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ABSTRACT. In this paper we study the dimension spectrum of general conformal
graph directed Markov systems modeled by countable state symbolic subshifts
of finite type. We perform a comprehensive study of the dimension spectrum
addressing questions regarding its size and topological structure. As a corollary
we obtain that the dimension spectrum of infinite conformal iterated function
systems is compact and perfect. On the way we revisit the role of the parameter
θ in graph directed Markov systems and we show that new phenomena arise.

We also establish topological pressure estimates for subsystems in the abstract
setting of symbolic dynamics with countable alphabets. These estimates play a
crucial role in our proofs regarding the dimension spectrum, and they allow us
to study Hausdorff dimension asymptotics for subsystems.

Finally we narrow our focus to the dimension spectrum of conformal iter-
ated function systems and we prove, among other things, that the iterated func-
tion system resulting from the complex continued fractions algorithm has full
dimension spectrum. We thus give a positive answer to the Texan conjecture for
complex continued fractions.
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1. INTRODUCTION

Let X be a compact metric space and let S = {φe : X → X}e∈E be a countable
collection of uniformly contracting maps. Let JS , also frequently denoted by JE ,
be its limit set. This set is defined as the the image of a natural projection from
the symbol space to X . If the alphabet E is finite JE is well known to be a unique
compact set, invariant with respect to S. The dimension spectrum of S:

DS(S) := {dimH(JA) : A ⊂ E}

is the set of all possible values for the Hausdorff dimension of the subsystems of
S. If S consists of finitely many maps then DS(S) is a finite set. However when
S is infinite the structure of DS(S) becomes much more complex and intriguing.
In particular many interesting questions arise related to the size and topological
properties of the dimension spectrum.

As the title suggests we are going to investigate the dimension spectrum of
limit sets in the general framework of conformal graph directed Markov systems
(GDMS). We postpone the formal definition of a GDMS to Section 3, and we
now only provide a short heuristic description. A GDMS consists of a directed
multigraph (E, V ) with a countable set of edges E and a finite set of vertices
V . Each vertex v ∈ V corresponds to a compact set Xv and each edge e ∈ E
corresponds to a contracting map between two compact sets Xv. An incidence
matrix A : E × E → {0, 1} then essentially determines if a pair of these maps is
allowed to be composed.

Limit sets of infinite graph directed Markov systems form a very broad fam-
ily of geometric objects, which include limit sets of Kleinian and complex hyper-
bolic Schottky groups, Apollonian circle packings, self-conformal and self-similar
sets. The diversity of these examples justifies our decision to study the dimension
spectrum in the unified framework of GDMS. Graph directed systems with a fi-
nite alphabet consisting of similarities were introduced by Mauldin and Williams
in [29] and further studied by Edgar and Mauldin in [8]. Mauldin and the last
named author developed a fully fledged theory of Euclidean conformal GDMS
with a countable alphabet in [28] stemming from [26]. In the recent monograph
[5], Tyson together with the first and last named authors extended the theory of
conformal GDMS in the setting of nilpotent stratified Lie groups (Carnot groups)
equipped with a sub-Riemannian metric. See also [1, 24, 25, 31, 33] for recent ad-
vances on various aspects of GDMSs.

In [5,26,28], and in other relevant works, thermodynamic formalism is heavily
used in order to study the limit sets of conformal graph directed Markov systems.
In particular one needs to study the topological pressure function of the system,
which will be defined in Section 3. Under some natural assumptions, the zero
of the pressure function corresponds to the Hausdorff dimension of the limit set.
It is usually denoted by h and it is called Bowen’s parameter as it traces back
to the the fundamental work of Rufus Bowen [3]. Another parameter of crucial
importance for a conformal GDMS is the parameter θ, which is the finiteness
threshold of the pressure function, see Definition 3.13. In particular, as we will
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discuss later, the parameter θ is related to the dimension spectrum of conformal
iterated function systems (IFS).

In Section 3 we introduce several natural parameters for GDMS, which can be
thought as variants of the parameter θ. We provide concrete examples showing
that these parameters are distinct and we investigate their relations. Moreover
we clarify and correct several misconceptions from [28] related to the role of the
parameter θ. In connection to the dimension spectrum, it was proved in [26] that
if S is an infinite conformal IFS satisfying the open set condition then [0, θ) ⊂
DS(S). Somehow surprisingly we prove that if S is a GDMS the situation might
be quite different, as there are two new parameters θ3 := θ3(S) and h0 = h0(S),
introduced respectively in Definition 3.13 and Definition 4.2, which determine
the interval contained in the dimension spectrum.
Theorem 1.1. Let S = {φ}e∈E be an infinite finitely irreducible conformal GDMS. For
every t ∈ (h0, θ3) there exists some F ⊂ E such that dimH(JF ) = t. In other words
(h0, θ3) ⊂ DS(S).

Moreover we prove, see Theorem 4.10, that the lower bound h0 is sharp; that is
there exists a GDMS S = {φ}e∈E such that every subset I ⊂ E with dimH(JI) > 0
satisfies dimH(JI) ≥ h0.

We also investigate the topology of the dimension spectrum. In Definition
4.1 we introduce new natural notions of spectra suited to GDMS. These new
spectra can be thought as restricted versions of DS(S) as they only take into ac-
count certain families of subsystems. In Theorems 4.11 and 4.13 we prove that if
S = {φe}e∈E is an infinite and finitely irreducible conformal GDMS, then DSΛ̃(S)
(see Definition 4.1) is compact and perfect for any set Λ witnessing finite irre-
ducibility for E. As a corollary in the case of iterated function systems we obtain
the following theorem.
Theorem 1.2. Let S = {φe}e∈E be an infinite conformal iterated function system satis-
fying the open set condition. Then DS(S) is compact and perfect.

In the case of conformal IFS it turns out that θ = θ3 and h0 = 0, therefore as a
corollary of Theorems 1.1 and 1.2 we obtain that [0, θ] ∈ DS(S). We thus improve
the corresponding result from [26], by including θ in the dimension spectrum.

The proofs of Theorems 1.1, 4.11 and 4.13 depend crucially on Propositions 4.4
and 4.5, which are special cases of Propositions 2.5 and 2.6 respectively. Propo-
sitions 2.5 and 2.6 are of independent interest as they provide effective estimates
for the topological pressure of subsystems in the abstract setting of symbolic dy-
namics with countable alphabets. These estimates turned out to be extremely
useful for our purposes and we anticipate that can be further exploited. For ex-
ample we employ Propositions 2.5 and 2.6 in Section 5, where we generalize ear-
lier results from [13] to the setting of GDMSs. In particular Theorem 5.2 provides
estimates for the Hausdorff dimension of the limit set of any finitely irreducible
and strongly regular conformal GDMS up to any desired accuracy. Moreover our
proof substantially simplifies the proof from [13].

As mentioned earlier the theory of graph directed Markov systems has been
recently extended to the sub-Riemannian setting of Carnot groups in [5]. We
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record that the content of Sections 3-6 is valid for Euclidean as well as Carnot
graph directed Markov systems. Nevertheless for simplicity of notation we avoid
mentioning anything about the ambient space except in Remark 3.3 where we
comment further on the issue and we give a very brief introduction to Carnot
groups and sub-Riemannian conformal maps.

In the last two sections we focus our attention to conformal iterated functions
systems. The spectrum DS(S) has an interesting and intriguing structure al-
ready for IFSs, even the ones composed of similarities. Indeed, apart from be-
ing compact, perfect, and containing the interval [0, θ) (keep in mind that we
are now in the realm of IFSs), it may happen to be an interval (then necessarily
DS(S) = [0, dimH(J)]), or it may have many non-degenerate connected compo-
nents (so intervals) and connected components being singletons. Such examples,
even for similarities, can be found in [23]. All of this leads us to the following
conjecture.

Conjecture 1.3. For every compact and perfect subset K of [0,+∞) there exists
a conformal (we even conjecture one composed of similarities) IFS S such that
DS(S) = K.

This conjecture has room for many partial results. For example, does there
exist an IFS whose dimension spectrum has a given prescribed finite number of
connected components, or does there exist an IFS whose dimension spectrumDS
is not uniformly perfect?

Of special significance is the question of when an IFS S has full dimension
spectrum, that is DS(S) = [0, dimH(J)]. Kesseböhmer and Zhu proved in [23]
that the spectrum is full for the IFS resulting from the real continued fractions
algorithm, resolving the so-called Texan conjecture. This problem became known
as the Texan conjecture because it was posed independently by Hensley [15], and
Mauldin and the last named author [27], who were all based in Texas at that
time. Recall that any irrational number in [0, 1] can be represented as a continued
fraction

1

e1 +
1

e2 +
1

e3 + . . .

,

where ei ∈ N for all i ∈ N. We refer to the book [16] of Hensley for an excellent ex-
position of continued fractions and their connections to number theory, complex
analysis, ergodic theory, dynamic processes, analysis of algorithms, and even the-
oretical physics. We remark that continued fractions from the perspective of dy-
namical systems have been studied extensively, see e.g. [6,7,9–12,14,15,20,23,27]
or the review [17]. It is remarkable that the representation by continued fractions
can be described by the infinite conformal IFS

CFN := {φn : [0, 1]→ [0, 1] : φn(x) =
1

n+ x
for n ∈ N}.
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Therefore according to the Texan conjecture, resolved positively in [23], it holds
that DS(SCFN) = [0, 1]. That is, for any t ∈ [0, 1] there exists some I ⊂ N such
that dimH(JCFI ) = t and JCFI corresponds to the set of irrational numbers whose
continued fraction expansion only contains natural numbers from I .

In Section 7 we investigate the dimension spectrum of the IFS resulting from
the complex continued fractions algorithm. A complex continued fraction algorithm
is an algorithm that provides approximations by ratios of Gaussian integers to
a given complex number. The origins of complex continued fractions can be
traced back to the works of the brothers Adolf Hurwitz [18] and Julius Hurwitz
[19]. Since their pioneering contributions, complex continued fractions have been
studied widely from different viewpoints, indicatively we mention the break-
through work of A. L. Schmidt in the 70s [36]. More information can be found in
[16, Chapter 5].

As in the case of real continued fractions, complex continued fractions can be
represented via the infinite conformal IFS

CFC = {φe : B̄(1/2, 1/2)→ B̄(1/2, 1/2)}e∈E
where

E = {m+ ni : (m,n) ∈ N× Z} and φe(z) =
1

e+ z
.

This system was considered in detail in [26], nevertheless several questions re-
garding the intriguing geometric structure of JCFC remain open. Currently a very
active research topic at the interface of dynamical systems and numerical analy-
sis, is to obtain estimates of high accuracy for the Hausdorff dimension of JCFC .
In [26] it was proved that dimH(JCFC) ≤ 1.885. Priyadashi [32] established the
lower bound dimH(JCFC) ≥ 1.825. Recently Falk and Nussbaum [9, 10] devel-
oped a new method in order to obtain very effective estimates for dimH(JCFC). In
particular their method indicates that 1.85574 ≤ dimH(JCFC) ≤ 1.85589, although
as the authors mention, see [9, Remark 3.2], some interval arithmetic is required
in order to make the last estimate rigorous.

In Section 7 we study the dimension spectrum DS(CFC) and we settle the
Texan conjecture for complex continued fractions. Our main result there reads
as follows.

Theorem 1.4. The conformal iterated function system associated to the complex contin-
ued fractions has full spectrum; that is

DS(CFC) = [0, dimH(JCFC)].

Our proof strategy is inspired by the one of Kesseböhmer and Zhu from [23].
In particular we develop further on [23, Theorem 2.2], which we restate in Theo-
rem 6.3, and derive several crucial consequences, see e.g. Corollary 6.17. Among
several key new ideas in our proof is the introduction of a natural order on the
grid E, see Definition 1.4, as well as a bootstrapping argument involving the di-
mension spectrum of certain subsystems of CFC. We also record that our proof
is technically more involved than the one for real continued fractions, demands
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FIGURE 1. An approximation of the limit set of the complex con-
tinued fractions IFS after two iterations.

subtler estimates, and, as another new feature, it is also heavily computer as-
sisted. For example we use numerics in order to obtain rigorous estimates for the
Hausdorff dimension of certain subsystems of CFC which play important role in
the proof of Theorem 1.4. This is a rather interesting novelty because it shows
that estimates of Hausdorff dimension of limit sets using numerical analysis, as
in [9, 10, 21, 22, 32], can be employed in order to obtain theoretical results such as
Theorem 1.4.

The paper is organized as follows. In Section 2 we lay down the necessary
background from symbolic dynamics and we prove various estimates for the
topological pressure of subsystems. In Section 3 we introduce all the relevant
concepts related to graph directed Markov systems and we introduce and study
new natural parameters which can be realized as variants of the parameter θ. In
Section 4 we introduce new dimension spectra for GDMS and study their size
and topological properties. In Section 5 we provide an effective tool for calcu-
lating the Hausdorff dimension of the limit set of any finitely irreducible and
strongly regular conformal GDMS with arbitrarily high accuracy. We thus gen-
eralize the main result of [13] to the setting of GDMSs and we simultaneously
provide a substantially simpler proof. In Section 6 we narrow our focus to the
dimension spectrum of general conformal iterated function systems. The ma-
chinery developed in Section 6 is used, among other tools, in Section 7 to prove
that the dimension spectrum of complex continued fractions is full.
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2. PRESSURE ESTIMATES FOR COUNTABLE ALPHABET SUBSETS OF FINITE TYPE

In this section we introduce all the relevant concepts from symbolic dynamics
with countable alphabets and we establish qualitative bounds for the topological
pressure of Hölder functions.

Let N = {1, 2, . . .} be the set of all positive integers and let E be a countable set,
either finite or infinite, which we will call alphabet. Let

σ : EN → EN

be the shift map, which is given by the formula

σ ((ωn)∞n=1) = ((ωn+1)∞n=1) .

Note that the shift map simply discards the first coordinate. We now proceed
with some standard notation from symbolic dynamics. For every finite word
ω ∈ E∗ := ∪∞n=0E

n, |ω|will denote its length, that is the unique integer n ≥ 0 such
that ω ∈ En. As a standard convention we let E0 = {∅}. If ω, υ ∈ EN, τ ∈ E∗ and
n ≥ 1, we set

ω|n = ω1 . . . ωn ∈ En,

τω = (τ1, . . . , τ|τ |, ω1, . . . ),

ω ∧ υ = longest initial block common to both ω and τ .

Note that ω ∧ υ ∈ EN ∪ E∗.
Let the matrix A : E × E → {0, 1} and set

EN
A := {ω ∈ EN : Aωiωi+1

= 1 for all i ∈ N}.
The words in EN

A will be called A-admissible. In the same way the set of finite
admissible words is defined as

En
A := {w ∈ EN : Aωiωi+1

= 1 for all 1 ≤ i ≤ n− 1}, n ∈ N,
and

E∗A :=
∞⋃
n=0

En
A.

For every ω ∈ E∗A, its corresponding cylinder is

[ω] := {τ ∈ EN
A : τ||ω| = ω}.

For α > 0, we consider the metrics dα on EN by setting

dα(ω, τ) = e−α|ω∧τ |.

It follows easily that the metrics dα induce the same topology. If no metric is
specifically mentioned, EN will be treated as a topological space with the topol-
ogy defined by d1. Note that EN

A is a closed subset of EN, invariant under the shift
map σ : EN → EN.

The matrix A : E × E → {0, 1} is called irreducible if there exists Λ ⊂ E∗A such
that for all i, j ∈ E there exists ω ∈ Λ for which iωj ∈ E∗A. If there exists a finite set
Λ with the previous property, the matrix A will be called finitely irreducible. If in
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addition there exists a finite set Λ ⊂ E∗A consisting of words of the same lengths
such that for all i, j ∈ E there exists ω ∈ Λ such that iωj ∈ E∗A, then the matrix A
is called finitely primitive.

Given a set F ⊂ E we put

FN := {ω ∈ EN : ωi ∈ F for all i ∈ N},
and

F n
A := En

A ∩ F n = {ω ∈ F n : Aωiωi+1
= 1 for all 1 ≤ i ≤ n− 1},

where A : E × E → {0, 1} is a matrix. Slightly abusing notation, the set F ⊂ E
will be called irreducible (with respect to the matrix A) if there exists a set Λ ⊂ F ∗A
such that for all i, j ∈ F there exists ω ∈ Λ for which iωj ∈ F ∗A. If Λ ⊂ F ∗A is a
set witnessing irreducibilty for F we will denote by Λ̃ the set of all letters from F
appearing in the words of Λ. Formally

Λ̃ = {e ∈ F : ωi = e for some ω ∈ Λ, i = 1, . . . , |ω|}. (2.1)

We stress that from now on, until otherwise noted, A will denote a fixed finitely
irreducible matrix.

Given a function f : FN
A → R, the n-th partition function with respect to F and f

is defined as

Zn(F, f) =
∑
ω∈FnA

exp

(
sup
τ∈[ω]F

n−1∑
j=0

f(σj(τ))

)
,

where [ω]F = {τ ∈ FN
A : τ ||ω| = ω}.

The following lemma is crucial for the definition of topological pressure which
will follow shortly. For its proof see e.g. [5, Lemma 6.3]

Lemma 2.1. The sequence (logZn(F, f))∞n=1 is subadditive, i.e.
logZm+n(F, f) ≤ logZn(F, f) + logZm(F, f)

for all m,n ∈ N.

It is well known that if (an)∞n=1 is subadditive sequence, then limn→∞
an
n

exists
and is equal to infn≥1(an/n). Therefore the following definition makes sense.

Definition 2.2. Let F ⊂ E and a function f : FN
A → R. The topological pressure of

f with respect to the shift map σ : FN
A → FN

A is defined to be

P σ
F (f) := lim

n→∞

1

n
logZn(F, f) = inf

{
1

n
logZn(F, f)

}
.

If F = E we suppress the subscript F and write simply P σ(f) for P σ
E(f) and

Zn(f) for Zn(E, f).

Topological pressure is a key concept in symbolic dynamics with countable al-
phabet. For a concise but rigorous exposition see [5, Chapter 6]; a more extensive
treatment can be found in [28].

Our goal in this section is to obtain estimates of P σ
F∪{a}(f) in terms of P σ

F and
supω∈[a] f(ω) in the case when both E and F are finitely irreducible. We start
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by stating an important distortion lemma for Hölder continuous functions. A
function f : EN

A → R is Hölder continuous with exponent α > 0 if

Vα(f) := sup
n≥1
{Vα,n(f)} <∞,

where

Vα,n(f) = sup{|f(ω)− f(τ)|eα(n−1) : ω, τ ∈ EN
A and |ω ∧ τ | ≥ n}.

For functions f : EN
A → R we will also use the standard notation

Snf =
n−1∑
j=0

f ◦ σj, n ∈ N.

The proof of the following lemma can be found in [5, Lemma 6.25].

Lemma 2.3. Let E be a finitely irreducible set. If g : EN
A → C such that Vα(g) < ∞,

then for all n ≥ 1, for all ω, τ ∈ EN
A, and all ρ ∈ En

A with Aρnω1 = Aρnτ1 = 1 we have∣∣Sng(ρω)− Sng(ρτ)
∣∣ ≤ Vα(g)

eα − 1
dα(ω, τ).

For any g : EN
A → R we define

B(g) :=
{
M > 0 : |Sng(ρω)− Sng(ρτ)| ≤M, for all n ∈ N, ω, τ ∈ EN

A, ρ ∈ En
A

}
and we set

L(g) := inf B(g). (2.2)

Note that if that if g Hölder then Lemma 2.3 implies that L(g) <∞.
We now proceed to a key technical lemma of combinatorial flavor which will

allow us to obtain the desired pressure estimates. For any finite set Λ ⊂ E∗ and
any f : EN

A → R we denote
pΛ := max

λ∈Λ
|λ|

and

κΛ(f) = min
λ∈Λ

{
inf
[λ]
eS|λ|f

}
. (2.3)

Lemma 2.4. Let E be a finitely irreducible infinite countable set. Let F ⊂ E be a finitely
irreducible subset of E and let Λ be a nonempty set witnessing finite irreducibility for F .
Then for every a ∈ E and every α-Hölder function f : EN

A → R,

Zn(F ∪ {a}, f) ≤ e2L(f)

n∑
j=0

(
n

j

) (
]Λ exp(sup f |[a] + L(f))

κΛ(f)

)n−j j+pΛ(n−j)∑
k=n

Zk(F, f),

for every n ∈ N.
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Proof. We set

F n
j = {ω ∈ (F ∪ {a})nA : the letter e appears n− j times in ω}. (2.4)

Therefore

Zn(F ∪ {a}, f) ≤
n∑
j=0

∑
ω∈Fnj

exp(supSnf |[ω]). (2.5)

Observe that if ω ∈ F n
j then it is of the form

ω = ρ1aρ2 . . . ρn−jaρn−j+1, (2.6)

where ρi ∈ F ∗A ∪ {∅} for i = 1, . . . , n− j + 1. Since Λ ⊂ F ∗A is finite,

Λ = {λ1, . . . , λ]Λ}.
For any two words ω, υ ∈ F ∗A we define

[ω, υ] = min{i ∈ {1, . . . , ]Λ} : ωλiυ ∈ F ∗A}.
We then define a map

g : (F ∪ {a})∗A → F ∗A
as follows. If ω ∈ (F ∪ {a})∗A then there exists some n, j ∈ N such that ω ∈ F n

j . In
that case, as we discussed earlier, ω is as in (2.6). We then let

g(ω) := ω̄ := ρ1α1ρ2 . . . ρn−jαn−jρn−j+1

where αi = λ[ρi,ρi+1] for i = 1, . . . , n− j.
We now make the following key observation. The map g : F n

j → F ∗A is at most

(]Λ)n−j
(
n

j

)
to 1. (2.7)

To prove our claim we fix some word ω̄ ∈ g(F n
j ) and we set

F n
j (k1, . . . , kn−j) = {ω ∈ F n

j : the letter a appears on the spots k1, . . . , kn−j},
where 1 ≤ ki ≤ n. We will now establish an upper bound for the number of
elements in the set

Anj (k1, . . . , kn−j) := (g|Fnj )−1(ω̄) ∩ F n
j (k1, . . . , kn−j).

Let ω, ω′ ∈ Anj (k1, . . . , kn−j), ω 6= ω′,

ω = ρ1aρ2a . . . ρn−jaρn−j+1

and
ω′ = ρ′1aρ

′
2a . . . ρ

′
n−jaρ

′
n−j+1.

Observe that for all i = 1, . . . , n− j
|ρi| = |ρ′i| (2.8)

because |ω| = |ω′| and a occupies exactly the same spots in ω and ω′. Moreover
since ω 6= ω′ there exists some i0 ∈ {1, . . . , n− j + 1} such that

ρi0 6= ρ′i0 . (2.9)
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Observe that necessarily

(λ[ρ1,ρ2], λ[ρ2,ρ1], . . . , λ[ρn−j ,ρn−j+1]) 6= (λ[ρ′1,ρ
′
2], λ[ρ′2,ρ

′
1], . . . , λ[ρ′n−j ,ρ

′
n−j+1]). (2.10)

Because otherwise we would get that

g(ω) = ρ1λ[ρ1,ρ2]ρ2 . . . ρn−jλ[ρn−j ,ρn−j+1]ρn−j+1

= ρ′1λ[ρ1,ρ2]ρ
′
2 . . . ρn−jλ[ρn−j ,ρn−j+1]ρ

′
n−j+1 = g(ω′),

which combined with (2.8) implies that ρi = ρ′i for all i = 1, . . . , n − j. But this is
impossible by (2.9). Therefore (2.10) holds and it implies that

]Anj (k1, . . . , kn−j) ≤ (]Λ)n−j. (2.11)

Note that
F n
j =

⋃
(k1,...,kn−j):

1≤k1<k2<···<kn−j≤n

Anj (k1, . . . , kn−j),

and there exist at most
(
n
j

)
sets Anj (k1, . . . , kn−j). Hence (2.7) follows by (2.11).

For simplicity we let κ := κΛ(f) and L = L(f). The next step in the proof of
Lemma 4.3 is to show that for every ω ∈ F n

j ,

supSnf |[ω] ≤ (n− j)(sup f |[a] + L− log κ) + supS|ω̄|f |[ω̄]F + 2L. (2.12)

Let ω = ρ1aρ2 . . . ρn−jaρn−j+1 where as we observed earlier some of the ρi’s
might be empty words. If ρ is an empty word we make the convention that
supS|ρ|f |[ρ] = 0. We will first prove that for every ω ∈ F n

j ,

supSnf |[ω] ≤ (n− j) sup f |[a] +

n−j+1∑
i=1

supS|ρi|f |[ρi]. (2.13)

To see (2.13), take τ ∈ [ω]. Then

n−1∑
l=0

f(σl(τ)) =

|ρ1|−1∑
l=0

f ◦ σl(τ) + f(σ|ρ1|(τ)) +

|ρ1|+|ρ2|∑
l=|ρ1|+1

f ◦ σl(τ)

+ f(σ|ρ1|+|ρ2|+1(τ)) + · · ·+
|ρ1|+···+|ρn−j |+|ρn−j+1|+(n−j)−1∑

l=|ρ1|+···+|ρn−j |+(n−j)

f ◦ σl(ω).

Since ω = ρ1aρ2 . . . ρn−jaρn−j+1 we deduce that
n−1∑
l=0

f(σj(τ)) ≤ (n− j) sup f |[a] +

n−j+1∑
i=1

supS|ρi|f |[ρi],

and (2.13) follows.
Recall that

g(ω) = ω̄ = ρ1λ[ρ1,ρ2]ρ2 . . . ρn−jλ[ρn−j ,ρn−j+1]ρn−j+1.
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We will now prove that
n−j+1∑
i=1

supS|ρi|f |[ρi] ≤ supS|ω̄|f |[ω̄] + (n− j)(L− log κ) + L. (2.14)

Take υ ∈ [ω̄]. Then,
|ω|−1∑
l=0

f(σl(υ)) =

|ρ1|−1∑
l=0

f ◦ σl(υ) +

|ρ1|+|λ[ρ1,ρ2]|−1∑
l=|ρ1|

f ◦ σl(υ) +

|ρ1|+|λ[ρ1,ρ2]|+|ρ2|−1∑
l=|ρ1|+|λ[ρ1,ρ2]|

f ◦ σl(υ)

+

|ρ1|+|λ[ρ1,ρ2]|+|ρ2|+λ[ρ2,ρ3]−1∑
l=|ρ1|+|λ[ρ1,ρ2]|+|ρ2|

f ◦ σl(υ)

+ · · ·+
|ρ1|+|λ[ρ1,ρ2]|+···+|ρn−j |+|λ[ρn−j ,ρn−j+1]|+|ρn−j+1|−1∑

l=|ρ1|+|λ[ρ1,ρ2]|+···+|ρn−j |+|λ[ρn−j ,ρn−j+1]|

f ◦ σl(υ).

Hence
n−1∑
l=0

f(σl(υ)) = S|ρ1|f(υ) + S|λ[ρ1,ρ2]|f(σ|ρ1|(υ))

+ S|ρ2|f(σ|ρ1|+|λ[ρ1,ρ2]|(υ)) + S|λ[ρ2,ρ3]|f(σ|ρ1|+|λ[ρ1,ρ2]|+|ρ2|(υ))

+ · · ·+ S|ρn−j+1|f(σ
|ρ1|+|λ[ρ1,ρ2]|+···+|ρn−j |+|λ[ρn−j ,ρn−j+1]|(υ)).

(2.15)

By the definition of κ we deduce that

S|λ[ρi,ρi+1]|f(σ|ρ1|+...|λ[ρi−1,ρi]
|+|ρi|(υ)) ≥ log κ (2.16)

for all i = 1, . . . , n− j. By Lemma 2.3 we also deduce that

S|ρi|f(σ|ρ1|+···+|ρi−1|+|λ[ρi−1,ρi]
|(υ)) ≥ supS|ρi|f |[ρi] − L (2.17)

for all i = 1, . . . , n− j + 1. Therefore by (2.15), (2.16) and (2.17), we deduce that

supS|ω̄|f |[ω̄] ≥
n−j+1∑
i=1

supS|ρi|f |[ρi] + (n− j)(log κ− L)− L,

and (2.14) follows.
Observe that since ω̄ ∈ F , Lemma 2.14 implies

supS|ω̄|f |[ω̄] ≤ supS|ω̄|f |[ω̄]F + L. (2.18)

Therefore (2.12) follows by (2.13), (2.14) and (2.18).
By (2.5) and (2.12),

Zn(F ∪ {a}, f)

≤
n∑
j=0

∑
ω∈Fnj

exp
(
(n− j)(sup f |[a] + L− log κ) + supS|ω̄|f |[ω̄]F + 2L

)
.

(2.19)
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If ω ∈ F n
j then

n ≤ |ω̄| ≤ j + pΛ(n− j),
therefore (2.7) implies that

∑
ω∈Fnj

exp(supS|ω̄|f |[ω̄]F ) ≤ (]Λ)n−j
(
n

j

) j+pΛ(n−j)∑
k=n

Zk(F, f). (2.20)

The proof of the lemma follows by (2.5), (2.19) and (2.20). �

Using Lemma 2.4 we prove two Propositions which give useful qualitative
bounds for P σ

F∪{a}(f) in terms of P σ
F (f) and sup f |[a].

Proposition 2.5. Let E be a finitely irreducible infinite countable set. Let F ⊂ E
be a finitely irreducible subset of E and let Λ be a nonempty set witnessing finite
irreducibility for F . Then for every a ∈ E and every α-Hölder function f : EN

A →
R such that P σ

F (f) < 0,

eP
σ
F∪{a}(f) ≤ eP

σ
F (f) +

]Λ eL(f)

κΛ(f)
esup f |[a] .

Proof. As in the previous lemma we let κ := κΛ(f) and L = L(f). Let ε ∈
(0, |P σ

F (f)|). By the definition of the pressure function we know that there exists
some N0 ∈ N such that for all n ≥ N0,

Zn(F, f) ≤ e(PσF (f)+ε)n.

Therefore applying Lemma 2.4 for n ≥ N0 and using that P σ
F (f)+ε < 0 we obtain

that

Zn(F ∪ {a}, f) ≤ e2L

n∑
j=0

(
n

j

) (
]Λ exp(sup f |[a] + L)

κ

)n−j j+pΛ(n−j)∑
k=n

e(PσF (f)+ε)k

≤ e2LpΛn
n∑
j=0

(
n

j

) (
]Λ exp(sup f |[a] + L)

κ

)n−j
e(PσF (f)+ε)n

≤ e2LpΛn
n∑
j=0

(
n

j

) (
]Λ exp(sup f |[a] + L)

κ

)n−j
e(PσF (f)+ε)j

= e2LpΛn

(
]Λ exp(sup f |[a] + L)

κ
+ e(PσF (t)+ε)

)n
.

Taking n-th roots and letting n→∞we get,

eP
σ
F∪{a}(f) ≤ eP

σ
F (f)+ε +

]Λ exp(sup f |[a] + L)

κ
.

The proof now follows because ε can be taken arbitrarily small. �
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Proposition 2.6. Let E be a finitely irreducible infinite countable set. Let F ⊂ E
be a finitely irreducible subset of E and let Λ be a nonempty set witnessing finite
irreducibility for F . Then for every a ∈ E and every α-Hölder function f : EN

A →
R such that P σ

F (f) ≥ 0,

eP
σ
F∪{a}(t) ≤ eP

σ
F (f) +

]Λ eL(f)

κΛ(f)
epΛP

σ
F (f) esup f |[a] .

Proof. Let ε > 0 and let N0 large enough such that for all k ≥ N0,

Zk(F, f) ≤ e(PσF (f)+ε)k.

Therefore by Lemma 4.3 for n ≥ N0 we have that

e−pΛn(PσF (f)+ε)Zn(F ∪ {a}, f)

≤ e2L

n∑
j=0

(
n

j

) (
]Λ exp(sup f |[a] + L)

κ

)n−j j+pΛ(n−j)∑
k=n

e−pΛn(PσF (f)+ε)e(PσF (f)+ε)k

≤ e2L

n∑
j=0

(
n

j

)(
]Λ exp(sup f |[a] + L)

κ

)n−j j+pΛ(n−j)∑
k=n

e−ε(pΛn−k)e−P
σ
F (f)(pΛn−k).

Now note that for k = n, . . . , j + pΛ(n− j),

pΛn− k ≥ pΛn− j − pΛ(n− j) = (pΛ − 1)j.

Hence

e−pΛn(PσF (f)+ε)Zn(F ∪ {a}, f)

≤ e2L

n∑
j=0

(
n

j

)(
]Λ exp(sup f |[a] + L)

κ

)(n−j)

e−P
σ
F (f)(pΛ−1)j

n(pΛ−1)∑
l=j(pΛ−1)

e−εl

≤ e2LpΛn
n∑
j=0

(
n

j

)(
]Λ exp(sup f |[a] + L)

κ

)(n−j)

e−P
σ
F (f)(pΛ−1)je−εj(pΛ−1)

≤ e2LpΛn

(
]Λ exp(sup f |[a] + L)

κ
+ e−P

σ
F (f)(pΛ−1)

)n
.

Taking n-th roots and letting n→∞we get,

eP
σ
F∪{a}(f) ≤ epΛ(PσF (f)+ε)

(
]Λ exp(sup f |[a] + L)

κ
+ e−P

σ
F (f)(pΛ−1)

)
.

The proof now follows because ε can be taken arbitrarily small. �

As an immediate corollary of Proposition 2.5 and 2.6 we have the following
estimate.
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Corollary 2.7. Let E be a finitely irreducible infinite countable set. Let F ⊂ E be a
finitely irreducible subset ofE and let Λ be a nonempty set witnessing finite irreducibility
for F . Then for every a ∈ E and every α-Hölder function f : EN

A → R,

eP
σ
F∪{a}(f) ≤ eP

σ
F (f) +

]Λ eL(f)

κΛ(f)
max{1, epΛP

σ
F (f)} esup f |[a] .

3. REVISITING θ PARAMETERS OF GRAPH DIRECTED MARKOV SYSTEMS

The goal of this section is to clarify the role of θ-parameters in the setting of
Graph Directed Markov Systems. A graph directed Markov system (GDMS)

S =
{
V,E,A, t, i, {Xv}v∈V , {φe}e∈E

}
consists of

• a directed multigraph (E, V ) with a countable set of edges E, frequently
referred to also as alphabet, and a finite set of vertices V ,
• an incidence matrix A : E × E → {0, 1},
• two functions i, t : E → V such that t(a) = i(b) whenever Aab = 1,
• a family of non-empty compact metric spaces {Xv}v∈V ,
• a number s, 0 < s < 1, and
• a family of injective contractions

{φe : Xt(e) → Xi(e)}e∈E
such that every φe, e ∈ E, has Lipschitz constant no larger than s.

We will usually use the more economical notation S = {φe}e∈E for a GDMS.
Moreover we will assume that for every v ∈ V there exist e, e′ ∈ E such that
t(e) = v and i(e′) = v.

A GDMS S =
{
V,E,A, t, i, {Xv}v∈V , {φe}e∈E

}
is said to be finitely irreducible if

its associated incidence matrix A is finitely irreducible. Notice that if S is a finite
irreducible GDMS then it is finitely irreducible.

For ω ∈ E∗A we consider the map coded by ω:
φω = φω1 ◦ · · · ◦ φωn : Xt(ωn) → Xi(ω1) if ω ∈ En

A. (3.1)

For the sake of convenience we will write t(ω) = t(ωn) and i(ω) = i(ω1) for ω as
in (3.1).

For ω ∈ EN
A, the sets {φω|n(Xt(ωn))}∞n=1 form a descending sequence of non-

empty compact sets and therefore have nonempty intersection. Since
diam(φω|n(Xt(ωn))) ≤ sn diam(Xt(ωn)) ≤ sn max{diam(Xv) : v ∈ V }

for every n ∈ N, we conclude that the intersection⋂
n∈N

φω|n(Xt(ωn))

is a singleton and we denote its only element by π(ω). In this way we define the
coding map

π : EN
A →

⊕
v∈V

Xv, (3.2)
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the latter being a disjoint union of the sets Xv, v ∈ V . The set

J = JS := π(EN
A)

will be called the limit set (or attractor) of the GDMS S.
We will be interested in conformal GDMS.

Definition 3.1. A graph directed Markov system is called conformal if the follow-
ing conditions are satisfied.

(i) For every vertex v ∈ V , Xv is a compact connected subset of a fixed ambi-
ent space and Xv = Int(Xv).

(ii) (Open set condition or OSC). For all a, b ∈ E, a 6= b,

φa(Int(Xt(a))) ∩ φb(Int(Xt(b))) = ∅.
(iii) For every vertex v ∈ V there exists an open connected set Wv sptXv such

that for every e ∈ E with t(e) = v, the map φe extends to a conformal
diffeomorphism of Wv into Wi(e).

Remark 3.2. In the particular case when V is a singleton and for every e1, e2 ∈ E,
Ae1e2 = 1 if and only if t(e1) = i(e2), the GDMS is called an iterated function system
(IFS). In particular when we write that S = {φe}e∈E is a conformal IFS, according
to Definition 3.1, we will assume that S satisfies the open set condition.

Remark 3.3. At this point some clarifications are needed. If the ambient space
is Euclidean, either Rn or C, then the term conformal diffeomorphism corresponds
to its standard meaning. Recently in the monograph [5], the first and third au-
thor together with Tyson extended the framework of conformal graph directed
Markov systems in the sub-Riemannian setting of Carnot groups. A Carnot group
is a connected and simply connected nilpotent Lie group G whose Lie algebra g
admits a stratification

g = v1 ⊕ · · · ⊕ vι (3.3)
into vector subspaces satisfying the commutation rules

[v1, vi] = vi+1 (3.4)

for 1 ≤ i < ι and [v1, vι] = (0). In particular, the full Lie algebra is generated via
iterated Lie brackets of elements of the lowest layer v1 of the stratification. For
a very concise introduction to Carnot groups see e.g. [5, Chapter 1], a far more
extensive source is [2]. The simplest example of a nonabelian Carnot group is
the first (complex) Heisenberg group Heis. The underlying space for Heis is R3,
which we also view as C× R. We endow C× R with the group law

(z; t) ∗ (z′; t′) = (z + z′; t+ t′ + 2 Im(zz′)),

where we denote elements of Heis by either (z; t) ∈ C × R or (x, y; t) ∈ R3. A
good reference on Heisenberg groups is [4]. The Heisenberg group is the lowest-
dimensional example in a class of groups, the Iwasawa groups, which are the
nilpotent components in the Iwasawa decomposition of real rank one simple Lie
groups. The one-point compactifications of these groups, equipped with suitable
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sub-Riemannian metrics, arise as boundaries at infinity of the classical rank one
symmetric spaces. For more details see [5, Chapter 2] and the references therein.

Returning to Definition 3.1, in the case when the ambient space is a fixed
Carnot group G, a homeomorphism f : Ω → Ω′ between domains in G is said
to be conformal if

lim
r→0

sup{dcc(f(p), f(q)) : dcc(p, q) = r}
inf{dcc(f(p), f(q′)) : dcc(p, q′) = r}

= 1

for all p ∈ Ω. Here dcc denotes the Carnot-Carathéodory path metric in G. We also
remark that if f : Ω→ Ω′ is a conformal map between domains in Rn or C we will
denote its usual derivative at a point p ∈ Ω by Df(p). In that case ‖Df(p)‖ will
denote the norm of Df(p). If on the other hand f : Ω→ Ω′ is a Carnot conformal
map and p ∈ Ω, then

‖Df(p)‖ = lim
q→p

d(f(p), f(q))

d(p, q)
,

and it is usually referred to as the maximal stretching factor of f at p. As in the
Euclidean case the quantity ‖Df(·)‖ satisfies the Leibniz rule

‖D(f ◦ g)(p)‖ = ‖Df(g(p))‖ ‖Dg(p)‖. (3.5)

For the proof see [5, Chapter 3].

Controlling the distortion of conformal maps is essential for developing the
thermodynamic formalism for GDMS. We will use the following lemma repeat-
edly. For the proof in the Euclidean case see [28, Section 4.1], for the proof in the
case of Carnot GDMS see [5, Lemma 4.9].

Lemma 3.4 (Bounded Distortion Property). Let S = {φe}e∈E be a conformal GDMS.
There exists a constant K ≥ 1 so that∣∣∣∣‖Dφω(p)‖

‖Dφω(q)‖
− 1

∣∣∣∣ ≤ Kd(p, q)

and

K−1 ≤ ‖Dφω(p)‖
‖Dφω(q)‖

≤ K

for every ω ∈ E∗A and every pair of points p, q ∈ Xt(ω).

For ω ∈ E∗A we set
‖Dφω‖∞ := ‖Dφω‖Xt(ω)

.

Lemma 3.4 and (3.5) easily imply that if ω ∈ E∗A and ω = τυ for some τ, υ ∈ E∗A,
then

K−1‖Dφτ‖∞ ‖Dφυ‖∞ ≤ ‖Dφω‖∞ ≤ ‖Dφτ‖∞ ‖Dφυ‖∞. (3.6)
Let S = {φe}e∈E be a finitely irreducible conformal GDMS. For t ≥ 0, n ∈ N

and F ⊂ E let
Zn(F, t) =

∑
ω∈FnA

‖Dφω‖t∞. (3.7)
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When F = E, we just write Zn(t) instead of Zn(E, t). By (3.6) we easily see that
Zm+n(t) ≤ Zm(t)Zn(t), (3.8)

and consequently, the sequence (logZn(t))∞n=1 is subadditive. Thus, the limit

lim
n→∞

logZn(t)

n
exists and equals infn∈N(logZn(t)/n). The value of the limit is denoted by P (t) or,
if we want to be more precise, by PE(t) or PS(t). It is called the topological pressure
of the system S evaluated at the parameter t.

Recall that a notion of topological pressure has already appeared in Section 2,
Defintion 2.2, in the context of symbolic dynamics. The next lemma whose proof
can be found in [28, Proposition 3.1.4] establishes the natural relation between
the two notions. Before stating it we introduce an important potential. Let ζ :
EN
A → R defined by the formula

ζ(ω) := log ‖Dφω1(π(σ(ω))‖, (3.9)
where the coding map π was defined in (3.2).

Lemma 3.5. For t ≥ 0 the function tζ : EN
A → R is Hölder continuous and P σ(tζ) =

P (t).

The following well known proposition gathers some fundamental properties
of topological pressure in the setting of finitely irreducible conformal GDMS.

Proposition 3.6. Let S be a finitely irreducible conformal GDMS. Then the fol-
lowing conclusions hold.

(i) {t ≥ 0 : Z1(t) < +∞} = {t ≥ 0 : P (t) < +∞}.
(ii) The topological pressure P is strictly decreasing on [0,+∞) with P (t) →
−∞ as t → +∞. Moreover, the function P is convex and continuous on
{t ≥ 0 : Z1(t) < +∞}.

(iii) P (0) = +∞ if and only if E is infinite.

The proof of (i) follows by [5, Proposition 4.1]. The proofs of (ii) and (iii) follow
easily by the definition of topological pressure and they are omitted.

Definition 3.7. Let S = {φe}e∈E be a finitely irreducible conformal GDMS. The
number

h = h(S) := inf{t ≥ 0 : P (t) ≤ 0}
is called Bowen’s parameter of the system S.

Note that if S is a finitely irreducible conformal GDMS, then P (h) ≤ 0. This
follows easily by Proposition 3.6.

Definition 3.8. A finitely irreducible conformal GDMS S is:
(i) regular if P (h) = 0,

(ii) strongly regular if there exists t ≥ 0 such that 0 < P (t) < +∞.

Remark 3.9. If S is a finitely irreducible conformal GDMS, then θ ≤ h. If S is
strongly regular then θ < h.
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We record the following fundamental theorem from thermodynamic formal-
ism which relates Bowen’s parameter to the Hausdorff dimension of dynamical
systems. For the proof see [5, Theorem 7.21].

Theorem 3.10. If S is a finitely irreducible Carnot conformal GDMS, then
h(S) = dimH(JS) = sup{dimH(JF ) : F ⊂ E finite }.

The following lemma is a generalization of Lemma 3.19 from [26] and a cor-
rected version of Lemma 4.3.3 from [28].

Lemma 3.11. Let S be a finitely irreducible Carnot conformal GDMS. The following
conditions are equivalent.

(i) Z1(t) <∞.
(ii) There exists a finitely irreducible cofinite subsystem SF of S such that Z1(F, t) <
∞.

(iii) For every finitely irreducible cofinite subsystem SF of S it holds that Z1(F, t) <
∞.

(iv) P (t) <∞.
(v) There exists a finitely irreducible cofinite subsystem SF of S such that PF (t) <
∞.

(vi) For every finitely irreducible cofinite subsystem SF of S it holds that PF (t) <∞.

Proof. The equivalence of (i) and (iv) is a restatement of Proposition 3.6 (i). The
implications (iii) =⇒ (ii) and (vi) =⇒ (v) are trivial. The implication (i) =⇒ (iii)
is trivial because for all F ⊂ E, it holds that Z1(F, t) ≤ Z1(t). For the implication
(ii) =⇒ (i), assume by contradiction that (ii) holds and Z1(t) = ∞. Since F is
cofinite, ∑

e∈E\F

‖Dφe‖t∞ <∞,

hence
∑

e∈F ‖Dφe‖t∞ =∞, and we have reached another contradiction.
The implication (iv) =⇒ (vi) follows because for all F ⊂ E we have that

PF (t) ≤ P (t). Hence we only have to prove that (v) =⇒ (iv). Suppose on the
contrary that P (t) =∞ and there exists some cofinite and finitely irreducible set
F ⊂ E such that PF (t) < ∞. Then as before Z1(t) = ∞ and thus Z1(F, t) = ∞.
Since F is finitely irreducible the equivalence (i) and (iv) implies that PF (t) = ∞
and we have reached a contradiction. The proof of the lemma is complete. �

Remark 3.12. Note that the equivalence (i) ⇐⇒ (ii) ⇐⇒ (iii) in Lemma 3.11
holds even when the cofinite sets F are not finitely irreducible.

We are now ready to introduce the main objects of study of this section. If
S = {φe}e∈E is a GDMS and F ⊂ E we will denote by JF and hF the limit set and
Bowen’s parameter of the subsystem SF = {φe}e∈F .

Definition 3.13. Let S = {φe}e∈E be a finitely irreducible conformal GDMS. We
define

(i) θ := θ(S) = inf{t ≥ 0 : P (t) < +∞},
(ii) θ1 := θ1(S) = inf{dimH(JA) : A ⊂ E is cofinite},
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(iii) θ2 := θ2(S) = inf{dimH(JA) : A ⊂ E is cofinite and irreducible},
(iv) θ3 := θ3(S) = inf{dimH(JA) : A ⊂ E is cofinite and finitely irreducible}.

If Φ ⊂ E we also let

θ1(Φ) := θ1(S,Φ) = inf{dimH(JA) : A is cofinite and Φ ⊂ A}. (3.10)

We remind the reader that if Λ ⊂ E∗A, the set of all letters appearing in words
of Λ is denoted by Λ̃, see also (2.1).

Theorem 3.14. Let S = {φe}e∈E be a finitely irreducible conformal GDMS. Then
(i) θ1 ≤ θ2 ≤ θ3,

(ii) θ1 ≤ θ ≤ θ3,
(iii) θ3 = inf{θ1(Λ̃) : Λ witnesses finite irreducibility for some cofinite subset of E}.

Proof. We only need to prove (ii) and (iii) because (i) is obvious. We will first
prove that θ1 ≤ θ. To this end let t > θ. Then by Lemma 3.11∑

e∈E

‖Dφe‖t∞ <∞.

Therefore there exists some finite set M ⊂ E such that∑
e∈E\M

‖Dφe‖t∞ < 1.

Hence for every finite T such that M ⊂ T ⊂ E, we have that

Z1(E \ T ) ≤ Z1(E \M, t) < 1.

Therefore
PE\T (t) ≤ logZ1(E \ T, t) < 0,

which implies that t ≥ hE\T . Thus

inf{hF : F cofinite subset of E} ≤ θ.

Inspecting the first part of the proof of [5, Theorem 7.21] we deduce that for any
conformal GDMS T , not necessarily finitely irreducible, we have that

hT ≥ dimH JT . (3.11)

In particular
θ1 ≤ inf{hF : F cofinite subset of E} ≤ θ.

We will now prove that θ ≤ θ3. We start by proving that if F ⊂ E is cofinite
and finitely irreducible then

θ = θ(SF ). (3.12)
By Lemma 3.11,

θ = inf{t ≥ 0 :
∑
e∈E

‖Dφe‖t∞ <∞}

and
θ(SF ) = inf{t ≥ 0 :

∑
e∈F

‖Dφe‖t∞ <∞}.
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Hence θ(SF ) ≤ θ. For the converse inequality suppose on the contrary that
θ > θ(SF ). Therefore there exists some λ > 0 such that θ > λ > θ(SF ). In
particular P (λ) = ∞ and PF (λ) < ∞. Since F is cofinite and finitely irreducible,
Lemma 3.11 implies that P (λ) <∞, but this is a contradiction. So (3.12) has been
established.

If F ⊂ E is cofinite and finitely irreducible then by [5, Theorem 7.21], Lemma
3.11 and (3.12),

dimH(JF ) = hF = inf{t ≥ 0 : PF (t) ≤ 0}
≥ inf{t ≥ 0 : PF (t) <∞}
= inf{t ≥ 0 : Z1(F, t) <∞} = θ(SF ) = θ.

Hence θ ≤ θ3 and the proof of (ii) is complete.
We will now prove (iii). Let

θ′3 = inf{θ1(Λ̃) : Λ witness finite irreducibility for some cofinite subset of E}.
We will first show that θ3 ≤ θ′3. Suppose by way of contradiction that there exists
some λ ∈ (θ′3, θ3). So there exists a finite set Λ ⊂ E∗A and a cofinite set F ⊂ E such
that Λ witnesses finite irreducibility for F and θ1(Λ̃) < λ. This means that

λ > inf{dimH(JA) : Λ̃ ⊂ A and A is cofinite}
≥ dimH(JF )

≥ inf{dimH(JB) : B is cofinite and finitely irreducible}
= θ3,

which is a contradiction.
We will finally show that θ′3 ≤ θ3. Take t > θ3. Then there exists A ⊂ E cofinite

and finitely irreducible such that dimH(JA) < t. Since A is finitely irreducible
there exists a finite set Λ ⊂ A such that Λ witnesses finite irreducibility for A.
Hence

θ′3 ≤ θ1(Λ) ≤ dimH(JA) < t.

Since twas arbitrary we deduce that indeed θ′3 ≤ θ3 and the proof is complete. �

We will now prove that Theorem 3.14 is sharp. We stress that this phenomenon
appears only in the framework of graph directed Markov systems, since in the
case of iterated function systems it is known [26, Theorem 3.23] that

θ = θ1 = θ2 = θ3.

Theorem 3.15. There exist finitely irreducible conformal GDMS’s Si, i = 1, . . . , 5, such
that

(i) θ1(S1) < θ2(S1).
(ii) θ1(S2) < θ(S2).

(iii) θ(S3) < θ2(S3).
(iv) θ2(S4) < θ3(S4).
(v) θ2(S5) < θ(S5).
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ɑ b

FIGURE 2. The arrows between any two points e, j ∈ E signify that
Aej = 1.

Proof. We begin with the proof of (i). Let {a, b} ∈ R \ Z be a pair of distinct
elements. Let

E = N ∪ {−N} ∪ {a, b}
and consider any conformal GDMS S = {V,E,A, t, i, {Xv}v∈V , {φe}e∈E} where
the matrix A is defined by

Ama = 1,∀m ∈ −N,
Abm = 1,∀m ∈ −N,
Aan = 1,∀n ∈ N,
Anb = 1,∀n ∈ N,

Aab = 1,

Aba = 1,

Aaa = 1,

Abb = 1,

and Aej = 0 for all other e, j ∈ E. See also Figure 2. Note that the systems S are
finitely irreducible and the set {a, b}witnesses finite irreducibility for E. Observe
also that if F ⊂ E is irreducible then {a, b} ⊂ F , therefore

θ2 ≥ dimH(JF ) ≥ dimH(J{a,b}) > 0.

On the other hand it is evident that θ1 = 0. Just consider the cofinite set I =
E \ {a, b} and notice that INA = ∅.

For the proof of (ii) it suffices to consider any system S as in the previous
example, consisting of similiarities such that for all n ∈ N,

‖Dφn‖∞ = ‖Dφ−n‖∞ = n−2,

and
‖Dφa‖∞ = ‖Dφb‖∞ = 1/2.
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Since this is just a special case of the examples considered in (i) we have that
θ1 = 0. On the other hand

Z1(t) = 2

(
(1/2)t +

∑
n∈N

n−2t

)
,

and by Lemma 3.11 we deduce that θ = 1/2.
The family introduced in (i) also contains examples which establish (iii). In this

case we consider similarity maps such that for all n ∈ N,

‖Dφn‖∞ = ‖Dφ−n‖∞ = e−n,

and
‖Dφa‖∞ = ‖Dφb‖∞ = 1/2.

Hence

Z1(t) = 2

(
(1/2)t +

∑
n∈N

e−tn

)
,

and and by Lemma 3.11 we deduce that θ = 0. Now recalling the proof of (i) we
have that θ2 ≥ dimH(J{a,b}) > 0, and the proof of (iii) is complete.

We now move to the proof of (iv). Let the alphabet E be as in the previous ex-
amples. We now consider conformal GDMS S = {V,E,A, t, i, {Xv}v∈V , {φe}e∈E}
where the matrix A is defined by

Ama = 1,∀m ∈ −N,
Abm = 1,∀m ∈ −N,
Aan = 1,∀n ∈ N,
Anb = 1,∀n ∈ N,

Am,m−1 = 1,∀m ∈ Z \ {0, 1}
An,−n = 1,∀n ∈ N,
A−n,n = 1,∀n ∈ N,

Aab = 1,

Aba = 1,

Aaa = 1,

Abb = 1,

and Aej = 0 for all other e, j ∈ E. See also Figure 3. As before we consider
similarity maps such that for all n ∈ N,

‖Dφn‖∞ = ‖Dφ−n‖∞ = e−n,

and
‖Dφa‖∞ = ‖Dφb‖∞ = 1/2.

The system S is finitely irreducible and if F is any finitely irreducible subset of E
then {a, b} ⊂ F and

θ3 ≥ dimH(JF ) ≥ dimH(J{a,b}) > 0.

We now consider the cofinite sets

Fq = {j ∈ Z : |j| ≥ q}
for i ∈ N. Note that the sets Fq are irreducible and moreover

Z1(Fq, t) = 2
∞∑
j=q

e−tj = 2e−tq(1− e−t)−1.
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Hence for all t > 0 there exists some q(t) ∈ N such that Z1(Fq(t), t) < 1. Therefore
for all t > 0,

PFq(t)(t) ≤ logZ1(Fq(t), t) < 0,

and
hFq(t) ≤ t.

Therefore
θ2 ≤ dimH(JFq(t)) ≤ t.

Since t > 0 was arbitrary we deduce that θ2 = 0.
For the proof of (iv) we let a ∈ R \ N and we consider the alphabet E = {n ∈

N : n ≥ 2} ∪ {a}. Let S = {V,E,A, t, i, {Xv}v∈V , {φe}e∈E} be a conformal GDMS
where the matrix A is defined by

Am,m+1 = 1,∀m ≥ 2,

Am+1,m = 1,∀m ≥ 2,

Aam = 1,∀m ≥ 2,

Ama = 1,∀m ≥ 2,

Aaa = 1,

and Aej = 0 for all other e, j ∈ E. See also Figure 4. The system S consists of
similarities such that for all m ∈ N,m ≥ 2,

‖Dφm‖∞ = m−1 and ‖Dφa‖∞ = 1/2.

Observe that S is finitely irreducible and

Z1(t) = 2−t +
∑
m≥2

m−t.
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ɑ

FIGURE 4.

Hence θ = 1. On the other hand for q ≥ 2 consider the irreducible sets

F (q) = {m ∈ N : m ≥ q}.

Then ω ∈ F (q)2
A if and only if ω = (n, n+1) or if ω = (m+1,m) for somem,n ≥ q.

Note that using (3.6) we get that

Z2(F (q), t) =
∑

ω∈F (q)2
A

‖Dφω‖t∞ ≤ 2
∑
n≥q

(n(n+ 1))−t.

Hence if t > 1/2 there exists some q ∈ N large enough such that Z2(F (q), t) < 1.
Therefore

P (t) ≤ logZ2(F (q), t)

2
< 0,

and consequently hF (q) ≤ t. Thus by (3.11)

θ2 ≤ dimH(JF (q)) ≤ hF (q) ≤ t.

Since t > 1/2 was chosen arbitrarily we deduce that θ2 ≤ 1/2 and the proof is
complete. �

The following theorem is the corrected version of Lemma 4.3.10 from [28]. It
extends some results from Section 3 of [26] in the setting of GDMS.

Theorem 3.16. Let S = {φe}e∈E be a finitely irreducible conformal GDMS. Then the
following conditions are equivalent.

(i) S is strongly regular.
(ii) h(S) > θ(S).

(iii) There exists a proper cofinite and finitely irreducible subsystem S ′ ⊂ S such that
h(S ′) < h(S).

(iv) For every proper and finitely irreducible subsystem S ′ ⊂ S it holds that h(S ′) <
h(S).
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Proof. The implications (iv)⇒(iii) and (ii)⇒(i) are immediate. In order to prove
the implication (iii)⇒(ii) suppose by way of contradiction that h(S) = θ(S). Let
S ′ be a cofinite and finitely irreducible subsystem of S such that h(S ′) < h(S). By
Theorem 3.14 (ii) and Theorem 3.10 we deduce that

h(S ′) ≥ θ3(S) ≥ θ(S).

Hence by our assumption h(S ′) ≥ θ(S) = h(S), which contradicts (iii).
For the remaining implication (i)⇒(iv) let E ′ ( E be finitely irreducible and

consider the corresponding proper subsystem of S, S ′ = {φe}e∈E′ . If S ′ is not
regular then by Proposition 3.6 we deduce that PS′(θ(S ′)) < 0. Since S is strongly
regular, recalling Remark 3.9, there exists some α ∈ (θ(S), h(S)). Therefore since
α > θ(S) ≥ θ(S ′) and the pressure function is strictly decreasing we deduce that
PS′(α) < 0. Thus by the definition of the parameter h(S ′), we get that h(S ′) ≤
α < h(S) and we are done in the case when S ′ is not regular.

Now by way of contradiction assume that S ′ is regular and

h(S) = h(S ′) := h.

By Theorem [5, Theorem 7.4] there exist unique measures µ̃h on EN
A and µ̃′h on

E ′A
N, which are ergodic and shift invariant with respect to σ : EN

A → EN
A and

σ′ : E ′A
N → E ′A

N respectively. Moreover, by [5, Proposition 7.19] we have that

m̃h � µ̃h � m̃h and m̃′h � µ̃′h � m̃′h, (3.13)

where m̃h, m̃
′
h stand for the h-conformal measures corresponding to S and S ′

respectively. We record that for every ω ∈ EA∗,

m̃h([ω]A) ≈ ‖Dφω‖h∞, (3.14)

and for every ω ∈ E ′A
∗

m̃′h([ω]′A) ≈ ‖Dφω‖h∞, (3.15)

where [ω]′A = [ω]A ∩ E ′A
N. These estimates are the only things that we will need

from conformal measures, for their definition as well as the proof of (3.14) see
[5, Section 7]. Note that (3.13), (3.14) and (3.15) imply that for every ω ∈ E ′A

∗,

µ̃h([ω]A) ≈ µ̃′h([ω]′A). (3.16)

Now in the obvious way we can extend µ̃′h to a Borel measure in EN
A, defined by

ν̃h(B) := µ̃′h(B ∩ E ′A
N
)

for Borel sets B ⊂ EN
A. We will first prove that

ν̃h � µ̃h.

It suffices to show that ifB is a Borel subset ofEN
A such thatB ⊂ E ′A

N and µ̃h(B) =
0 then ν̃h(B) = 0. Let ε > 0 and let U ⊂ EN

A be an open set such that U ⊃
B and µ̃h(U) < ε. Since the collection of cylinders forms a countable base for
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the topology of EN
A there exists a countable set I ⊂ EA

∗ consisting of mutually
incomparable words such that

U =
⋃
ω∈I

[ω]A.

Hence U ′ =
⋃
ω∈I [ω]A ∩ E ′A

N =
⋃
ω∈I [ω]′A and by (3.16),

ν̃h(B) ≤ ν̃h(U
′) =

∑
ω∈I

νh([ω]′A) =
∑
ω∈I

µ̃′h([ω]′A)

≈
∑
ω∈I

µ̃h([ω]A) = µ̃h(U) < ε.

Since ε > 0 was arbitrary, we deduce that ν̃h(B) = 0 and the proof is complete.
We will now show that ν̃h is shift invariant with respect to σ : EN

A → EN
A. First

notice that

ν̃h(σ
−1(E ′A

N
)) = ν̃h

(⋃
j∈E

{jω : ω ∈ E ′A
N}

)

= µ̃′h

(⋃
j∈E

{jω : ω ∈ E ′A
N} ∩ E ′A

N

)
= µ̃′h(E

′
A
N
) = ν̃h(E

′
A
N
).

Let F be a Borel subset of EN
A. Then

ν̃h(σ
−1(F )) = ν̃h(σ

−1(F ) ∩ E ′A
N
) = ν̃h(σ

−1(F ) ∩ σ−1(E ′A
N
))

= µ̃′h(σ
−1(F ∩ E ′A

N
) ∩ E ′A

N
).

(3.17)

We will now show that

σ−1(F ∩ E ′A
N
) ∩ E ′A

N
= σ′−1(F ∩ E ′A

N
). (3.18)

Recall that σ′ stands for the shift map in E ′A
N. We have,

σ−1(F ∩ E ′A
N
) ∩ E ′A

N
=
⋃
j∈E

{jω : ω ∈ F ∩ E ′A
N} ∩ E ′A

N

=
⋃
j∈E′
{jω : ω ∈ F ∩ E ′A

N} ∩ E ′A
N

= σ′−1(F ∩ E ′A
N
),

and (3.18) follows. Now using (3.17), (3.18) and the σ′-invariance of µ̃′h we get,

ν̃h(σ
−1(F )) = µ̃′h(σ

′−1(F ∩ E ′A
N
))

= µ̃′h(F ∩ E ′A
N
)

= ν̃h(F ).

Hence ν̃h is σ-invariant.
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We will now show that ν̃h is ergodic with respect to σ. By way of contradiction
suppose that there exists some Borel subset F of EN

A such that σ−1(F ) = F and
0 < ν̃h(F ) < 1. Let

F1 = F ∩ E ′A
N and F2 = F \ F1.

Since σ′−1(F1) ⊂ σ−1(F1) ⊂ F1 ∪ F2 and σ′−1(F1) ∩ F2 = ∅we deduce that

σ′−1(F1) ⊂ F1. (3.19)

Moreover,

F1 ⊂ F = σ−1(F ) ⊂
⋃
j∈E′
{jf : f ∈ F} ∪

⋃
j∈E\E′

{jf : f ∈ F}.

Therefore
F1 ⊂

⋃
j∈E′
{jf : f ∈ F1} ∩ E ′A

N
= σ′−1(F1),

which combined with (3.19) implies that

F1 = σ′−1(F1). (3.20)

Since µ̃′h is ergodic with respect to σ′ we deduce that either µ̃′h(F1) = 0 or µ̃′h(F1) =
1. Therefore, since ν̃h(F ) = µ̃h(F1),

ν̃h(F ) = 0 or ν̃h(F ) = 1,

and we have reached a contradiction. Thus ν̃h is ergodic with respect to σ.
Hence we have shown that there exist two probability Borel measures on EN

A,
µ̃h and ν̃h, which are shift invariant and ergodic with respect to σ and they are
absolutely continuous with respect to m̃h. Now Theorem [5, Theorem 7.4] implies
that

µ̃h ≡ ν̃h. (3.21)
If j ∈ E \ E ′, then ν̃h([j]) = 0. On the other hand, since µ̃h is equivalent to m̃h,
by (3.14) we deduce that µ̃h([j]) > 0. Therefore (3.21) cannot hold and we have
reached a contradiction. The proof of the theorem is complete. �

4. DIMENSION SPECTRUM OF CONFORMAL GRAPH DIRECTED MARKOV
SYSTEMS

In this section we investigate several properties of the dimension spectrum of
graph directed Markov systems. We start by defining the notion of dimension
spectrum and some related concepts.

Definition 4.1. Let S = {φe}e∈E be a finitely irreducible conformal GDMS. The
dimension spectrum of S is

DS(S) := {dimH(JF ) : F ⊂ E}.
If L ⊂ E we set

DSL(S) := {dimH(JF ) : L ⊂ F ⊂ E},
and we define

(i) DS1(S) =
⋃
{DSΛ̃(S) : Λ witnesses finite irreducibility for E},
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(ii) DS2(S) = {dimH(JF ) : F ⊂ E,F is finitely irreducible},
(iii) DS3(S) = {dimH(JF ) : F ⊂ E,F is irreducible}.

Note that if L = ∅ then DSL(S) = DS(S).

Definition 4.2. Let S = {φe}e∈E be a finitely irreducible conformal GDMS. We let
h0 := inf{dimH(JΛ̃) : Λ witnesses finite irreducibility for E}.

The pressure estimates obtained in Section 2 will play a crucial role in the fol-
lowing. We now record their translation to the setting of finitely irreducible con-
formal GDMS. Recall that for any finite Λ ⊂ E∗A we denote

pΛ := max{|λ| : λ ∈ Λ}.
Now let t ≥ 0 and recalling (3.9) we consider the potential

f(ω) := tζ(ω) = t log ‖Dφω1(π(σ(ω)))‖.
For ω ∈ EN

A,

Snf(ω) = t
n−1∑
j=0

log ‖Dφωj+1
(π(σj+1(ω)))‖

= t log
(
‖Dφω1(π(σ1(ω)))‖ ‖Dφω2(π(σ2(ω)))‖ · · · ‖Dφωn(π(σn(ω)))‖

)
.

By (3.5) and the fact that π(σk(ω)) = φωk+1
◦ · · · ◦ φωn(π(σn(ω))) for 1 ≤ k ≤ n we

deduce that
Snf(ω) = log ‖Dφω|n(π(σn(ω)))‖t. (4.1)

By (4.1) and Lemma 3.4 we deduce that in this setting κΛ(f) (recall (2.3)) satisfies

K−t min{‖Dφλ‖t∞ : λ ∈ Λ} ≤ κΛ(f) ≤ min{‖Dφλ‖t∞ : λ ∈ Λ}.
For the rest of this section we will let

κΛ = min{‖Dφλ‖∞ : λ ∈ Λ}. (4.2)

Using (4.1) and Proposition 3.4 we get that for all ω, τ ∈ EN
A, and ρ ∈ En

A, n ∈ N,∣∣Snf(ρω)− Snf(ρτ)
∣∣ = t| log ‖Dφρ(π(ω))‖ − log ‖Dφρ(π(τ))‖| ≤ logKt.

Therefore recalling (2.2) we deduce that L(f) ≤ logKt. It also follows that the
function f is log(1/s)-Hölder, see e.g. [28, Lemma 4.22] or [5, Lemma 4.16], there-
fore we can directly apply Lemma 2.4 and Propositions 2.5 and 2.6 to our setting.
For the convenience of the reader we provide the statements in the setting of
conformal GDMS.

Lemma 4.3. Let S = {φe}e∈E be a finitely irreducible conformal GDMS. Let F ⊂ E be a
finitely irreducible subset ofE and let Λ be a nonempty set witnessing finite irreducibility
for F . Then for every e ∈ E and every t > 0

Zn(F ∪ {e}, t) ≤ K2t

n∑
j=0

j+pΛ(n−j)∑
k=n

(
n

j

)(
K‖Dφe‖∞

κΛ

)t(n−j)
(]Λ)n−jZk(F, t),

for every n ∈ N.
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Proposition 4.4. Let S = {φe}e∈E be a finitely irreducible conformal GDMS. Let
F ⊂ E be a finitely irreducible subset ofE and let Λ be a nonempty set witnessing
finite irreducibility for F . Then for every e ∈ E and every t > dimH(JF ),

ePF∪{e}(t) ≤ ePF (t) + ]Λ(Kκ−1
Λ )t ‖Dφe‖t∞.

Proposition 4.5. Let S = {φe}e∈E be a conformal GDMS. Let F ⊂ E be a finitely
irreducible subset ofE and let Λ be a nonempty set witnessing finite irreducibility
for F . Then for every e ∈ E and every t such that PF (t) ≥ 0,

ePF∪{e}(t) ≤ ePF (t) + ]Λ(Kκ−1
Λ )t epΛPF (t)‖Dφe‖t∞.

As an immediate corollary of Proposition 4.4 and 4.5 we have the following
estimate.

Corollary 4.6. Let S = {φe}e∈E be a conformal GDMS. Let F ⊂ E be a finitely irre-
ducible subset of E and let Λ be a nonempty set witnessing finite irreducibility for F .
Then for every e ∈ E and every t ≥ 0

ePF∪{e}(t) ≤ ePF (t) + ]Λ(Kκ−1
Λ )t max{1, epΛPF (t)} ‖Dφe‖t∞.

In the case of IFS one can obtain estimates as in Corollary 4.6 using a more
straightforward argument. The following proposition essentially appears in [23,
Lemma 2.1], nevertheless we include the short proof for convenience of the reader.

Proposition 4.7. Let S = {φe}e∈E be a conformal IFS. Let F ⊂ E and e ∈ E \ F .
Then for all t > 0,

ePF (t) +K−t‖Dφe‖t∞ ≤ ePF∪{e}(t) ≤ ePF (t) +Kt‖Dφe‖t∞. (4.3)

Proof. Note that for all n ∈ N,

Zn(F ∪ {e}, t) ≤
n∑
j=0

(
n

j

)
(K‖Dφe‖∞)jtZn−j(F, t)

=
n∑
j=0

(
n

j

)
(K‖Dφe‖∞)jtePF (t)(n−j)en

n−j
n
εn−j ,

where for m ∈ N,

εm :=
1

m
logZm(F, t)− PF (t).

Since εm → 0 as m→∞, it follows easily that

γm := max
1≤j≤m

m− j
m

εm−j → 0,

as m→∞. Hence

Zn(F ∪ {e}, t) ≤ enγn
(
Kt‖Dφe‖t∞ + ePF (t)

)n
,

and consequently
ePF∪{e}(t) ≤ ePF (t) +Kt‖Dφe‖t∞.
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Therefore we only have to prove the left hand part of (4.3). As before,

Zn(F ∪ {e}, t) ≥
n∑
j=0

(
n

j

)
K−tj‖Dφe‖jt∞Zn−j(F, t).

Since PF (t) = infm∈N
logZm(F,t)

m
, we have that Zn−j(F, t) ≥ e(n−j)PF (t). So

Zn(F ∪ {e}, t) ≥
n∑
j=0

(
n

j

)
K−tj‖Dφe‖jt∞e(n−j)PF (t) = (K−t‖Dφe‖t∞ + ePF (t))n,

and consequently
ePF∪{e}(t) ≥ ePF (t) +K−t‖Dφe‖t∞.

The proof is complete. �

Using Lemma 4.3 we can prove the following proposition which will be used
to derive information about the size of the dimension spectrum of GDMSs.

Proposition 4.8. Let S = {φe}e∈E be a finitely irreducible conformal GDMS. Let
F ⊂ E such that

(i) E \ F is infinite,
(ii) F is finitely irreducible.

Then for all ε > 0 and for all, except finitely many, e ∈ E \ F ,
dimH(JF∪{e}) < dimH(JF ) + ε.

Proof. Fix some ε > 0 and let h = dimH(JF ). By Theorem 3.10 h = hF where hF is
Bowen’s parameter of the subsystem SF . By Proposition 3.6 we then deduce that
PF (h + ε) < 0. We are going to show that there exists some α ∈ (0, 1) and j0 ≥ 1
such that

Zj(F, h+ ε) < αj, for all j ≥ j0. (4.4)
By way of contradiction assume that (4.4) fails. Then for all α ∈ (0, 1) there exists
a sequence (jm)m∈N such that

Zjm(F, h+ ε) ≥ αjm .

Therefore for all α ∈ (0, 1)

PF (h+ ε) = lim
n→∞

1

n
logZn(F, h+ ε)

= lim
m→∞

1

jm
logZjm(F, h+ ε)

≥ lim sup
m→∞

1

jm
logαjm = logα.

Hence we have shown that PF (h + ε) ≥ 0 which is a contradiction. Thus (4.4)
holds.

Let e ∈ E \F and let Λ be a set witnessing finite irreducibility for F . Assuming
that n > j0 we have by (4.4) that

Zk(F, h+ ε) < αk
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for k = n, . . . , j + pΛ(n− j). Since α ∈ (0, 1) and n ≥ j we have that αn ≤ αj and
j + pΛ(n− j) ≤ pΛn. Therefore by Lemma 4.3,

Zn(F ∪ {e}, h+ ε) ≤ K2(h+ε)pΛ n

n∑
j=0

(
n

j

)(
K‖Dφe‖∞

κΛ

)(h+ε)(n−j)

(]Λ)n−j αj

= K2(h+ε)pΛ n

(
]Λ

(
K‖Dφe‖∞

κΛ

)h+ε

+ α

)n

.

(4.5)

Since E \ F is infinite, [5, Lemma 5.17] implies that for all, except finitely many,
e ∈ E \ F

]Λ

(
K‖Dφe‖∞

κΛ

)h+ε

+ α < 1.

Therefore by (4.5) we conclude that for such e there exists some N0 ∈ N such that

Zn(F ∪ {e}, h+ ε) < 1

for all n ≥ N0. Therefore

PF∪{e}(h+ ε) = lim
n→∞

1

n
logZn(F ∪ {e}, h+ ε) < 0.

Hence
dimH(JF∪{e}) < h+ ε.

The proof of Proposition 4.8 is complete. �

We are now in place to prove Theorem 1.1 which we restate for the convenience
of the reader. Recall that the parameters θ3 and h0 were introduced respectively
in Definitions 3.13 and 4.2.

Theorem 4.9. Let S = {φ}e∈E be an infinite finitely irreducible conformal GDMS. For
every t ∈ (h0, θ3) there exists F ⊂ E such that

dimH(JF ) = t.

In other words (h0, θ3) ⊂ DS(S).

Proof. Let t ∈ (h0, θ3). Recalling Definition 4.2 there exists some Λ ⊂ E∗A which
witnesses finite irreducibility for E and

dimH(JF1) ∈ [h0, t),

where F1 = Λ̃. Without loss of generality we can assume that E = N. Proposition
4.8 allows us to choose the minimal k1 ∈ N such that

(i) k1 > maxF1,
(ii) dimH(JF1∪{k1}) < t.

We set F2 := F1 ∪ {k1} and we proceed inductively to obtain a sequence of finite
subsets of E, which we label as {Fn}n∈N, such that

dimH(JFn) < t.



THE DIMENSION SPECTRUM OF CONFORMAL GRAPH DIRECTED MARKOV SYSTEMS 33

We now set Ft = ∪∞n=1Fn. Notice that Ft is infinite and it is finitely irreducible
because F1 ⊂ Ft. Hence by Theorem 3.10,

dimH(JFt) = sup
n∈N
{dimH(JFn)} ≤ t. (4.6)

Now notice that N \ Ft is infinite. Because if Ft is cofinite just by the definition of
θ3 we have that

dimH(JFt) ≥ θ3 > t,

and this contradicts (4.6). Now if dimH(JFt) = t we are done. If not, since N\Ft is
infinite, we can apply Proposition 4.8 once more in order to find some q ∈ N \ Ft
such that

dimH(JFt∪{q}) < t. (4.7)
Notice that either q < k1 or q ∈ (km, km+1) for somem ∈ N. But this is not possible
because (4.7) implies that dimH(JFn∪{q}) < t for all n ∈ N and if such q existed
it would contradict the minimality of k1 or kn+1, depending on the location of
q. Therefore we have reached a contradiction and the proof of Theorem 4.9 is
complete. �

Theorem 4.9 generalizes results from [26] and [5] in the setting of GDMS. More
specifically it was proved in [26] and [5] that if S is an infinite conformal IFS then
[0, θ) ∈ DS(S). While θ = θ3 when S is a conformal IFS, it is remarkable that the
lower bound h0 for the spectrum of a conformal GDMS is sharp. This is proved
in our next theorem.

Theorem 4.10. There exists an infinite finitely irreducible conformal GDMS S = {φe}e∈E
with the property that every subset I ⊂ E such that dimH(JI) > 0 satifies

dimH(JI) ≥ h0.

Proof. It is enough to consider the conformal GDMS used to prove (i) of Theorem
3.15, see also Figure 2. It is immediate that

h0 = dimH(J{a,b}) > 0.

We will now show that if I ⊂ E and {a, b} * I then

dimH(JI) = 0. (4.8)
As we noted in the proof of Theorem 3.15 (i), if I does not contain a or b then
INA = ∅. Hence without loss of generality we can assume that a ∈ I and b /∈ I .
Note that for every ω ∈ INA we have that ωi ∈ −N∪{a} for all i ∈ N. This is simply
because if ωi ∈ N for some i ∈ N then ωi+1 = b, which is impossible. Moreover
if i ≥ 2 then ωi = a, because if there exists some i ≥ 2 such that ωi ∈ −N then
ωi−1 = b. Hence

INA = {ω ∈ (−N ∪ {a})N : ωi = a for all i ≥ 2},
which is countable. Therefore dimH(JI) = 0 and (4.8) has been proven. The proof
of Theorem 4.10 is complete. �

We will now investigate topological properties of the dimension spectrum of a
GDMS.
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Theorem 4.11. Let S = {φe}e∈E be an infinite and finitely irreducible conformal GDMS.
If Λ is a set witnessing finite irreducibility for E then DSΛ̃(S) is compact.

Proof. Without loss of generality we can identify E with N. Let {En}n∈N be a
sequence of subsets of E such that Λ̃ ⊂ En for all n ∈ N and

lim
n→∞

dimH(JEn) = α. (4.9)

It suffices to show that there exists some set F such that Λ̃ ⊂ F ⊂ E and

dimH(JF ) = α. (4.10)

We will first consider the case when α > θ3.
We first assume that no e ∈ E appears in infinitely many sets En. Observe

that this is possible only if the set Λ is empty. Recalling Definition 3.13, for every
m ∈ N there exists a cofinite set Cm ⊂ E such that

dimH(JCm) ≤ θ3 +
1

m
. (4.11)

Since Cm is cofinite there exists some jm ∈ N such that

{jm, jm + 1, . . . } ⊂ Cm. (4.12)

Now notice that since no e ∈ E appears in infinitely many En, if k ∈ {1, . . . , jm −
1} there exist finitely many sets En such that k ∈ En. Hence there exist finitely
many sets sets En such that

En ∩ {1, . . . , jm − 1} 6= ∅.
Therefore there exists some n(m) ∈ N such that

En ⊂ {jm, jm + 1, . . . } (4.13)

for all n ≥ n(m). Combining (4.11), (4.12) and (4.13) we conclude that there exists
a strictly increasing sequence of natural numbers

n(1) < n(2) < · · · < n(m) < n(m+ 1) < . . .

such that
dimH(En(m)) ≤ θ3 +

1

m
.

Letting m→∞ and using (4.9) we obtain that

α = lim
m→∞

dimH(En(m)) ≤ θ3 < α,

which is a contradiction.
Therefore we know that there exist natural numbers which appear in infinitely

many En. Let θ3 < α′ < α. We set

k1 = min{e ∈ N : e ∈ En for infinitely many n ∈ N}, (4.14)

and we define
G1 = {n ∈ N : k1 ∈ En}

and
Gk

1 = {n ∈ G1 : k ∈ En},
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for k ∈ N. We will now show that there exist k ∈ N \ {k1} such that Gk
1 is infinite.

Suppose on the contrary that for all k ∈ N \ {k1} the sets Gk
1 are finite. Then note

that
lim
n→∞
n∈G1

min{En \ {k1}} = +∞. (4.15)

In order to prove (4.15) assume by way of contradiction that there exists some
m0 ∈ N and some strictly increasing sequence (nj)j∈N, nj ∈ G1, such that

lim
j→∞

min{Enj \ {k1}} = m0.

This implies that there exists some j0 such that for all j ≥ j0,

min{En \ {k1}} = m0.

In particular m0 ∈ Enj \ {k1} and nj ∈ G1 for all j ≥ j0. Hence Gm0
1 is infinite and

this contradicts the assumption that for all k ∈ N \ {k1} the sets Gk
1 are finite.

Since α′ > θ3, Lemma 3.11 and Theorem 3.14 (ii) imply that for all n ∈ N,

Z1(En, α
′) ≤ Z1(E,α′) <∞.

Note that
Z1(En, α

′) = ‖Dφk1‖α
′

∞ +
∑

j∈En\{k1}

‖Dφj‖α
′

∞ <∞,

so (4.15) implies that for n ∈ G1 large enough Z1(En, α
′) ≤ 1. Therefore for such

n,
PEn(α′) ≤ logZ1(En, α

′) < 0,

and consequently
dimH(JEn) ≤ α′.

So,
α = lim

n→∞
n∈G1

dimH(JEn) ≤ α′ < α

and we have a reached a contradiction. Hence there exist k ∈ N \ {k1} such that
the sets Gk

1 are infinite.
Let

k2 = min{k ∈ N : k ∈ En \ {k1} for infinitely many n ∈ G1},
and

G2 := Gk2
1 .

Observe that k2 > k1, because k2 appears in infinitely many En and recalling
(4.14) k1 is the minimal integer with that property. Continuing inductively we
obtain a collection of strictly increasing natural numbers {ki}pi=1 (where it might
happen that p = +∞) and a corresponding family of infinite sets {Gi}pi=1 such
that for all i = 1, . . . , p− 1

Gi+1 = {n ∈ Gi : ki+1 ∈ En},
and

ki+1 = min{k ∈ N : k ∈ En \ {k1, . . . , ki} for infinitely many n ∈ Gi},
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Let F = {ki}pi=1 ∪ Λ̃. We will prove that

dimH(JF ) = α. (4.16)

We will first show that
dimH(JF ) ≤ α. (4.17)

For any finite l ≤ p let Fl = {ki}li=1 ∪ Λ̃. Since

G1 ⊃ G2 ⊃ · · · ⊃ Gl ⊃ . . . ,

we deduce that for every finite l ≤ p and every j ∈ Gl we have that Fl ⊂ Ej .
Hence for all finite l ≤ p there exists a strictly increasing sequence {jlm}m∈N such
that

Fl ⊂ Ejlm
for all m ∈ N. So for all finite l ≤ p,

dimH(JFl) ≤ lim
m→∞

dimH(JE
jlm

) = α.

Therefore Theorem 3.10 implies that,

dimH(JF ) = sup
l≤p
{dimH(JFl)} ≤ α.

Thus (4.17) has been proven.
In order to complete the proof of (4.16), suppose by way of contradiction that

dimH(JF ) < α. (4.18)

Choose α′ such that
max{dimH(JF ), θ3} < α′ < α.

We will first assume that p = ∞. Let l ∈ N and observe that if ρ ∈ {1, 2, . . . , kl} \
{k1, k2, . . . , kl} then it appears in finitely many Ej for j ∈ Gl. To see this suppose
by way of contradiction that there exists some ρ ∈ {1, 2, . . . , kl} \ {k1, k2, . . . , kl}
such that the set

]{j ∈ Gl : ρ ∈ Ej} = +∞.
Recall that kl is the smallest integer which appears in Ej \ {k1, . . . , kl−1} for infin-
itely many j ∈ Gl−1. SinceGl ⊂ Gl−1, ρ appears in infinitely manyEj for j ∈ Gl−1.
Moreover since ρ 6∈ {k1, k2, . . . , kl}, we deduce that ρ ∈ Ej \ {k1, . . . , kl−1} for in-
finitely many j ∈ Gl−1. But this contradicts the minimality of kl.

Hence for every l ∈ N there exists some Nl such that for every j ∈ Gl ∩ [Nl,∞),

Ej \ (F ∩ {1, . . . , kl}) ⊂ Ej \ {k1, . . . , kl} ⊂ {kl + 1, kl + 2, . . . }.

Since {kl}l∈N is strictly increasing and p = +∞, for l large enough kl ≥ max Λ̃.
Therefore there exists some l0 ∈ N and a strictly increasing sequence {jl}l≥l0 such
that

Ejl ⊂ (F ∩ {1, . . . , kl}) ∪ {kl + 1, kl + 2, . . . } := Tl. (4.19)

Since kl ≥ max Λ̃ for all l ≥ l0 we deduce that Λ̃ ⊂ F ∩ {1, . . . , kl}. Thus for every
A ⊂ E, the set

F ∩ {1, . . . , kl} ∪ A



THE DIMENSION SPECTRUM OF CONFORMAL GRAPH DIRECTED MARKOV SYSTEMS 37

is finitely irreducible. Hence by Corollary 4.6,

ePTl (α
′) ≤ ePTl\{kl+1}(α

′) + ]Λ(Kκ−1
Λ )α

′
max{1, epΛPTl (α

′)} ‖Dφkl+1‖α
′

∞

≤ ePTl\{kl+1}(α
′) + ]Λ(Kκ−1

Λ )α
′

max{1, epΛPE(α′)} ‖Dφkl+1‖α
′

∞.

Since α′ > θ3 ≥ θ, we have that

max{1, epΛPE(α′)} := cΛ <∞.
Continuing inductively we obtain that for every l ≥ l0

ePTl (α
′) ≤ ePF∩{1,...,kl}(α

′) + cΛ ]Λ(Kκ−1
Λ )α

′
∞∑

j=kl+1

‖Dφj‖α
′

∞

≤ ePF (α′) + cΛ ]Λ(Kκ−1
Λ )α

′
∞∑

j=kl+1

‖Dφj‖α
′

∞.

(4.20)

Since α′ > θ, and E = N is finitely irreducible Lemma 3.11 implies that

Z1(α′) =
∑
j∈N

‖Dφj‖α
′

∞ <∞. (4.21)

Moreover since α′ > dimH(JF ) and F is finitely irreducible

ePF (α′) < 1. (4.22)

Since kl →∞, combining (4.19), (4.20), (4.21) and (4.22) we deduce that for l large
enough ePEjl (α

′)
< 1, and consequently

dimH(JEjl ) ≤ α′.

Therefore
α = lim

l→∞
dimH(JEjl ) ≤ α′ < α

and we have reached a contradiction. Hence we proved (4.16) in the case when
p = +∞.

We now consider the case when p < +∞. In that case the sets

Gk
p = {j ∈ Gp−1 : k ∈ Ej}

are finite for every k ∈ N \ {k1, k2, . . . , kp}. Therefore

lim
j→∞
j∈Gp

min{Ej \ {k1, k2, . . . , kp}} = +∞.

The proof is identical to the proof of (4.15) and it is omitted. Since F = {ki}pi=1∪ Λ̃
we also have that

lim
j→∞
j∈Gp

min{Ej \ F} = +∞. (4.23)

Hence there exists a strictly increasing sequence {bj}j∈Gp such that for all j ∈ Gp,

Ej ⊂ F ∪ {bj, bj + 1, . . . } := Bj. (4.24)
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Using (4.24) and employing Corollary 4.6 as in (4.20) we deduce that for all j ∈
Gp,

ePEj (α′) ≤ ePBj (α′) ≤ ePF (α′) + cΛ ]Λ(Kκ−1
Λ )α

′
∞∑
i=bj

‖Dφi‖α
′

∞. (4.25)

Exactly as in the case of p = +∞, (4.25) implies that for all j ∈ Gp large enough

dimH(JEj) ≤ α′.

Which leads to a contradiction because

α = lim
j→∞
j∈Gp

dimH(JEj) ≤ α′ < α.

We have thus proved (4.10) in the case when α > θ3

Now consider the case when dimH(JΛ̃) ≥ θ3. In this case, since always α ≥
dimH(JΛ̃), we only have to consider two cases: α = θ3 and α > θ3. If α = θ3 then
α = dimH(JΛ̃) and (4.10) follows trivially by choosing F = Λ̃. The case α > θ3 has
been already settled without any extra assumption on dimH(JΛ̃)

Hence we only have to consider the case when dimH(JΛ̃) < θ3. If α ∈ [dimH(JΛ̃), θ3),
Theorem 4.9 implies that there exists some F ⊃ Λ̃ such that

dimH(JF ) = α,

hence (4.10) follows. If α > θ3, (4.10) follows by (4.16). Therefore in order to finish
the proof of (4.10), and thus the proof of the theorem, we are left with examining
the case when dimH(JΛ̃) < θ3 and α = θ3. If dimH(JS) = θ3 we are done, so
suppose that dimH(JS) > θ3. It suffices to construct a set F ⊂ N such that Λ̃ ⊂ F
and

dimH(JF ) = θ3.

Let n1 ∈ N be the smallest integer such that

dimH(JΛ̃∪{1,...,n1}) < θ3

and
dimH(JΛ̃∪{1,...,n1,n1+1}) ≥ θ3.

If dimH(JΛ̃∪{1,...,n1,n1+1}) = θ3, we are done therefore we can assume that

dimH(JΛ̃∪{1,...,n1,n1+1}) > θ3.

By Proposition 4.8 we know that there exists some n2 > n1 + 1 such that

dimH(JΛ̃∪{1,...,n1,n2}) < θ3.

By Theorem 3.14 (iii) we know that θ1(Λ̃) ≥ θ3. Recalling (3.10) we deduce that

dimH(JΛ̃∪{m,m+1,... }) ≥ θ1(Λ̃) ≥ θ3

for all m ∈ N. In particular,

dimH(JΛ̃∪{1,...,n1,n2,n2+1,... }) ≥ θ3.
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If dimH(JΛ̃∪{1,...,n1,n2,n2+1,... }) = θ3, we can take F = Λ̃ ∪ {1, . . . , n1, n2, n2 + 1, . . . }
and we are done. Otherwise we choose the smallest integer n3 > n2 such that

dimH(JΛ̃∪{1,...,n1,n2,...,n3}) < θ3,

and dimH(JΛ̃∪{1,...,n1,n2,...,n3,n3+1}) ≥ θ3. Exactly as before we can assume that

dimH(JΛ̃∪{1,...,n1,n2,...,n3,n3+1}) > θ3.

We continue the process inductively. For k ≥ 0 let

Ik = (n2k, n2k + 1, . . . , n2k+1)

where n0 = 1. If there exists some l ∈ N such that

dimH(JΛ̃∪I0∪I1···∪Il∪{n2l+1+1}) = θ3

the process trivially terminates because we can choose

F = Λ̃ ∪ I0 ∪ I1 ∪ · · · ∪ Il ∪ {n2l+1 + 1}.
Hence we can assume that there exists an increasing sequence of natural numbers
{nk}k∈N such that for all k ∈ N

dimH(JΛ̃∪I0∪I1∪···∪Ik) < θ3 (4.26)

and
dimH(JΛ̃∪I0∪I1∪···∪Ik∪{n2k+1+1}) > θ3. (4.27)

We define

F = Λ̃ ∪
∞⋃
k=0

Ik.

We will show that dimH(JF ) = θ3.
First note that (4.26) and Theorem 3.10 imply that

dimH(JF ) ≤ θ3. (4.28)

Let

Fk = Λ̃ ∪
k⋃
j=0

Ij.

Note that by (4.26),
dimH(JFk) < θ3,

and (4.27) implies that for all k ∈ N
PFk∪{n2k+1+1}(θ3) ≥ 0.

Hence by Proposition 4.4,

1 ≤ ePFk∪{n2k+1+1}(θ3) ≤ ePFk (θ3) + ]Λ(Kκ−1
Λ )θ3 ‖Dφn2k+1+1‖θ3∞

≤ ePF (θ3) + ]Λ(Kκ−1
Λ )θ3 ‖Dφn2k+1+1‖θ3∞.

Hence
ePF (θ3) ≥ 1− ]Λ(Kκ−1

Λ )θ3 ‖Dφn2k+1+1‖θ3∞.
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Since {nk}k∈N is a strictly increasing sequence, [5, Lemma 5.17] implies that

‖Dφn2k+1+1‖θ3∞ → 0 as k →∞,

therefore ePF (θ3) ≥ 1. Hence PF (θ3) ≥ 0 and consequently,

dimH(JF ) ≥ θ3. (4.29)

Combining (4.28) and (4.29) we deduce that dimH(JF ) = θ3. The proof of the
theorem is complete. �

Remark 4.12. Let S = {φe}e∈E be an infinite and finitely irreducible conformal
GDMS. Notice that by the last part of the proof of Theorem 4.11 if h0 < θ3 then
θ3 ∈ DS(S). Therefore in that case we get that (h0, θ3] ∈ DS(S). Notice also
that if S = {φe}e∈E is an infinite conformal IFS then h0 = 0, θ3 = θ and if Λ =
∅, DSΛ̃(S) = DS(S). Hence Theorems 4.9 and 4.11 imply that [0, θ] ⊂ DS(S)
improving the corresponding result from [26] which only guarantees that [0, θ) ∈
DS(S).

Theorem 4.13. Let S = {φe}e∈E be an infinite and finitely irreducible conformal GDMS.
If Λ is a set witnessing finite irreducibility for E then DSΛ̃(S) is perfect.

Proof. Without loss of generality we can assume that E = N. Let F ⊂ E such that
Λ̃ ⊂ F . Then F is finitely irreducible. Therefore if F is infinite then Theorem 3.10
implies that

dimH(JF ) = lim
n→∞

dimH(JF∩{1,...,n}).

For n ∈ N we denote Fn = F ∩ {1, . . . , n} and we let l0 = max Λ̃. Note that if
n ≥ l0 then the sets Fn are (finitely) irreducible. Note also that for every n ∈ N,

dimH(JFn) < dimH(JF ). (4.30)

In order to prove (4.30), suppose by way of contradiction that there exists some
n0 ∈ N such that

dimH(JFn0
) = dimH(JF ).

Then for all n ≥ n0, we have that dimH(JFn) = dimH(JF ). Let m = 2n0 + l0. In
that case SFm is strongly regular since Fm is finite, see e.g. [5, Proposition 7.11].
Moreover Λ̃ ⊂ Fm hence Fm is irreducible and by Theorem 3.16 we deduce that
dimH(JG) < dimH(JFm) for every irreducible G ( Fm . Nevertheless Fn0+l0 is
an irreducible subset of Fm and it also contains Fn0 , therefore dimH(JFn0+l0

) =
dimH(JFm). Thus we have reached a contradiction and (4.30) holds. Therefore if
F is infinite, dimH(JF ) is not an isolated point in DSΛ̃(S).

Now assume that F ⊂ N is finite. Recall that Λ̃ ⊂ F , hence F is irreducible.
Exactly as in the previous case, invoking Theorem 3.16 we have that

dimH(JF∪{n}) > dimH(JF ).

We will now show that

dimH(JF ) = lim
n→∞

dimH(JF∪{n}).
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Let t > dimH(JF ). Proposition 4.4 implies that for all n ∈ N,

ePF∪{n}(t) ≤ ePF (t) + ]Λ(Kκ−1
Λ )t ‖Dφn‖t∞.

Hence by [5, Lemma 5.17] there exists some nt ∈ N such that for all n ≥ nt,

ePF∪{n}(t) < 1.

Therefore for such n, PF∪{n}(t) ≤ 0 and thus t ≥ dimH(JF∪{n}). Hence dimH(JF )
is not an isolated point in DSΛ(S) and the proof is complete. �

Notice that Theorem 1.2 is an immediate corollary of Theorems 4.11 and 4.13 in
the case of conformal iterated function systems. We restate it here for complete-
ness.

Theorem 4.14. If S = {φn}n∈N is an infinite CIFS then DS(S) is compact and perfect.

While DSΛ̃(S) is always compact if Λ witnesses finite irreducibility for E, this
is not the case for DS1(S). This is the content of our next theorem.

Theorem 4.15. There exists a finitely irreducible infinite conformal GDMS S = {φe}e∈E
such that DS1(S) is not compact.

Proof. Let a, b, c ∈ R \ N be distinct and set

E = {a, b, c} ∪ N.
Consider any conformal GDMS S = {V,E,A, t, i, {Xv}v∈V , {φe}e∈E} where the
matrix A is defined by

Aaa = 1,

Abb = 1,

Acc = 0,

Aab = 1,

Aba = 1,

Aca = 0,

Aac = 0,

Abc = 0,

Acb = 0,

(4.31)

and Aen = Ane = 1 for e ∈ E and n ∈ N. Note that the last condition implies that
for every n ∈ N the sets {n}witness finite irreducibility for E. See also Figure 5.

The maps φa, φb, φc are similarities such that

‖Dφc‖∞ < ‖Dφa‖∞ = ‖Dφb‖∞ < 1

and
s := dimH(J{a,c}) = dimH(J{b,c}) < dimH(J{a,b}).

By [5, Corollary 7.22] if t ∈ (s, dimH(J{a,b})),

‖Dφc‖t∞ + ‖Dφa‖t∞ < 1. (4.32)

Hence we can let {φn}n∈N be any sequence of similarities such that∑
n∈N

‖Dφn‖t∞ + ‖Dφc‖t∞ + ‖Dφa‖t∞ < 1. (4.33)

If Λ witness finite irreducibility for E then Λ̃ ∩ N 6= ∅. This is easy to because
if Λ̃ ⊂ {a, b, c} then by the way the matrix A was defined, see (4.31), there is no
ω ∈ Λ such that aωc ∈ E∗A. Now let Λ be any set witnessing finite irreducibility
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ɑ b

c

FIGURE 5.

for E. We distinguish two cases. First assume that {a, b} * Λ̃. Observe that by
(4.33) and [5, Corollary 7.20],

dimH(J{a,c}∪N) ≤ t < dimH(J{a,b}),

and in the same manner (since ‖Dφa‖∞ = ‖Dφb‖∞)

dimH(J{b,c}∪N) < dimH(J{a,b}).

Therefore if Λ̃ ⊂ F then dimH(JF ) < dimH(J{a,b}).
We now consider the case when {a, b} ⊂ Λ̃. Moreover as in the proof of The-

orem 4.13, since {a, b} is irreducible, an application of Theorem 3.16 implies that
for every n ∈ N,

dimH(J{a,b}) < dimH(J{a,b,n}).

Therefore if Λ̃ ⊂ F then dimH(JF ) > dimH(J{a,b}). Hence we conclude that

dimH(J{a,b}) /∈ DS1(S). (4.34)

Notice that Φ = {a} witness irreducibility for {a, b}, hence Proposition 4.4 im-
plies that for t > dimH(J{a,b}),

eP{a,b,n}(t) ≤ eP{a,b}(t) + (Kκ−1
Φ )t ‖Dφn‖t∞.

Since ‖Dφn‖∞ → 0 as n→∞, there exists some n0 ∈ N such that for every n ≥ n0,

eP{a,b,n}(t) < 1.

Therefore for n ≥ n0 we have that dimH(J{a,b,n}) < t. Hence

lim
n→∞

dimH(J{a,b,n}) = dimH(J{a,b}),

that is
dimH(J{a,b}) ∈ DS1(S). (4.35)
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Combining (4.34) and (4.35) we deduce that DS1(S) is not compact. The proof is
complete. �

5. HAUSDORFF DIMENSION ASYMPTOTICS OF SUBSYSTEMS

Before proving the main result in this section we need to introduce some fun-
damental concepts of thermodynamic formalism. If f : EN

A → R is a continuous
function, then following [28] (see also the references therein), a Borel probability
measure m̃ on EN

A is called a Gibbs state for f if there exist constants Qg ≥ 1 and
Pm̃ ∈ R such that for every ω ∈ E∗A and every τ ∈ [ω]

Q−1
g ≤

m̃([ω])

exp
(
S|ω|f(τ)− Pm̃|ω|

) ≤ Qg.

If additionally m̃ is shift-invariant, then m̃ is called an invariant Gibbs state.
Let S = {φe}e∈E be a finitely irreducible conformal GDMS and fix some t ∈ R

such that Z1(t) < ∞, where, we recall, Z1(t) comes from (3.7). According to the
theory developed in [28, Chapter 2] and in [5, Chapter 4] the operator

Ltg(ω) =
∑

i:Aiω1
=1

g(iω)‖Dφi(π(ω))‖t, for ω ∈ EN
A. (5.1)

is bounded in Cb(E
N
A), the Banach space of all real-valued bounded continuous

functions on EN
A endowed with the supremum norm ‖ · ‖∞. We denote by

L∗t : C∗b (EN
A)→ C∗b (EN

A)

the dual operator for Lt.
We now state the following theorem comprising several results from [5] and

[28]. Recall that the function ζ : EN
A → R was defined in (3.9).

Theorem 5.1. Suppose that S = {φe}e∈E is a finitely irreducible conformal GDMS such
that Z1(t) < +∞. Then

(i) There exists a unique Borel probability eigenmeasure m̃t of the conjugate Perron–
Frobenius operator L∗t and the corresponding eigenvalue is equal to eP (t).

(ii) The eigenmeasure m̃t is a Gibbs state for tζ .
(iii) The function tζ : EN

A → R has a unique σ-invariant Gibbs state µ̃t.
(iv) The measure µ̃t is ergodic, equivalent to m̃t and log(dµ̃t/dm̃t) is uniformly bounded.
(v) If

∫
ζ dµ̃t > −∞, then the σ–invariant Gibbs state µ̃t is the unique equilibrium

state for the potential tζ .
(vi) The Gibbs state µ̃t is ergodic, and in case the system S is finitely primitive, it is

completely ergodic.

Finally recall that the characteristic Lyapunov exponent of a Borel probability σ–
invariant measure µ on EN

A with respect to the conformal GDMS S, is defined
as

χµ(σ) := −
∫
EN
A

ζdµ > 0.
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We shall now prove a theorem providing an effective tool for calculating the
Hausdorff dimension of the limit set of any finitely irreducible and strongly reg-
ular conformal GDMS up to any desired accuracy. Indeed, it was proven in [28]
and [5] that

dimH(JS) = sup{dimH(JF )}, (5.2)
where the supremum is taken over all finite subsets F of E. We will now give
an explicit estimate for dimH(JS) − dimH(JF ). This results generalizes the one
for IFSs from [13] to the setting of GDMSs simultaneously giving a substantially
simplified proof. We would also like to mention that nowadays there are a bunch
of good and quite fast algorithms to calculate the Hausdorff dimension of the
limit set of finitely irreducible conformal GDMS with high accuracy, for example
[9, 10, 21, 22, 30]. Although some of these papers use a different language, their
results can be easily translated to speak about GDMSs.

Before stating and proving the main result of this section we remind the reader
that if S = {φe}e∈E is a finitely irreducible conformal GDMS, K denotes the dis-
tortion constant of S, see Lemma 3.4, and if Λ ⊂ E∗A then κΛ = min{‖Dφλ‖∞ : λ ∈
Λ}, see also (4.2).

Theorem 5.2. Let S = {φe}e∈E be a finitely irreducible and strongly regular conformal
GDMS and let Λ ⊂ E be a nonempty set witnessing finite irreducibility forE. If F0 ⊂ E

is a finite set containing Λ̃ such that hF0 ≥ θS , then for all finite sets F ⊃ F0,

dimH(JS)− dimH(JF ) ≤ ]Λ(Kκ−1
Λ )hF

χµ̃h

∑
E\F

‖Dφe‖hF∞ .

Proof. First notice that by Theorems 3.10 and 3.16 (since S is strongly regular)
always exist sets F0 ⊂ E such that hF0 ≥ θ. Let F ⊃ F0. Since convex functions
are a.e. differentiable Proposition 3.6 implies that

eP (hF ) − 1 = eP (hF ) − eP (h) =

∫ hF

h

P ′(t)eP (t)dt = −
∫ h

hF

P ′(t)eP (t)dt. (5.3)

Since hF ≥ θ, we have that P (t) ∈ [0,+∞] for t ∈ [hF , h]. Hence eP (t) ≥ 1 for such
t. Recalling Proposition 3.6 the pressure function is convex on (θ,+∞) hence P ′
is non-decreasing on [hF , h]. Therefore P ′(t) ≤ P ′(h) for t ∈ [hF , h]. Thus by (5.3),

eP (hF ) − 1 =

∫ h

hF

(−P ′(t))eP (t)dt ≥ −P ′(h)(h− hF ). (5.4)

It follows from [28, Proposition 2.6.13] (for f = ζ and ψ = 0) that

P ′(t) = −χµ̃t
for t ∈ [hF , h]. Hence (5.5) can be rewritten as

eP (hF ) − 1 ≥ χµ̃h(h− hF ). (5.5)

By [5, Proposition 7.12], since F is finite and irreducible we deduce that SF is
strongly regular. In particular this implies that PF (hF ) = 0. By Corollary 4.6 we
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then deduce that
eP (hF ) − 1 = eP (hF ) − ePF (hF )

≤ ]Λ(Kκ−1
Λ )hF max{1, epΛPF (hF )}

∑
e∈E\F

‖Dφe‖hF∞

= ]Λ(Kκ−1
Λ )hF

∑
e∈E\F

‖Dφe‖hF∞ .

(5.6)

Now the proof follows by (5.5) and (5.6). �

Remark 5.3. Note that under the assumptions of Theorem 5.2 we get that for all
finite sets F ⊃ F0,

dimH(JS)− dimH(JF ) ≤ ]Λ(Kκ−1
Λ )θ

χµ̃h

∑
E\F

‖Dφe‖h0
∞ ,

where h0 = dimH(JF0).

Notice that if S = {φe}e∈E is a conformal IFS, we can replicate the proof of
Theorem 5.2 and we can use Proposition 4.7 instead of Corollary 4.6 in order to
improve the estimate (5.6). Hence in the case of IFS Theorem 5.2 has a simpler
form which we state below.

Theorem 5.4. Let S = {φe}e∈E be a strongly regular conformal IFS. If F is a finite set
such that hF ≥ θS , then,

dimH(JS)− dimH(JF ) ≤ KhF

χµ̃h

∑
E\F

‖Dφe‖hF∞ .

6. DIMENSION SPECTRUM OF CONFORMAL ITERATED FUNCTIONS SYSTEMS

In this section we only deal with iterated function systems, hence we will as-
sume that S = {φe}e∈E is a conformal IFS and E is a countable infinite index set.
In this and the next section we will be primarily preoccupied with the question of
when the spectrum DS(S) is full, i.e. equal to [0, h(S)]. We would like to repeat
that although always (see Remark 4.12) DS(S) ⊃ [0, θ(S)] there exist IFSs, see
e.g. [27, Example 6.4], whose dimension spectrum DS is not full. For this reason
we will also consider other relevant properties of DS(S) that we will introduce
shortly in Definition 6.1.

Definition 6.1. Let S = {φe}e∈E be a conformal IFS. We say that:
(i) S is of full spectrum if DS(S) = [0, h(S)].

(ii) S is of cofinite full spectrum if there exists a finite set G ⊂ E such that SE\G
is of full spectrum.

(iii) S is of strong cofinite full spectrum if there exists a finite set G ⊂ E and an
enumeration of E \ G, say E \ G = {ei}∞i=1, such that for every n ≥ 1 the
subsystem {φei}i≥n is of full spectrum.

(iv) S is of strong full spectrum if condition (iii) is satisfied with G = {∅}.
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Somewhat informally note that if S is of strong full spectrum then after some
enumeration each tail of S is of full spectrum. Also observe that if S is not
strongly regular and of full spectrum, then S is of strong full spectrum. To see
this let S ′ ⊂ S be a cofinite subsystem of S. Note that in that case θ(S ′) = h(S ′).
If not, then there exists some t ∈ (θ(S ′), h(S ′)). By Lemma 3.11 we deduce that
θ(S ′) = θ(S). Recall that since S is not strongly regular Theorem 3.16 (ii) implies
that θ(S) = h(S), therefore h(S ′) > h(S) and this is a contradiction. Hence we
have shown that θ(S ′) = h(S ′) for all cofinite subsystems of S, and using Theo-
rem 4.9 we deduce that S is of strong full spectrum.

We stress that from now on we will endow the countable alphabet E with an
order of type N. If E = {ei}i∈N is an enumeration of E with respect to that order
we denote

Em = {em, em+1, em+2, . . . }
and

I(m) = {e1, . . . , em}
for m ∈ N. Moreover if e ∈ E then |e| denotes the unique natural number such
that e = e|e|, hence |e| is simply the order of e with respect to the enumeration of
E.

Definition 6.2. Let S = {φe}e∈E be a conformal IFS. If F ⊂ E is nonempty and
finite, then the positive replacement of F is

F+
∞ = (F \max(F )) ∪ E|max(F )|+1.

We now state a fundamental result from [23] which provides a sufficient con-
dition for t ∈ [0, h(S)] to belong in DS(S).

Theorem 6.3. Let S = {φe}e∈E be a conformal IFS. If t ∈ [0, h(S)] and if for every
nonempty and finite subset F ⊂ E

PF (t) > 0 =⇒ PF+
∞

(t) ≥ 0,

then t ∈ DS(S).

For the proof see [23, Theorem 2.2]. We now provide the first technical conse-
quence of Theorem 6.3.

Theorem 6.4. Let S = {φe}e∈E be a conformal IFS and let t ∈ [0, h(S)]. Assume that
there exists some d ≥ 1 such that PI(d)(t) ≤ 0. Assume also that there are two non-
negative sequences (αk(t))

∞
k=d+1 and (βk(t))

∞
k=d+1 with αd+1(t) = 0 and the following

properties:
(i) If F is a finite subset of E and ek /∈ F ∪ I(d), then

αk(t) ≤ exp(PF∪{ek}(t))− exp(PF (t)) ≤ βk(t).

(ii) If k ≥ d+ 1, then
∞∑

n=k+1

αn(t) ≥ βk(t).

Then t ∈ DS(S).
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Proof. We want to apply Theorem 6.3 and to this end we assume that

PF (t) > 0. (6.1)

Let
F− = F \max(F ).

Since PF (t) > 0 the set F cannot be contained in I(d). Therefore

|max(F )|+ 1 ≥ d+ 2.

Now it follows from (i) that

e
P
F+
∞

(t) ≥ ePF− (t) +
∞∑

n=|max(F )|+1

αn(t)

and
ePF (t) ≤ ePF− (t) + β|max(F )|(t).

Therefore

e
P
F+
∞

(t) ≥ ePF (t) +
∞∑

n=|max(F )|+1

αn(t)− β|max(F )|(t).

Hence it follows from (ii) and (6.1) that

e
P
F+
∞

(t) ≥ ePF (t) > 1.

Equivalently PF+
∞

(t) > 0, and the proof follows by Theorem 6.3. �

The two following theorems are consequences of Theorem 6.4.

Theorem 6.5. Let S = {φe}e∈E be a conformal IFS. Assume that for every t ∈ (0, h(S))
there exist two nonnegative sequences (αk(t))

∞
k=2 and (βk(t))

∞
k=2 with α2(t) = 0 and the

following properties:
(i) If F is a finite subset of E and ek /∈ F ∪ {e1}, then

αk(t) ≤ exp(PF∪{ek}(t))− exp(PF (t)) ≤ βk(t).

(ii) If k ≥ 2, then
∞∑

n=k+1

αn(t) ≥ βk(t).

Then S is of strong full spectrum.

Theorem 6.5 follows immediately from Theorem 6.4 after observing that P{en}(t) ≤
0 for every t ∈ (0, h(S)) and every n ∈ N.

Theorem 6.6. Let S = {φe}e∈E be a strongly regular conformal IFS. Assume that there
exist q ≥ 1 and η > 0 such that for every t ∈ (0, θ(S) + η) there are two nonnegative
sequences (αk(t))

∞
k=q+1 and (βk(t))

∞
k=q with αq(t) = 0 and the following properties:

(i) If F is a finite subset of Eq and ek /∈ F ∪ {eq}, then

αk(t) ≤ exp(PF∪{ek}(t))− exp(PF (t)) ≤ βk(t).
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(ii) If k ≥ q, then
∞∑

n=k+1

αn(t) ≥ βk(t).

Then S is of strong cofinite full spectrum.

Concerning Theorem 6.6 we note that it suffices to assume that t ∈ (0, θ(S)+η),
rather than t ∈ (0, h(S)), because by [5, Theorem 7.23] we have that

lim
n→∞

h(SEn) = θS .

As an immediate consequence of Proposition 4.3 and Theorems 6.4, 6.5 and 6.6
we get the following three corollaries.

Corollary 6.7. Let S = {φe}e∈E be a conformal IFS. If there exists some d ≥ 1 such that
PI(d)(t) ≤ 0 and for every integer k ≥ d+ 1,

∞∑
n=k+1

‖Dφen‖t∞ ≥ K2t‖Dφek‖t∞, (6.2)

then t ∈ DS(S).

Corollary 6.8. Let S = {φe}e∈E be a conformal IFS. If for every t ∈ (0, h(S)) and every
k ≥ 2

∞∑
n=k+1

‖Dφen‖t∞ ≥ K2t‖Dφek‖t∞,

then S is of strong full spectrum.

Corollary 6.9. Let S = {φe}e∈E be strongly regular conformal IFS. If there exist q ∈ N
and η > 0 such that for every t ∈ [0, θ(S) + η) and every integer k ≥ q,

∞∑
n=k+1

‖Dφen‖t∞ ≥ K2t‖Dφek‖t∞,

then S is of strong cofinite full spectrum.

Using the last corollary we can prove the following quite general theorem.

Theorem 6.10. Let S be a strongly regular conformal IFS.
(i) If θ(S) 6= 0 and

lim inf
n→∞

‖Dφen+1‖∞
‖Dφen‖∞

>
K2

(1 +K2θ(S))1/θ(S)
, (6.3)

then S is of strong cofinite full spectrum.
(ii) If θ(S) = 0 and

lim inf
n→∞

‖Dφen+1‖∞
‖Dφen‖∞

> 0,

then S is of strong cofinite full spectrum.
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Proof. We are only going to prove (i), the proof of (ii) is similar although simpler.
For simplicity of notation we let θ := θ(S). By (6.3) there exist q ∈ N and δ > 0
such that for all n ≥ q,

‖Dφen+1‖θ∞
‖Dφen‖θ∞

>
K2θ

1 +K2θ
+ δ. (6.4)

Note that by continuity there exists η > 0 such that for every t ∈ [θ, θ + η)(
K2θ

1 +K2θ
+ δ

)t/θ
>

K2t

1 +K2t
.

Hence by (6.4), for every n ≥ q

‖Dφen+1‖t∞
‖Dφen‖t∞

=

(
‖Dφen+1‖θ∞
‖Dφen‖θ∞

)t/θ
>

K2t

1 +K2t
. (6.5)

Therefore using (6.5), we get that for every k ≥ q and every t ∈ [θ, θ + η)

∞∑
n=k+1

‖Dφen‖t∞ ≥ ‖Dφek‖t∞
∞∑

n=k+1

(
K2t

1 +K2t

)n−k
= ‖Dφek‖t∞

K2t

1 +K2t

(
1− K2t

1 +K2t

)−1

= ‖Dφek‖t∞
K2t

1 +K2t
(1 +K2t) = K2t‖Dφek‖t∞.

Now the proof follows by an application of Corollary 6.9. �

Theorem 6.10 has the following two immediate consequences. First of all note
that K2 ≤ (1 +K2θ(S))1/θ(S) when θ(S) 6= 0. Therefore:

Corollary 6.11. Let S be a strongly regular conformal IFS. If

lim inf
n→∞

‖Dφen+1‖∞
‖Dφen‖∞

≥ 1,

then S is of strong cofinite full spectrum.

Recall also that when S consists of similarities K = 1. Therefore:

Corollary 6.12. Let S be a strongly regular conformal IFS consisting of similarities. If

lim inf
n→∞

‖Dφen+1‖∞
‖Dφen‖∞

> 2−1/θ(S),

then S is of strong cofinite full spectrum.

We will now introduce a special order on E which will have pleasant theoreti-
cal properties and it is well suited for numerical calculations.
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Definition 6.13. Let E be an infinite countable set and let S = {φe}e∈E be a con-
formal IFS. We say that a well ordering ≺which induces an order type of N on E
is natural (with respect to S) if

‖Dφa‖∞ ≥ ‖Dφb‖∞
whenever a ≺ b.

If S is as in Definition 6.13 it follows, see e.g. [5, Lemma 4.18], that there are at
most finitely many letters e ∈ E with mutually equal derivative norms ‖Dφe‖∞.
Note also that the system S admits always at least one natural ordering and it
admits exactly one if and only if the function

E 3 e 7→ ‖Dφe‖∞ ∈ (0, 1)

is injective. We record the following consequences of imposing a natural order
on the alphabet. In the following for any e ∈ E in the alphabet we will denote
by e∗ the successor of e with respect to the natural order ≺, i.e. e∗ is a the least
element of E larger than e. We will also denote by 1 be the first element of this
order.

Lemma 6.14. Let S = {φe}e∈E be a conformal IFS with its alphabet E endowed with a
natural order ≺. If there exist t ≥ 0 and k ∈ E such that∑

n�k∗
‖Dφn‖t∞ ≥ K2t‖Dφk‖t∞, (6.6)

then for every 0 ≤ s ≤ t ∑
n�k∗
‖Dφn‖s∞ ≥ K2s‖Dφk‖s∞. (6.7)

Proof. Since for all n, k ∈ E such that n � k it holds that
‖Dφn‖∞
‖Dφk‖∞

≤ 1,

the function

[0,+∞) 3 s 7→
(
‖Dφn‖∞
‖Dφk‖∞

)s
is monotone decreasing. Therefore the function

[0,+∞) 3 s 7→
∑
n�k∗

(
‖Dφn‖∞
‖Dφk‖∞

)s
is also monotone decreasing. Since on the other hand the function

[0,+∞) 3 s 7→ Ks

is monotone increasing it follows from (6.6) that for every s ∈ [0, t],∑
n�k∗

(
‖Dφn‖∞
‖Dφk‖∞

)s
≥
∑
n�k∗

(
‖Dφn‖∞
‖Dφk‖∞

)t
≥ K2t ≥ K2s.

�
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Corollary 6.15. Let S = {φe}e∈E be a conformal IFS with its alphabet E endowed with
a natural order ≺. Let t ≥ 0. If for every k � 1∗∑

n�k∗
‖Dφn‖t∞ ≥ K2t‖Dφk‖t∞, (6.8)

then
[0,min{t, h(S)}] ⊂ DS(S).

Proof. The proof follows by Lemma 6.14 and Corollary 6.7 after noting that P{1}(s) ≤
0 for all s ≥ 0 because trivially h = dimH(J{1}) = 0. �

We also record the following corollary.

Corollary 6.16. Let S = {φe}e∈E be a conformal IFS with its alphabet E endowed with
a natural order ≺. If there exists t ≥ h(S) such that for every k � 1∗∑

n�k∗
‖Dφn‖t∞ ≥ K2t‖Dφk‖t∞,

then S is of strong full spectrum.

We conclude this section by noting that Corollary 6.7 and Lemma 6.14 imply
the following proposition.

Proposition 6.17. Let S = {φe}e∈E be a conformal IFS. Let E = {en}n∈N be an
enumeration of E according to a natural order. Suppose that there exist t ≤ s ≤
h(S) and d ∈ N such that

(i) PI(d)(t) ≤ 0,
(ii)

∑
n≥k+1 ‖Dφen‖s∞ ≥ K2s‖Dφek‖s∞ for all k ≥ d+ 1.

Then [t, s] ⊂ DS(S).

7. DIMENSION SPECTRUM OF COMPLEX CONTINUED FRACTIONS

In this section we study the dimension spectrum of the conformal iterated
function system generated by complex continued fractions. Let

(i) E = {m+ ni : (m,n) ∈ N× Z},
(ii) X = B̄(1/2, 1/2),

(iii) W = B(1/2, 3/4).
For e ∈ E we define the maps φe : W → W by

φe(z) =
1

e+ z
.

It was proved in [26] that for every e ∈ E
(i) φe(W ) ⊂ B(0, 4|e|−1),

(ii) 4−1|e|−2 ≤ |φ′e(z)| ≤ 4|e|−2, for all z ∈ W ,
(iii) 4−1|e|−2 ≤ diam(φe(W )) ≤ 4|e|−2.
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Formally {φe}e∈E is not a conformal IFS because φ′1(0) = 1. Nevertheless the
family {φe ◦ φj : (e, j) ∈ E × E} is indeed a conformal IFS. Slightly abusing
notation we will treat CFC := {φe}e∈E as a conformal IFS and we will call it,
the complex continued fractions IFS. Notice also that (iii) and Proposition 3.6 imply
that θ(CFC) = 1. With regard to the bounded distortion properties of CFC, recall
Lemma 3.4, we record that the best distortion constant is K = 4, see [26, Remark
6.7].

It was proved in [26, Theorem 6.6] that for all e = m+ ni ∈ E,

‖φ′e‖∞ = sup
z∈X
|φ′e(z)| = 1

(|e+ 1/2| − 1/2)2
=

1

(((m+ 1/2)2 + n2)1/2 − 1/2)
2 . (7.1)

In fact, this formula can be seen quite easily geometrically. Indeed, we have

|φ′e(z)| = 1

|e+ z|2
.

To find ‖φ′e‖∞ thus reduces to finding the infimum of |e + z| if z ranges over
B(1/2, 1/2). This is of course the same as the infimum of |z| if z ranges over
B(e+ 1/2, 1/2). And this of course is |e+ 1/2| − 1/2.

We record that (7.1) implies that ‖φ′e‖∞ = ‖φ′ē‖∞. This also can be seen geomet-
rically by noticing that

φē = J ◦ φe ◦ J,
where J : C→ C is the complex conjugacy map (J(z) = z̄), thus an isometry.

We endow the alphabet E a with natural ordering “ ≺ ” (recall Definition 6.13)
and we denote by 1 be the first element of this order. By (7.1) it is immediate that
1 = 1. Recall that for any e ∈ E we will denote by e∗ the successor of e.

Remark 7.1. If the alphabet E is endowed with the natural ordering “ ≺ ”, then
for every e = m+ ni ∈ E and every k ∈ N

e∗ ≺ min{e+ k, ē+ k,m+ |n|i+ ki,m− |n|i− ki}.

We now state and prove our first theorem regarding the dimension spectrum
of complex continued fractions.

Theorem 7.2. The complex continued fractions IFS CFC is of strong cofinite full spec-
trum.

Proof. Observe that by (7.1) it follows easily that for any e ∈ E,

e∗ ≺ e+ 1.

Therefore
‖φ′e‖∞ ≥ ‖φ′e∗‖∞ ≥ ‖φ′e+1‖∞,

and consequently

1 ≥ ‖φ
′
e∗‖∞
‖φ′e‖∞

≥
‖φ′e+1‖∞
‖φ′e‖∞

. (7.2)
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Let (en)n∈N be an enumeration of E respecting the natural order ≺, i.e. (en)∗ =
en+1 for all n ∈ N. It then follows by (7.2) and (7.1) that

lim
n→∞

‖φ′en+1
‖∞

‖φ′en‖∞
= 1.

By [26, Theorem 3.20 and Proposition 6.1] we know that CFC is strongly regular,
hence Corollary 6.11 implies that CFC is of strong cofinite full spectrum. �

We will now state and prove two technical lemmas.

Lemma 7.3. Given m ≥ 0 and t > 0, the function

N ∪ {0} 3 n→
∑∞

k=m+1

(
((k + 1/2)2 + n2)1/2 − 1/2

)−2t

(((m+ 1/2)2 + n2)1/2 − 1/2)
−2t

is increasing.

Proof. Let

A(n) =
∞∑

k=m+1

(
((m+ 1/2)2 + n2)1/2 − 1/2

((k + 1/2)2 + n2)1/2 − 1/2

)2t

.

It suffices to show that for every k ≥ m+ 1 the functions

n→ Ak(n) :=
((m+ 1/2)2 + n2)1/2 − 1/2

((k + 1/2)2 + n2)1/2 − 1/2

are increasing. Treating n as a real (continuous) variable, and taking derivatives
we have that

dAk(n)

d n
=
n ((m+ 1/2)2 + n2)

−1/2 (
((k + 1/2)2 + n2)1/2 − 1/2

)
(((k + 1/2)2 + n2)1/2 − 1/2)

2

−
n ((k + 1/2)2 + n2)

−1/2 (
((m+ 1/2)2 + n2)1/2 − 1/2

)
(((k + 1/2)2 + n2)1/2 − 1/2)

2 .

Therefore the sign of dAk(n)
dn

coincides with the sign of

αk(n) :=
((k + 1/2)2 + n2)1/2 − 1/2

((m+ 1/2)2 + n2)1/2
− ((m+ 1/2)2 + n2)1/2 − 1/2

((k + 1/2)2 + n2)1/2
.

Let
bk := ((k + 1/2)2 + n2)1/2 and a = ((m+ 1/2)2 + n2)1/2.

Then

αk(n) =
bk − 1/2

a
− a− 1/2

bk
=
bk(bk − 1/2)− a(a− 1/2)

abk
.

Since bk > a ≥ 1/2 for all k ≥ m+ 1 we deduce that αk(n) ≥ 0 for such k and the
proof is complete. �
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Lemma 7.4. Given n ≥ 0 and t > 0, the function

N ∪ {0} 3 m→
∑∞

l=n+1

(
((m+ 1/2)2 + l2)1/2 − 1/2

)−2t

(((m+ 1/2)2 + n2)1/2 − 1/2)
−2t

is increasing.

Proof. Let

B(m) =
∞∑

l=n+1

(
((m+ 1/2)2 + n2)1/2 − 1/2

((m+ 1/2)2 + l2)1/2 − 1/2

)2t

.

It suffices to show that for every l ≥ n+ 1 the functions

m→ Bl(m) :=
((m+ 1/2)2 + n2)1/2 − 1/2

((m+ 1/2)2 + l2)1/2 − 1/2

are increasing. Treating m as a real (continuous) variable, and taking derivatives
we have that

dBl(m)

dm
=

((m+ 1/2)2 + n2)
−1/2 (

((m+ 1/2)2 + l2)1/2 − 1/2
)

(m+ 1/2)

(((m+ 1/2)2 + l2)1/2 − 1/2)
2

−
((m+ 1/2)2 + l2)

−1/2 (
((m+ 1/2)2 + n2)1/2 − 1/2

)
(m+ 1/2)

(((m+ 1/2)2 + l2)1/2 − 1/2)
2 .

Therefore the sign of dBl(m)
dm

coincides with the sign of

βl(m) :=
((m+ 1/2)2 + l2)1/2 − 1/2

((m+ 1/2)2 + n2)1/2
− ((m+ 1/2)2 + n2)1/2 − 1/2

((m+ 1/2)2 + l2)1/2
.

Let
cl := ((m+ 1/2)2 + l2)1/2 and a = ((m+ 1/2)2 + n2)1/2.

Then

βl(m) =
cl − 1/2

a
− a− 1/2

cl
=
cl(cl − 1/2)− a(a− 1/2)

acl
.

Since cl > a ≥ 1/2 for all l ≥ n + 1 we deduce that βl(m) ≥ 0 for such l and the
proof is complete. �

We now make the following technical observation which incorporates the pre-
vious monotonicity lemmas.

Lemma 7.5. Let e = m+ ni ∈ E and t > 0. Then∑
j�e∗

‖φ′j‖t∞
‖φ′e‖t∞

≥ 2

∑∞
k=m+1 k

−2t

m−2t
+ 2

∑∞
l=n+1((l2 + 1/4)1/2 − 1/2)−2t

((n2 + 1/4)1/2 − 1/2)−2t
.

Proof. Recalling Remark 7.1 we get that if k ≥ m+ 1 then
k + ni � e∗ and k − ni � e∗,

and if l ≥ |n|+ 1,
m+ li � e∗ and m− li � e∗.
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Therefore∑
j�e∗
‖φ′j‖t∞ ≥

∞∑
k=m+1

‖φ′k+ni‖t +
∞∑

k=m+1

‖φ′k−ni‖t +
∞∑

l=|n|+1

‖φ′m+li‖t∞ +
∞∑

l=|n|+1

‖φ′m−li‖t∞

= 2
∞∑

k=m+1

‖φ′k+ni‖t + 2
∞∑

l=|n|+1

‖φ′m+li‖t∞.

Now by Lemmas 7.3 and 7.4 we get that∑
j�e∗

‖φ′j‖t∞
‖φ′e‖t∞

≥ 2
∞∑

k=m+1

(((k + 1/2)2 + n2)1/2 − 1/2)−2t

(((m+ 1/2)2 + n2)1/2 − 1/2)−2t

+ 2
∞∑

l=|n|+1

(((m+ 1/2)2 + l2)1/2 − 1/2)−2t

(((m+ 1/2)2 + n2)1/2 − 1/2)−2t

≥ 2

∑∞
k=m+1 k

−2t

m−2t
+ 2

∑∞
l=|n|+1((l2 + 1/4)1/2 − 1/2)−2t

((n2 + 1/4)1/2 − 1/2)−2t
.

�

Proposition 7.6. Let e = m+ ni ∈ E such that m ≥ 29 or |n| ≥ 212 then
∞∑
j�e∗
‖φ′j‖h∞ ≥ 16h‖φ′e‖h∞ (7.3)

where h = dimH(JCFC).

Proof. Assume first that m ≥ 29. By the integral test,

m4

∞∑
k=m+1

k−4 ≥ m4

∫ ∞
m+1

x−4dx

= m4 (m+ 1)−3

3
≥ 1

3

(
m

m+ 1

)4

m.

(7.4)

Therefore by (7.4),

2m4

∞∑
k=m+1

k−4 ≥ 2

3

(
29

29 + 1

)4

29 ≥ 1

3

246

236 + 232
.

Since 26 ≥ 3(24 + 1) we get that

1

3

246

236 + 232
≥ 28.

Hence we have shown that

2m4

∞∑
k=m+1

k−4 ≥ 28,
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which by Lemma 7.5 implies that∑
j�e∗

‖φ′j‖2
∞

‖φ′e‖2
∞
≥ 162.

By [26, Theorem 6.6] we know that

h = dimH(JCFC) ≤ 1.9, (7.5)

therefore Lemma 6.14 implies that (7.3) holds.
Now assume that n ≥ 212. By the integral test,

∞∑
l=n+1

((l2 + 1/4)1/2 − 1/2)−4 ≥
∞∑

l=n+1

l−4 ≥ (n+ 1)−3

3
.

On the other hand it is easy to check that

(n2 + 1/4)1/2 − 1/2 ≥
√

5− 1

2
n.

Therefore,

2

∑∞
l=n+1((l2 + 1/4)1/2 − 1/2)−4

((n2 + 1/4)1/2 − 1/2)−4
≥ 2

(√
5− 1

2

)4(
n

n+ 1

)4
n+ 1

3
.

As in the previous case, recalling Lemma 6.14 and Lemma 7.5, it suffices to show
that for n ≥ 212,

2

3

(√
5− 1

2

)4(
n

n+ 1

)4

n ≥ 162.

This reduces to checking the condition

2

3

(√
5− 1

2

)4
211

27 + 1
≥ 1,

which is easily verified to be valid.
The only remaining case is when n ≤ −212. The proof follows as in the previous

case using that ‖φ′z‖ = ‖φ′z̄‖ and Lemma 7.5. The proof is complete. �

We are now ready to prove Theorem 1.4, which we restate for convenience.

Theorem 7.7. The conformal iterated function system associated to the complex contin-
ued fractions has full spectrum.

Proof. By Proposition 7.6 we know that (7.3) holds for any e = m + ni ∈ E such
that m ≥ 29 or |n| ≥ 212. We use Matlab to check condition (7.3) for the finitely
many remaining points in the grid E. Let

E = {e1, e2, e3, . . . }
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FIGURE 6. Approximation of the limit sets of the three subsystems
of CFC after two iterations. See also Figure 1 for an approximation
of JCFC .

be an enumeration of the grid E according to the natural order ≺ introduced in
Definition 6.13. Moreover for k ∈ N we let

Dk = {p1, . . . , pk}
be an enumeration of the first k points in the nonnegative grid N× Z+ according
to the natural order ≺. Here as usual Z+ denotes the set of nonnegative integers.
For any A ⊂ C we let

Ã = {z ∈ C : z ∈ A or z ∈ A}.
For k ∈ N we are going to denote

Ĩk = D̃k

Recalling Section 6, since ‖φ′z‖ = ‖φ′z̄‖ for all z ∈ E, it follows that for every k ∈ N
there exists some n(k) ∈ N such that

D̃k = In(k),

this simply means that Ĩk is an initial block of E. Consider the following function
f : N× R+ → R+

f(k, t) :=

∑∞
n=k+1 ‖φ′en‖

t
∞

‖φ′ek‖t∞
.

Notice that

f(k, t) =
‖φ′ek+1

‖t∞
‖φ′ek‖t∞

(1 + f(k + 1, t)),

and consequently we obtain the following recursive formula

f(k + 1, t) = α(k)−tf(k, t)− 1, (7.6)

where α(k) =
‖φ′ek+1

‖∞
‖φ′ek‖∞

.
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Let
B = {z ∈ C : Re(z) ∈ [1, 29] and Im(z) ∈ [0, 212]}.

Given t > 0 we would like to check k ∈ N
ek ∈ B ∩ E and f(k, t) ≥ 16t. (7.7)

Observe that if f̃(k, t) is an approximation of f(k, t) such that f̃(k, t) ≤ f(k, t)
then

f̃(k + 1, t) := α(k)−tf̃(k, t)− 1 ≤ α(k)−tf(k, t)− 1 = f(k + 1, t).

Now let
B0 = {z ∈ C : Re(z) ∈ [1, 40000] and Im(z) ∈ [0, 40000]}

and set

f̃(1, t) :=

∑
{n≥2:en∈B0} ‖φ

′
en‖

t
∞

‖φ′e1‖t∞
. (7.8)

Obviously f̃(1, t) ≤ f(1, t). We employ Matlab to estimate explicitly the quantity
f̃(1, t), and using the recursive formula (7.6) we derive approximations f̃(k, t) ≤
f(k, t) for all ek ∈ B. We remark that the choice of 40000 in the definition of B0

does not have any particular significance; it was simply sufficient for our calcu-
lations.

As a starting exponent t we will choose an upper bound for dimH(JCFC). It was
proved in [26] that

h := dimH(JCFC) ≤ 1.885. (7.9)
We also record that by a recent result of Priyadarshi [32],

h ≥ 1.825. (7.10)

In particular for h̄ := 1.885 we obtain that

f(k, h̄) ≥ 16h̄ for all ek ∈ B \ Ĩ16.

Hence by Lemma 6.14 and Proposition 7.6 we deduce that∑∞
n=k+1 ‖φ′en‖

h
∞

‖φ′ek‖h∞
≥ 16h for all ek ∈ E \ Ĩ16. (7.11)

Now we consider the finite conformal iterated function system

F16 = {φe : e ∈ Ĩ16}.
Then

Z2(Ĩ16, t) =
∑
ω∈Ĩ2

16

‖φ′ω‖t∞.

We now recall the following recursive formula for ‖φ′ω‖∞, ω ∈ En, appearing in
[26, Theorem 6.6]. For any ω = (ω1, . . . , ωn) ∈ En, set

q0(ω) = 1, q1(ω) = ω1,

and
qk(ω) = ωkqk−1(ω) + qk−2(ω) for 2 ≤ k ≤ n.
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FIGURE 7. The sets Ĩ16, Ĩ10 and Ĩ9.

Then
‖φ′ω‖∞ =

4

|qn(ω)|2
(∣∣∣2 + qn−1(ω)

qn(ω)

∣∣∣+
∣∣∣ qn−1(ω)
qn(ω)

∣∣∣)2 . (7.12)

Using the previous recursive formula and employing Matlab we can estimate
Z2(Ĩ16, t) for different values of t. In particular we obtain that

Z2(Ĩ16, 1.544) < 0.997.

Recalling that PĨ16
(t) = infn∈N

logZn(Ĩ16,t)
n

we deduce that

PĨ16
(1.544) < 0. (7.13)

As we remarked earlier Ĩ16 is an initial segment of E (in particular Ĩ16 = I(28)),
therefore (7.15), (7.16) and Proposition 6.17 imply that

[1.544, h] ⊂ DS(CFC). (7.14)

Now let t1 := 1.545. As before we use Matlab to calculate the quantity f̃(1, t1)

and using the recursive formula (7.6) we derive approximations f̃(k, t1) ≤ f(k1, t)
for all k ∈ N such that ek ∈ B. In particular we obtain that

f(k, t1) ≥ 16t1 for all ek ∈ B \ Ĩ10.

Hence by Lemma 6.14 and Proposition 7.6 we deduce that∑∞
n=k+1 ‖φ′en‖

t1
∞

‖φ′ek‖
t1∞

≥ 16t1 for all ek ∈ E \ Ĩ10. (7.15)

We consider the finite conformal iterated function system

F10 = {φe : e ∈ Ĩ10}.
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Using Matlab as before
Z2(Ĩ10, 1.467) < 0.989.

Recalling that PĨ10
(t) = infn∈N

logZn(Ĩ10,t)
n

we deduce that

PĨ10
(1.467) < 0. (7.16)

As we remarked earlier Ĩ10 is an initial segment of E (in particular Ĩ10 = I(17)),
therefore (7.15), (7.16) and Proposition 6.17 imply that

[1.467, 1.545] ⊂ DS(CFC). (7.17)

By direct computation we check that D2 = {1, 1 + i} therefore

Ĩ2 = {1, 1 + i, 1− i}.

We let E2 := E \ Ĩ2 and we denote the conformal iterated function system associ-
ated to the complex continued fractions with entries in E2 by

S2 = {φe}e∈E2 .

We endow E2 with the natural order inherited from E. Using a modification of
the code developed by Priyadarshi [32], for E2 we obtain a lower bound for the
Hausdorff dimension of JS2 :

dimH(JS2) ≥ 1.5. (7.18)

Let t2 = 1.5. Arguing as previously, using Matlab to estimate f̃(1, t2), the
recursive formula (7.6) and the approximation sum (7.8), we get that

f(k, t2) ≥ 16t2 for all ek ∈ B \ Ĩ9,

which combined with Proposition 7.6 implies that∑∞
n=k+1 ‖φ′en‖

t2
∞

‖φ′ek‖
t2∞

≥ 16t2 for all ek ∈ E \ Ĩ9. (7.19)

We consider the finite conformal iterated function system

F2
9 = {φe : e ∈ Ĩ9 \ Ĩ2}.

Using Matlab as before
Z2(Ĩ9 \ Ĩ2, 1.11) < 0.97,

hence
PĨ9\Ĩ2(1.11) < 0. (7.20)

Notice that (7.19) implies that∑∞
n=k+1 ‖φ′en‖

t2
∞

‖φ′ek‖
t2∞

≥ 16t2 for all ek ∈ E2 \ Ĩ9. (7.21)

On the other hand E2 ∩ Ĩ9 = Ĩ9 \ Ĩ2 is an initial block of E2, therefore (7.21), (7.20)
and Proposition 6.17 imply that

[1.11, 1.5] ⊂ DS(S2) ⊂ DS(CFC). (7.22)
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Finally let t3 = 1.2. Using Matlab we estimate f̃(1, t3) and the recursive for-
mula (7.6) allows us to derive approximations f̃(k, t1) ≤ f(k1, t) for all k ∈ N such
that ek ∈ B. In particular we obtain that

f(k, t3) ≥ 16t3 for all ek ∈ B \ Ĩ2,

which combined with Proposition 7.6 implies that∑∞
n=k+1 ‖φ′en‖

t2
∞

‖φ′ek‖
t2∞

≥ 16t2 for all ek ∈ E \ Ĩ2. (7.23)

We consider the finite conformal iterated function system

F2 = {φe : e ∈ Ĩ2}.

Using Matlab as before we obtain that Z2(Ĩ2, 0.9) < 0.93, hence we deduce that

PĨ2(0, 9) < 0. (7.24)

Since Ĩ2 = I3, (7.23), (7.24) and Proposition 6.17 imply that

[0.9, 1.12] ⊂ DS(CFC). (7.25)

By [27, Theorem 6.2] and the fact that θ(CFC) = 1 we deduce that

[0, 1) ⊂ DS(CFC). (7.26)

Now the theorem follows by combining (7.14), (7.17), (7.22), (7.25) and (7.26). �

Remark 7.8. In order to obtain the estimate (7.18) we used a modified version of
a code developed by Priyadarshi [32]. The modified code guarantees the lower
bound 1.5 for the Hausdorff dimension of JS2 as long as the the spectral radius
of the restricted Perron-Frobenius operator is greater than one. Already for the
value of p = 7 in the modified Priyadarshi’s code, we obtain the spectral radius
of at least 1.14082450939.... This value is validated by the Matlab Toolbox for
Reliable Computing, INTLAB [34], to be accurate to twelve digits (see also [35]).
We also verified Priyadarshi’s estimate (7.10). Actually using the Power Method
(Power Algorithm) and Priyadarshi’s approach we were able to obtain h ≥ 1.84.
The Matlab codes used in the proof of Theorem 7.7 and for obtaining lower
bounds for Hausdorff dimensions of subsystems of CFC using the Power Method
are available upon request.

Remark 7.9. Recalling the definition of CFC = {φe}e∈E in the beginning of the
section, it is easy to see that φe(X) is a closed ball for every e ∈ E, where X =
B̄(1/2, 1/2). A geometric argument very similar to the one used in the proof of
(7.1) gives that

re := diam(φe(X)) =
1

m2 + n2 +m
,

for e = m + ni ∈ E. Using this observation we define the linearized continued
fractions IFS ĈFC = {ψe}e∈E , where

ψe(z) = rez + τe,



62 VASILEIOS CHOUSIONIS, DMITRIY LEYKEKHMAN, AND MARIUSZ URBAŃSKI

and τe is the center of φe(X). Notice that ĈFC consists of rotation-free similarities.
Moreover

ψe(X) = φe(X) and ‖ψ′e‖∞ = re

for every e ∈ E.
We now briefly describe how the method developed in the last two sections

yields that ĈFC is of full spectrum as well. We endow E with a natural order as
before, i.e. e1 ≺ e2 if and only if ‖ψ′e1‖∞ ≥ ‖ψ

′
e2
‖∞. Arguing as in Proposition 7.6,

although using much simpler elementary arguments, we deduce that
∞∑
j�e∗
‖ψ′j‖2

∞ ≥ ‖ψ′e‖2
∞ (7.27)

for all e = m + ni ∈ E such that m ≥ 8 or |n| ≥ 9. Notice that since the maps
ψe are similarities the distortion constant K is equal to 1. We then use recursive
approximation as in (7.8) and Matlab to verify that (7.3) also holds for the re-
maining e ∈ E ∩ ([1, 8]× [−9, 9]). Finally applying Corollary 6.8 and Lemma 6.14
we deduce that ĈFC is of full spectrum. We stress that the main reason why the
proof is so simpler in the case of linearized complex continued fractions is the
fact that the distortion constant is the smallest possible, i.e. equal to 1.
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