transcendental
random systems considered in [8]. Lemma 5.5 of that paper shows that there exists
n0 ≥ 1 and a > 0 such that

(5.7) L̂nj 11(ξ) ≥ a for every n ≥ n0 .

Consider then

(5.8) ρj =
ρ̂j
l(ρ̂j)

, j ∈ Z .

Clearly,

lim
n→∞

Ln−n+j11

l(Ln−n+j11)
= lim

n→∞

L̂n−n+j11

l(L̂n−n+j11)
= ρj

and, because of (5.3), the extended invariant densities satisfy

(5.9)
Lnj (ρj)

l(Lnj (ρj))
= ρj+n for every j ∈ Z and n ≥ 1.
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It is henceforth natural to consider maps Ψn,j defined by

(5.10) Ψn,j(g) =
Lnj (g)

l(Lnj (g))
=

L̂nj (g)

l(L̂nj (g))
for every j ∈ Z and n ≥ 1.

Lemma 5.3. For every j ∈ Z and n ≥ 1, the map Ψn,j is well defined on the following
neighborhood of ρj in A:

Uj :=

{
g ∈ A : ‖g − ρj‖∞ <

a

2(‖l‖∞M)2

}
.

Proof. For g ∈ Uj we have to check that

l(L̂nj (g)) = l(L̂nj (ρj)) + l(L̂nj (g − ρj)) 6= 0 .

Since

l(L̂nj (ρj)) =
l(L̂nj (ρ̂j))

l(ρ̂j)
=
l(ρ̂n+j)

l(ρ̂j)
,

since l(ρ̂n+j) ≥ a by (5.6) and, since l(ρ̂j) ≤ ‖l‖∞M by (5.5), we have

(5.11) l
(
L̂n(ρj)

)
≥ a

‖l‖∞M
.

On the other hand, if g ∈ Uj then ‖l(L̂nj (g − ρj))‖∞ ≤ ‖l‖∞M‖g − ρj‖∞ < a
2‖l‖∞M .

Altogether we get l(L̂nj (g)) > a
‖l‖∞M −

a
2‖l‖∞M = a

2‖l‖∞M > 0. �

6. Contraction

We shall exploit in detail the convergence of the normalized iterated operators
under the assumption that there is a uniform speed of the convergence in (5.2). Let
us make this precise now (see also the condition (1.5) in Theorem 1.2). We keep in
this section the setting and notation of Section 5 and assume again that (5.2) and
(5.6) hold. We also recall that (5.2) implies (5.5).

We now fix δ > 0 sufficiently small such that

(6.1)
M

a
‖l‖∞ (M (K + 1) +Q‖l‖∞M) δ ≤ 1

4
,

where Q = M
a (K + 1). Notice that diminishing δ does not influence the involved

constants since M does not depend on δ and the distortion constant K becomes even
better if δ is replaced by a smaller constant.

We shall formulate now the precise condition which we shall need in the sequel:

Uniform speed. There exist bounded linear functionals νj ∈ A′R and there exists a
sequence ωn → 0 such that

(6.2) ‖L̂nj (h|∆w
)− νj(h)ρ̂j+n‖∞,∆w ≤ ωn‖h‖∞,Υw for every h ∈ AR , n ≥ 1 .
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In order to avoid any confusion we indicated here the domain on which the sup-
norm is taken. So on the left hand side of the inequality the supremum is taken over
all points of the diagonal ∆w, which is identified with U , whereas on the right-hand
side one takes into account the whole mirror Υw.

We have chosen the notation νj since typical examples of these functionals are the
measures of (1.1) that often are called conformal measures.

Lemma 6.1. Assume that (5.2), (5.6) and (6.2) hold. Then

(6.3) νj(ρ̂j) = 1 , j ∈ Z.

Proof. Apply (6.2) with h = ρ̂j and use the invariance property (5.3) in order to get

‖L̂nj ρ̂j − νj(ρ̂j)ρ̂j+n‖∞,∆w = |1− νj(ρ̂j)|‖ρ̂j+n‖∞,∆w ≤ ωn‖ρ̂j‖∞,Υw
By (5.5), ‖ρ̂j‖∞,Υw ≤ M . On the other hand, (5.6) implies that ‖ρ̂j+n‖∞,∆w ≥
a/‖l‖∞. Since ωn → 0 as n→∞ we thus must have νj(ρ̂j) = 1. �

Let us now focus on Ln0 , n ≥ 1, and use the simplified notations

Ln = Ln0 , Ln = Ln0 , ν = ν0, ρ = ρ0, ρ̂ = ρ̂0, Ψn = Ψn,0.

Concerning the functional l, we already have explained the action of this functional
on AR. It also can be extended to A by first extending it to complex functions in the
usual way and then to functions h ∈ A by l(h) := l(h|∆w

). Remember also the map

Ψn given by Ψn(g) = Ln(g)
l(Ln(g)) is, for every n ≥ 1, well defined on the neighborhood U0

of ρ = ρ0 (see Lemma 5.3).

Proposition 6.2. Suppose that (5.2), (5.6) and the uniform speed condition hold.
Then, for every δ ∈]0, δ0] sufficiently small there exists n ≥ 1 such that the differential
of Ψn at ρ satisfies

‖DρΨn‖∞ ≤
√

2

2
< 1 .

Remark 6.3. The proof will show that the integer n does not depend on the operators
Lj hence not on the functions fj, j ∈ Z, but only on the involved constants such as
a,M, ωn. In other words, n is uniform for all families of operators as long as they
satisfy the conditions (5.5), (5.6) and the uniform speed with the same constants. This
is in particular the case for all Ψn,j, j ∈ Z.

Proof. Let h ∈ A. From (5.9) we get Ψn(ρ) = ρn and

Ψn(ρ+ h) =
Ln(ρ) + Ln(h)

l(Ln(ρ)) + l(Ln(h))
=

ρn + Ln(h)/l(Ln(ρ))

1 + l(Ln(h))/l(Ln(ρ))

= ρn +
Ln(h)

l(Ln(ρ))
− ρn

l(Ln(h))

l(Ln(ρ))
+ o(‖h‖) .

Hence,

DρΨn(h) =
Ln(h)

l(Ln(ρ))
− ρn

l(Ln(h))

l(Ln(ρ))
.
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Consider first the case where h ∈ AR. It suffices to consider functions h for which
‖h‖∞ ≤ 1. If we evaluate the above expression at points (w,w) ∈ ∆w of the diagonal
then we can use (6.2) and it follows that there are functions ξn such that ‖ξn‖∞ ≤ ωn
and such that

L̂n(h)(w,w) = ν(h)ρ̂n(w) + ξn(w) .

Consequently,

Ln(h)

l(Ln(ρ))
=

L̂n(h)

l(L̂n(ρ))
=
ν(h)ρ̂n + ξn

l(L̂n(ρ))
on ∆w .

Thus

DρΨn(h)|∆w
=
ν(h)ρ̂n + ξn

l(L̂n(ρ))
− ρn

ν(h)l(ρ̂n) + l(ξn)

l(L̂n(ρ))
=
ξn − ρnl(ξn)

l(L̂n(ρ))
.

This expression can be estimated as follows. From (5.11) we have l
(
L̂n(ρ)

)
≥ a
‖l‖∞M .

For the same reasons, i.e. from (5.5) and (5.6), we also have that ‖ρn‖∞ = ‖ρ̂n‖∞
l(ρ̂n) ≤

M
a .

Altogether it follows that
(6.4)

‖DρΨn(h)|∆w
‖∞ ≤

‖ξn‖∞ (1 + ‖ρn‖∞‖l‖∞)

a/M‖l‖∞
≤ ωn

M‖l‖∞
a

(
1 +

M

a
‖l‖∞

)
≤ 1

4
.

for all n ≥ n0 and some sufficiently large n0.
For general points (w1, w2) ∈ Υ we can proceed as follows. First of all we have

DρΨn(h)(w1, w2) =
1

l(L̂n(ρ))

(
L̂n(h)(w1, w2)− ρn(w1, w2)l(L̂n(h))

)
.

We already have an appropriated estimate for the first factor. From the Lipschitz
property of ρ̂ (Proposition 5.1) follows that

|ρ(w1, w2)− ρ(w1, w1)| ≤ M(K + 1)

l(ρ̂)
|w1 − w2| ≤ Q|w1 − w2| , (w1, w2) ∈ Υw

where, we remember, Q = M
a (K + 1). If we combine this with the Lipschitz behavior

of Lnh given in (4.12) and use |w1 − w2| < δ, we finally get for large n∣∣∣DρΨn(h)(w1, w2)−DρΨn(h)(w1, w1)
∣∣∣ ≤ M

a
‖l‖∞

(
M

(
K +

8

δγn

)
+Q‖l‖∞M

)
δ .

Remember now that δ > 0 has been fixed small enough such that (6.1) holds. This
constant δ being chosen, we can choose n sufficiently large such that 8

δγn
≤ 1. Then∣∣∣DρΨn(h)(w1, w2)−DρΨn(h)(w1, w1)

∣∣∣ ≤ 1

4
.

Combing this with (6.4) implies that for real h such that ‖h‖∞ ≤ 1 we have, for this
choice of n,

‖DρΨn(h)‖∞ ≤
1

2
.

If h ∈ A is arbitrary with ‖h‖∞ = 1, then h can be expressed as h = h1 + ih2 where
both h1, h2 are in AR and such that max{‖h1‖∞, ‖h2‖∞} ≤ ‖h‖∞ = 1. It suffices
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then to use the case of functions in AR of norm at most one in order to conclude this
proof. �

7. Analyticity: the non-autonomous case

We now come to the final part where we investigate analytic dependence on the
parameter λ. In this section we still continue with the non-autonomous case and thus
with the notations introduced in the previous sections 3 to 6. The assumptions are
also unchanged: (5.2), thus (5.5), (5.6) and the uniform speed assumption (6.2) are
kept throughout this section.

The first observation concerns the extended operators introduced in (4.10).

Proposition 7.1. For every j ∈ Z and every g ∈ A, the map

(t, λ1, λ2) 7→ Lj,λ1,λ2,t
g ∈ A

is holomorphic on I × Λ× Λ.

Proof. Let t0 ∈ I and ε > 0 such that D(t0, ε) ⊂ I. We have to show that there are
functions hk1,k2,k3 ∈ A such that for every (t, λ1, λ2) ∈ D(t0, ε) × Λ × Λ, we have a
power series representation:

(7.1) Lj,λ1,λ2,t
g =

∑
k1,k2,k3≥0

hk1,k2,k3(λ1 − λ0)k1(λ2 − λ0)k2(t− t0)k3 .

Every point (w1, w2) ∈ Υw belongs to a disk Dw for some w ∈ U . By Formula (4.7)
we have well defined holomorphic functions

Λ× Λ 3 (λ1, λ2) 7→ Fj,λ1,λ2,∗
∣∣Dw×Dw ∈ A∣∣(Dw×Dw)∩Υw

ascribing to every (w1, w2) ∈ (Dw ×Dw) ∩Υw a 1–pairing (z1, z2):

Fj,λ1,λ2,∗(w1, w2) := (z1, z2) = (f−1
j,λ1,∗(w1), f−1

j,λ2,∗(w2)).

In consequence, the function

D(t0, ε)× Λ× Λ 3(λ1, λ2) 7−→ Lj,λ1,λ2,t
g∣∣(Dw×Dw)∩Υw

=

=
∑
∗

exp Φj,λ1,λ2,t
◦ Fj,λ1,λ2,∗g ◦ Fj,λ1,λ2,∗ ∈ A

∣∣(Dw×Dw)∩Υw

is also holomorphic as the sum of an absolutely uniformly convergent series of holo-
morphic functions. Hence we have the representation,

Lj,λ1,λ2,t
g|(Dw×Dw)∩Υw

=
∑

k1,k2,k3≥0

hk1,k2,k3;w(λ1 − λ0)k1(λ2 − λ0)k2(t− t0)k3 ,

where all the functions hk1,k2,k3;w belong to A|(Dw×Dw)∩Υw
. From the uniqueness

theorem for holomorphic functions, all these functions hk1,k2,k3;w, w ∈ U , glue to one
element hk1,k2,k3 of A giving rise to the representation (7.1). The proof is complete.

�
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Consider now a new Banach space AZ of all bounded sections g = (gj)j∈Z where
gj ∈ A for every j ∈ Z and such that

|g| = sup
j∈Z
||gj ||∞.

The space AZ equipped with this norm | · | is a Banach space. One then considers
the global operator Lλ1,λ2,t

mapping g = (gj)j∈Z ∈ AZ to the function Lλ1,λ2,t
g ∈ AZ

which is defined by (
Lλ1,λ2,t

g
)
j+1

= Lj,λ1,λ2,t
gj , j ∈ Z .

In the same way, the map Ψn,j,λ1,λ2,t
introduced in (5.10) gives rise to a global map

g 7→ Ψn,λ1,λ2,t
(g) defined by

(7.2) (Ψn,λ1,λ2,t
(g))j+1 =

Ln
j,λ1,λ2,t

(gj)

l(Ln
j,λ1,λ2,t

(gj))
=

L̂n
j,λ1,λ2,t

(gj)

l(L̂n
j,λ1,λ2,t

(gj))
, j ∈ Z.

The integer n ≥ 1 will be fixed such that the conclusion of Proposition 6.2 holds.
Remember also that for t ∈ I real and for λ = λ1 = λ2 the function

ρλ,λ,t = (ρj,λ,λ,t)j∈Z

is a fixed point of Ψn,λ,λ,t (see (5.9)).

Lemma 7.2. Let λ0 ∈ Λ, let t0 ∈ I be real and let n ≥ 1. Then there exist
Uλ0,t0, an open neighborhood of ρλ0,λ0,t0

in AZ and an open neighborhood Wλ0,t0 of

the point (λ0, λ0, t0) in Λ×Λ×I such that Ψn,λ1,λ2,t
is well defined on Uλ0,t0 for every

(λ1, λ2, t) ∈Wλ0,t0. Moreover, the map

Uλ0,t0 ×Wλ0,t0 3 (h, λ1, λ2, t) 7→ Ψn,λ1,λ2,t
(h) ∈ AZ

is holomorphic.

Proof. First of all note that for every j ∈ Z and n ≥ 1 the function

AZ × Λ× Λ× I 3 (h, λ1, λ2, t) 7→ Ln
j,λ1,λ2,t

(hj) ∈ A

is holomorphic since it is linear with respect to the first variable, holomorphic with re-
spect to all three other variables (Proposition 7.1), and one applies Hartogs’ Theorem.
Hence, also the function

(7.3) AZ × Λ× Λ× I 3 (h, λ1, λ2, t) 7→ l
(
Ln
j,λ1,λ2,t

(hj)
)
∈ C

is holomorphic. Now, in order to conclude the proof, we shall find Uλ0,t0 , an open

neighborhood of ρλ0,λ0,t0
inAZ and an open neighborhoodWλ0,t0 of the point (λ0, λ0, t0)

in Λ×Λ×I such that |l
(
Ln
j,λ1,λ2,t

(hj)
)
| is uniformly bounded below for every h ∈ Uλ0,t0

and for every (λ1, λ2, t) ∈Wλ0,t0 . This will tell us that all coordinates of the function
Ψ(·,·,·)(·) are continuous and uniformly bounded, and ultimately the function Ψ·,·,·(·)
is holomorphic.
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Let n ≥ 1 be fixed. In order to find these neighborhoods we deduce from (5.5)
that ‖Ln

j,λ1,λ2,t
1‖∞ is uniformly bounded above with respect to j ∈ Z and (λ1, λ2, t) ∈

Λ×Λ×I. Cauchy’s Integral Formula thus implies that the map (λ1, λ2, t) 7→ Ln
j,λ1,λ2,t

11

is uniformly Lipschitz with respect to j ∈ Z. Consequently, for every ε > 0 there exists
a neighborhood Wλ0,t0 of (λ0, λ0, t0) such that for every h ∈ AZ, we have that

(7.4) |Ln
λ1,λ2,t

(h)− Ln
λ0,λ0,t0

(h)| = sup
j∈Z
‖Ln

j,λ1,λ2,t
(hj)− Lnj,λ0,λ0,t0

(hj)‖∞ ≤ ε|h| .

The existence of Uλ0,t0 easily follows now from the above Lipschitz property (7.4)
along with the estimate (5.11) of the proof of Lemma 5.3. �

We are now in a position to extend the invariant density ρλ0,λ0,t0
(i.e., to extend

the function assigning the density ρλ0,λ0,t0
to parameters (λ0, λ0, t0)) analytically to

a neighbourhood of (λ0, λ0, t0) by making use of the Implicit Function Theorem.
Indeed, ρλ0,λ0,t0

is a fixed point of Ψn,λ0,λ0,t0
, the map (h, λ1, λ2, t) 7→ Ψn,λ1,λ2,t

(h) is

analytic (Lemma 7.2) and Proposition 6.2 along with the Remark 6.3 imply that

|Dρλ0,λ0,t0
Ψn,λ0,λ0,t0

| = sup
j∈Z
‖Dρj,λ0,λ0,t0

Ψn,j,λ0,λ0,t0
‖∞ ≤

√
2

2
< 1

provided n has been chosen sufficiently large. In conclusion we get the following.

Theorem 7.3. For every (λ0, t0) ∈ Λ × I there exists an open neighborhood Wλ0,t0

in Λ×Λ×I of (λ0, λ0, t0), and Uλ0,t0, an open neighborhood of ρλ0,λ0,t0
in AZ, along

with an analytic map (λ1, λ2, t) 7→ ρλ1,λ2,t
∈ Uλ0,t0 such that

Ψn,λ1,λ2,t
(ρλ1,λ2,t

) = ρλ1,λ2,t
for every (λ1, λ2, t) ∈Wλ0,t0 .

Theorem 1.2 follows now easily.

Proof of Theorem 1.2. An assumption of Theorem 1.2 is that there exists a > 0 and
z0 ∈ U such that ρ̂j,λ,t(z0) ≥ a for all (j, λ, t). This enables us to consider the
functional l : C0

b (U) → R defined by l(g) := g(z0). It clearly satisfies (5.6) and thus
Theorem 7.3 implies Theorem 1.2 provided the uniform speed condition (6.2) holds.
So, consider h ∈ AR. By Lemma 4.2 the associated function z 7→ g(z) = h(z, z)
belongs to Lip(U, κδ) with ‖g‖Lip,κδ ≤ C‖h‖∞. It follows from the assumption (1.5)
that there exists ωn → 0 such that

‖L̂nj g|∆w
− νj(g)ρ̂j+n‖∞,∆w ≤ ωn‖g‖Lip,κδ ≤ Cωn‖h‖∞,Υw

for every n ≥ 1 and j ∈ Z. This implies (6.2) with ωn replaced by Cωn. �

Remark 7.4. Note that the uniqueness part of the Implicit Function Theorem guar-
antees the functions ρλ,λ,t, t ∈ I being real, to coincide with the ones resulting from
Proposition 5.1.
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8. Analyticity: the random case

The final part of this paper is devoted to random dynamics. So we now consider
the following setting. Let X be an arbitrary set and B a σ–algebra on X. We consider
a complete probability space (X,B,m). As usual, the randomness will be modeled
by an invertible map θ : X → X preserving the measure m. All objects like functions
and operators do now depend on x ∈ X instead of the integer dependence j ∈ Z
in the non-autonomous case. In particular, we consider functions fx,λ, x ∈ X and
λ ∈ Λ, that satisfy the conditions described in Section 2. In the random case one has
to require in addition that these functions are measurable. This means that the map
(x, z) 7→ fx,λ(z) is measurable for every λ ∈ Λ. We are interested in the dynamics of
the random compositions

fnx,λ = fθn−1(x),λ ◦ ... ◦ fx,λ, n ≥ 1,

where λ ∈ Λ and x ∈ X. The associated radial Julia set Jr(fx,λ) is defined by the
formula (2.2) with functions fj , fj+1, ... replaced by fx,λ, fθ(x),λ, ....

The space of analytic functions AZ is now replaced by AX . It has the same meaning
as before except that the functions depend measurably on x ∈ X. Thus, g ∈ AX if
(z1, z2) 7→ gx(z1, z2) is holomorphic on Υw for every x ∈ X, if x 7→ gx(z1, z2) is
measurable for every (z1, z2) ∈ Υw and if

|g| := ess sup
x∈X
‖gx‖∞ <∞.

The transfer operators Lx,λ,t must also have measurable dependence on x ∈ X in the
sense that each function

X 3 x 7−→ Lx,λ,tg(z1, z2) ∈ C

is measurable for all arguments λ, t, g, (z1, z2) fixed in their appriopriate domains.
Notice that one can show with the help of the Measurable Selection Theorem (see
[2]) that this is indeed the case. In the case of transcendental functions this has been
worked out in Lemma 3.6 of [8]. In this case, the invariant densities ρx,λ,t as well as
their extensions ρx,λ,λ,t also depend measurably on x ∈ X since they are obtained as

a limit of measurable maps (see (5.2) and Proposition 5.1). Clearly, exactly as for
the above composition of the functions fx,λ, the iterated operators are of the form
Lnx,λ,t = Lθn−1(x),λ,t ◦ ... ◦ Lx,λ,t. In the same way, the definitions given in the part
on non-autonomous dynamics have straightforward counterparts. For example, the
invariance of the density is the relation L̂x,λ,tρ̂x,λ,t = ρ̂θ(x),λ,t and the uniform speed
assumption (6.2) takes on the following form:

(8.1) ‖L̂nx,λ,th− νx(h)ρ̂θn(x),λ,t‖∞,∆w ≤ ωn‖h‖∞,Υw for every h ∈ AR , n ≥ 1 .

Also, the definition of the global map g 7→ Ψλ1,λ2,t
(g), g ∈ AX , is

(Ψλ1,λ2,t
(g))θ(x) =

Lx,λ1,λ2,t
(gx)

l(Lx,λ1,λ2,t
(gx))

, x ∈ X,
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where again l is a functional that satisfies (5.6). Proceeding now exactly as in the
previous section and applying the Implicit Function Theorem in the Banach space
(AX , |.|) we see that Theorem 7.3 holds also in the present random setting.

The results can now be summarized as follows. Assume again that the expanding
property (2.1) is satisfied with γn independent of λ, that this family is of bounded
deformation (Definition 3.3) and the bounded distortion of the arguments of (3.4)
holds. Finally, we assume that the, most natural in this context, thermodynamical
formalism property (5.2) holds with some universal (i.e., independent of λ) constant
M .

Theorem 8.1. Suppose the following:

(1) There exists a bounded functional l : C0
b (U)→ R that is uniformly positive on

the invariant densities (see (5.6)).
(2) The uniform speed condition (8.1) holds with some constants ωn independent

of λ.

Then, the map (λ1, λ2, t) 7→ ρλ1,λ2,t
∈ AX is analytic. In particular for a.e. x ∈ X

the map (λ1, λ2, t) 7→ ρx,λ1,λ2,t
∈ AX is analytic.

Remark 8.2. Note that the uniqueness part of the Implicit Function Theorem guar-
antees the functions ρλ,λ,t, t ∈ I being real, to coincide with the ones resulting from
Proposition 5.1.

Remark 8.3. In fact, in this theorem we also could include real analyticity of the
expected pressure as defined in the transcendental case in (9.6) and established in
Lemma 9.5.

9. Transcendental random systems

In this last part we apply the preceding results to the case of transcendental ran-
dom systems. Such systems have been considered in [8] and the full thermodynamical
formalism including spectral gap property has been established there. We here com-
plete the picture in establishing analyticity in this general context. As a consequence
we get a proof for the particular example in the Introduction (Theorem 1.1).

Assume now that the functions fx,λ are transcendental functions and that this
family consists of transcendental random systems as defined in [8]. We use notation
from that paper such as Jx,λ for the Julia set of (fnx,λ)n≥1. Clearly, the radial Julia

set Jr(fx,λ) ⊂ Jx,λ. Here are some other notions from [8] that are necessary for the
present work. First of all, the following mild technical conditions are used in [8] with
the same enumeration:

Condition 2. There exists T > 0 such that(
Jx,λ ∩ DT

)
∩ f−1

x,λ

(
Jθ(x),λ ∩ DT

)
6= ∅ , x ∈ X and λ ∈ Λ .

Condition 4. For every R > 0 and N ≥ 1 there exists CR,N such that

|
(
fNx,λ

)′
(z)| ≤ CR,N for all z ∈ DR ∩ f−Nx,λ

(
DR
)
, x ∈ X and λ ∈ Λ .
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Then, there must be some common bound for the growth of the (spherical) character-

istic functions T̊x,λ(r) = T̊ (fx,λ, r) of fx,λ, x ∈ X and λ ∈ Λ. We use here a stronger
version of the Condition 1 in [8] and would like to mention that this is only used in
order to show that the expected pressure function has a zero (see Proposition 9.7):

Condition 1’. There exists ρ > 0 and ι > 0 such that

(9.1) ιrρ ≤ T̊x,λ(r) ≤ ι−1rρ for all r ≥ 1 , x ∈ X and all λ ∈ Λ .

Definition 9.1. The transcendental random family (fx,λ)x∈X,λ∈Λ is called:

(1) Topologically hyperbolic if there exists 0 < δ0 ≤ 1
4 such that for every x ∈ X,

λ ∈ Λ, n ≥ 1 and w ∈ Jθn(x),λ all holomorphic inverse branches of fnx,λ are

well defined on D(w, 2δ0).
(2) Expanding if there exists c > 0 and γ > 1 such that

|(fnx,λ)′(z)| ≥ cγn

for every z ∈ Jx,λ \ f−nx,λ (∞) and every x ∈ X, λ ∈ Λ.

(3) Hyperbolic if it is both topologically hyperbolic and expanding.

Definition 9.2. The transcendental random family (fx,λ)x∈X,λ∈Λ satisfies the bal-
anced growth condition if there are α2 > max{0,−α1} and κ ≥ 1 such that for every
(x, λ) ∈ X × Λ and every z ∈ f−1

x,λ(U),

(9.2) κ−1 ≤
|f ′x,λ(z)|

(1 + |z|2)
α1
2 (1 + |fx,λ(z)|2)

α2
2

≤ κ .

In the following we always assume that the above conditions are satisfied.

Definition 9.3. A transcendental holomorphic random family (fx,λ)x∈X,λ∈Λ will be
called admissible if

(1) the base map θ : X → X is ergodic with respect to the measure m,

(2) the system (fx,λ) is hyperbolic,

(3) the balanced growth condition is satisfied,

(4) the Conditions 1’, 2 and 4 hold.

In this context, the right potential to work with is ϕλ,t as defined in (4.4) but with
τ = α1 + τ ′ where τ ′ < α2 is arbitrarily close to α2 such that

(9.3) t > ρ/τ > ρ/α , α = α1 + α2 .

With such a choice, the following has been shown in [8]:

- The full thermodynamical formalism holds. In particular, there exist νx,t, the
Gibbs states, in fact generalized eigenmeasures of dual transfer operators, and unique
equilibrium states

µx,t = ρ̂x,tνx,t, νx,t(ρ̂x,t) = 1.
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Moreover, for every t > ρ/α, there are constants At, Ct <∞ and εt > 0 such that

(9.4) ρ̂x,t(z) ≤ Ct(1 + |z|)−εtt and ‖ρ̂x,t‖∞ ≤ At for all z ∈ U and x ∈ X .

- The normalized iterated transfer operator converge exponentially fast (Theorem 5.1
(2)).

For admissible transcendental random families one has the bounded deformation
property. Indeed, the following uniform control is a complete analogue of Lemma 9.7
in [7] and can be shown with exactly the same normal family argument as in the proof
given in [7]. Let us recall that Λ = D(λ0, r).

Lemma 9.4. For every ε > 0 there exists 0 < rε < r such that∣∣∣∣∣ f
′
λ(f−1

λ,∗(w))

f ′λ0
(f−1
λ0,∗(w))

− 1

∣∣∣∣∣ < ε

for every inverse branch f−1
λ,∗ defined on D(w, δ0), w ∈ U , and every λ ∈ D(λ0, rε).

If we combine this with Koebe’s Distortion Theorem (see for ex. Theorem 2.7 in [10])
then it follows that the condition (3.2) of the bounded deformation property always
holds. The first property of the bounded deformation property (3.1) holds for many
families (see again [7]) and clearly for the exponential family in Theorem 1.1.

9.1. Expected pressure. Fix t > ρ/α and let us first discuss the numbers Px,λ(t) of
(5.1). They depend on the transfer operator Lx,λ which itself has been defined with
the auxiliary parameter τ such that (9.3) holds. Let us indicate for a moment this
dependence by a superscript τ : Lτx,λ, P τx,λ(t) and let ντx,λ denote the associated Gibbs

states (conformal measures) such that (1.1) holds: Lτ ∗x,λντθ(x),λ = eP
τ
x,λ(t)ντx,λ.

If τ ′ 6= τ , for example if τ ′ = τ + ∆τ > τ , then the potentials of the operators
corresponding to τ, τ ′ respectively are related by

|f ′x,λ(z)|−tτ ′ = |f ′x,λ(z)|−tτ
v(z)

v(fx,λ(z))
where v(z) = (1 + |z|2)−

t∆τ
2 .

Notice that this function v does not depend on the parameter x ∈ X and thus

Lτ ′x,λg =
1

v
Lτx,λ

(
vg
)

, g ∈ C0
b (U) .

Then, vντx,λ is a finite measure and, with γ−1
x = vντx,λ(11) =

∫
vdντx,λ, υx,λ = γxvν

τ
x,λ

a probability measure such that, for g ∈ C0
b (U),

Lτ ′ ∗x,λυθ(x),λ(g) = γθ(x)

∫
Lτ ′x,λ(g)vdντθ(x),λ = γθ(x)

∫
Lτx,λ(vg)dντθ(x),λ

= γθ(x)e
P τx,λ(t)

∫
vgdντx,λ =

γθ(x)

γx
eP

τ
x,λ(t)υx,λ(g) .

Thus, for τ ′ we have Gibbs states ντ
′
x,λ = υx,λ with corresponding pressures

(9.5) P τ
′

x,λ(t) = P τx,λ(t) + log γθ(x) − log γx , x ∈ X .
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Theorem 3.1 in [8] states that supx∈X |Px,λ(t)| <∞ for every λ ∈ Λ. This allow us
now to introduce the expected pressure:

(9.6) EPλ(t) =

∫
X
Px,λ(t)dm(x) .

The cohomological equation (9.5) and invariance of m implies that EPλ(t) does not
depend on the auxiliary parameter τ . The function t 7→ EPλ(t) is well defined for
t > ρ/α. Real analyticity of this function is a consequence of the following result.
Here and in the following l is again a functional that satisfies (5.6). Notice that the
existence of such a functional is guaranteed thanks to Example 5.2.

Lemma 9.5. For the expected pressure we have the following expression

EPλ(t) =

∫
X

log l (Lx,λ,tρx,λ,t) dm(x)

and the function (λ, t) 7→ EPλ(t) is real analytic in Λ× (ρ/α,∞).

Proof. On the one hand we know that Lx,λ,tρ̂x,λ,t = ePx,λ(t)ρ̂θ(x),λ,t and on the other

hand Lx,λ,tρx,λ,t = l (Lx,λ,tρx,λ,t) ρθ(x),λ,t. Since ρx,λ,t =
ρ̂x,λ,t
l(ρ̂x,λ,t)

it follows that

log (l (Lx,λ,tρx,λ,t)) = Px,λ(t) + log
(
l(ρ̂θ(x),λ,t)

)
− log (l(ρ̂x,λ,t)) .

It suffices to integrate this expression with respect to m and to use that the measure m
is θ–invariant. The statement on analyticity results from this expression and the fact
(see (7.3) and Theorem 8.1) that the function (λ1, λ2, t) 7→ l

(
Lx,λ1,λ2,t

ρx,λ1,λ2,t

)
∈ C

is holomorphic. �

9.2. Bowen’s Formula. This formula concerns a fixed random system or, in other
words, a fixed parameter λ ∈ Λ. We can therefore neglect this parameter throughout
this subsection and consider a fixed random system (fx)x∈X . As our preparation for
the proof of Bowen’s Formula we are to deal with expected pressure in greater detail.

Lemma 9.6. Let t > ρ/α. Then for m-a.e. x ∈ X and every w ∈ Jx,

EP(t) = lim
n→∞

1

n
logLnθ−n(x),t11(w).

Proof. Taking gx := 11, item (2) of Theorem 5.1 in [8] yields for every n ≥ 1 that∣∣L̂nθ−n(x),t11(w)− ρ̂x,t(w)
∣∣ ≤ Bϑn

for some B ∈ (0,+∞) and some ϑ ∈ (0, 1). Since ρx,t(w) > 0 this yields∣∣∣∣log

(
1

ρ̂x,t(w)
L̂nθ−n(x),t11(w)

)∣∣∣∣ ≤ B′

ρ̂x,t(w)
ϑn

for every n ≥ 1 with some constant B′ > 0. Using the standard Birkhoff’s sum
notation SnPy = Py + Pθ(y) + ...+ Pθn−1(y), we have

L̂nθ−n(x),t11(w) = e
−SnPθ−n(x)(t)Lnθ−n(x),t11(w) .
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With this notation, it follows that∣∣∣∣ 1n logLnθ−n(x),t11(w)− 1

n
SnPθ−n(x)(t)

∣∣∣∣ ≤ B′

ρ̂x,t(w)

ϑn

n
+
| log(ρ̂x,t(w))|

n
−→ 0

as n → ∞. The lemma now follows by applying Birkhoff’s Ergodic Theorem to the
function x 7→ Px(t). �

This characterization of expected pressure along with hyperbolicity of the system
(fx)x∈X and of Condition 1’ allow us to establish the desired description of the be-
havior of the expected pressure.

Proposition 9.7. The function t 7→ EP(t) is real-analytic (hence continuous) on
(ρ/α,∞), strictly decreasing with d

dtEP(t) ≤ − log γ < 0 and satisfies

lim
t↘ρ/α

EP(t) = +∞ and lim
t→+∞

EP(t) = −∞ .

Proof. Analyticity has been established in Lemma 9.5, while the strict monotonicity
and the limit at +∞ are straightforward and standard whith the use of Lemma 9.6.
The estimate of the derivative is due to the expanding property and the formula in
Lemma 9.6. Here are the details:

Condition 2 implies that there exists wx ∈ Jx,λ∩DT . Using the expanding property
in Definition 9.1 one can estimate as follows:

Lnθ−n(x),t+s11(wx) =
∑

fn
θ−n(x)

(z)=wx

|fnθ−n(x)(z)|
−t
τ |fnθ−n(x)(z)|

−s
τ

≤ (cγn)−s(1 + T 2)
sτ
2 Lnθ−n(x),t11(wx) , s > 0 .

Taking logarithms and dividing by n yields

1

n
logLnθ−n(x),t+s11(wx)− 1

n
logLnθ−n(x),t11(wx) ≤ s

n
log

(
(1 + T 2)

τ
2

c

)
− s log γ .

The estimate of the derivative d
dtEP(t) follows now from differentiability of the ex-

pected pressure along with the formula in Lemma 9.6.
It remains to analyze the behavior of EP near ρ/α. In order to do so, we will use

Condition 1’ along with Nevanlinna Theory as explained in [8]. In the following we
use the notations from that paper especially from the proof of Lemma 3.17. It is
shown there that there exists k > 0 and R̃0 > 0 sufficiently large such that for every
R > R̃0 and every w ∈ U ∩ DR

Lx11DR(w) ≥ kR−(α2−τ)t

∫ R

rR

T̊x(r)

rτ̂ t+1
dr

where rR = ω−1(8 logR) and where ω comes from Condition 1 in [8]. This condition

being replaced here by Condition 1’, we have ω(r) = ιrρ and T̊x(r) ≥ ιrρ. Therefore,



REAL ANALYTICITY FOR RANDOM DYNAMICS 27

still with τ̂ = α1 + τ and with k̂ = kι, we get, uniformly in w ∈ U ∩ DR and x ∈ X,
the lower bound

Lx11DR(w) ≥k̂R−(α2−τ)t

∫ R

rR

dr

rτ̂ t−ρ+1

=k̂R−(α2−τ)t
(

logR− log rR +O(τ̂ t− ρ)
)
.

The number τ ∈ (0, α2) is chosen in dependence of t arbitrarily close to α2 such that
t > ρ/(α1+τ) > ρ/α (see Remark 1.2 in [8]). It is therefore clear that for every H > 0

one can choose R = RH > R̃0 and then tH > ρ/α such that for every t ∈ (ρ/α, tH)

Lx11DR(w) ≥ H for every w ∈ U ∩ DR , x ∈ X .

Now, if Ln−1
x 11DR ≥ Hn−1 on U ∩ DR for some n ≥ 1 then

Lnx11 ≥ Lx
(

11DRL
n−1
θ(x) (11DR)

)
≥ Hn−1Lx11DR ≥ H

n on U ∩ DR .

The formula limt↘ρ/α EP(t) = +∞ follows now by induction and Lemma 9.6. �

Now, let µx,t be the invariant family of measures defined in Section 1, i.e., dµx,t =
ρ̂x,tdνx,t.

Lemma 9.8. For every t > ρ/α, the function (x, z) 7→ log |f ′x(z)| is µx,t–integrable
meaning that the integral

χt :=

∫
X

∫
Jx

log |f ′x(z)| dµx,t(z) dm(x)

is well-defined and finite. Moreover, χt > 0.

Remark 9.9. The measures (µx,t)x∈X depend measurably on x ∈ X and they are
in fact disintegrations of a measure µt on the global space J =

⋃
x∈X{x} × Jx hav-

ing marginal m. Such a measure is often called random measure. Crauel’s book [2]
contains the general background related to random measures and [8] all the details
concerning the present setting. Also, Theorem 5.1 in [8] tells us that µt is ergodic and
invariant under the global skew product (x, z) 7→ (θ(x), fx(z)).

Proof of Lemma 9.8. Let t > ρ/α. The expanding property implies χt > 0. It remains
to show that χt <∞. It follows from the estimate given in (9.4) that∫

X

∫
Jx

log |z| dµx,t dm(x) =

∫
X

∫
Jx

log |z| ρ̂x,t dνx,t dm(x) <∞ , x ∈ X ,

and from invariance that∫
X

∫
Jx

log |fx(z)| dµx,t dm(x) =

∫
X

∫
Jθ(x)

log |z| dµθ(x),t dm(x) <∞ , x ∈ X .

Thus, both functions (x, z) 7→ log(1 + |z|2) and (x, z) 7→ log(1 + |fx(z)|2) are µt–
integrable. From the balanced growth condition follows now µt–integrability of the
function (x, z) 7→ log |f ′x(z)|. �
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Proposition 9.7 yields the existence of a unique zero h > ρ/α of the expected pres-
sure function. It turns out that this number coincides almost everywhere with the
Hausdorff dimension of the radial Julia set.

Theorem 9.10 (A version of Bowen’s Formula). If (fx)x∈X is an admissible random
system, then

HD(Jr(fx)) = h for m-a.e. x ∈ X.

Proof. Since µh is an ergodic measure, there is M ∈ (0,+∞) such that

µx,h
(
Jr(x,M)

)
= 1 for all x ∈ X1 ,

where X1 ⊂ X is some measurable set with m(X1) = 1, and

Jr(x,M) :=
{
z ∈ Jr(x) : lim

n→∞
|(fnx (z)| < M

}
.

First we shall prove that

(9.7) HD(Jr(x,M)) ≥ h
or m-a.e. x ∈ X1. Fix x ∈ X1 and z ∈ Jr(x,M). Set y := (x, z) and denote by f−ny
the inverse branch of fnx defined on D(fnx (z), δ) mapping fnx (z) back to z. For every
r ∈ (0, δ) let k := k(y, r) be the largest integer n ≥ 0 such that

(9.8) D(z, r) ⊂ f−ny
(
D(fnx (z), δ)

)
.

Since our system is expanding this inclusion holds for all 0 ≤ n ≤ k and

lim
r→0

k(y, r) = +∞.

Fix n = nk ≥ 0 to be the largest integer in {0, 1, 2 . . . , k} such that fnx (z) ∈ D(0,M)
and s = sk to be the least integer ≥ k+ 1 such that fsx(z) ∈ D(0,M). It follows from
Birkhoff’s Ergodic Theorem that

(9.9) lim
k→∞

sk
nk

= 1

for m-a.e. x ∈ X1 , say x ∈ X2 ⊂ X1 with m(X2) = 1 and µx,h-a.e. z ∈ Jr(x,M), say
z ∈ J1

r (x,M), with µx,h
(
J1
r (x,M)

)
= 1. Since the random measure νh is h-conformal,

i.e., since νθ(x),h(fx(A)) = exp(Px(h))
∫
A |f

′
x|hτdνx,h for every Borel set A on which fx

is injective, we get from (9.8) and the definition of n that

(9.10) νx,h(D(z, r)) ≤ νx,h
(
f−ny

(
D(fnx (z), δ)

))
≤ Kh

z,M

∣∣(fnx )′(z)
∣∣−he−SnPx(h),

where the constant Kz,M compensates the replacement of the τ -derivative |
(
fnx )′(z)

∣∣
τ

by the Euclidean derivative |
(
fnx )′(z)

∣∣. On the other hand D(z, r) 6⊂ f−sy
(
D(fsx(z), δ)

)
.

But since, by 1
4 -Koebe’s Distortion Theorem,

f−sy
(
D(fsx(z), δ)

)
⊃ D

(
z,

1

4
|(fsx)′(z)|−1δ

)
,

we thus get that r ≥ 1
4 |(f

s
x)′(z)|−1δ. Equivalently,

|(fsx)′(z)|−1 ≤ 4δ−1r.
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By inserting this into (9.10) and using also the Chain Rule, we obtain

νx,h(D(z, r)) ≤ (4Kz,Mδ
−1)hrhe−SnPx(h)

∣∣(fs−nθn(x)

)′(
fnx (z)

)∣∣h.
Equivalently:

(9.11)
log νx,h(D(z, r))

log r
≥ h+

h log(4Kz,Mδ
−1)

log r
− SnPx(h)

log r
+h

log
∣∣(fs−nθn(x)

)′(
fnx (z)

)∣∣
log r

.

Now, Koebe’s Distortion Theorem yields

f−ny
(
D(fnx (z), δ)

)
⊂ D

(
z,Kδ|(fnx )′(z)|−1

)
.

Along with (9.8) this yields r ≤ Kδ|(fnx )′(z)|−1. Equivalently:

(9.12) − log r ≥ − log(Kδ) + log |(fnx )′(z)|.

By Lemma 9.8 the function (x, z) 7→ log |f ′x(z)| is µh–integrable with χh > 0. There-
fore, there exists a measurable set X3 ⊂ X2 with m(X3) = 1 and for every x ∈ X3

there exists a measurable set J2
r (x,M) ⊂ J1

r (x,M) such that µx,h
(
J2
r (x,M)

)
= 1 and

(9.13) lim
j→∞

1

j
log |(f jx)′(z)| = χh ∈ (0,+∞)

for every x ∈ X3 and every z ∈ J2
r (x,M), the equality holding because of Birkhoff’s

Ergodic Theorem. This formula, along with (9.9) also yields

(9.14) lim
n→∞

1

n
log
∣∣(fs−nθn(x)

)′(
fnx (z)

)∣∣ = 0

for every x ∈ X3 and every z ∈ J2
r (x,M). Since

∫
X Px(h) dm(x) = 0, Birkhoff’s

Ergodic Theorem gives:

(9.15) lim
j→∞

1

j
SjPx(h) = 0,

for all x ∈ X4 ⊂ X3, where X4 is some measurable set with m(X4) = 1. By combining
this formula taken together with the three formulas (9.14), (9.13), and (9.12), and
formula (9.11), we get

lim
r→0

log νx,h(D(z, r))

log r
≥ h

for every x ∈ X4 and every z ∈ J2
r (x,M). Since µx,h

(
J2
r (x,M)

)
= 1, we thus obtain,

using a version of Frostman’s lemma (see, e.g., [12], Theorem 8.6.3):

(9.16) HD(Jr(x)) ≥ HD(µx,h) ≥ h

for every x ∈ X4 (with m(X4) = 1).

We now shall establish the opposite inequality. We know from Lemma 3.19 in [8]
that for any n ≥ 1 large enough, say n ≥ q ≥ 1,

Qn := inf
{
νx,h(D(w, δ)) : x ∈ X, w ∈ Jx ∩ D(0, n)

}
> 0.
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By the very definition of Jr(x) we have that

(9.17) Jr(x) =
∞⋃
n=q

Jr(x, n).

Fix n ≥ q. Keep both x ∈ X4 and z ∈ Jr(x, n) fixed (still y := (x, z)), and consider
an arbitrary integer l ≥ 0 such that

(9.18) f lx(z) ∈ D(0, n).

Let rl > 0 be the least radius such that

(9.19) f−ly
(
D(f lx(z), δ)

)
⊂ D(z, rl).

But, by Koebe’s Distortion Theorem, f−ly
(
D(f lx(z), δ)

)
⊂ D

(
z,Kδ|(f lx)′(z)|−1

)
; hence

(9.20) rl ≤ Kδ|(f lx)′(z)|−1.

Formula (9.19) along with Koebe’s Distortion Theorem and (9.20), yield

(9.21)

νx,h(D(z, rl)) ≥ νx,h
(
f−ly
(
D(f lx(z), δ)

)
≥ K−hz,M

∣∣(f lx)′(z)
∣∣−he−SlPx(h)νh,θl(x)

(
D(f lx(z), δ)

)
≥ K−hz,MQne

−SlPx(h)
∣∣(f lx)′(z)

∣∣−h
≥ (KδKz,M )−hQne

−SlPx(h)rhl .

where the constant Kz,M again compensates the replacement of the τ -derivative

|
(
f lx)′(z)

∣∣
τ

by the Euclidean derivative |
(
f lx)′(z)

∣∣. Therefore,

(9.22)
log νx,h(D(z, rl))

log rl
≤ h−

h log(KδKz,M )

log rl
− SlPx(h)

log rl
− Qn

log rl
.

Formula (9.20) equivalently means that

(9.23) − log rl ≥ log
∣∣(f lx)′(z)

∣∣− log(Kδ) ≥ χ̂l − log(Kδ)

with some χ̂ > 0 resulting from uniform expanding property of the system (fx)x∈X .
Since the set of all integers l ≥ 1 for which (9.18) holds is infinite (as z ∈ Jr(x, n)),
taking the limit of the right-hand side of (9.22) over all such ls. and applying (9.23),
(9.15), and also recalling that, by Birkhoff’s Ergodic Theorem,

lim
j→∞

1

j
SjPx(h) = 0,

we obtain

lim
r→0

log νx,h(D(z, r))

log r
≤ lim

l→∞

log νx,h(D(z, rl))

log rl
≤ h

Consequently, HD(Jr(x, n)) ≤ h for all x ∈ X4. Together with (9.17) and σ-stability
of Hausdorff dimension, we thus get that HD(Jr(x)) ≤ h for all x ∈ X4. Along with
(9.16) this finishes the proof. �
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9.3. Conclusion. All in all we now get the following analyticity result for the di-
mension of the radial limit set.

Theorem 9.11. Suppose that the transcendental holomorphic random family (fx,λ)x,λ
is admissible and let hλ be the fiberwise Hausdorff dimension of the radial limit set of
(fx,λ)x∈X , λ ∈ Λ. Then, λ 7→ hλ is real-analytic.

Proof. Bowen’s Formula shows that hλ is the unique zero of the expected pressure
function. The later is analytic and ∂

∂tEPλ(t) < 0 (Proposition 9.7). Therefore the
Implicit Function Theorem applies and yields analyticity of λ 7→ hλ. �

It remains to discuss the initial example given in the Introduction.

Proof of Theorem 1.1. Let U = {z ∈ C : <z > 1}. It is well known that fη = ηez

is a hyperbolic exponential map if η is real and 1
6e < η < 5

6e . Moreover, the closure

f−1
η (U) ⊂ U . An elementary calculation shows that there exists b > 0 such that

f−1
η (U) ⊂ U for every η ∈ Ωb where

Ωb =

{
η ∈ C ;

1

6e
< <(η) <

5

6e
and |=(η)| < b

}
.

It follows that fηn ◦ ... ◦ fη1 , n ≥ 1, defines an expanding non-autonomous sequence
that satisfies (2.1) for any choice of η1, η2, ... ∈ Ωb. It is straightforward to see that we
thus have for these parameters a admissible transcendental random family provided
that we explain the random model.

In order to do so, let X = D(0, 1)Z, B the Borel σ-algebra, m the infinite product
measure of the normalized Lebesgue measure of the unit disk and θ the left-shift map
on X.

Consider now parameters (a, r) such that D(a, r) ⊂ Ωb/2. Let x ∈ X and x0 the
0–coordinate of x. We associate to these parameters the function ηez = (a+ rx0)ez.
In such a way we get for every x ∈ X a family (a, r) 7→ fη. However, this family only
depends real analytically on (a, r) ∈ R2. In order to turn this into a holomorphic
family it suffices to replace these parameters by complex ones with small imaginary
part such that a + rx0 ∈ Ωb for every x0 ∈ D(0, 1). Theorem 9.11 applies to this
family. �
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[20] Mariusz Urbański and Anna Zdunik. Real analyticity of Hausdorff dimension of finer Julia sets
of exponential family. Ergodic Theory Dynam. Systems, 24(1):279–315, 2004. 1

[21] A. Verjovsky and H. Wu. Hausdorff dimension of Julia sets of complex Hénon mappings. Ergodic
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