RANDOM DYNAMICS OF TRANSCENDENTAL FUNCTIONS

VOLKER MAYER AND MARIUSZ URBANSKI

ABSTRACT. This work concerns random dynamics of hyperbolic entire and mero-
morphic functions of finite order and whose derivative satisfies some growth condi-
tion at infinity. This class contains most of the classical families of transcendental
functions and goes much beyond. Based on uniform versions of Nevanlinna’s value
distribution theory we first build a thermodynamical formalism which, in partic-
ular, produces unique geometric and fiberwise invariant Gibbs states. Moreover,
spectral gap property for the associated transfer operator along with exponential
decay of correlations and a central limit theorem are shown. This part relies on
our construction of new positive invariant cones that are adapted to the setting of
unbounded phase spaces. This setting rules out the use of Hilbert’s metric along
with the usual contraction principle. However these cones allow us to apply a
contraction argument stemming from Bowen’s initial approach.

Random dynamics is actually a quite active field. An overview can be found in
Arnold’s book [I] and in Kifer and Liu’s chapter in [I5]. The first work on random
rational functions is due to Fornaess and Sibony []]. Related to this is Rugh’s paper
on random repellers [26] and Sumi’s work on rational semi-groups (see for example
[29,30]). A complete picture including thermodynamics and spectral gap is contained
in [17] which concerns a much wider class of distance expanding random maps, a class
originally introduced by Ruelle [25]. Recently random dynamics of countable infinite
Markov shifts [6l 28] and graph directed Markov systems [24] have been treated. Here
we extend the picture to a situation where the maps are also countable infinite — to —
one, where the phase space is not compact and where in addition there is no Markov
structure.

Given a probability space (X, F, m) along with an invertible ergodic transformation
f: X — X, we consider the dynamics of

fg:fgn—l(x)o...ofx y n>1

where f, : C — C,ze X, isa family of transcendental functions depending mea-
surably on « € X. Like in the deterministic case, the normal family behaviour of
(f),, splits the plane into two parts and one is interested in the chaotic part 7,
called fiber Julia set. Quite general transcendental random systems fr @ Jo — Jy(a),
x € X, are considered in this paper and, as already has been mentioned among the
major difficulties one encounters is that the phase space 7, is unbounded and the
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functions are of infinite degree. The members of such random system, are the fiber
maps fz 1 Jo — Jp(a) for each particular z € X.

In the deterministic case, this difficulty has been overcome in [20] for a very general
class of functions, so called balanced meromorphic functions. They contain most
classical families like all periodic functions (tangent, sine, exponential and elliptic),
functions with polynomial Schwarzian derivative, the cosine-root family and many
more (all these examples are discussed in detail in [20]). The key point there was to
replace the Euclidean metric by a metric having an appropriate singularity at infinity.
Once this is done, one can use Nevanlinna’s value distribution theory to show that
the corresponding transfer operator is well defined and bounded. The present paper
treats random dynamics generated by the families of functions considered in [20].
Again we start with an appropriated choice of metric in order to be able to control
the transfer operator. This time we make use of the uniform versions of Nevanlinna’s
theorems in Cherry-Ye’s book [4] (all needed details of this theory are in the Appendix
u}

Then, since we are dealing with random dynamics, measurability of all involved
operators, measures and functions has to be checked. This point has sometimes been
neglected in the literature (see the discussion in [14]) or is the reason for additional
assumptions. Here we take advantage of Crauel’s framework [5] and treat measur-
ability very carefully. Moreover, this allows us to have a global, in terms of skew
product, approach which, for example, produces directly measurable families of con-
ditional measures (see Section [3.2). This is in contrast to [I7] where these objects are
constructed fiberwise and then later proven to be measurable.

Having then good behaving transfer operators and measurability, we can proceed
with building the thermodynamical formalism. As the result, we prove the existence
and uniqueness of fiberwise conformal measures and the existence and uniqueness of
invariant densities. This gives rise to the existence and uniqueness of fiberwise invari-
ant measures absolutely continuous with respect to the conformal ones (see Theorem

and Theorem (1)).

Contrary to Ionescu Tulcea-Marinescu’s theorem [I3] (or its generalization by Hen-
nion [11]), the method introduced by Birkhoff [2] and developed further by Liverani
[16], based on positive cones and the Hilbert distance, can be employed in random
dynamics. It especially permits us to obtain the spectral gap property. But this only
does work if the phase spaces are compact. In the present paper this is not the case
and so the Hilbert distance is of much less use. Indeed, cones of functions of finite
distance are too small since all of its members must be comparable near infinity. For-
tunately there is a very nice contraction lemma in Bowen’s manuscript [3]. In order
to be able to adapt it to the present setting, we first produce, via a delicate construc-
tion, non-standard appropriate invariant cones. Once this is done, the Bowen-like
argument is quite elementary. In this sense, the present work, incidentally, simplifies
the deterministic work [20] which uses Marinescu-Ionescu-Tulcea Theorem.
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In conclusion, we get the spectral gap property of Theorem (2). It then almost
immediately implies the version of exponential decay of correlations in Theorem
and the Central Limit Theorem [6.2]

1. TRANSCENDENTAL RANDOM SYSTEMS

We consider random dynamics generated by a quite general class of transcendental
entire or meromorphic functions of finite order. As in Arnold [I], the randomness is
modeled by a measure preserving dynamical system (X, §,m, 0), where (X,§,m) is a
complete probability space and 6 : X — X an invertible measure preserving ergodic
transformation. We do not assume the o-algebra § to be countably generated. To
every z € X associated is an entire or meromorphic function

fr:C—C.

The order of this function is supposed to be finite and is denoted by p(f). For every
given z € C, the map = — f;(z) is assumed to be (at least) measurable as a map
from (X,3) to (C,B) where B is the Borel o—algebra of C. We will often call

(fx :C— @)xeX

a system or, more fully, a transcendental random system or even a transcendental
random dynamical system if it satisfies the following four natural conditions.

Condition 1 (Common growth of characteristic function). There are two constants
p,Cy > 0 and an increasing function w : [0,00) — [0, 00) satisfying lim, o logr/w(r) =
0 such that

w(r) < Ty(r) < Cor?  forall r>0andallze X.

Here, following the standard notation in Nevanlinna theory, we denoted by Tx(r) =
Z/o’(f +,7) the spherical characteristic function of f,. All necessary details on Nevanlinna
theory and his fundamental main theorems, in the form most convenient for us, are
collected in[7] Appendix. Notice that the right hand side inequality of this condition
implies that the orders p(f;) < p whereas the left hand side is simply a quantitative
way of saying that the functions f, are transcendental (7' ¢(r) = O(logr) means that
f is a rational function).

In order to study the behavior of the orbits z > fi(2) = fou)(fz(2)) = ... it is
natural to use the notation
fo = for1@y oo fomyofe , n21.
For every x € X the fiber Fatou set F, is the set of all points z € C for which there

exists a neighborhood U of z on which all the iterates f;' are well defined and form a
normal family. The complements in the plane,

T = C \ ]:xa
are called the fiber Julia sets. We would lke to mention that the maps
X>zx— F,
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and
X = Ty

respectively form open random and closed random sets in the sense of Crauel (see [5])
as defined in Section [3.1] This however is not important at the moment. Sometimes,
they will be also be denoted by J(f.), z € X. We impose the following normalization
which mainly signifies that the Julia set does not accumulate at infinity. Here and
throughout the whole paper we will use the notation

D(z,r) :={weC:|lw—z <r}

and
Dy :=D(0,7)

Condition 2. There exists T > 0 such that
(jxﬂ]D)T> ﬂf;l (j@(x) ﬂ]D)T) 75(2) , reX.

Let 2, € Zo NDyr N £t (j9($) N DT). We will see in Lemma that these points
can be chosen in a measurable way. Consider then the translations T, (z) = z + 2,
x € X. They conjugate (f;)zcx to a new system, say (g)cx which again does
depend measurably on = and such that

0€ J(g9.) and |g.(0)] <2T, z € X.

Notice that the family of translations (73)yex and the family of its inverses are
equicontinuous since |z;| < T, z € X. In [I8] families of conjugations with this
property are, natuarally, called bi-equicontinuous and they are important since such
conjugations preserve topological features of the dynamics. In particular they preserve
corresponding Julia sets whereas general conjugations do not, as can be seen from
Example 2.3 in [18]. In conclusion, up to such a conjugation and by replacing the
constant T by 2T if necessary, we can use the following normalizing requirement
instead of Condition 2

(1.1) 0=z2,€T, and |fz(0)|<T, z€X.

A straightforward generalization of the notion of hyperbolicity used in [19] 20] to
the random setting is the following.

Definition 1.1. A transcendental random system (fy)zex is called

(1) topologically hyperbolic if there exists 0 < g < % such that for every x € X,

n>1 and w € Jygn(y) all holomorphic inverse branches of f;' are well defined
on D(w, 2dp).
(2) expanding if there exists ¢ > 0 and v > 1 such that

(f2) ()] = "

for every z € Jp \ f;"(o0) and every z € X. a
(3) hyperbolic if it is both topologically hyperbolic and expanding.
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As in the papers [19, 20], dealing with deterministic systems, we will consider
hyperbolic systems for which one has some more information about derivatives.

Condition 3 (Balanced growth condition). There are ag > max{0, —a1} and k > 1
such that for every x € X and every z € J; \ f, 1 (00),

(1.2) 4 2D (1 + [ f2(2))2 < 1 f(2)] < R(1+ 22 (1 + [ f2(2)])*2
Condition 4. For every R > 0 and N > 1 there ewists Cr n such that
] (fév)/(z)| <Cpn forall zeDgrnf,"(Dg) andz € X.

Remark 1.2. As it is explained in [19, 20], many families naturally satisfy the bal-
anced growth condition. For these families and for certain classes of entire functions
it turns out that (1.2)) entails their order to be iy + 1. All other conditions, i.e. Con-
ditions @ and e automatically satisfied in the deterministic case. E| Therefore,
the present setting is a straightforward generalisation of the deterministic situation,
the only difference being that ag in Condition [3 is constant whereas it is allowed to
be a bounded function in [20].

Throughout this section and also in the rest of this paper we use some standard
notations. For example, a = b means that a < ¢b for some constant ¢ which does not
depend on the involved variables. We also use Vs(K) for the j—neighborhood of K in
Hausdorff distance generated by the standard Euclidean metric.

1.1. Mixing. We shall need the following mixing property.

Lemma 1.3. Let (f;)zex be a hyperbolic transcendental random system. Then, for
all >0 and R > 0 there exists N = N(r, R) such that

f2(D(z,r)) DDrN Tgn(y)y for everyn >N, z€ J, NDg and z € X .

Proof. Suppose to the contrary that there exist r, R > 0 and arbitrarily large integers
n > N such that for some z,, € X and z, € J;, N Dg there exists a point

Wp € (ER N j«‘)”(xn)) \ chln(D(zmT))'

Define then ¢, : D — C by ¢, (&) = f2 (20 +1&) —wy,. Note that the family (¢y,), is
not normal at the origin. Consequently, there exist arbitrarily large integers n such
that
on (D(0,1/2)) ND(0,6) # 0.
But then, it follows from hyperbolicity and, in particular, from the expanding property
that
[ M (D(wy, 0)) C D(zp, 1)

Tn

1For some very special examples, the lower bound in Condition |l| can fail. Notice however that,
if f is not a rational function, then T' growths faster than logr and this is exactly the property we
really need.
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provided that n > ¢ is sufficiently large, where f_ ™ is a appropriated holomorphic
inverse branch of f;! defined on D(wy,d). But this contradicts the fact that w, ¢

I (D(zp,7)). O

2. TRANSFER OPERATORS

Let Cp(J:) be the space of continuous bounded real-valued functions on 7, and
Co(Jz) its subspace consisting of all functions converging to 0 at co. Let (f.)zex be
a hyperbolic transcendental random system and define:

,ng(w) = Z ewx(Z)g(Z) , weE \-749(35) and g€ Cb(Jx)
fa(z)=w

This is the associated family of transfer operators with potential ¢, : J, — R. A
natural choice for the potentials is ¢, = —tlog|fs| since usually one can choose
the parameter ¢ such that these potentials encode the geometric properties of the
dynamical system. In fact, throughout the paper we do deal only with potentials of
this form. However, since f, is of infinite degree, £, is in general not well-defined
for such potentials. One might replace it by its spherical version. Then, at least
for t = 2, £, would be well-defined but the new obstacle would then arise, that,
except for some special cases, £, would not be a bounded operator; to see it the
reader is invited just to try and write it down for the exponential family. However,
using Nevanlinna theory, we showed in [19, 20], still for the deterministic case, that
there is a Riemannian metric, somehow in between the Euclidean and spherical one,
conformally equivalent to any of them, such that the transfer operator has all the
properties needed for developing the thermodynamic formalism and that this holds
for the values of parameter ¢ in a sufficiently large domain, containing in particular
the hyperbolic dimension. This method does work as soon as the derivative growth
condition, i. e. Condition 3, is satisfied.

So, suppose that (f;)zex satisfies the Condition [3| Then, a = a; + ag > 0. Given
any t > £ there is 7 € (0, o) such that

(2.1) t>£>£ where 7 =oa;+7.
7T«

Remark 2.1. Notice that here T can be chosen individually for each t > £. In
particular, we may suppose that ag — 7 > 0 is arbitrarily small.

Consider then the Riemannian metric
|dz|
(L4 |zDh7

We denote by |f.|- the derivative of f, with respect to this metric, and, using Con-
dition [3] we have,

dor(z) =

£ = 17T e D)

(1 +1f2(2)])
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for every z € J, \ f.'(c0). Denote by 1 the function identically equal to 1 on its
appropriate domain. By virtue of the above formula, for all w € Jp(,) we have,

- K —t7
(2.2) £x11(w)—£x,t11(w)—f%:_ A = (H’wnm_ﬂtf%:_ L+

Remark 2.2. Hyperbolicity of the functions f, implies that, increasing x if necessary,
(2.2) does hold for all w in the 6o-neighborhoods Vs,(Jp(zy) of the Julia sets provided
dg > 0 has been chosen sufficiently small.

Since the factor with w, appearing in the right hand side of , converges to zero
as |w| — oo, and applying also Nevanlinna theory (similarly as in [20], details can be
found in [7| of Appendix)), we see that the series in can be uniformly bounded
from above. We therefore obtain the following good behavior of these operators L.

Proposition 2.3. For everyt > £ > £ there exists My = Mo(t, ) > 0 such that for
every x € X, we have

(1) Z (1 + ]z\)fﬁ < My for every w € Jy(z),
fz(2)=w
(2) |L2]lc0 < My and

(3) Lol(w) < My (1+ |w|)™ 2" — 0 as |w| — oo.

2.1. Distortion and Hoélder functions. Koebe’s Distortion Theorem (see Theorem
1.3 in [23]) and elementary calculus give:

Lemma 2.4. Given t,7 > 0 as in (2.1), there exists K = K, > 0 such that, for
every v € X, every integer n > 1 and every 1, an inverse branch of fI' defined on
some disk D(w, 250), w € Tyn(y), we have that

w )|
M <1+ Klwy —ws|, wi,w2 € D(w,d) .

Remark 2.5. It is reasonable to require that 1/2 < 7 < 2. This would then imply
that the constant K does depend only on the parameter t.

A Straightforward application of Lemma gives (remember that dp < 1/4):

Lemma 2.6. There exists K = K, ; such that, for every x € X, every integer n > 1,
and every w € Jgn(y), we have that

L1 (w)

L1 (ws) <14 K|wy —ws| for all wi,wy € D(w,dp) .

In particular,

Lo (wy) < KL2W(wa)  for all  wy,we € D(w,do) .
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Let Hs(Jz) be the set of real-valued bounded S-Hélder functions defined on 7.
The f-variation of a function g € Hz(J;) is defined to be

(2.3) vs(g) == sup {lg<w1> - g<w2>\}

0<|wi —w2|<do |U)1 - w2|'8

and

lglls == vs(g) + 9]l

is the corresponding f-Holder norm on Hg(J,). The good distortion behavior estab-
lished in Lemma [2.4] implies the following two-norm inequality which, in particular,
yields invariance of Holder spaces Hs(Jy).

Proposition 2.7. Let ¢,y > 0 be the expanding constants from Definition|1.1. Then,
for every x € X, every integer n > 1, and every g € Hp(J,), we have, with some
K= Ktﬂ- > 0 that

05(£29) < €20 (llglloe + K (er™) Pu5(9)))

Proof. Let x € X, n > 1, g € Hg(J:) and let wi,we € Tpn(y) With |wy — wa| < do.
The points z1, zo are said to form a pairing if they are respectively preimages of wy
and wa by the same holomorphic inverse branch of fJ'. With this convention,

|Log(wr) — Log(w2)| < T+ 11,

where
= > () ) 9(z1) — g(22)] < L7 lwva(g)(er™) K P jwr — wsl’®
21,22 pairing
and

I= 3 U R - 10 )l

21,22 pairing
|(f2)' (22) |7

<lglee > 12 (DI IO

21,22 pairing

<llgllooll £l K w1 — ws,

g(21)

1-—

where the last inequality results from Lemma It suffices now to combine the
above estimates of both terms I and I1. g

3. RANDOM (GIBBS STATES

In this section we establish the following key result which the rest of the paper
relies on.
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Theorem 3.1. Let (f.)rex be a hyperbolic transcendental random dynamical system
satisfying Conditions . Fiz t > p/a. Then there exists a random Gibbs measure v
with disintegrations v, € PM(J.), x € X, and a measurable function A : X — (0, 00)
such that

(3.1) LoVe(z) = AaVz  form a.e. z € X.
Moreover, there exists a constant C > 1 such that C~' <\, < C for m-a.e. x € X.

Yes, we have not defined random measures yet. Roughly speaking, this concept means
that the family of probability measures (v;),cx is measurable and to integrate one
integrates first aginst the fibers over points x € X and then against the measure m
on X. In order to get measurability of A and v, unlike to the previous sections, it is
much better now to consider the global skew product map

(z,2) = F(z,2) = (0(2), f(2)),

the global transfer operator, and the associated global Julia set

(3.2) J=|J{#} x T c X xC,

zeX
along with the measurable structure of J induced by the o—algebra § ® B of X x C
where B is the Borel o—algebra of C. The advantage is that then one can use the
framework of random sets and measures described by Crauel in [5]. We now first
present this framework along with some applications, and then prove Theorem

3.1. Random observables and measures. Let us recall first that (X,§,m) is an
arbitrary complete probability space with the spaces X, the o—algebra on X, and a
complete probability measure m on (X, §). Following Definition 2.1 in [5] we say that
a function

(3.3) X2z Cy,

ascribing to each point x € X a closed subset C, of C, is called a random closed set
if for each z € C the function

X 5z~ dist(z,C,) €R

is measurable. Since the probability measure m on X is assumed to be complete,
being a closed random set precisely means (see Proposition 2.4 in [5]) that the union

(3.4) C:= U {z} x Cy (all sets C, are assumed to be closed)

zeX
is a measurable subset of X x C. This natural bijection entitles us to speak and to
refere to measurable subsets of X x C with closed sections along C also as closed
random sets. We will therefore frequently refer to both the functions as in and
the sets of as random sets.

A random closed set X > x — C, is called a random compact set if all sets C,,
x € X, are compact (in C). A function X > z — V, is called a random open set if
the function X 3 z — C\ V} is a closed random set.
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A particularly important feature of closed random sets is that they allow us to use a
Measurable Selection Theorem, namely Theorem 2.6 in [5]. This theorem asserts that
for any closed random set C' C § ® B there exists a countable family of measurable
functions (¢, : X — C)p>0 such that for m-a. e. x € X,

(3.5) Cy = {cn(x) : n > 0}.
We shall prove the following.

Lemma 3.2. The global Julia set J is a closed random set.

Proof. For every x € X denote by Cy, the set of all critical points of f;, i.e.

Cs, ={2z€C: fi(z) =0}.
Set
Of 2 = F2C1) U £ Cra) U e U fon10)(Chps )
and then

P=JO wmnC.
n>1
Since each set Cy, is countable and its elements vary measurably with = € X, Propo-
sition 2.9 in [5] assures us that P = |J,x{z} x P, is a closed random set. Hence,
still by Proposition 2.4 in [5], P? = |J,c x{z} x V5(P,) is also a closed random set,
where 0 = Jo/2. It now follows from Proposition 2.9 in [5] that C' = [, x {7} x Cy,
with C; = C\ Vs(Py), is a closed random set. The Measurable Selection Theorem,
Theorem 2.6 in [5], thus applies, and, as Vs(7,) C C;, for all z € X by hyperbolicity of
(fz)a, this theorem yields measurable maps (¢, : X — C)i>o such that cx(x) € V5(Tz)
for every k > 0, and moreover, for m-a.e. =z € X, {cx(z): k >0} D Vs(Jz). By
definition of C, all holomorphic inverse branches of f}' are well-defined in the g
neighborhoods of all points cgn(,). Fix 1 <n < where 7 is the expanding constant

coming from Definition We call a holomorphic inverse branch f, I of f;, defined
on D(cgn(g), 0), shrinking, if |(fz1) (con(z))| < n7". Tt is now easy to check that

Z-NU U ferda@@:k=o.

N n>N * shrinking
This shows that 7 is a closed random set. O

Lemma 3.3. If Condition [ holds, then there is a measurable choice
T 2 € Ta ﬂﬁTﬂfw_l (jﬁ(:v) ﬂﬁT) .

Proof. Since, by Lemma J is a closed random set, the sets with fibers 7, N Dy
and f, l(jg(x) N Dyr) are both closed random sets. The intersection of these closed
random sets is again a closed random set, and Condition [2| implies that every fiber of
this intersection is not empty. Therefore, again by the Measurable Selection Theorem,
there exist a measurable map z such that z, € J, N Dy N f;l (jg(x) ﬁﬁT) for a.e.
reX. g



RANDOM DYNAMICS OF TRANSCENDENTAL FUNCTIONS 11

We now introduce random observables. We recall from [5] that a function g : J —
R, (z,2) — g.(z), is called random continuous if g, € Cp(J,) for all z € X, the
function « — ||gx||oo is measurable and, moreover, m—integrable. The vector space of
all such functions is denoted by Cy(7). It becomes a Banach space when equipped
with the norm

o= [ Nl dm(a).
X
We need more special functions.

Definition 3.4. A random continuous function g : J — R, (z,2) — g.(2), is said
to vanish at infinity if

Jim 0.3 =0
for m-a.e. x € X. The vector space of all such functions is denoted by Co(J). It is

a closed subspace of Cp(J) and inherits the norm |- | from Cy(J). Thus, it becomes a
Banach space on its own.

Definition 3.5. Random p-Holder observables are defined to be all the functions
g € Co(J) such that g, € Hg(Tz) and such that x — ||g»||g is integrable. This space
is denoted by Hg(J) and equipped with the norm

9l = [ Ngelladon(a).
X
Consider now the global transfer operator £ defined by
(Lg)a(w) = Lo-1(196-1(2) (W) ,  (2,w) €T .
Lemma 3.6. If g € C,(J), then Lg is measurable.

Proof. First of all, it suffices to establish measurability of Lg restricted to measurable
sets of the form

Ew=J0N(XxDw,5/2), wed,, v€X.
So, let (z,w) € J. Since J is a closed random set, it follows from Proposition 2.4 in
[5]) that the set
Y={yeX:J,ND(w,d§/2) # 0}
is measurable. Notice that, by definition of ¥ and by hyperbolicity of (f;)s, the

function Lg is in fact well defined on Y x D(w, 6/2). Therefore, we can consider the
map h: X x D(w,0/2) — R defined by

b (2) = {(cg>y<z) if yev
Y 0 if y&Y.

Obviously, to show that Lg g, is measurable, it suffices to establish measurability of
h. Also, since Y is measurable and h = 0 on Y x D(w, 6/2) it suffices to show that h
restricted to Y x D(w, §/2) is measurable and, by virtue of Lemma 1.1 in [5], in order
to prove this, it suffices to show that for every y € Y the map D(w,d/2) 3 z — hy(2)
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is continuous and that the map Y > y — hy(z) is measurable for every z € D(w,/2).
The continuity for fixed y € Y is obvious. So we are left to show measurability of

Yoy hy(z) = (Lg)y(z) = £9_1(y)gg_1(y)(z)
for every fixed z € D(w,6/2). Let 2 € D(w,d/2). Then the set C = |J, oy {y} X
fa__l1 ) (z) is a closed random set with discrete fibers. Therefore, the Selection Theorem

yields the existence of countably many measurable functions (¢, :)22; such that
{ecn(y) :n>1} = fe_,ll(y)(z) for m—a.e. y € Y. Consequently,

hy(2) = Lo-1()90-1(y)(2) = Z | fo-105) (cn(@))7 9-1(y) (cnly)) form — ae yeY.
n>1

This proves the desired measurability. O
Combining Lemma [3.6] with Proposition [2.3] leads to the following.

Proposition 3.7. The transfer operator L acts continuously on both Cy(J) and
Co(J).

Let M,,(J) be the space of all real-valued signed finite Borel measures v on J
such that v o 7r;(1 is absolutely continuous with respect to m and, if (v;).ecx is the
corresponding disintegration of v, then the map

X o>z ||l
is in L(X), ie.
V|00 := esssgp”VxH < o0,
where |v,| is the variation of v, and ||vg|| := |vz|(11) is the total variation of v.
On the other hand, any function
(3.6) Xoz—uy

taking respective values in the spaces of signed measures on J, such that the function

Xo>zr— gz Ay
Tz

is measurable for all functions g € Cp(J), and ||v||cc < 400, gives rise to an element
v € My, (J) via the following integration formula. For every g € Cp(J):

(3.7) v(g) = /X / gudvadm(z)

This enables to speak of elements of M,,(J) either as of appropriate measures or,
equivalently, of functions from ({3.6)) as described above.

We denote by M, (J) the subset of M,,(J) consisting of non-negative measures.
We further want to single out one particular subspace of M,,(J). This subspace
will be essential in the sequel. In its definition, stated below, mx : X x C — X and
mc ¢ X X C — C are the usual respective projections

mx(r,z) =2 and wc(x,z) = z.
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Definition 3.8. A measure v € M (J) with marginal m, i.e. such that v o 75}1 =

m, is called a random measure. In other words this means that v € My, (J) and
the corresponding disintegrations (vy)zex belong to respective spaces P(Jy) of Borel
probability measures on J, for all x € X. The subspace of M, (J) consisting of all
random measures will be denoted by Pp(J). In accordance with the discusion above
we identify random measures with functions

(3.8) X3x— v, € P(Tp)
such that the function

Xo>r— Gz dvy
Tz

is measurable for all functions g € Co(T). We also refer to such functions (of (3.8]))

as random measures.

Random measures, as defined in Crauel’s book [5], are measures on the set X x C.
But here we are only interested in the subclasses Py, (J) and M,,(J) and they are
respective measures in M, := M,,(X x C) and P, := Pp,(X x C) with support in
J.

The key concept pertaining to random measures is that of narrow topology, which
is a version of weak convergence. Namely, if A is a directed set, then a net (1/0‘)
in M,, is said to converge to a random measure v € M,, if

a€N

lin{{ v*(g) =v(g) for every g € Cp(X x C).
ac

This concept of convergence defines a topology on M,, called in [5] the narrow topol-
ogy. The narrow topology on M,,(J) is the one inhereted from the narrow topology
on M,,. Since 14, the characteristic function of A, any closed random set in the
complement of 7, belongs to Cy(X x C), we have that

v(lly) = ilg/l\ v*(a)=0

for any net (yo‘)a cp i M (J) converging to a random measure v € M,,. This
means that then v € M,,,(J), leading to the following.

Proposition 3.9. M,,(J) is a closed subset of M,, with respect to the narrow
topology on M.

Observation 3.10. Of course Py, (J) is a closed subset of My,.
Recall that a subset I" of M,,, is bounded if
sup{||V||ec : ¥ € T'} < +00.

Recall from [5] that a subset I' of M,, is called tight if its projection I' o g YonC
is a tight subset of Borel probability measures on C, the latter (commonly) meaning
that for every ¢ > 0 there exists a compact set K. C C such that v o 7T(51(K§) <e
for all v € I". For us, the crucial property of narrow topology is that of Prohorov’s
Compactness Theorem (Theorem 4.4 in [5]) which asserts that a bounded subset



14 VOLKER MAYER AND MARIUSZ URBANSKI

M C M, is relatively compact with respect to the narrow topology if and only if it
is closed and tight. Along with Proposition this entails the following.

Theorem 3.11 (Prohorov Compactness Theorem of Crauel). A bounded subset I' C
M (TJ), in particular, any subset T' C P (T), is relatively compact with respect to
the marrow topology if and only if it is tight. Furthermore, it is compact if and only
if it is tight and closed.

The most relevant theorems about tightness are these (see Proposition 4.3 in [5]):

Proposition 3.12. A subset I' C P, (J) is tight if and only if for every e > 0 there
exists a random compact set X 3 x +— K, such that K, C J, for all x € X and

/X vp(Kg)dm(z) >1—¢
forallveTl.
As an immediate consequence of this proposition, we get the following.
Corollary 3.13. Let I' be a susbset of Pm(J). Suppose that for every e > 0 there
exists a random compact set X 3 x — K, such that K, C J, for all x € X and
vp(Kyp)) >1—¢
for all v € T and for m-a.e. x € X. Then the set I' is compact.
3.2. Random Gibbs states. The aim of this section is to prove Theorem and

to provide some useful estimates. Each measure v,, x € X, from Theorem will be
called a fiber Gibbs state or fiber conformal measure. The function

XDx =y

will be, accordingly, called a random Gibbs state or a random conformal measure.
Likewise, in accrodance with the above, the global measure (see Definition and
formula (3.7)), will be called a random Gibbs state or a random conformal measure.

From the invariance relation (3.1)) it follows that A, = [ £, 1 dvg(z) and so we look
for measures (v;)zcx that are invariant under the map ® : P, (J) — P (J) whose
fiber maps @, : P(Jy(z)) — P(J:) are defined by
 Livew)y L)

Livga) (L) vy (Le1)

We want to obtain these measures in the usual way by employing Schauder—Tychonoff’s
Fixed Point Theorem. But, since the sets J, are unbounded, this can be done only if

a convex compact and ®—invariant space of probability measures is found, and if in
addition ® acts continuously on this space. Towards this end, consider

(3.10) M = M(Ro,e) == {y — (Us)aex € Pm(J) : (a) and (b) hold}, where

(3.9) P2 (Vo (a))

(a) I/x(@RO) > 1 and
(b) v,(DR) < a= for every R > Ry
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are required to hold for m-a.e. z € X.
For any = € X, define further
M, ={v,: (a) and (b) hold}.

Clearly, property (b) implies (a) with some Ry sufficiently large. The significance
of (a) is to specify some radius Ry. Invoking Corollary and Theorem we
obviously, we have the following.

Lemma 3.14. The set M is convex, closed and tight, hence compact.
We shall prove the following.

Proposition 3.15. There are Ry, > 0 such that M = M(Ry, €) is invariant under
the map ® = (®y)zex defined in (3.9), i.e. Po(Mp(yy) C My forallx € X.

In order to establish this result we first need two lemmas.

Lemma 3.16. For every 0 < a < 7t — p there exists M, such that for all x € X and
all R>1,

M,

Proof. Given a € (0,7t — p), let b = b(a) > 0 such that 7¢ = a + p+b. Then,
Lollge (w) < A (14 fw]) @20 37 (14 [2) 7
z€f;1(w)ﬂ®%
i M
<HY e < 2
zefz H(w)NDR
where, the first inequality fpollows from ([2.2)), while the last one, with some constant
M, < o0, is a consequence of Proposition with 7t replaced by p + b. O

Lemma 3.17. There exists Ry > 0 and, for every R > Ro, such that, for some
constant ¢ > 0,

L, (w) > cR_(O‘Q_T)tSIOgRTI_;t for every w € Jypy, |w|<R,xeX
where rp = w™! (8 log R).

Proof. This proof relies heavily on Nevanlinna’s theory and especially on Theorem
The notation used in it is explained in [f] Appendix. But first we need some
preliminary observations.

Since Condition [2 holds we may assume that 0 € J, and |f,(0)| < T for all x € X.
Let Q, be the connected component of f. 1(]1)( f2(0),00) ) that contains 0. Since

0 € J, we can use the expanding property of Definition along with Condition [4]
in order to get

(3.11) ey < |f2(0)] < Cp  for every z€ X .
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Koebe’s 1/4-Theorem (see [12] for the most common modern source of it proof)
applies and, together with (3.11]), implies that

1 5o
QCE D - ! -1 D h = —.
- <07 4’fx(0)\ 50) O D(0,s) where s i
Let from now on z € X and w € Jy(,) with [w| < R.

Case 1: Suppose that f, 1(D(w,dp)) NDs # 0, i.e. that there exists 2’ € D(0, s) with
w' = f(2") € D(w, dy). Then

1 o I A+ DT (KO
LI = D7

K K (1+ )] K

by Lemma Lemma and (3.11). Hence, in this case there is a uniform lower
bound for £, 1 (w).

(1+s)" ™

Lol(w) > Lol () >

Case 2: Suppose that f, 1(D(w,d))NDs = . Then we have to use the uniform SMT
(Theorem and, in order to do so, first to verify its assumptions. It follows from

(B-11) that
|£2(0)

cy #
< 0)=—2—-_-<Cr |, € X.
e <O = T poE = - "
In other words, the assumption (1) of Theorem holds with L = max {C’T, 1423“2 } .

Assumption (3) is exactly the uniform growth condition of the characteristic functions
in Condition [1| It remains to choose appropriate points a;. Let a1, a2, a3 € D(w, )
be any points such that |a; — a;| > %0 for 7 # j. Notice that

f2(0) € {a1,a,a3} and f, ' (a;) NDs=0.

We need the following simple estimate:

o 12
D(ay,ag,a3) = —log H[ai,aj] + 2log2 <log (1 + \w[2) + log 5 + 2log 2
i#]

12
§210gR+10g6—+310g2.
0

Theorem [7.2] of Appendix gives now the following inequality:

3
o 12
EN(aj,r) > T,(r) —bs — 6plogr —2log R — logé— — 3log2
. 0
J=1
= Ty(r) — bg — 6plogr — 2log R

1 bt w2
z\T
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Remember that Tu(r) > w(r), that lim, e log(r)/w(r) = 0 (Condition [1) and that
R > Ry. If we define rg := w_l(Slog R), then
2log R < 1

— forevery r>rp.
w(r) — 4 Y =R

Therefore, for every R > Ry and provided that Ry is sufficiently large, we have:

be + 6p1 2logR 1
6+ bplogr + 2108 < = forevery r>rg.
w(r) 2

This implies that

To(r) > sw(r) >

w(rg) forevery r>rpg.

l\:>\>i
l\D\H
N | =

(3.12) ZN aj,r) >

We can now conclude the proof of our lemma. Indeed, Lemma [2.6] the lower bound
in Condition 3] I 3l and the fact that f (aj) N D = 0 imply, for every j = 1,2, 3,

KL (w) > Lol(az) = (L Jag)) =770 Y 7 (14 [2]) "

fe(2)=a;
- Rf(agf‘r)t Z |Z’77A't )
fa(2)=a;

A standard argument (see m Appendix here, [2I] or Chapter 3 of [20]) and (3.12))
shows that

: © Y Nlag.r) © g

—3 J’ T —%
> Y k- ez otn) |
J=1 fz(2)=a; rr TR

Finally, there exists Ro > 0 and ¢ > 0 such that
3

BEL A (w) > Y Loll(aj) > cR™ 2 w(rg)ry™
j=1
for every R > Ry and w € Jy(z), lw| < R, z € X. O

Proof of Proposition [3.15, Let Voz) € M) We have to show that there are con-
stants Ry, e that do not depend on x € X such that @, (vy)) € My, ie. that the
properties (a), (b) of are satisfied. Let Ry be the number given in Lemma
suppose that Ry > Ro and let R > Ry.

We have to choose the constant a € (0,7t ﬁ from Lemma and 7 € (0, az).

Let a = %(&t — p) and, according to Remark we may choose 7 sufficiently close
to ap such that a < 7t —p and b = § — (a2 — 7)t > 0. Lemma implies

M,
£ V@(w) DR /;C ]l dl/g( ) Ra .
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On the other hand, Lemma [3.17| applied with R = Ry yields

ﬁi,Vg(x)ﬂ > / ﬁxﬂdllg(x) > CR()_(OQ_T)t [w_l (8 log Ro)] 7%1/9(@ (ﬁRo) .

Dg,

Notice that v, (Dg,) > % since vg(;) € My(y). Therefore,

o T — Livp(ry (D) L2M, R~ [w™! (8log Ry)| ™" Ry
a:(V@(a:))( R) - [/*Vg( )]]_ - ¢ Ra/2 Ro
x ey 0

<2Ma [w_l(SlogRo)]H 1
~c R} Ra/2”

In order to conclude that ®,(vp,)) € M, it suffices to set ¢ = § and to show

-1
that there exists Ry such that % [w ( 7E < 1. But this results from an
0

elementary calculation based on the properties of w: lim, o log(r)/logw(r) = 0 and
w is increasing. ]

Proposition 3.18. Let M be the invariant set of random measures from Proposition
15.15. The map ® : M — M is continuous with respect to the narrow topology.

Proof. Suppose that A is a directed set and (v*)aen is a net in Py, (J) converging
to a measure v € Py, (J) in the narrow topology. If hy(yy o = 1/1/5‘(@(59511) then, by

B9,

1
S, V=L ————7 ) =L (hgya VS ) -
(Ve(x)) x (V&m)(ﬁx]l) VG(x)) x( 0(x), l/e(x))

Proposition implies that £* is continuous with respect to the narrow topology of
M(T). Thus, we have to investigate hg(y) o V() Ltem (a) of the definition of M in

(3.10) and Lemma imply that there are constants 0 < ¢; < ¢g < 0o such that
c1 < hpg)a <cp forall n>0andz e X.

This implies that (hy o v)zex is a tight, hence relatively compact, family of M, (7).
Let 1 € M,;,(J) be an accumulation point. It is shown (as a matter of fact for
sequences but the same argument works for all nets) in Lemma 2.9 of [24] that then

= hv

for some measurable function h : X — (0,00). Notice that £*u is a random (proba-
bility) measure. Hence, the disintegrations of this measure

Lttg@) = ho@)Lr (Vo)) € P(Tx)
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are probability measures. Therefore, 1 = L3119,y (1) = hg(z) Ly (V(z)) (1) which im-
plies that the accumulation point g is uniquely defined by
1
Ho(z) = Fur NrayYo(x)
T L) (1)

This shows that the net (®(v%)aea converges to ®(v) in the narrow topology. The
proof of continuity of ® is complete. O

reX.

We are now ready to prove the main result of this section.

Proof of Theorem[3.1]. Proposition yields a ®-invariant convex and compact set
M C Pp(J) of random measures. By Proposition the map @ is continuous
on M for the narrow topology. Therefore, one can apply Schauder-Tychonoff Fixed
Point Theorem in order to get a ®—invariant random measure v. This measure is the
required Gibbs state. Finally, the bounds on

)\z = l/g(x) (ﬁx]l)

follow again from item (a) of the definition of M in (3.10)) and Proposition[2.3|together
with Lemma O

We have to study these random conformal measures more in greater detail. Here and
in the rest of the paper it is very useful to introduce normalized operators

(3.13) Ly =1L,

and to employ the notation
n—1
Ne =1 Mo and L7 =x"LF.
j=0

We continue to use the radius Rg of the definition of the invariant measure space M,
given in Proposition [3.15] Clearly we may suppose that Ry > T > 0, T being the
constant of Condition [2 Condition 4] is applied to get the following lower estimate.

Lemma 3.19. For every R > Ry + 1 and every 0 < § < min{dy, 1}, where oy €
(0,1/4) comes from Definition [1.1], there exists A = A(J,R,t) > 1 such that

vz (D(z,6)) > AL forallz € X and all z € J, with |z| < R.

Proof. Covering Dg, N J with d-disks whose no more than three elements intersect,
and using the fact that v,(Dg,) > %, we see that there exists a = a(d, Ry) > 0 such
that

(3.14) Ve(D(wg,8)) >a for m—ae. z € X and some w, € Dg, .

Let now N = N(6, R) be the number coming from the mixing property of Lemma
applied with » = 6/2 and R > Ry + 1. Then, for every z € 7, |z| < R,

£ (D(2,6/2)) 2 Dr N Ty (z) D D(Wen (4, 6) N Tpn ) -
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. N of fN defined on the
disk D(wgn (4),d) such that fx_iv (D(U)@N(x),é)) ND(z,6/2) # (. We may assume
without loss of generality that N is so large that Koebe’s distortion theorem together

with the expanding property imply that diam ( Iz, N (]D)(’U)eN(x),(;))> < §/2. Then
N (]D(wezv(l,),é)) C D(z,0). Hence,

xT,*

Consequently, there exists a holomorphic inverse branch

V$(D(z75)) 2> Vg (ijiv (D(wGN($)76)>)
> N [NV N )|
>a

for some a = a(t,R,0) > 0 by (3.14), Condition 4] and since A, < C' < oo for all
ze X. U

Von (z)(D(won (2, 6))

4. UNIFORM BOUNDS AND INVARIANT DENSITIES
We are now able to prove the following uniform bound for the normalized operators
A p g p
L.

Proposition 4.1. There exists M = M; < oo such that

L% < M for everyn > 1 and m — a.e. x € X .

By combining this result with Proposition we obtain the following:
Corollary 4.2. For every x € X, every g € Hg(Jz), and all n > 1, we have

(4.1) vs(£29) < M (Jlglloe + K (™) P03(9) ).

Proposition and Corollary together imply that the above uniform bound is
also valid with respect to the Holder norm || - ||3. For simplicity we will use the same
bound M in the sequel.

Corollary 4.3. There exists M = My < oo such that

||ﬁ2\|g§M for every n>1 and m—a.e. x € X.

We first need an auxiliary result. Let 0 < § < §p and R > Ry + 1, where, we recall,
do € (0,1/4) comes from Definition and Ry > 0 is taken from Proposition

Lemma 4.4. For every n > 1 we have
Li1(w) < KA |, W€ Tpn) , W <R, z€X,
where K is the distortion constant from Lemma[2.0 and A is defined in Lemma[3.19
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Proof. Let w € Jyn (), lw| < R. Then, using Lemma and Lemma we get

AN An L 4 ﬁgﬂ(w)
1= /[,x]ldygn(x) > /D(wm L3 Wdvgn 5y > Eﬁx]l(w)ugn(m) (D(w, ) > Vs

0

Proof of Proposition [{.1 From the lower bound on A, given in Theorem [3.I]and from
the fact that £,1(w) — 0 as |w| — oo uniformly in z € X (see Proposition [2.3), it
follows that there exists R > Ry -+ 1 such that

(4.2) Lol(w) <1 for w € Jymy NDG
for m-a.e. z € X.

Claim 4.5. Set M = KA(d, R,t), again with constants as in Lemma [{.4 Then
LN < M for everyn > 1 and m-a.e. x € X.

It suffices to prove this claim. It will be done by induction. In the case n = 1 the

results follow directly from (4.2) and Lemma So, fix n > 1 and suppose that
Claim holds for this n. We have to show that

/jgf(iﬂ)(:c)]l(w) <M forevery weJ, and a.e.x € X .

If w e J, NDg, then it suffices to apply Lemma Otherwise, i.e. if |w| > R, then

A

£33y oy M) = L1 (Eg_(n+1)(m)]l) (w) < MLyr (I (w) < M.

5. INVARIANT POSITIVE CONES AND BOWEN’S CONTRACTION

G. Birkhoff in [2] reinterpreted Hilbert’s pseudo-distance on positive cones in a
way which allowed him to show that every linear map preserving cones is a weak
contraction. This enabled him to give an elegant proof of the Perron-Frobenius the-
orem based on Banach’s contraction principle. Various versions of Ruelle’s Perron-
Frobenius theorem have been obtained since then using Birkhoff’s strategy (see, for
example, Liverani [16] and Rugh [26] 27] who, at the same time, considered random
dynamics and introduced a complexification scheme leading to real analyticity of the
dimension).

In our setting, with unbounded phase spaces J,, we encounter several problems.
First of all, because of the behavior of the functions at infinity, every reasonable
invariant cone contains many functions that all are at the infinite Hilbert distance from
each other. These cones have many, in fact uncountably many, connected components
that are at finite distances from each other. The second problem is that it is hard to
get a strict-contraction property since the mixing property which is at our disposal
(Lemma is too weak; one only has mixing on bounded regions.

Our way to overcome these difficulties is to define appropriate invariant cones and
then to avoid Birkhoff’s strategy, but instead, to employ an argument inspired by
Bowen’s lemma [3, Lemma 1.9]. For compact phase spaces this lemma is indeed
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equivalent to a strict contraction in the Hilbert metric. In our situation this is not
the case but it turns out that Bowen’s lemma is sufficiently tricky so that we can
use some appropriate version of it that leads to the following exponential convergence
result.

From now on the number d¢ > 0 in the definition of the variation of Holder functions
will be replaced by a smaller number 0 < § < §y as explained in .

Theorem 5.1. Let (fy)x be a hyperbolic transcendental random system. We then
have the following.

(1) There exists a unique p € Hg(J), which is an invariant density, i.e. Lp = p.
(2) There are B >0 and ¥ € (0,1) such that

Hf’;g:c - /gac dvy Pom (x)

for every g, € Hg(J,) and a.e. x € X.

< BY"|| gzl

B

Remark 5.2. Multiplying, as usually, the random Gibbs state v by the invariant
function p of Theorem (1) gives again a unique, by TheOTem (2), invariant
random Gibbs state 1 € P (J) whose disintegrations are

(5.1) Ly = peVe , x€ X.

Moreover, v is ergodic. Indeed, if there existed an invariant set E C J with 0 <
w(E) < 1, then p1 = Lgp and po = Lgep would be two invariant random Gibbs
states. But this would contradict the above uniqueness property.

Remark 5.3. Notice that, as a straightforward consequence of the assertion (2) of
this theorem, we also get exponential convergence for random Hélder observables, i.e
in H(J), with respect to the canonical norm of this space:

1L = mp(L7g)ls < BI"|gls . g € Hp(T),
where 7, : Hp(J) — < p > is the canonical projection defined by 7,(9)e = [ 9o AV ps.
In particular, L1 — p exponentially fast.

5.1. Invariant cones. Consider the following cones:

(5.2) Cy = {g >0 : |l9lleo < .A/gdl/aC < oo and vg(g) < H/gdum} .

(53) C%O = {g €Cy 1 g<2M;A </ gdux> ﬁgl(r)ﬂ} .

Since we are primarily interested in the projective features of these cones, it is con-
venient for us to use the following sections

(5.4) Apr={9€Cy, v(9) =1} and Ayo=A,NCyp , z€X.

Hence both type of cones do depend on constants 3 > 1, A > 0, H > 0, and
even, indirectly, on § which was defined in the paragraph between Corrolary and
Lemma This dependece comes via the value of Holder variation vg. In fact, when
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we deal in the sequel with Hélder functions g, then we assume that the variation
vg(g) is evaluated on disks of radius 6, i.e. dy is replaced by ¢ in . Whenever the
dependence on the constants is important we will indicate this and write C, (A, H) or
even C,(A, H,3,6), and similarly for the second type of cones. In order to produce
cones with good properties, for example invariance, we have to choose carefully these
constants.

We continue to write M = M; for the uniform bound given in Proposition and
in Corollary [f.3]and K = K for the distortion constant appearing in Lemma [2.4] and
Lemma [2.6] First of all, let 0 < § < dy be such that

1
(5.5) 5+ MK +4) o<1,
The radius Ry has been defined in Lemma Increasing it if necessary we may
suppose that Lemma is valid with R = Ry and, for the same reason as in (4.2]),
that

(5.6) 2ML,1<1 in Dy NJT, v€X.
Define now, with A(d, R,t) from Lemma
(5.7) A :=2max{1, A(6, Ro,t), M} and H=2MKA+4.

Notice that A > 1. This ensures that the constant function 1 € C,, x € X. Finally,
let Ny > 1 be such that

(5.8) MK(eyN)PH <1.
Proposition 5.4. With the above choice of constants and for every n > Ny,
22 (Cx) C CG"(:(:),O C an(x) , veX.

Proof. Let g € C;. We may assume that [ gdv, = 1. We will show that ﬁgg € Con(z),0
for every n > Np. Let in the following n > Ny. From the two-norm type inequality
(4.1) and from the definition of the cone, we get that

(5.9) va(Lrg) < M (A K (™) 5H) <MA+1<H,

where the last two inequalities result from the choice of Ny and from the definition
of H. Then,

(5.10) £ = Lon(a) (ﬁg*lg> < M| gllooLyn1(m) 1 < MALgn 141

In order to see that L g € Cyn(y)o it Temains to estimate 1£7g|l00- Since we already
have ([5.9), we obtain, for every |z| < Ry, the following:

1—/£xgd1/9n _/ ﬁ;‘gdugn(x)
D(z,5)

> (£L29(2) — HO®) () (D(2,0)) > (L£g(=) — HO®) A8, Ro,t) ™",
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where the last inequality holds true due to Lemma Therefore,
N 1
Lrg(z) < A2+ HP < A <2 + (2MK + 4)55> < A,

by (5.5)). If |z| > Ry, then it suffices to combine ([5.10) and (5.6)) in order to conclude
this proof with the inequality,

Llg(2) < MALgn-1(1(z) < A.
The proof is complete. O

5.2. Cone contraction via Bowen’s lemma. Let Ry > Ry be such that
(5.11) 2AML,1 <1 in D, .
Lemma 5.5. For every R > Ry there are N = Nr > Ny and a = ag > 0 such that

ﬁjxvgm >a forevery ge€Nyo, vEX.
2R

Proof. Let g € Ayp. Since [ gdv, =1, we have that ||g]s > 1. Hence, by the choice
of Rl,
g<2MAL,1<1 in Df,.
Thus, there exists zmae € Dr, With ¢(2maz) = [|9]lec > 1.
Let 0 < 7 < 6 be such that Hr? < %. The mixing property of Lemma implies
the existence of N = N(r, R) > 0 such that every w € Jyn () N D2g has a preimage

20 € foN(w) N D(2maz,r). Therefore, using Condition 4, for every such w, we get
that

Y g(w) > 2V o)l gz0) = OV YV (o) (9(emar) — HYP)

so e el (1)

|z|<R1 |fY(2)|<2R
=:a>0.

The proof is complete. O

Notice that there is no way to get a global, valid on the whole Julia set, version of
Lemma [5.5] This is why we have to work with the following truncated functions. We
remark that our cones are chosen in such a way that such truncations can be made
to lie inside them. This is not the case for the standard Bowen cones.

Let ¢1 : C — [0,1] be a Lipschitz function such that ¢1 = 1 on Dy and ¢1 = 0
on D§. For R > 1 define ¢r(z) = ¢1(2/R). Then ¢pg is also Lipschitz with variation
vi(pr) = 0 as R — oo. Define

(5.12) Ya.r = PRLg-1 (1.

Then, 0 < @ < Lo-1(m)]l, Yo.r = Loy-1(y]l on D and @y p = 0 in DS, The
functions ¢, r are Lipschitz with vi(pz.r) — 01(2971(3&)]1) uniformly as R — oo.
Therefore, given the definition of the cones, especially the definitions of the constants
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A, H in , and the formulas established in the course of the proof of Proposi-
tion it follows that

Yz,R € C;,;yo ,reX,
provided that R is sufficiently large. We will assume that R; is chosen so that these
truncated functions belong to the cones for all R > R;. Suppose also, in what follows,
that > 0 is chosen such that

3 H 2M
With these choices we will now obtain the following version of Bowen’s result [3]
Lemma 1.9].

11 1
(5.13) 0<n§mm{ a}.

Lemma 5.6. For every R > Ry and with N = Nr > Ny given by Lemma
ljivg — NPoN ()R € Con(z)0 Jor every g€ Agp.
Proof. Let z € X, let g € Ay p, and let R > R;. Lemma [5.5 shows that for 0 < n <
a

1
2M> a
£ivg — NPYN (z) > 5 >0 on DorNIpn(y)-
Set
ﬁNg — NN (z),R
14 = = Zh h = d :
(5.14) g [ where  ngn () R 77/9091\’(:1:),1% VoN (z)

Then [ ¢'dvgn(,) =1 and g’ > 0. We have, by
(1= ngx@)r) 9 < M||g||ooﬁ9(N,1>(z)]1 + nﬁewfl)(x)]l < (MA+ U)Ee(me(x)]l :

But 0 < mgnpr <0 < % and thus ¢’ < 2MA£9(N—1)(I)H. This means that the
function g’ € Agn(,) o provided that we can show that g’ € Agn ().
In order to estimate the variation of ¢’ we use again the two-norm type inequality

ED):

1
/
<
w(g) < L —npn(2),R

Remember that g, Pon (o R € C., that n < min{%, %}, and that we have (5.8]).
Therefore,

(Mllglloo + ME (™) Pv3(g) + 1030 ,0) )

vp(g) <2(MA+1+1)=2MA+4<H.
It remains to estimate [|g'[lcc. If 2 € Tyn () N Dpy, then

1= /gldVGN(x) > /D( 5 g dvgn () > (9'(2) — HOP Jugn (1) (D(2,6)) .

Using once more Lemma and the choice of 4 in (j5.5)), we obtain

g (2) < A(6, Ry, t) + HS® < é + (2MKA+4)6° < A <; + (2MK + 4)5ﬁ> <A.
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If 2 € Jyn(y) N DY, then ¢'(z) < QMAEA@(Nfl)(x)]l<Z) < A by the choice of Ry (see
(5.6))). The proof is complete. O

Applying repeatedly Lemma [5.6] gives the desired contraction.

Proposition 5.7. For every e > 0 there exists n. > 1 such that for every n > n. and
a.e. x € X,

(5.15) | 2290 — Z2h,

5 <e forall gy hy€Nsp.

Proof. Let R > Ry and N = N > Ny be like in Lemma and let g = géo) € Ao
With the notation of the previous proof, and in particular with the numbers Mo (2),R

defined in (5.14]), we get from Lemma that
A 1
‘Civg = N¥yN (z),R + (1 - n@N(m),R)géJ\z(I)

for some gé}\,)(m) € AoN(x),O. Applying ﬁéVN (@) to this equation and using once more
Lemma [5.6] gives

L2N g = LN () Pon (2, m+ (1=119N (o), R)1P02N (2, 5+ (1 =11 (0, 1) (1 — UHQN(x),R)géQV (@)

(2)

for some 9931\7 @ € A92N(m)70. Inductively it follows that for every & > 1 there is a

function gé@\,(x) € Agrn ()0 such that

ko /j—1 k

~ a(k—i VN k

LiNg=n)" (H(l - TleiN(a;),R)> EéjNg;) i)k + [ [(1 = Mgin ), 7) gékg\l(m) :
Jj=1

i=1 \i=1 i=1
Observe that the first of these two terms does not depend on g. Therefore, for every
g,h € Ay o there are gé@v(z), hé@v(x) € Agrn (40 such that

k
A A k k
(5.16) L6V g — L5 = T = mgay.) (958 ey — Pty )
=1

Remember that n, r =1 [ ¢y rdvy > 1 fﬁR ﬁgfl(y)]ldl/y for all R > Ry, and that, by
0

Lemma there exists a constant ¢ = ¢(Ry) > 0 such that ﬁ@—l(y)]l > c on Dg,.
Therefore,

_ c B
1>mn>nyr > ncvy(Dg,) > 7]5 =7n>0.

Thus,
1- Ny,R <1- 77
Along with (5.16), this allows us to deduce the the uniform bound of Proposition

with some ny . > 1 sufficiently large, for the supremum norm rather than the Holder
one. In order to get the appropriate estimate for the S—variation we need once more
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(4.1). Write n = m + na. + n1 . with some ng. to be determined in a moment and
some m > 0. Then for all g,h € A, o, we have

vs (L9 = L3n) = vs (Ll (L8 (0= 1))
<M (‘ Ly (g - h)HOO + K(ey™ ) Pug (£3 (g~ 1))
< Me + MK (ey™<)"P 2H,

since ﬁzl’sg, Lih e Cenl,g(l,m. It suffices now to choose ng . > 0 sufficiently large in
order to conclude this proof. O

Proof of Theorem/[5.] (1). Consider p* = LF1. First of all, Proposition implies
that p% € A, for every k > Ny. Hence Proposition applies and gives

lpf —plllg <e forevery 1>k>n. , z€X.

This shows that (p%)j is a, uniformly in # € X, Cauchy sequence of (Hg(J.),|l-||)

and hence there is a limit p € Hg(J). Clearly, Lp = pand p, € Apo, © € X.
Uniqueness of this function follows from the contraction given in ((5.15)). O

Proof of Theorem (2). Since A, H > 2, we have that
{1+ hy: |hallp < 1/4} C Cq,

for all z € X. Let g € Hg(Jz), g # 0 be arbitrary. Then
g

hi=—-—=(h+1)-1
8llglls
is a difference of functions from C,. If € > 0 and n = n. is given by Proposition
then
L <h— < / hdux> pgn(m)> < ’ﬁ;‘h - ( / hdyx) Pon(z)|| <
B

B

< ‘ Lr(1+h) — /(]l + h) dvy pon (z) L£r — Pon (x)

|
B

B

Se/(ll+h)dux+5

< 17
—&.
-8

This shows that for every € > 0 there exists N = N. such that

& (o= (o)

‘ <ellgllg for every g€ Hg(T).
B
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Fix ¢ := 1/2 and let N = Nyjp. Write any integer n > 0 in a unique form as
n = kN +m, where k > 0 and m € {0,...,N — 1}. Then, for every g € Hg(J,) we

have,
’329 — / 9dvepon(yy || = H o () <ﬁ§N(g - / ngme)) H
B B
N\ F
<M <2> g—/gdvxpz
B
1 n

<2 (i ) 1+ ol ol

This completes the proof of Theorem O

6. EXPONENTIAL DECAY OF CORRELATIONS AND CLT

Exponential decay of correlations is now a fairly straightforward consequence of
Theorem (2). It will be valid for functions of the following spaces.
Let Hg(j) be the space of functions g : J — R with Holder fibers g, € Hg(T:)

and such that ||g;|/g € LP(m). The canonical norm is

ol = ( [, |gz||gdm<x>); .

Replacing in this definition the S—Hélder condition on the fiber 7, by a L*(v,.) condi-
tion leads to a space of functions that will be denoted by L,*(7). The natural norm

is in this case .
P
gL = ( / 9., (o))

Clearly, if p = 1 then L' (J) = L'(v). In both cases we also consider p = oo and
then the LP norms are replaced by the sup—norm.

Theorem 6.1. Let (f;), be a hyperbolic transcendental random system and let p,q €
[1, 00| such that %—F% = 1. Then, for every g € LL*(J), h € HE(T) with [, hy dp, =
0 and for every n > 1, we have

[ o - ] [ o 12 (e

for some positive constant b and some ¥ € (0,1).

< 9" |g|i7p |hlg,q

Proof. A standard calculation and application of Theorem (2) gives

‘/ (9on () © [2) Padpiy
A

/ o () L2 (hapz) dVn )
Ton ()

ﬁg (hepz)

<]
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for some constant b > 0 since |py|[g < M for all z € X by Corollary {4.3] ﬂ and
Theorem 5 - . Therefore,

’[7(9 ok d“‘ - ’/X /j (9on(z) © f2) hadpzdm(z)

< b / 1l 1 90m ) 22 s 2)
1
q
< by™ </ || ||q dm(z > </ Hg:t:”Ll yz) m(x )>

Finally, following Gordin and Liverani’s method, one can obtain various versions
of the central limit theorem (CLT'). Here is the simplest one.

Theorem 6.2. Let o € Hg(J) N L®(J) such that [, ¢zdp, =0, x € X. If ¢

is not a coboundary in L*(J,n) (meaning that there is no u € L?(J,u) such that
Y =u—wuolF), then there exists o > 0 such that, for everyt € R,

<{z€j 7 Snip(z )<t}> a\/ﬁ/ exp(—u?/20?) du

Proof. The dual operator U} : L*( Ty, pie) — L? (Jo(x)> Ho(z)) of the Koopman operator
Uzthy = 1, o f is given by

0

b

po(x)

By Gordin’s result [10] it suffices to check that -, |UU**4|2(,) < co. We have
|2, ) = /j (U*)% o 1 dpu = /J U )? dp

by invariance of the measure pu. Therefore,

|02, ) = /J S URU™p da < [0 /J U] £ dp = 4]0 /j U] dp

by the same argument. Now,

Jotian= [ [

:/X/ ’[fa—k(:p)(pa—k(x)wg—k(m))‘d]/xdm.

The fibers of @ having u,—integral zero, it follows from Theorem (2) as in the
preceding proof that, for some constant b > 0,

/j U] dpu < bo* /X g2yl s = b0 |5

) (Pg—r (2) Vo ( )‘duxdm
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In conclusion,
ITFT*4p 132, < 0910018110 oo

which directly implies Gordin’s L?-summability condition. O

7. APPENDIX: FACTS FROM NEVANLINNA THEORY AND UNIFORM BOUNDS OF
TRANSFER OPERATORS

7.1. FMT and proof of Proposition The goal here is to establish the uniform
bounds of the transfer operators claimed in Proposition These bounds can be
established by employing Nevanlinna’s theory of value distribution similar to what we
did in [I9] 20]. The main tool we use is Nevalinna’s first main theorem (FMT) which
we now describe briefly. There are several complete accounts of it in the literature,
for example in [21], 22, [4] [9].

The theory of value distribution of a meromorphic function f : C — C relies
on some naturally to f associated functions for which we use standard notations.
For example, n(r, w) or n¢(r,w) is used for the counting function which desxribes the
number of w—points (counted with multiplicity) of modulus at most r. The average or
integrated counting number N (7, w) is related to n(r,w) by dN(r,w)/dr = n(r,w)/r.

Concerning the characteristic function T'(r) = ff(r) of f, we use the Ahlfors-
Shimizu spherical version of it which measures the average covering number of the
Riemann sphere of the restriction of f to the disk of radius r:

o (1 If)? dt r dt
71 Tr:/ // W dedy :/A ne.
71 r) 0 (W etiyl<t (1+[f]?)? t 0 o t
The exponential growth of this function determines the order p(f) of f since we have

p(f) = limsup Tr) .

r—00 r

Nevanlinna’s first main theorem (FMT) as stated in [7] (see also [4, [9]) yields:

Theorem 7.1. Let f : C — C be meromorphic of finite order. Then, with the
notations above,

N(r,w) < T(r) + log for every we C andr >0

1
[£(0), w]
where [a, b] denofes the chordal distance on the Riemann sphere (with, in particular,
[a,b] <1, a,beC).

Proof of Proposition Remember first that we have the normalization Condi-
tion 2] and thus (L.1): 0 € J, and |f,(0)| < T, z € X.
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Secondly, by (2.2]) along with the Remark

t R
it |wlT)(“2_T)t Z (1+ \z|)_tT for every w € Vs, (Jy(a)) -
fa(z)=w
Combined with the distortion Lemma [2.6] it follows that the required estimations
follow if there exists C' > 0 such that
Z (1+ |z|)_ﬁ <C forevery w € Vs, (Jo)) \D(fz(0),00/2) , z€ X .
fe(z)=w
Observe that
S+ Y max{L T =)+ Y 2T
fo(z)=w fa(z)=w fo(z)=w, |2|>1
The second term can be treated by means of two integrations by part and an appli-
cation of Theorem (this is completely standard, compare also |20} p.16)):

A Oodnfl(’l“,ZU) A Oonfz'(r’w)
> ”:/ rﬁ:—”fz(Lw)”T/ 4
folz) = w ' 1
- (2) =
|z| > 1

L 1(w) <

*© N
< —ng, (1L,w) —t7 Ny, (1,w) + (ﬁ')2/ J;Mdr
1
OOj)j,(r) 1 © dr
< —ny (1 )2 Pl ) dr + (#7)21 / o
= nfcv( 7w)+(7—)/1 Pl T_'_(T) 0g [f(O),w] 1 pt7+1

Since TfT (r) < Cpr? (Condition ,

. Cp 1
1+ 1z < (t7)°= + 7tlog ————— .
(2 (DS (e s g

The second term is uniformly bounded since we assumed |w — f;(0)| > dp/2 and since
we know that |f,(0)] < T. The proof is complete.
(]

7.2. Uniform second main theorem (SMT). Our construction of conformal mea-
sures relies on the SMT of Nevanlinna along with good estimates of the error term
appearing in it. The later has been extensively studied in the 80’s and 90’s and the
book [4] by Cherry and Ye is an excellent reference for this topic. In particular,
Chapter 2 of this book fits perfectly well to what we are doing. The following result
is a straightforward adaption of a particular case of Theorem 2.8.5 in [4]. We use here
and throughout the whole section the notations of this book.

Theorem 7.2. Let L > 1 and set by = b1 (L) = e(1 + (Le®)?) and ro = ro(L) = Le®.
Let p > 0 and C, > 0. Then, for every non—constant meromorphic function f : C — C
and every three distinct points a1, az,as € C verifying



32 VOLKER MAYER AND MARIUSZ URBANSKI

'(0)]
<70 = T oE <
(0) € {a1,a2,a3} and
(r) < CprP, r >0, the following holds:

3
S Ny(agor) = Ty(r) — S(roar,anas) for cvery r > 7o
j=1

where

1 .
S(r,a1,az2,a3) = 21og(108 + 181og 2) + 3 log b1 + 1+ 4logT¢(r)

3 1 5
+ <2(P -1)+ 2> logr +log L + D(a1, a2, a3)

< bg + 6plogr + ]_O)(al,ag,ag),

o

D(a1,a2,a3) = —log[],,;lai, a;]+2log 2, |ai, a;] being the chordal distance, and where
the constant bg does depend on L,C, only.

This, in fact uniform, version of the SMT deserves some comments.

First of all, the radius rp normally depends on the function f since it is chosen in
order to have ff(r) > e. However, as it is explained in Proposition 2.8.1 of [4], if f is
any meromorphic function with

(72) LUEE
L
then Z/O’f(r) > logr — log L. Consequently, given L > 1, there exists ro = ro(L) such
that the above SMT does hold for every f that satisfies . Inspecting the proof of
Proposition 2.8.1 of [4] gives the precise number r( indicated in the above theorem.
Various formulations of the SMT and especially the ones in Chapter 2 of [4] involve
two functions, a Khinchin function ¢ and an auxiliary function ¢. Their role is to
optimize the error term S(r, a1, az, ag) often by the cost of a larger exceptional set E,
i.e. set of radii r > rg such that SMT does only hold if r ¢ E and this set satisfies

(7.3) /E CE::) < 2ko(y) = 2 / h xjfx) .

For our application we do not care about a minimal error term and thus we did a
more or less arbitrary chose ¥(x) = . We equally well could have made Nevanlinna’s
choice 1 (z) = (logz)! ™. But our choice leads to a nicer expression of the error term.

The choice of ¢ is more subtle since we need the SMT estimation for every r > rg.
A precise argument how to remove the exceptional set is in Nevanlinna’s book [21],
p. 257] and it is only possible since we deal with functions that have finite order.
Indeed, the assumption (3) implies that the order p(f) < p and that the variation
of the characteristic function is bounded in the following way. From the definition

of Tf in (7.1) follows that Af(r) < [T As(t)% < Tf(er) < Cy(er)?. Therefore, if
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ro <711 < T9 then

o

o "2 dt _
y(ra) ~ Tyr) = [ A/0F < Gt 1)
1
Choose now, and that what we did in the above SMT, the function ¢(r) = r—(P=1,
If the interval (r1,79) C E then it results from ([7.3)) that this variation is bounded
Ty(ry) = Ty(r1) < Cpe”2ko (1))

and from this it is not hard to see how to remove the exceptional set.
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