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Abstract. We provide the full theory of thermodynamic formalism for a very general
collection of entire functions in class B. This class overlaps with the collection of all entire
functions for which thermodynamic formalism has been so far established and contains
many new functions.

The key point is that we introduce an integral means spectrum for logarithmic tracts
which takes care of the fractal behavior of the boundary of the tract near infinity. It turns
out that this spectrum behaves well as soon as the tracts have some sufficiently nice geom-
etry which, for example, is the case for quasicircle, John or Hölder tracts. In this case we
get a good control of the corresponding transfer operators, leading to full thermodynamic
formalism along with its applications such as exponential decay of correlations, central
limit theorem and a Bowen’s formula for the Hausdorff dimension of radial Julia sets.

Our approach applies in particular to every hyperbolic function from any Eremenko-
Lyubich analytic family of Speiser class S provided this family contains at least one func-
tion with Hölder tracts. The latter is, for example, the case if the family contains a
Poincaré linearizer.

1. Introduction

The dynamics of a holomorphic function heavily depends on the behavior of the singular
set. The singular set S(f) of an entire function f : C → C is the closure of the set of
critical values and finite asymptotic values of f . Eremenko-Lyubich [15] introduced and
studied class B consisting of all entire functions with bounded singular sets. It has as
a subclass Speiser class S consisting of entire functions with finite singular sets. In this
paper we develop the full theory of thermodynamic formalism for a large collection of entire
functions in Eremenko-Lyubich class B.

When developing the thermodynamic formalism for transcendental functions, one en-
counters immediately two major difficulties: one has to deal with the essential singularity
at infinity and to check whether the transfer operator, which is given by an infinite series,
is well defined, i.e. converges, and has sufficiently good properties.

The first work on thermodynamic formalism for transcendental functions is due to
Barański [1] who considered the tangent family. Other particular, mainly periodic, func-
tions have been treated in the sequel, see for example [19], [42] and [43]. The first and, up
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to now, the only unified approach appeared in [23] and in [24]. Theses papers deal with
a large class of functions that satisfy a condition on the derivative called balanced growth
condition. The key point there was to employ Nevanlinna Theory and to make a judicious
choice of Riemannian metric. Here we keep this choice of metric but then we proceed
totally differently avoiding any use of Nevanlinna Theory. By introducing integral means
spectrum for logarithmic tracts we built the theory of thermodynamic formalism for many
other entire functions from class B.

The main object of this paper is to show that the transfer operator behaves well depend-
ing on the geometry of the logarithmic tracts over infinity. Consider f ∈ B and suppose
that the bounded set S(f) is contained in the unit disk. Then, the components Ωj of
f−1({|z| > 1}) are the tracts, in fact logarithmic tracts of f over infinity. We assume that
there are only finitely many of them: see the definition of class D in the next section.

Let us consider here in this introduction the case where f−1({|z| > 1}) consists only in
one tract Ω. Then, f|Ω has the particular form

f = eτ ,

with τ a conformal map from Ω onto the half plane H = {<z > 0} such that

(1.1) ϕ := τ−1 : H → Ω

is a proper map [15]. Although ∂Ω is an analytic curve, near infinity it often resembles
more and more a fractal curve. Typically, going to infinity on ∂Ω is like considering Green
lines that are closer and closer to the boundary of possibly fractal domains. To make this
precise, consider the rectangles

(1.2) QT :=
{
ξ ∈ C : 0 < <ξ < 4T and − 4T < =ξ < 4T

}
and then the domains

ΩT := ϕ(QT ) , T ≥ 1 .

The domains ΩT form natural exhaustions of Ω and the fractality near infinity of ∂Ω can
be observed by considering ΩT rescaled by the factors 1/|ϕ(T )| as T →∞.

Figure 1. Example of ΩT
|ϕ(T )| for T = 1, T = 5 and T = 20.

The corresponding rescaled map is

ϕT :=
1

|ϕ(T )| ϕ ◦ T



THERMODYNAMICAL FORMALISM AND INTEGRAL MEANS SPECTRUM 3

and one can consider the integral means

βϕT (r, t) :=
log
∫

1≤|y|≤2
|ϕ′T (r + iy)|tdy

log 1/r
.

Starting from this formula we naturally assign to the tract Ω an integral means spectrum
t 7→ β∞(t) which measures the fractal behavior of the tract at infinity. As in the classical
setting, the important function will be the convex one:

b∞(t) := β∞(t)− t+ 1 , t ≥ 0 .

This function has always a smallest zero Θf > 0 and, in the good cases, b∞ has only a
unique zero. In this latter case, we will say that the function f has negative spectrum.

We provide in addition a very general and easily verifiable condition that implies negative
spectrum namely the Hölder tract property. It essentially means that the domains ΩT are
uniformly Hölder, see Definition 5.3 for the precise definition. For example, if the tract
itself Ω is a quasidisk then it is a Hölder tract.

Proposition 1.1. Let f ∈ B be an entire function having finitely many tracts. If the tracts
are Hölder then f has negative spectrum.

Disjoint type is a particular form of hyperbolicity. We work under this assumption but
then, using standard bounded distortion arguments, for functions in class S our results
carry over to a much more general class of hyperbolic functions (see Section 10.1). Class
D essentially consists in disjoint type functions of class B having finitely many tracts (see
Definition 2.1) with some additional properties.

Theorem 1.2. Let f ∈ D be a function having negative spectrum and let Θf ∈]0, 2] be the
smallest zero of b∞. Then, the following holds:

- For every t > Θf , the whole thermodynamic formalism, along with its all usual con-
sequences holds: the Perron-Frobenius-Ruelle Theorem, the Spectral Gap property
along with its applications: Exponential Mixing, Exponential Decay of Correlations
and Central Limit Theorem (see Section 8).

- For every t < Θf , the series defining the transfer operator Lt (see (4.3)) is divergent.

Therefore, thermodynamic formalism is crystal clear for functions in class D with neg-
ative spectrum. The proof is based on Theorem 4.1 which is valid for all functions in class
B without any further assumptions.

This also leads to geometric applications provided that the topological pressure, as de-
fined in Section 9, has a zero h > Θf . The following result completes the picture on various
Bowen’s Formulas (see [23] but especially [4] which contains a very general version of it).

Theorem 1.3 (Bowen’s Formula). Let f ∈ D have negative spectrum and be such that the
topological pressure P(t) has a zero h > Θf . Then, the hyperbolic dimension HypDim(f)
of f is equal to the unique zero h > Θf of the topological pressure.
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In conclusion, we get a complete, natural and quite elementary approach for the thermo-
dynamic formalism for entire functions having negative spectrum. It covers many functions
that satisfy the balanced growth condition, i.e. many functions of [23, 24]. They have neg-
ative spectrum and, even more, they are elementary in the sense that the integral means
spectrum is as simple as possible: namely β∞ ≡ 0 and Θf = 1.

There is a very general result of approximating a model function by entire functions due
to Bishop [9, 10]. His work is motivated by former results of Rempe-Gillen [38]. We show
in Proposition 6.3 that the Hölder tract property is preserved when passing from the model
to the approximating entire function. In fact, as Lemma 6.1 demonstrates, the Hölder tract
property is a quasiconformal invariant. This has a second important application: for entire
functions of class S the Hölder tract property is in fact a property of an analytic family of
functions and not only of a single function. More precisely, if g ∈ S then Eremenko-Lyubich
[15] naturally associated to g an analytic family of entire functions Mg ⊂ S. Proposition
10.1 states that every function of Mg has Hölder tracts if a function, for example g, has.
A concrete application of all of this is the following.

Theorem 1.4. Let g ∈ S be any function having finitely many tracts over infinity and
assume that they are Hölder. Then every function f ∈ Mg has negative spectrum and the
thermodynamic formalism holds for every hyperbolic map from Mg.

We also study a particular family of entire functions called Poincaré functions studied
previously in [12, 28, 14] among others. If p : Ĉ→ Ĉ is a polynomial set and if z0 ∈ Jp is
a repelling fixed point of p then there exists an entire function f : C→ C such that

f ◦ |p′(z0)| = p ◦ f.

Figure 2. Three fractal and Hölder tracts from a linearizer of Douady’s Rabbit.
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For all entire functions f that obey such a particular linearizing functional equation such
that the involved polynomial p has a connected Julia set we show, by a direct calculation
in Theorem 7.9, that the transfer operator behaves well. But not all of them have negative
spectrum. Based on work of Graczyk, Przytycki, Rivera-Letelier and Smirnov [17, 33], we
show that Poincaré functions have Hölder tracts if and only if the corresponding linearizing
polynomial is topological Collet-Eckmann (TCE). In addition, such a linearizer is in class S
if and only if the polynomial is post-critically finite (thus TCE). Therefore, such functions
can be taken as generating function of the analytic family in Theorem 1.4. They are
particularly intriguing since it follows from Zdunik’s Theorem 7.8 in [45] that the tracts
of Poincaré functions are fractals except for the case of polynomials of the form z 7→ zd,
d ≥ 2, or Tchebychev ones.

Corollary 1.5. Let g ∈ S be a Poincaré function of a polynomial having connected Julia
set. Then every function f ∈Mg has negative spectrum and the thermodynamic formalism
holds for every hyperbolic map from Mg.

Here is an other concrete application of the present approach to this particular family.

Theorem 1.6 (Real analyticity of hyperbolic dimension). Let p : Ĉ → Ĉ be a hyperbolic
polynomial with connected Julia set, let z0 ∈ Jp be a repelling fixed point of p and let
f : C → C be an entire function such that f ◦ |p′(z0)| = p ◦ f . Then, for all κ ∈ C with
sufficiently small moduli, the function

κ 7−→ HypDim(fκ) , fκ := f ◦ κ ,
is real analytic and HypDim(fκ) > Hdim(Jp).

Additional Remark. After having sent out the first version of this paper, Dezotti and
Rempe-Gillen informed us that they are actually finishing the preprint [13] and supplied
us with its preliminary version. Concerning thermodynamic formalism, they establish its
version for hyberbolic Poincaré functions of TCE polynomials. In particular, they show
that our Proposition 9.3 holds for TCE polynomials.

2. The Setting

Let f : C → C be an entire function and let S(f) be the closure of the set of critical
values and finite asymptotic values of f . The different type of singularities of an entire
function, in fact Iversen’s classification, are all very well explained in [7]. We consider
functions of the Eremenko–Lyubich class B which consists of entire functions for which
S(f) is a bounded set. It contains the subclass of Speiser functions S, i.e. the ones for
which the set S(f) is finite.

The dynamical setting is the following. An arbitrary entire function f : C→ C is called
hyperbolic if f ∈ B and if there is a compact set K such that

f(K) ⊂ Int(K)
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and f : f−1(C\K)→ C\K is a covering map. According to Theorem 1.3 in [40], an entire
function f is hyperbolic if and only if the postsingular set

P(f) :=
⋃
n≥0

fn(S(f))

is a compact subset of the Fatou set of f . In particular, we have then

(2.1) dist (S(f),Jf ) ≥ dist (P(f),Jf ) > 0 .

Here and in the sequel, Jf stands for the Julia set of f defined in the usual way (see for
example the survey [6]).

Concerning the radial Julia set, there are several definitions in the literature (see [24, 36]).
It is explained in Remark 4.1 of [24] that these definitions lead to different sets whose
difference is dynamically insignificant. In particular they have same Hausdorff dimension.
Since we deal only with hyperbolic entire functions, the following definition fits best to our
context:

Jr(f) = {z ∈ J (f) : lim inf
n→∞

fn(z) <∞} .
The hyperbolic dimension of f is the Hausdorff dimension of this set:

HypDim(f) = Hdim(Jr(f)) .

Of crucial importance for us is the concept of disjoint type. It first implicitly appeared in
[2] and has been explicitly studied in several papers including [41, 37, 39]. In these papers
it meant that the compact set K in the definition of a hyperbolic function can be taken
to be connected. In this case, the Fatou set of f is connected. We will use its normalized
form described below.

For every r > 0 let Dr := D(0, r) be the open disk centered at the origin with radius
r and D∗r = C \ Dr for the complement of its closure. We denote A(r, R) := DR \ Dr the
annulus centered at 0 with the inner radius r and the outer radius R. We further write
D := D1 for the unit disk in C and D∗ := D∗1 for the complement of its closure.

If

S(f) ⊂ D
then f−1(D∗) consists of mutually disjoint unbounded Jordan domains Ω with real analytic
boundaries such that f : Ω→ D∗ is a covering map (see [15]). In terms of the classification
of singularities, this means that f has only logarithmic singularities over infinity. These
connected components of f−1(D∗) are called tracts and the restriction of f to any of these
tracts Ω has the special form

(2.2) f|Ω = exp ◦ τ where ϕ = τ−1 : H := {z ∈ C : <(z) > 0} → Ω

is a conformal proper map. We will always assume that f has only finitely many tracts:

(2.3) f−1(D∗) =
N⋃
j=1

Ωj .
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Notice that this is always the case if the function f has finite order. Indeed, if f has finite
order then the Denjoy-Carleman-Ahlfors Theorem (see [29, p. 313]) states that f can have
only finitely many direct singularities and so, in particular, only finitely many logarithmic
singularities over infinity.

If f ∈ B is such that

(2.4) S(f) ⊂ D and
N⋃
j=1

Ωj ∩ D = ∅
(
equivalently : f−1(D∗) =

N⋃
j=1

Ωj ⊂ D∗
)
,

then we will call f a function of disjoint type. This is consistent with the disjoint type
models in Bishop’s paper [9]. The function f is then indeed of disjoint type in the sense of
[2, 41, 37] described above as one can take for K the set D. Throughout this paper we will
always understand the concept of disjoint type in it more restrictive form of (2.4).

It is well known that for every f ∈ B and every λ ∈ C∗ the function λf is of disjoint
type provided |λ| is small enough.

In our present paper we focus on the following class D of entire functions.

Definition 2.1. An entire function f : C→ C belongs to class D if the following holds:

(1) f has only finitely many tracts, i.e. (2.3) holds.

(2) f is of disjoint type in the sense of (2.4); in particular f belongs to class B.

(3) The corresponding function ϕ of (1.1) satisfies the following very general geometric
condition: there exists a constant M ∈ (0,+∞) such that for every T ≥ 1 large
enough,

(2.5) |ϕ(ξ)| ≤M |ϕ(ξ′)| for all ξ, ξ′ ∈ QT \QT/8.

Frequently, only the dynamics of the restriction of f to the union of the tracts will be
relevant. We recall from (2.2) that such a restriction is given on each component Ωj by a
proper conformal map ϕj : H → Ωj.

Definition 2.2. A model (τ,Ω) is a finite union Ω =
⋃N
j=1 Ωj of simply connected un-

bounded domains Ωj along with conformal maps τ|Ωj = τj : Ωj → H such that ϕj = τ−1
j

extends continuously to infinity:

If ξn ∈ H with lim
n→∞

|ξn| =∞ then lim
n→∞

|ϕj(ξn)| =∞ .

Associated to (τ,Ω) is the model function f = eτ and we say that f ∈ D if f is a disjoint
type model in the sense that Ω ∩ D = ∅.

The Julia set of a model f is defined by

Jf := {z ∈ D∗ ; fn(z) ∈ D∗ for every n ≥ 1} .
By Proposition 2.2 in [39], this definition coincides with the usual definition of the Julia
set in case of a disjoint type entire function.
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Given these definitions, we will write in this paper f ∈ D for either an entire or a model
function f having the properties of class D. Model functions can be approximated by entire
functions of class B. Rempe–Gillen [38, Theorem 1.7] has a very precise result on uniform
approximation. He has proved good estimates for the difference between the model and the
approximating entire functions which certainly could be exploited in our context. A weaker
notion of approximation of a model function f by an entire function g is when there exists
a quasiconformal map ϕ of the plane such that f = g ◦ϕ. Bishop in [9, 10] has established
the existence of such quasiconformal approximations in full generality. In his results Ω can
be an arbitrary disjoint union of tracts and he can approximate by functions in class B and
even in class S. We will come back to this in the Section 5.2 dealing with Hölder tracts.

If f is of disjoint type, either entire or model, then

Jf ⊂
N⋃
j=1

Ωj

and the Julia set Jf is entirely determined by the dynamics of f in the tracts. So, for
disjoint type functions we can work indifferently either with a model or a global entire
function. It follows from (2.3) and (2.4) that for such functions

(2.6) f−1
( N⋃
j=1

Ωj

)
⊂

N⋃
j=1

Ωj,

and that there exists γ ∈ (0, 1) such that

(2.7) Jf ⊂ Ω =
N⋃
j=1

Ωj ⊂ D∗eγ .

As said, throughout the whole paper we restrict our attention to the functions in class
D, so, in particular, to those of disjoint type. One can extend all our considerations and
results to the case of hyperbolic entire functions belonging to Speiser class S, i.e. replacing
(2.4) by mere hyperbolicity in Definition 2.1 and assuming class S. This is, quite easily,
done in Section 10.1 by using Koebe’s Distortion Theorem only (of course plus all what we
did for disjoint type functions).

Here and in the sequel we use the classical notation such as

A � B.

It means, as usually, that the ratio A/B is bounded below and above by strictly positive
and finite constants that do not depend on the parameters involved. The corresponding
inequalities up to a multiplicative constant are denoted by

A � B and A � B.

With this notation we have the following. We recall that the rectangle Q2 has been defined
in (1.2).
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Theorem 2.3 (Bounded distortion). If ϕ : Q2 → C is a univalent holomorphic map then,
for every 0 < r < 1 and every −2 ≤ y ≤ 2, we have that

(2.8) |ϕ′(1)|(1− r) � |ϕ′((1± r) + iy)| � |ϕ′(1)| 1

(1− r)3
.

If ϕ is a univalent holomorphic map defined on the entire half-plane H then, for every
x > 1,

(2.9) |ϕ′(1)| 1

x3
� |ϕ′(x)| � |ϕ′(1)|x .

In here, the multiplicative constants involved are absolute.

Proof. This is simply a fairly straightforward application of Koebe’s Distortion Theorem.
Let g : Q2 → D be conformal, i.e univalent and holomorphic surjection. It has a holomor-
phic extension to a neighborhood of Q1 in C and thus g|Q1 : Q1 → g(Q1) is a bi–Lipschitz
map. It suffices thus to apply Theorem 1.3 in [30] to ϕ ◦ g−1 in order to deduce (2.8). The
inequalities in (2.9) also follow since for every univalent map ϕ on H the map z 7→ ϕ(xz)
is a univalent map on Q2 and one can apply (2.8). �

Let ϕ : H → Ω be a conformal homeomorphism. Then (2.9) implies for every T ≥ 1 that

(2.10) |ϕ(T )− ϕ(1)| ≤
∫ T

1

|ϕ′(x)|dx ≤ |ϕ′(1)|T 2 .

3. Fractal behavior of ∂Ω at infinity

We first analyze what happens for one single tract. So, we consider a model (τ,Ω) with
Ω a simply connected domain. In Figure 1 we illustrated the possible fractal behavior
of a tract Ω near infinity by considering rescalings of the exhaustion domains ΩT of Ω.
Associated to these rescaled domains are the rescaled conformal maps

(3.1) ϕT :=
1

|ϕ(T )| ϕ ◦ T : H → C.

We will frequently treat the maps ϕT as restricted to the set Q2 and will use the same
symbol ϕT for this restriction. In symbols, we will consider the maps

(3.2) ϕT =
1

|ϕ(T )| ϕ ◦ T : Q2 −→
1

|ϕ(T )|ΩT , T ≥ γ

where, as always, γ comes from (2.7). In particular

(3.3) |ϕT (1)| = 1.

We denote by FΩ the family of all the functions ϕT , T ≥ γ. Since asymptotic properties of
this family will be crucial, we now make some elementary observations. Let us recall here
that we always work under the standard assumption (2.5).
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Lemma 3.1. Suppose (2.5) holds. Then, FΩ is a normal family, in the sense of Montel,
on Q1 \Q1/8 and furthermore

(3.4)
1

T 4
� |ϕ′T (1)| � 1 , T ≥ γ,

Proof. It follows from (2.5) and (3.3) that for every T ≥ γ it holds

(3.5) ϕT (Q1 \Q1/8) ⊂ D(0,M).

Normality of FΩ follows thus directly from Montel’s Theorem. The left hand side of (3.4)
is a straightforward consequence of the left hand side of item (2.9) of the distortion The-
orem 2.3 along with (2.10), both applied to the map ϕ : H → C. Indeed, using them, we
get

|ϕ′T (1)| = |φ
′(T )|
|ϕ(T )

T � |ϕ′(1)| T

T 3|ϕ(T )| = |ϕ′(1)| 1

T 2|ϕ(T )| �
1

T 2|ϕ(T )| �
1

T 4
,

with (2.10) invoked for the last inequality sign. Since Q1 \ Q1/8 ⊃ D(1, 1/2), it fol-
lows from (3.5) that ϕT (D(1, 1/2)) ⊂ D(0,M). But by Koebe’s 1

4
–Distortion Theorem,

ϕT (D(1, 1/2)) ⊃ D(ϕT (1), |ϕ′T (1)|/8). Therefore, |ϕ′T (1)| ≤ 8M , formula (3.4) is proved.
�

Information of the boundary of the image domain can be obtained by considering integral
means spectrum (see [21] and [30] for the classical case which concerns conformal mappings
defined on the unit disk). In order to do so, let h : Q2 → U be a conformal map onto a
bounded domain U and define

(3.6) βh(r, t) :=
log
∫
I
|h′(r + iy)|tdy
log 1/r

, r ∈ (0, 1) and t ∈ R .

The integral is taken over I = [−2,−1] ∪ [1, 2] since this corresponds to the part of the
boundary of U that is important for our purposes.

Figure 3. The part of the boundary in the boxes can resemble more and
more a fractal as T →∞.

A well known application of the distortion Theorem 2.3 shows that there exists K1 > 0
such that, for all t ≥ 0,

(3.7) − t+
t log(|h′(1)|)−K1

log 1/r
≤ βh(r, t) ≤ 3t+

t log
(
|h′(1)|) +K1

log 1/r

and a corresponding inequality holds for all t < 0. Replacing now h by the conformal maps
of the family FΩ, one first has the following observation.



THERMODYNAMICAL FORMALISM AND INTEGRAL MEANS SPECTRUM 11

Lemma 3.2. Let t ∈ R, R ≥ γ and set T = R/r, r > 0. Then

lim sup
r→0

βϕR/r(r, t) = lim sup
T→+∞

βϕT (1/T, t)

is finite and does not dependent on R ≥ γ.

Proof. It suffices to treat the case t > 0 since t < 0 can be treated the same way and for t = 0
there is nothing to show. So, let t > 0 and let R ≥ γ. Finiteness of lim supr→0 βϕR/r(r, t) di-

rectly results from (3.4) and (3.7). In order to study the dependence on R of this expression,
observe that

βϕR/r(r, t) =
log
∫
I
|ϕ′R/r(r + iy)|tdy

log 1/r
=

log
∫
I

(
R/r
|ϕ(R/r)|

)t
|ϕ′(R + iR

r
y)|tdy

log 1/r
.

Since 0 < γ < 1, it suffices to compare this with the corresponding expression with R′ = 1.
If r′ = r/R then

βϕ1/r′
(r′, t) =

log
∫
I
|ϕ′1/r′(r′ + iy)|tdy

log 1/r′
=

log
∫
I

(
R/r
|ϕ(R/r)|

)t
|ϕ′(1 + iR

r
y)|tdy

log 1/r′
.

By Theorem 2.3 there exists K ≥ 1 such that

1

KR3
|ϕ′ (1 + iỹ)| ≤ |ϕ′ (R + iỹ)| ≤ |ϕ′ (1 + iỹ)|KR

for every ỹ ∈ R and every R ≥ 1. For γ ≤ R < 1 a corresponding estimation holds, we
omit this detail and consider R ≥ 1. Then

−t log(KR3)

log 1/r
+ βϕ1/r′

(r′, t)
log 1/r′

log 1/r
≤ βϕR/r(r, t) ≤

t log(KR)

log 1/r
+ βϕ1/r′

(r′, t)
log 1/r′

log 1/r

from which follows that

lim sup
r→0

βϕR/r(r, t) = lim sup
r′= r

R
→0

βϕ1/r′
(r′, t) .

�

We are now ready to introduce the function

(3.8) β∞(t) = lim sup
r→0

βϕ1/r
(r, t) = lim sup

T→+∞
βϕT (1/T, t) , t ∈ R .

Lemma 3.2 justifies that t 7→ β∞(t) is a well defined finite function on R and that

(3.9) β∞(t) = sup
R≥γ

lim sup
r→0

βϕR/r(r, t) , t ∈ R .

Up to now we considered a single tract. In the general case we deal with a function f ∈ D
and so f−1(D∗) is a disjoint union of finitely many tracts Ωj, j = 1, ..., N . Denoting β∞,j(t)
the function of (3.8) defined in the tract Ωj, we can associate to f the function

β∞ = β∞,f := max
j=1,...,N

β∞,j .
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Now we continue dealing with one fixed tract and we skip the index j.

Proposition 3.3. The function β∞ : R→ R is convex with

β∞(0) = 0 and β∞(2) ≤ 1.

Proof. All involved β–functions are convex by a classical application of Hölder’s inequality
(see for example p.176 in [30]). It is trivially obvious that β∞(0) = 0 while β∞(2) ≤ 1
results from the well known area estimate. Indeed, let 0 < r < 1. For every integer
0 ≤ k < 1/r set y+

k := 1 + kr,

U+
k :=

{
z ∈ C : r < <z < 2r and y+

k < =z < y+
k+1

}
and U−k :=

{
z , z ∈ U+

k

}
.

Then, ∫
I

|ϕ′T (r + iy)|2dy �
∑

0≤k<[1/r]
ε∈{+,−}

1

r
area(ϕT (U ε

k)) ≤ 1

r
area(ϕT (Q1 \Q1/8)) � 1

r

since diam
(
ϕT (Q1 \ Q1/8)

)
� 1. Applying logarithms, dividing by log(1/r) and letting

r → 0 gives that β∞(2) ≤ 1. �

A function related β∞, that will be crucial in the sequel, is the following:

(3.10) b∞(t) := β∞(t)− t+ 1 , t ∈ R .
As an immediate consequence of Proposition 3.3 we get the following.

Proposition 3.4. The function b∞ : R→ R is also convex, thus continuous, with

b∞(0) = 1 and b∞(2) ≤ 0.

Consequently, the function b∞ has at least one zero in ]0, 2] and we can introduce a number
Θf ∈ (0, 2] by

(3.11) Θf := inf{t > 0 : b∞(t) = 0} = inf{t > 0 : b∞(t) ≤ 0} .
Again, in the case of a function f with finitely many tracts Ωj we thus have finitely many
numbers Θf,j and then we set

Θf := max
j

Θf,j.

We will consider below various situations and examples illustrating the behavior of b∞
and of Θf . Notice also that the paper [22] also is based on β∞ along with the zero (called
also Θ) of b∞.

In order to perform full thermodynamic formalism we need the following crucial property.

Definition 3.5. A function f ∈ D has negative spectrum if

b∞(t) < 0 for all t > Θf .

As we will see in Section 5, this property does hold if the tracts have some nice geometry.
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4. Transfer operator

In the sequel f will be either an entire function in D or a model map in D and we will
work with the Riemannian metric

(4.1) |dz|/|z|.
This metric is conformally equivalent with the standard Euclidean one, it has singularity at
0 but is tailor crafted for our analysis of Perron–Frobenius operators. With respect to this
metric these operators are at least well defined (a big advantage over the ordinary ones for
which the defining series is usually divergent) but we will in the sequel prove much more
about them. The derivative of a holomorphic function h calculated with respect to the
metric of (4.1) at a point z in the domain of h is denoted by |h′(z)|1 and is given by the
formula

(4.2) |h′(z)|1 = |h′(z)| |z||h(z)| .

So, given a real number t ≥ 0, we define the transfer operator Lt by the usual formula:

(4.3) Ltg(w) :=
∑

f(z)=w

|f ′(z)|−t1 g(z) for every w ∈ Ω .

where g is any function in Cb(Ω), the vector space of all continuous bounded functions
defined on Ω. The norm on this space, making it a Banach space, will be the usual sup-
norm ‖ · ‖∞. Note that if w ∈ Ω, then f−1(w) ⊂ Ω, whence f ′(z) is well defined for all
z ∈ f−1(w) and, in consequence, all terms of the above series are also well defined.

Theorem 4.1. Let f be a model or an entire function of class B such that S(f) ⊂ D.
Assume that there exists s > 0 and w0 ∈ D∗ such that

Lt11(w0) <∞ for every t > s .

Let γ̃ ∈ (0, 1). Then
sup
|w|>eγ̃

Lt11(w) <∞ for every t > s .

In addition, for all t > s and p > 1 such that 1
p
< t

s
− 1, there exists a constant Cp,t such

that

(4.4) Lt11(w) ≤ Cp,t
(log |w|)1/p

for all w ∈ D∗eγ̃ .

In this key result, no dynamical hypothesis nor finiteness of the number of tracts is assumed.
If we restrict to functions where Ω is backward invariant then it tells us that the transfer
operators Lt are bounded.

Corollary 4.2. Let f ∈ D. If there exists s > 0 and w0 ∈ Ω such that Lt11(w0) < ∞ for
all t > s, then all Lt, t > s, are bounded operators of Cb(Ω), satisfying in addition (4.4).

We will explain in Section 8 that the conclusion of this result combined with our previous
work [24] lead to full thermodynamic formalism along with all its usual consequences.
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Proof. Although f may have infinitely many tracts, it suffices to consider the case of a
single tract Ω since the estimates we obtain generalize directly. If w ∈ D∗eγ̃ then

(4.5) Lt11(w) =
∑

f(z)=w

|f ′(z)|−t1 .

The function f restricted to Ω is of the form f = eτ . Thus

|f ′(z)|1 =
|f ′(z)|
|f(z)| |z| = |τ

′(z)||z| .

Since ϕ = τ−1, we have that

|f ′(z)|1 =

∣∣∣∣ ϕ(ξ)

ϕ′(ξ)

∣∣∣∣ ,
where ξ = τ(z). In the series of (4.5) z runs through the preimages of w under f , thus ξ
runs through the set exp−1(w). Let

R := log |w| = <(ξ)

for every ξ ∈ exp−1(w). We have R ≥ γ̃ > 0. We have

(4.6) Lt11(w) =
∑

ξ∈exp−1(w)

∣∣∣∣ϕ′(ξ)ϕ(ξ)

∣∣∣∣t =
∑

ξ∈exp−1(w)

|(logϕ)′(ξ)|t

with an arbitrary choice of a holomorphic branch of the logarithm of ϕ. Koebe’s Distortion
Theorem applied to the conformal map logϕ : H → log Ω gives

(4.7) Lt11(w) �
∫
R
|(logϕ)′(R + iy)|t dy

On the other hand, logϕ is an inverse branch of the logarithmic coordinates of the function
f as defined in Section 2 of [15]. Hence, Lemma 1 of [15] applies and yields

|(logϕ)′(ξ)| ≤ 4π

< ξ , ξ ∈ H .

In particular, the holomorphic function u : H → C, defined by

u(z) := (logϕ)′(
γ̃

2
+ z),

is bounded and the function z 7→ |u(z)|t is subharmonic, continuous on H and bounded.
We can therefore compare it with its harmonic majorant as it is done in [27, Corollary
10.15]:

(4.8) |u(z)|t ≤ 1

π

∫
R

x

(y − s)2 + x2
|u(is)|tds , z = x+ iy ∈ H .

Integrating this inequality and using Fubini’s Theorem gives

(4.9)

∫
R
|u(x+ iy)|t dy ≤

∫
R

1

π

∫
R

x

(y − s)2 + x2
dy |u(is)|tds =

∫
R
|u(is)|tds < +∞
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where the last inequality holds since, by Koebe’s Distortion Theorem and (4.7), the inte-
gral on the right hand side is comparable to Lt11(w0), where w0 ∈ Ω is the point of the
assumptions in Theorem 4.1. Therefore, (4.7) along with (4.9) imply that

Lt11(w) � Lt11(w0) for every w ∈ D∗eγ̃ .
We have thus proved that Lt is uniformly bounded on Ω.

It remains to show the additional property (4.4). Write t = τ + δ where τ > s and
0 < δ < t− s. With x = log |w| − γ̃/2, formulas (4.7) and (4.9) imply that

Lt11(w) � 1

π

∫
R

∫
R

x

(y − s)2 + x2
|u(is)|δds |u(x+ iy)|τdy .

For every p, q > 1 such that 1
p

+ 1
q

= 1 and pδ > Θf , Hölder’s inequality yields∫
R

x

(y − s)2 + x2
|u(is)|δds ≤

(∫
R

(
x

(y − s)2 + x2

)q
ds

) 1
q
(∫

R
|u(is)|δpds

) 1
p

= O(x−
1
p ) .

Combinig the last two displayed formulas, we get

Lt11(w) ≤ C1

x1/p

∫
R
|u(x+ iy)|τdy ≤ C2

x1/p
for every w ∈ D∗eγ̃

for appropriate constants C1, C2 depending on δ and p. The proof is now complete since
x = log |w| − γ/2 � log |w| for every w ∈ D∗eγ̃ . �

Given Theorem 4.1, the essential question is to decide whether, for a given function
f ∈ D and parameter t, the transfer operator, evaluated at 11, is finite at or not at some
point. This is where our new geometric tools come into play. Aiming to prove Theorem
1.2 we first reformulate Lt in terms of the β–functions.

Proposition 4.3. If f ∈ D and t ≥ 0, then

Lt11(w) � (log |w|)1−t

{∫ 1

−1

∣∣ϕ′log |w|(1 + iy)
∣∣t dy +

∑
n≥1

2
n
(

1−t+βϕ2n log |w| (2
−n, t)

)}
for every w ∈ Ω with the above series being possibly divergent.

The issue of convergence of the above mentioned series will be the next step.

Proof of Proposition 4.3. From the proof of Theorem 4.1 we already have the reformulation
of the transfer operator that we need in (4.6). Hence

Lt11(w) =
∑

ξ∈exp−1(w)

∣∣∣∣ϕ′(ξ)ϕ(ξ)

∣∣∣∣t =
∑

ξ∈exp−1(w)|
|=ξ|<R

∣∣∣∣ϕ′(ξ)ϕ(ξ)

∣∣∣∣t +
∑
n≥0

∑
ξ∈exp−1(w)

2nR≤|=ξ|<2n+1R

∣∣∣∣ϕ′(ξ)ϕ(ξ)

∣∣∣∣t .
Applying to each of these sums (2.5) respectively with T = R and T = 2n+1, n ≥ 0, we get

(4.10) Lt11(w) � 1

|ϕ(R)|t
∑

ξ∈exp−1(w)|
|=ξ|<R

|ϕ′(ξ)|t +
∑
n≥0

1

|ϕ(2n+1R)|t
∑

ξ∈exp−1(w)|
2nR≤|=ξ|<2n+1R

|ϕ′(ξ)|t .
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Since two consecutive elements of exp−1(w) are at distance 2π and since <ξ = R ≥ γ > 0,
Koebe’s Distortion Theorem yields

Lt11(w) � 1

|ϕ(R)|t
∫ R

−R
|ϕ′(R + iy)|t dy +

∑
n≥0

1

|ϕ(2n+1R)|t
∫
In,R

|ϕ′(R + iy)|t dy

where

In,R = [−2n+1R,−2nR] ∪ [2nR, 2n+1R].

Remember that I = [−2,−1] ∪ [1, 2] and that we have introduced the rescaled functions
ϕR in (3.2). A change of variables gives now

Lt11(w) � R1−t
∫ 1

−1

|ϕ′R(1 + iy)|t dy +
∑
n≥0

(
2n+1R

)1−t
∫
I

∣∣∣∣ϕ′2n+1R

(
1

2n+1
+ iy

)∣∣∣∣t dy .
With invoking the definition (3.6) this completes the proof of Proposition 4.3. �

Passing to functions having negative spectrum, we can now fully describe the behavior
of their transfer operators. As it will be explained in Section 8, this then allows us to prove
Theorem 1.2, and its usual consequences, following [24]. We recall that for functions with
negative spectrum Θf is the unique zero of b∞.

Theorem 4.4. If f ∈ D is a function with negative spectrum, then:

- For every t > Θf , ‖Lt11‖∞ < +∞ and (4.4) holds.

- For every t < Θf , the series defining Lt11 is divergent at every point.

Proof. Let w0 ∈ Ω be any point and set R = log |w0| > γ. Since f has negative spectrum,
b∞(t) = −2at < 0 for every t > Θf . It thus follows right from the definition of β∞ in (3.8)
that there exist nR,t > 0 such that

βϕ2nR
(2−n, t)− t+ 1 ≤ −at < 0 for all n ≥ nR,t .

Applying Proposition 4.3, we get that

Lt11(w0) <∞
for all t > Θf . We therefore have checked the hypotheses of Theorem 4.1. It implies that
Theorem 4.4 holds for all t > Θf .

Let now t < Θf , and w ∈ Ω be any point. Set again

R := log |w|.
Then b∞(t) = 4at > 0 and thus, by Lemma 3.2,

lim sup
r→0

βϕR/r(r, t)− t+ 1 = 4at > 0 .

Fix a sequence rj ↘ 0 such that βϕR/rj (rj, t) − t + 1 ≥ 2at for all j ≥ 1. Then associate

to every j ≥ 0 an integer nj such that 2−nj−1 < rj ≤ 2−nj . Writing down the definition of
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βϕT (r, t) and employing (2.5) along with bounded distortion, one gets

lim
j→∞

βϕR/rj (rj, t)

βϕ
R2
nj

(2−nj , t)
= 1 .

Thus, βϕ
R2
nj

(2−nj , t)−t+1 ≥ at for all sufficiently large j. This implies that the coefficients

in the series in Proposition 4.3 do not converge to zero, whence Lt11(w) =∞. �

5. Functions with negative spectrum and Hölder tracts.

Theorem 1.2 decisively shows that the transfer operators Lt of negative spectrum entire
functions behave sufficiently well so that a fairly complete account of the corresponding
thermodynamic formalism can be derived. In the current section we want to get some idea
of which functions in class D may have negative spectrum. We will start with considering
some classical examples such as exponential functions and we will see that the class of
balanced functions in [23, 24] behaves like these classical examples (Proposition 5.2); it has
the simplest possible b∞ spectrum, namely b∞(t) = 1 − t. Functions with such spectrum
will be called elementary.

Then we will show that a function has negative spectrum as soon as its tracts have some
nice geometry. For us it will be Hölder domains. Particular examples of such tracts are
quasidisks or tracts having the John or Hölder property used in [22]. We finally show that
functions of infinite order can also have negative spectrum, and thus the thermodynamic
formalism applies to them too.

5.1. Classical functions and balanced growth. The most classical transcendental fam-
ily is certainly λez or, more generally, λez

d
, λ ∈ C \ {0}, d ≥ 1. By a straightforward

calculation, all these functions have a trivial integral means spectrum β∞ ≡ 0 and thus

(5.1) b∞(t) = 1− t , t ≥ 0 .

In particular, they have negative spectrum with Θf = 1 and the tracts of λez
d

are not
fractal at all. This is also clear when we consider the rescalings. For any tract of such a
function, the part of its boundary depicted in the boxes in Figure 3 converges to a straight
line segment as T →∞.

The thermodynamic formalism has been for first time developed for some transcendental
meromorphic functions by Krzysztof Barański in [1]. He did it for for the tangent family.
Then this theory has been established for several other families of meromorphic functions.
One should mention a quite large and general class of meromorphic functions considered
in [19] where, however, as in [1], there where no singular values of f−1 in the Julia set con-

sidered as a compact subset of Ĉ, and [42, 43], where for the first time the thermodynamic
formalism was built for a transcendental meromorphic function having such singularity in
the Julia set, precisely it was ∞ as the asymptotic value of hyperbolic exponential func-
tions. The most general, actually the only general, framework comprising all the classes
mentioned above and much more, for which a full fledged thermodynamic formalism has
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been developed, is up to now the one of [23, 24]. Indeed, these two works cover many classes
of entire and meromorphic functions, that include such classical functions as exponential
family, the ones of the sine and cosine-root family, elliptic functions, and all the functions
having polynomial Schwarzian derivative. It is based on a condition for the derivative
which, for entire functions takes on the following form.

Definition 5.1. An entire function f : C → C is said to be of balanced growth if it has
finite order, denoted in the sequel by ρ = ρ(f), and if

(5.2) |f ′(z)| � |f(z)| |z|ρ−1 , z ∈ Jf .
The examples in [23, 24] that satisfy this condition have non fractal tracts precisely as

the classical exponential functions λez
d
. This is a general fact for balanced functions. They

are elementary in the sense that their integral means spectrum β∞ is most trivial possible.
In the next result we have slightly stronger assumptions than simply balanced growth but
all the examples in [23, 24] satisfy them.

Proposition 5.2. If f ∈ D satisfies the balanced condition (5.2) in Ω, then f is elementary
in the sense that

b∞(t) = β∞(t)− t+ 1 = 1− t , t ≥ 0 .

In particular, f has negative spectrum with Θf = 1.

Proof. It suffices to consider an entire function or a model function f ∈ D with Ω being
one single tract. Then

f|Ω = eτ ,

where

τ = ϕ−1 : Ω→ H
is a conformal map. Shrinking Ω if necessary, we may assume that τ is a continuous map
defined on Ω. We also may assume that 0 6∈ Ω and that a holomorphic branch of z 7→ zρ

can be well defined on Ω, where ρ comes from (5.2). This allows us to introduce a map

h := ϕρ : H → Ωρ := {zρ : z ∈ Ω} .
By assumption, f satisfies (5.2) and f ′ = f τ ′. Therefore,

|ϕ′(ξ)| = 1

|τ ′(ϕ(ξ))| � |ϕ(ξ)|1−ρ,

which implies

(5.3) |h′(ξ)| = ρ|ϕ(ξ)|ρ−1|ϕ′(ξ)| � 1 , ξ ∈ H .
As immediate consequence we get that |h(T )− h(0)| � T which implies

(5.4) |ϕ(T )| � T 1/ρ for T ≥ T0

where T0 ≥ 1 is such that |h(T )| ≥ 2|h(0)| for T ≥ T0; it is finite due to (5.3) and Koebe’s
1
4
–Distortion Theorem.
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Let T ≥ T0 and consider ϕT the rescaled map from (3.2). We have to estimate

|ϕ′T (ξ)| = T

|ϕ(T )| |ϕ
′(Tξ)| � T

|ϕ(T )| |ϕ(Tξ)|1−ρ , ξ ∈ Q1 \Q1/8 .

Assumption (2.5) implies |ϕ(Tξ)| � |ϕ(T )| which then gives

|ϕ′T (ξ)| � T

|ϕ(T )|ρ � 1 , ξ ∈ Q1 \Q1/8 ,

by (5.4). On the other hand, T
|ϕ(T )|ρ is independent of ξ. Thus |ϕ′T (ξ)| � |ϕ′T (1)| and we

know from Lemma 3.1 that |ϕ′T (1)| � 1. Combining all of this gives |ϕ′T | � 1 on Q1 \Q1/8

for T ≥ T0. This readily implies that β∞ ≡ 0. �

5.2. Hölder tracts. Let f be a model as defined in Definition 2.2 or an entire function of
class B. Assume that Ω is a single tract of f and that ϕ = τ−1 : H → Ω the associated
conformal map. The rectangles QT have been introduced in (1.2) and ΩT = ϕ(QT ), T ≥ 1.
A conformal map g : Q1 → U is called (H,α)–Hölder if

(5.5) |g(z1)− g(z2)| ≤ H|g′(1)||z1 − z2|α for all z1, z2 ∈ Q1 .

The factor |g′(1)| has been introduced in this definition in order to make this Hölder
condition scale invariant in the range of g.

Definition 5.3. The tract Ω is called Hölder, more precisely (H,α)–Hölder, if (2.5) holds
and if there exists T0 ≥ 1 such that

ϕ ◦ T : Q2 → ΩT

satisfies (5.5) for every T ≥ T0. We say that f has Hölder tracts if for some R ≥ 1 the
components of f−1(C \ DR) are Hölder tracts.

The main point of this definition is that the tract Ω is exhausted by a family of uniformly
Hölder domains ΩT . We shall prove the following.

Lemma 5.4. If f is a model or an entire function of class B and if Ω is a single Hölder
tract of f , then

(5.6) |ϕ(T )| � diam(ΩT ) � |(ϕ ◦ T )′(1)| , T ≥ 1 ,

Proof. Inequality diam(ΩT ) � |(ϕ◦T )′(1)| is immediate from (5.5). Inequality diam(ΩT ) �
|(ϕ ◦ T )′(1)| is immediate from Koebe’s 1

4
–Distortion Theorem. Hence, also

|ϕ(T )| ≤ |ϕ(T )− ϕ(1)|+ |ϕ(1)| ≤ H|(ϕ ◦ T )′(1)|
∣∣∣1− 1

T

∣∣∣α + |ϕ(1)|
� |ϕ(1)|+ diam(ΩT )

� diam(ΩT ),

where the last inequality was written assuming that T ≥ T0 is large enough, say T ≥ T1 ≥
T0 ≥ 1. We are thus left to show that

(5.7) diam(ΩT ) ≤ |ϕ(T )|.
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Indeed, proving this inequality, it follows from (5.5) and the, already proven, right–hand
side of (5.6), that

diam
(
Ω8−qT

)
≤ 1

4
diam(ΩT )

with some integer q ≥ 1 and T ≥ T1 large enough, say T ≥ T2 ≥ T1. Therefore, there exist
two points z1, z2 ∈ ΩT \ Ω8−qT such that

|ϕ(Tz2)− ϕ(Tz1)| ≥ 1

4
diam(ΩT ).

So, applying (2.5) we get that

diam(ΩT ) ≤ 4|ϕ(Tz2)− ϕ(Tz1)| ≤ 4|ϕ(Tz2)|+ |ϕ(Tz1)|
≤ 4(M q|ϕ(T )|+M q|ϕ(T )|)
= 8M q|ϕ(T )|,

whence formula (5.6) constituting Lemma 5.4 is established. �

Remark 5.5. Invoking Lemma 5.4 we conclude that for a Hölder tract Ω, the functions
ϕ ◦ T are uniformly Hölder if and only if the rescaled functions ϕT satisfy uniformly (5.5)
without the factor |g′(1)|.
We also note that if the components of f−1(D∗R0

) are Hölder for some R0 ≥ 1 then the
components of f−1(D∗R) are Hölder for all R ≥ R0. A very important feature of Hölder
tracts is expressed by the following.

Proposition 5.6. All models or functions f ∈ B with finitely many Hölder tracts have
negative spectrum and

(5.8) 1 ≤ Θf ≤ HypDim(f) ≤ 2 .

In addition, if the corresponding Hölder exponent α ∈ (0, 1] is larger than 1/2, then Θf < 2.

Proof. A classical argument (see [30] or the proof of Proposition 3.3 in [22]) applies word
by word showing that

(5.9) β∞(t+ s) ≤ (1− α)s+ β∞(t),

where, we recall, α is a Hölder exponent of the tract Ω. Therefore,

(5.10) b∞(t+ s) ≤ b∞(t)− αs.
Thus b∞(t) < 0 for all t > Θf which shows that f has negative spectrum.

As explained before, the paper [22] also employs the same b∞–function along with the
zero Θf . It is shown in [22] that that the inequalities of (5.8) hold for Hölder tracts.

The second to the last assertion of Proposition 3.4 is that b∞(0) = 1. So, with t = 0 and
s = 2, it follows from (5.10) that b∞(2) ≤ 1 − 2α < 0 whenever α > 1/2, and thus that
Θf < 2. The proof is complete. �
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All the elementary functions enjoy the property that Θf = 1 but in general Hölder tracts
are fractal in the sense that

Θf > 1 .

Models with fractal tracts have been considered in [22]. A particular family of entire
functions having fractal tracts is studied in detail in the forthcoming Section 7.

5.3. Functions of infinite order. Let us finally consider one other family of examples
having totally different behavior than the preceding ones. They have tracts that are not
Hölder, they are of infinite order and also the family of rescalings FΩ has only constant
limit functions. Nevertheless, we will see that they have negative spectrum and thus they
are first examples of infinite order for which the thermodynamic formalism is developed.

Consider functions f ∈ D, no matter whether entire or model, having the following
properties:

- f has negative spectrum.

- f has a Hölder tract Ωf ⊂ {<z ≥ 3} ⊂ H.

We will associate to such a function a model function F defined on the domain ΩF =
log(Ωf ), log meaning any, or even finitely many, arbitrary branches of the logarithm. The
definition of F is this.

F := f ◦ exp : ΩF → C .
To such a function Theorem 1.2 applies since we have the following.

Proposition 5.7. The infinite order function F = f ◦ exp : ΩF → C belongs to D and has
negative spectrum with ΘF ≤ Θf .

Proof. The disjoint type property follows since S(F ) = S(f) ⊂ D and F−1(D∗) = Ωf ⊂
{<z ≥ 3} ⊂ D∗. Let ϕ = τ−1 : H → Ωf be conformal such that f = eτ on Ωf . Then

F = exp ◦(τ ◦ exp).

It suffices to consider the case where ΩF is a single tract so that τ ◦ exp : ΩF → H
is a conformal map with inverse Φ = log ◦ϕ. Since f ∈ D it satisfies (2.5) and since
Ωf ⊂ {<z ≥ 3} we have

|Φ(ξ1)|
|Φ(ξ2)| =

log |ϕ(ξ1)|
log |ϕ(ξ2)| ≤ 1 +

logM

log |ϕ(ξ2)| ≤ 1 +
logM

log 3
for all ξ1, ξ2 ∈ QT \QT/8 .

Thus Φ satisfies (2.5), completing the argument that F is in D.
It remains to estimate β∞,F . For T ≥ 1, ΦT = 1

|Φ(T )| log ◦ϕ ◦ T hence

Φ′T (ξ) =
T

|Φ(T )|
ϕ′(Tξ)

ϕ(Tξ)
=

1

| logϕ(T )|
|ϕ(T )|
ϕ(Tξ)

ϕ′T (ξ)

thus

|Φ′T (ξ)| � 1

log |ϕ(T )| |ϕ
′
T (ξ)| for every ξ ∈ Q1 \Q1/8 .
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The factor |ϕ(T )| can be estimated as follows. Still since Ωf ⊂ {<z ≥ 3} we have |ϕ(T )| ≥
3. On the other hand we have from (2.10)

|ϕ(T )| � |ϕ(T )− ϕ(1)| ≤ T 2|ϕ′(1)| .
It follows that there exists a constant C ≥ 0 such that

e−C

log T

∫
I

|ϕ′T (r + iy)|tdy ≤
∫
I

|Φ′T (r + iy)|tdy ≤ eC
∫
I

|ϕ′T (r + iy)|tdy

for every r ∈ (0, 1) and T ≥ 1. This shows that

(5.11)
−C − log log γ/r

log 1/r
+ βϕγ/r(r, t) ≤ β∞,F (r, t) ≤ β∞,f (r, t)

which immediately implies that t∗,F ≤ t∗,f and that β∞,F (r, t) < 0 for t > t∗,f since f has
negative spectrum. �

6. Quasiconformal invariance of Hölder tracts

Quasiconformal maps have good Hölder continuity properties and thus preserve Hölder
tracts. Let us make this precise.

Lemma 6.1. Let g, f ∈ B have finitely many tracts and let R ≥ 1 be such that all the
connected components of g−1(D∗R) are Hölder. If Φ : C → C is a quasiconformal homeo-
morphism such that

f−1(D∗R) = Φ
(
g−1(D∗R)

)
and f ◦ Φ = g on g−1(D∗R), .

then all the connected components of f−1(D∗R) are Hölder.

Proof. It suffices to consider the case where the functions have just one tract Ωg = g−1(D∗R)
and Ωf = Φ(Ωg). We may also assume without loss of generality that R = 1. Then there are
conformal maps ϕg : H → Ωg and ϕf : H → Ωf such that, with appropriate holomorphic
branches of logarithms, the holomorphic maps log g : Ωg → H and log f : Ωf → H are the
respective inverses of ϕg and ϕf , and, in addition,

ϕf = Φ ◦ ϕg .
By our hypotheses, ϕg satisfies the conditions of Definition 5.3 and we have to show that
ϕf does it too. The condition (2.5) is satisfied by ϕg and |ϕg(T )| → ∞ as T →∞. Thus

(6.1) |ϕg(ξ1)− ϕg(0)| � |ϕg(ξ1)| ≤M |ϕg(ξ2)| � |ϕg(ξ2)− ϕg(0)|
for all ξ1, ξ2 ∈ QT \QT/8, T ≥ 8. Since the map Φ is quasiconformal, it is quasisymmetric.
This means that there exists a homeomorphism η : [0,∞) → [0,∞) such that |a − b| ≤
t|a− c| yields

|Φ(a)− Φ(b)| ≤ η(t)|Φ(a)− Φ(c)|.
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Along with (6.1), this gives that

|ϕf (ξ1)| = |Φ(ϕg(ξ1))| � |Φ(ϕg(ξ1))− Φ(ϕg(0))|
≤ η(M ′)|Φ(ϕg(ξ2))− Φ(ϕg(0))|
� |Φ(ϕg(ξ2))|
= |ϕf (ξ2)|

for all ξ1, ξ2 ∈ QT \ QT/8, T ≥ 8, where M ′ is a constant witnessing the comparability of
the very left and the very right sides of (6.1). In other words, ϕf satisfies (2.5).

We know that for some T0 ≥ 1 the family of rescalings ϕg,T , T ≥ T0, of ϕg is uniformly
Hölder and it remains to show that

ϕf,T =
1

|Φ(ϕg(T ))| Φ ◦ |ϕg(T )| ◦ ϕg,T , T ≥ T0 ,

has the same property. All the mappings

ĝT :=
1

|Φ(ϕg(T ))| Φ ◦ |ϕg(T )|

are K–quasiconformal, where K is the quasiconformal constant of Φ and they are normal-
ized by ĝT (∞) =∞. We shall prove the following.

Claim 10: There exists a constant κ ∈ (0, 1] such that

|ĝT (0)| ≤ κ ≤ 2κ ≤ |ĝT (1)| ≤ 1/κ for all T ≥ T0.

Proof. We have

|Φ(|ϕg(T )|)| � |Φ(|ϕg(T )|)− Φ(0)|| and |Φ(ϕg(T ))| � |Φ(ϕg(T ))− Φ(0)||,
and obviously |ϕg(T )− 0| =

∣∣|ϕg(T )| − 0
∣∣. Therefore, invoking again quasisymmetricity of

Φ, witnessed by the homeomorphism η : [0,∞)→ [0,∞), we consecutively get

1

η(1)
≤ |Φ(|ϕg(T )|)− Φ(0)||
|Φ(ϕg(T ))− Φ(0)|| ≤ η(1)

and
|Φ(|ϕg(T )|)
|Φ(ϕg(T ))| � 1.

This means that |ĝT (1)| � 1. The proof of Claim 10 is complete. �

In conclusion,
G := {gT : T ≥ T0}

is a uniformly quasiconformal and normalized family. By Remark 5.5 there exists R > 1
such that

ϕg,T (Q1) ⊂ DR

for all T ≥ T0. These two fact imply (see Theorem 4.3 in [20]) that the family G restricted
to DR is uniformly Hölder. Therefore, ϕf,T is uniformly Hölder as a composition of two
Hölder functions whose Hölder exponents and constants do not depend on T ≥ T0. �
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We provide two important applications of the quasiconformal invariance of Hölder tracts.
The first one we present right now and it concerns quasiconformal approximation. The
second application will be in Section 10 on analytic families of functions in Speiser class S.

6.1. Quasiconformal approximation. As already mentioned, Bishop [9, 10] considered
quasiconformal approximations of most general models where Ω can be an arbitrary union
of simply connected unbounded domains. Keeping our definition of a model, the following
result is a simplified version of Theorem 1.1 in [9].

Theorem 6.2 ([9]). Let (τ,Ω) be a tract model and f = eτ the corresponding function. Fix
R > 0. Then there exist an entire function F ∈ B and a quasiconformal map ψ : C → C
with ψ conformal out of {z ∈ C : R < <τ(z) < 2R} such that

eτ = F ◦ ψ
on Ω(2R) = {z ∈ C : <τ(z) > 2R}. Moreover, the components of {|F | > eR} are in a
1-to-1 correspondence with the components of Ω via ψ.

If the initial model is of disjoint type one can adjust R > 0 such that

(6.2) Jf ⊂ Ω(3R) = {z ∈ C : <τ(z) > 3R} .
Then we can assume that F also is of disjoint type since otherwise it suffices to compose
ψ with an affine map. So, we can consider for the map F the set of tracts ΩF = ψ(Ω(2R))
and suppose that JF ⊂ ψ(Ω(3R)).

Proposition 6.3. Suppose f ∈ D is a model having only Hölder tracts and suppose that F
is a disjoint type entire function given by Bishop’s Theorem 6.2 with R > 0 small enough
such that (6.2) holds. Then, F ∈ D, the tracts ΩF of F are Hölder and, consequently, F
has negative spectrum.

Proof. Follows directly from Lemma 6.1. �

7. Poincaré functions

In this section now consider a, quite particular, family of entire functions. They are
obtained by linearization of a polynomial at a repelling fixed point and are often called
linearizers or Poincaré functions (see [12, 28, 14]). Let p : Ĉ → Ĉ be a polynomial having
a repelling fixed point z0 with multiplier λ. By the Koenigs-Poincaré linearization theorem
there exists an entire function f : C→ C such that

(7.1) f(0) = z0 and f ◦ λ = p ◦ f
with

f ′(0) 6= 0.

Remark 7.1. One could consider here a much more general family. Instead of linearizing
the dynamics at a repelling fixed point one can consider limits of rescalings at conical limit
points. For example, if p is a hyperbolic polynomial with connected Julia set then there exist
entire linearizers at any point of the Julia set Jp (see [5, Theorem 2.10]).
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If f has the property (7.1), then every other solution of (7.1) is of the form fκ = f ◦ κ
for some κ ∈ C∗.

Lemma 7.2. If p is a polynomial with connected Julia set and if κ is sufficiently small in
modulus, then, up to normalization, fκ satisfies the first two conditions of Definition 2.1 of
D and

Jf ⊂ D∗ ⊂ Ap(∞) ,

where Ap(∞) the attracting basin of infinity of the polynomial p.

Proof. Linearizers of polynomials are entire functions of finite order [44] and the Denjoy–
Carleman–Ahlfors Theorem asserts that finite order functions have only finitely many
tracts.

Because of Proposition 3.2 in [28] the set of singular values of fκ is equal to the post–
singular set of the polynomial p. By assumption p has connected Julia set and thus its
post–singular set is bounded. Therefore fκ belongs to class B.

Let R > 0 be so large that the Julia set of the polynomial Jp ⊂ DR. Consider

(7.2) Ω := f−1(D∗R}) .
Since f(0) = z0 ∈ Jp, we conclude that 0 6∈ Ω. Therefore, if |κ| is sufficiently small then

Ωκ := f−1
κ (D∗R) = κ−1Ω ⊂ D∗R .

This proves the well known fact that fκ is of disjoint type and that Jf ⊂ D∗R ⊂ Ap(∞)
provided |κ| is small enough. Normalizing the whole picture allows us to take R = 1, and
thus we showed that fκ satisfies the first two conditions of Definition 2.1 of D for small
values of |κ|. �

Concerning the attracting basin of infinity, it has nice geometry as long as the polynomial
has some expansion. Carleson, Jones and Yoccoz [11] have shown that Ap(∞) is a John
domain if and only if p is semi-hyperbolic. Graczyk and Smirnov [17] considered Collet-
Eckmann rational functions. Their result states that attracting and super-attracting com-
ponents of the Fatou set are Hölder if and only if the function is Collet-Eckmann. There is a
useful concepts capturing essential features of Collet-Eckmann maps, the one of Topological
Collet-Eckmann rational functions. There are various characterizations of such functions.
Several of them have been provided in the paper [33] by Przytycki, Rivera-Letelier and
Smirnov. A partial version of their results is this.

Theorem 7.3 ([17], [33]). Let p : Ĉ → Ĉ be a polynomial and Ap(∞) its attracting basin
of infinity. Then, the following conditions are equivalent:

(1) The polynomial p is TCE,

(2) Ap(∞) is a Hölder domain,

(3)

χinf(p) := inf

{
χµ(p) :=

∫
log |p′| dµ

}
> 0,

where the infimum is taken over all Borel probability p–invariant measures on Jp.
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For more about characterizations of TCE maps see [17, 33].

Proposition 7.4. Let p : Ĉ → Ĉ be a TCE polynomial with connected Julia set. Let z0

be a repelling fixed point of p and let f be a corresponding linearizer that satisfies all the
assertions of Lemma 7.2.

Then f ∈ D and all the connected components of Ω, defined by (7.2), are Hölder tracts.
Consequently, by Proposition 5.6, f : C→ C has negative spectrum.

Proof. As always, we assume R = 1 and then Jp ⊂ D or, equivalently, D∗ ⊂ Ap(∞).
Conjugating p by a affine map if necessary, we also may assume without loss of generality
that z0 6= 0 and that 0 6∈ Ap(∞).

Since f is TCE, Theorem 7.3 applies and yields that there exists a Hölder continuous
conformal homeomorphism h : D∗ → Ap(∞) such that

(7.3) h(1) = z0 and p ◦ h(z) = h(zd)

for all z ∈ D∗, where d ≥ 2 is the degree of the polynomial p. The map h can be lifted, via
the exponential map, to a conformal homeomorphism

H : H → Ĥ := exp−1(Ap(∞))

that commutes with translation by 2πi, i.e. such that

(7.4) H(z + 2πi) = H(z) + 2πi

for all z ∈ H, and

(7.5) ϕ ◦H(0) = 0 and exp ◦H = h ◦ exp on H .
We shall prove the following.

Claim 7.5. The inverse conformal map H−1 : Ĥ → H is bi–Lipschitz on the half–space
{<z > s}, whenever s ∈ R is such that {z ∈ C : <z ≥ s} ⊂ Ĥ. Denote a common Lipschitz
constant of both H−1 : {z ∈ C : <z ≥ s} → H and and its inverse H by Ls.

Proof. Indeed, with h̃(z) := 1/h(1/z), z ∈ D,

H ′(z) =
e−z

h̃(e−z)
h̃′(e−z) −→ 1 when <z → +∞ .

This and (7.4) imply the announced bi–Lipschitz property. �

Since D∗ ⊂ Ap(∞), there exists t < 0 such that

(7.6) H ⊂ {<z > t} ⊂ Ĥ .
Consequently, H−1 is uniformly bi–Lipschitz on all the rectangles QT , T ≥ 1.

Let now Ω be a tract of f , i.e. a connected component of f−1(D∗), and let Ω̂ be the
component of f−1(Ap(∞)) containing Ω. Recalling that 0 /∈ Ap(∞) we see that the function

f restricted to Ω̂ is again of the form

f = eϕ
−1

,
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where ϕ : Ĥ → Ω̂ is a conformal homeomorphism and Ω = ϕ(H).
Recall that λ is the multiplier of p at the repelling fixed point z0. Since f conjugates

multiplication by λ and the polynomial p, since h satisfies (7.3) and the right hand sided
part of (7.5), and since the exponential map lifts z 7→ zd to multiplication by d, we get for
all z ∈ H that

f
(
ϕ ◦H(dz)

)
= h

(
edz
)

= p
(
h(ez)

)
= p
(
f(ϕ ◦H)(z)

)
= f

(
λ(ϕ ◦H)(z)

)
.

Along with the left hand sided part of (7.5) this implies that

(7.7)
(
ϕ ◦H

)
(dz) = λ

(
ϕ ◦H

)
(z) , z ∈ H .

Indeed, both ϕ ◦ H ◦ d and λ ◦ ϕ ◦ H are conformal mappings from H onto Ω̂ and (7.7)
holds near the origin. In conclusion, we have the commutative diagram of Figure 4.

⌦̂

'�!H�!

H

h�!

.&exp f

x
p

x
�

y

y
zd

d

# exp

QT

⌦T

Ĥ H ⌦

V

V 0
V 00

Figure 4. Linearizing Douady’s Rabbit

If exp−1
∗ is the holomorphic inverse branch of the exponential map, defined near z0, such

that exp−1
∗ (z0) = τ(0), then exp−1

∗ ◦f extends τ = ϕ−1 to some bounded open neighborhood,
call it V , of the origin. Since f ′(0) 6= 0, the neighborhood V can be chosen such that

τ : V → V ′ = τ(V ) is bi–Lipschitz. Recall that τ(0) ∈ ∂Ĥ and denote

V ′′ = H−1(V ′ ∩ Ĥ) = H−1(V ′).

By the left hand sided part of (7.5) V ′′ is a bounded open set whose boundary contains 0.

We are to verify Definition 5.3 for f . In order to do this, let T ≥ 1 and consider the
rescaled map

ϕT =
1

|ϕ(T )|ϕ ◦ T : Q1 → C.



28 VOLKER MAYER AND MARIUSZ URBAŃSKI

Let N = N(T ) be the minimal integer such that

λ−NΩT = λ−Nϕ(QT ) ⊂ V .

Claim 7.6. T � dN uniformly in T ≥ 1.

Proof. First note that there exist two constants 0 < c < C such that

D(0, c) ∩H ⊂ V ′′ and V ′′ ⊂ D(0, C).

By the choice of N and the commutative diagram above, specifically by (7.7), we get

(7.8)

d−N ◦H−1(QT ) = d−N ◦H−1(ϕ−1(ΩT )) = (ϕ ◦H · dN)−1(ΩT ) = (λnϕ ◦H)−1(ΩT )

= H−1(ϕ−1(λ−NΩT )) = H−1(ϕ−1(λ−Nϕ(QT )))

⊂ H−1(ϕ−1(V )) = H−1(V ′)

= V ′′,

and there exists z ∈ d−(N−1) ◦H−1(QT ) \ V ′′. Therefore,

(7.9) |d−N ◦H−1(T )| ≤ C.

Invoking Claim 7.5 and (7.6) we thus get

d−NT � |d−NH−1(T )− d−NH−1(0)| ≤ |d−NH−1(T )|+ |d−NH−1(0)| � C.

On the other hand, since z 6∈ V ′′ and since z = d−(N−1) ◦H−1(ξ) for some ξ ∈ QT , invoking
Claim 7.5 and (7.6) again, we get that

c ≤ |z| = d−(N−1)|H−1(ξ)| � d−N |ξ| � d−NT .

The proof of the Claim 7.6 is complete. �

Denote
GT := d−N ◦ (H−1) ◦ T : H → H

Claim 7.5 and Claim 7.6 yield the following.

Claim 7.7. The conformal maps GT : H → GT (H) are uniformly bi–Lipschitz with respect
to T ≥ 1. Denote by L the corresponding Lipschitz constant.

Hence,
GT (B(1, 1)) ⊃ B

(
GT (1), L−1

)
⊂ H(V ′′) ⊂ H,

the (last) inclusion following from (7.8) and the definition of V ′′. Thus,

<(GT (1)) ≥ L−1.

Therefore, invoking also (7.9), we get that

(7.10) <(zT ) � 1 where zT = GT (1) = d−N ◦H−1 ◦ T (1) ∈ V ′′ .
Now consider the map

(7.11) gT := H ◦GT |QT : Q1 → Q1,T := gT (Q1) ⊂ V ′ ∩ Ĥ.
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The map gT is the composition of the bi–Lipschitz map GT and H|V ′′ . By assumption the
polynomial p is TCE and thus the conformal map h : D∗ → Ap(∞) is Hölder. Therefore
H|V ′′ is also a Hölder map and, consequently, gT is uniformly Hölder. Its Hölder exponent is
α and denote by Γ its Hölder constant. Since the modulus of derivative of GT is uniformly
bounded above and uniformly separated from zero, looking up at (7.10), which implies that
|H ′(zT )| � 1, we then obtain that

(7.12) |g′T (1)| � 1, T ≥ 1.

We thus showed that there exists (H,α) such that gT satisfies (5.5) for all T ≥ 1.
Making use of (7.7), we get the following:

(7.13) ϕ ◦ T = λN ◦ ϕ|Q1,T
◦ gT on Q1 .

Since, by (7.11), Q1,T ⊂ V ′ and since the map ϕ : V ′ → V is bi–Lipschitz as the inverse of
τ , we get that

(7.14) |ϕ′| � 1

on Q1,T . From this and (7.12) it follows that |(ϕ ◦ T )′(1)| � |λ|N . Then, making use of
(7.13), we get for all points z1, z2 ∈ Q1 that

|ϕ ◦ T (z1)− ϕ ◦ T (z2)| � |λ|N |gT (z1)− gT (z2)| � |(ϕ ◦ T )′(1)|Γ |z1 − z2|α .

It follows from Claim 7.7 that

dist(GT (0), GT (Q1 \Q1/8)) � 1.

uniformly with respect to T ≥ 1. Since limT→∞GT (0) = limT→∞ d
−N(T ) ◦ H−1(0) = 0,

applying the map H, and invoking Claim 7.5 (bi–Lipschitzness of H−1 on H), we get that

dist(H(0), gT (Q1 \Q1/8)) � 1.

uniformly with respect to T ≥ 1. Furthermore, because of (7.14), and the first assertion of
(7.5), we obtain

(7.15) dist(0, ϕ ◦ gT (Q1 \Q1/8)) � 1.

Now, uniform Hölder continuity of gT and (7.14) imply that

|ϕ ◦ gT (z1)− ϕ ◦ gT (z2)| � 1

for all z1, z2 ∈ Q1 \Q1/8. Therefore, using (7.15) and (7.13), we get that∣∣∣∣ϕ ◦ T (z1)

ϕ ◦ T (z2)

∣∣∣∣ =

∣∣∣∣ϕ ◦ gT (z1)

ϕ ◦ gT (z2)

∣∣∣∣ � 1 +
1

|ϕ ◦ gT (z1)| � 1.

This means that (2.5) has been established, so f ∈ D, and the proof is complete. �



30 VOLKER MAYER AND MARIUSZ URBAŃSKI

This proof opens the door to a much finer result. The advantage we have now is that
we get a good expression for ϕT from (7.13). It allows us to relate the β∞ function of the
rescalings to the classical integral means spectrum

βh(t) = lim sup
r→1+

log
∫
|z|=1
|h′(rz)|t|dz|

− log(r − 1)

of a Riemann map h : {|z| > 1} → Ap(∞). For this function there is a formula holding for
all polynomials with connected Julia sets (see [8], see also [35] for the expanding case):

(7.16) βh(t)− t+ 1 =
P(t)

log d

where d := deg(p) and P(t) is the topological pressure of the potential −t log |p′| with
respect to the polynomial p. In fact P(t) is the tree pressure in the general non-expanding
case, see [31, 34]. Since this formula does not directly hold here, we provide its suitable
variant along with all the details in the Appendix A.

Recall that a polynomial is called exceptional if it is either of the form z 7→ zd, d ≥ 2,
or it is a Tchebychev polynomial. Such polynomials are special in the sense that Zdunik
[45] has shown that they are the only polynomials for which the harmonic measure, viewed
from infinity, is not singular with respect to the natural Hausdorff measure of the Julia set.

Theorem 7.8. Let p : Ĉ→ Ĉ be a polynomial with connected Julia set, let z0 be a repelling
fixed point of p and let f : C→ C be a corresponding linearizer that satisfies the conclusion
of Lemma 7.2. Then,

(1) f ∈ D.

(2) Θf = HypDim(p), the hyperbolic dimension of p.

(3) The following are equivalent:
(a) p is Topological Collett–Eckmann polynomial (equivalent to Ap(∞) being a

Hölder domain).
(b) All the connected components of f−1(D∗) are Hölder tracts.
(c) f has negative spectrum.

(4) The tracts of f are fractal in the sense that

Θf > 1

if and only if p is not an exceptional polynomial.

Proof. The setting is the same as in the proof of Proposition 7.4. So we will use the
notations of that proof and the parts of it that do not rely on the TCE hypothesis. For
example, the uniform bi–Lipschitz property of H−1, Claim 7.6, and the last part of the
proof yielding (2.5) do not rely at all on the TCE hypothesis. The last remark directly
implies that for every polynomial p having connected Julia set the tracts of a Poincaré
function f linearizing p at a repelling fixed point satisfy (2.5).
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Out of Formula (7.13) we get the expression

ϕT =
λN

|ϕ(T )| ϕ|Q1,T
◦ gT =

λN

|ϕ(T )| ϕ|Q1,T
◦H ◦GT =

λN

|ϕ(T )| ϕ|Q1,T
◦H ◦

(
d−N ◦H−1 ◦ T

)
.

Concerning the integer N we adjust it as follows. Since we are after the behavior of β∞, we
are only interested in the values of ϕT on Q1 \Q1/8. Therefore, we define now N = N(T )
the minimal integer such that

λ−N(ΩT \ ΩT/8) ⊂ V.

From (2.5) follows then that |λ|N � |ϕ(T )|. Notice also that this modification of N does
not affect Claim 7.6. It suffices indeed to replace in its proof the set QT by QT \QT/8. This
also explains that this modification does not really affect the integer N .

Now, coming back to the above expression of ϕT , even without the TCE assumption we
have that the map GT = d−N ◦H−1 ◦T is uniformly bi–Lipschitz on Q1. Along with (7.14)
this yields

(7.17) |ϕ′T | � |H ′ ◦GT | on Q1 \Q1/8 .

Remember that in the definition of βϕT one integrates over the set

Ir =
{
r + iy : 1 < |y| < 2

}
, 0 < r < 1 .

Fix r ∈ (0, 1) and focus on the set

I+
r = {z ∈ Ir : =(z) > 0}

and, as in the definition of β∞(r, t), consider in what follows T ≥ γ/r. We claim that then
there exists L ≥ 1 such that

(7.18) GT (I+
r ) ⊂

{
z ∈ C : 0 < <z < Lr

}
for every T ≥ γ/r .

Indeed, since H−1(z + 2πi) = H−1(z) + 2πi, we have that <(H−1(z + 2πi)) = <(H−1(z)),
and therefore there exists a constant K ≥ max{1, L0} such that <(H−1(iy)) ≤ K for all
y ∈ R. By Claim 7.5 we have

|H−1(Tr + iy)−H−1(iy)| ≤ KTr

for all y ∈ R. Thus,

<H−1(Tr + iy) ≤
∣∣∣<H−1(Tr + iy)−<H−1(iy)

∣∣∣+
∣∣∣<H−1(iy)

∣∣∣ ≤ K(Tr + 1).

Since T � dN (Claim 7.6), this shows that

0 < <GT (r + iy) = <
(
d−NH−1(Tr + iTy)

)
= d−N<

(
H−1(Tr + iTy)

)
� T−1<

(
H−1(Tr + iTy)

)
≤ K(r + T−1),
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and (7.18) is established. Let now σ ⊂ ({<z = Lr}) be a sufficiently long compact
line segment so that γ := G−1

T (σ) is a cross-cut of
{
ξ ∈ C : 1 ≤ =ξ ≤ 2

}
. For every

k ∈ {0, ..., [1/r]} set
ak(r) := r + i(1 + kr)

and let bk(r) ∈ γ with
=(bk(r)) = 1 + kr.

We can choose the points bk such that =ck+1 > =ck, where ck := GT (bk). It follows
from (7.18) and (7.7) that the Hausdorff distance between I+

r and γ is bounded above by a
multiple of r and, in addition, these two sets are disjoint and (recalling thatGT is orientation
preserving since conformal) <(w) > r for all w ∈ γ. Hence, there exists κ > 1 and for
every r ∈ (0, 1) and every k ∈ {0, ..., [1/r]} there exists a rectangle ∆k(r) whose ratio of
the longer to the lower edge is uniformly bounded above such that ak(r), bk(r) ∈ ∆k(r) and
κ∆k(r) ⊂ H. Therefore we can apply Koebe’s Distortion Theorem to the map ϕT |κ∆k(r) to
conclude that

|ϕ′T (ak(r))| � |ϕ′T (bk(r))|
with a comparability constant independent of r and k. Then,∫

I+r

|ϕ′T (ξ)|t|dξ| �
[1/r]∑
k=0

|ϕ′T (ak)|tr �
[1/r]∑
k=0

|ϕ′T (bk)|tr �
[1/r]∑
k=0

|H ′(ck)|tr

where the last comparability sign follows directly from (7.17). On the other hand,∫
σ

|H ′(z)|t|dz| �
[1/r]∑
k=0

|H ′(ck)|t|ck+1 − ck| �
[1/r]∑
k=0

|H ′(ck)|t r

since |ck+1 − ck| � |bk+1 − bk| � r. This shows that∫
I+r

|ϕ′T (ξ)|t|dξ| �
∫
σ

|H ′(z)|t|dz|.

Having this, an elementary calculation (Chain Rule) based on formula (7.5) and on the
fact that z0 6= 0, yields

(7.19)

∫
I+r

|ϕ′T (ξ)|t|dξ| �
∫
Cr

|h′(z)|t|dz| where Cr = exp(σ) .

The conclusion comes now from Formula 7.16, in fact from Proposition A.1. In order to be
able to apply it notice that there exists c > 0 such that diam(Cr) ≥ c for every 1 < r < 2
since Cr = exp ◦GT (γ), since all the maps exp ◦GT , t ≥ 1, are uniformly bi–Lipschitz and
since diam(γ) ≥ 1. Therefore,

β∞(t) = βh(t) = t− 1 +
P(t)

log d
.

The behavior of the pressure function is perfectly understood thanks to [33] and [32].
Proposition 2.1 in the latter paper asserts that P(t) is affine with slope −χinf(p) (see
Theorem 7.3) for t ≥ t+ where the freezing point t+ ≥ HypDim(p) with strict inequality if
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and only if p is TCE. The hyperbolic dimension HypDim(p) is the first zero of the pressure
function P (see [31]).

In conclusion, if p is TCE then χinf(p) > 0 (Theorem 7.3) and thus b∞ is strictly decreas-
ing on [0,∞[. Then f has negative spectrum. If p is not TCE then χinf (p) = 0 (Theorem
7.3) and the freezing point t+ = HypDim(p). In this case Θf , the first zero of b∞, equals
t+ = HypDim(p) and b ≡ 0 on [t+,∞[. The function f does not have negative spectrum.
This shows item (1).

The equality Θf = HypDim(p) has been shown by Przytycki in [31, Appendix 2] and
Item (2) follows from this equality and from Zdunik’s work [45]. �

7.1. Poincaré functions without negative spectrum. For functions with negative
spectrum, the convergence of the series defining the transfer operator converges expo-
nentially fast. In general, i.e. without assuming negative spectrum, this series can still
converge. We illustrate this here by considering arbitrary Poincaré functions, i.e. also
those without negative spectrum. They are very particular entire functions because of the
functional equation (7.1). This equation allows us to do direct calculations even without
using integral means. Epstein and Rempe-Gillen [14] have exploited (7.1) in order to relate
Lt11(w) to the Poincaré series of the linearized polynomial. Their argument gives finiteness
of Lt11 at any point. We prove the following.

Theorem 7.9. Let f ∈ D be a linearizer of a polynomial p : Ĉ → Ĉ with connected Julia
set such that Jf ⊂ Ap(∞). Then, there exists a neighborhood V of the Julia set Jf such
that for every t > Θf = HypDim(p) the Perron–Frobenius operator Lt is well defined and
bounded on Cb(V). Moreover,

Lt11(w) � (log |w|)1−t for every w ∈ V ,
with comparability constant depending on the whole initial data.

Proof. Let h : D∗ → Ap(∞) be the Riemann map such that

(7.20) h(zd) = p ◦ h(z) in z ∈ D∗ .
Since Jf ⊂ A(∞), there exists R0 > 1 such that Jf ⊂ h(D∗R0

). Denote

G0 := h
(
A(R

1/d
0 , R0)

)
.

This is a fundamental annulus for the action of p in Ap(∞). We also need such an annulus
for the action of p near the repelling fixed point z0:

V0 := f
(
A(r, |λ|r)

)
,

where r > 0 is so small that f is univalent on D2|λ|r and

(7.21) f
(
D2|λ|r

)
⊂ C \ h

(
D∗
R

1/d
0

)
.

Notice that V0 ∩ Jp 6= ∅ since otherwise z0 would be an isolated point of Jp. Therefore
there exists M ≥ 1 such that

(7.22) pM(V0) ⊃ h
(
A(1, R0)

)
.
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Let in the following w be an arbitrary point of

V := h
(
D∗
R

1/d
0

)
⊃ Jf .

Then there exists a unique integer Nw ≥ 0 such that w ∈ pNw(G0). It then follows from
(7.20), iterated Nw times, that

(7.23) dNw � log |w| .
In order to estimate Lt11(w) we have to estimate |f ′(z)|1 for all z ∈ f−1(w). If z is such a
pre-image, i.e. if z ∈ f−1(w), then there exists a unique integer n ≥ 1 such that

λ−nz ∈ A(r, |λ|r).
Then w = f(z) = pn ◦f ◦λ−n(z). By (7.21), n > Nw. Setting N := n−Nw, η := f(λ−nz) ∈
V0 and ξ := pN(η) ∈ G0, we get

(7.24) f ′(z) =
(
pNw

)′
(ξ)
(
pN
)′

(η)f ′(λ−nz)λ−n .

Since f is univalent on D2|λ|r and since λ−nz ∈ A(r, |λ|r) ⊂ D|λ|r, we have |f ′(λ−nz)| �
1. The factor

(
pNw

)′
(ξ) can be estimated as follows. Since |h′| � 1 on D∗

R
1/d
0

, we have

|h−1(w)| � |w|, |(h−1)′(ξ)| � 1 and |h′
(
ad

Nw
)
| � 1 where a = h−1(ξ). Therefore,∣∣ (pNw)′ (ξ)∣∣ =

∣∣h′(adNw )∣∣dNw |a|dNw−1
∣∣(h−1)′(ξ)

∣∣ � dNw

|a|
∣∣h−1(w)

∣∣ � dNw |w| .

Inserting this into (7.24) leads to

|f ′(z)|1 =
∣∣∣f ′(z)

w
z
∣∣∣ � dNw

∣∣ (pN)′ (η)
∣∣|λ−nz| � dNw

∣∣ (pN)′ (η)
∣∣.

Finally this gives

(7.25) Lt11(w) �
∑
ξ∈G0

pNw (ξ)=w

∑
N≥1

∑
η∈p−N (ξ)∩V0

(
dNw

∣∣ (pN)′ (η)
∣∣)−t .

Let

Pt(ξ, V0) :=
∑
N≥1

∑
η∈p−N (ξ)∩V0

∣∣ (pN)′ (η)
∣∣−t

and let

Pt(ξ) :=
∑
N≥1

∑
η∈p−N (ξ)

∣∣ (pN)′ (η)
∣∣−t

be the corresponding full Poincaré series of the polynomial p evaluated at the point ξ.

Claim 7.10. There exists a constant ct > 0 such that

ctPt(ξ) ≤ Pt(ξ, V0) ≤ Pt(ξ)
for all ξ ∈ G0.
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Proof. Recall that the integer M has been introduced in (7.22). We have

Pt(ξ, V0) ≥
∑
N>M

∑
η∈p−N (ξ)∩V0

∣∣ (pN)′ (η)
∣∣−t.

Note that for every integer k > 0 we have that p−k(G0) ⊂ A(1, R0) and thus, using
(7.22), we conclude that for every z ∈ p−k(ξ), ξ ∈ G0, there exists at least one point
η ∈ p−M(z) ∩ V0. Therefore,

Pt(ξ, V0) ≥ inf
η∈V0

∣∣(pM)′(η)
∣∣−t∑

k>0

∑
z∈p−k(ξ)∩V0

∣∣(pk)′(z)
∣∣−t = ctPt(ξ),

where ct := infη∈V0
∣∣(pM)′(η)

∣∣−t. The other inequality in Claim 7.10 trivially holds and so
its proof is complete. �

Fix arbitrarily ξ0 ∈ G0. Koebe’s Distortion Theorem implies that Pt(ξ) � Pt(ξ0) and
thus, by Claim 7.10,

(7.26) Pt(ξ, V0) � Pt(ξ0)

for every ξ ∈ G0. On the other hand, w has exactly dNw preimages z ∈ p−Nw(w) and they
are all in G0. We can therefore deduce from (7.25) that

Lt11(w) � d−tNw
∑
ξ∈G0

pNw (ξ)=w

Pt(ξ0, V0) � dNw(1−t)Pt(ξ0) � dNw(1−t) .

The conclusion follows now directly by applying (7.23) �

8. The Classics of Thermodynamic Formalism:
Conformal Measures and Beyond

Let f ∈ D be a function with negative spectrum. Then the whole thermodynamic
formalism can be established for f , word by word, exactly as it was done in [23, 24] except
for [24, Lemma 5.13] which is the key point in the construction of conformal measures.
Since we provide below, in Proposition 8.7, a proof of this missing point, we finally show
that all the relevant results comprising Thermodynamical Formalism, the ones established
in [24] and stated below, hold. Combined with Theorem 4.4 this shows Theorem 1.2.

In Section 7.1 we considered entire functions that do not have negative spectrum. As
Theorem 7.9 shows, they perfectly satisfy the assumptions of Proposition 8.7. Consequently,
all the results of the present section are also valid for these functions.

- The Perron-Frobenius-Ruelle Theorem [24, Theorem 5.15].

Theorem 8.1. If f ∈ D is a function with negative spectrum and t > Θf , then the following
are true.
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(1) The topological pressure P(t) = limn→∞
1
n

logLnt 11(w) exists and is independent of
w ∈ Jf .

(2) The function (Θf ,+∞) 3 t 7−→ P(t) ∈ R is convex, thus continuous, in fact real–
analytic, strictly decreasing, and limt→+∞ P(t) = −∞.

(3) There exists a unique λ|f ′|t1–conformal measure mt and necessarily λ = eP(t). Also,
there exists a unique Gibbs state µt, i.e. µt is f -invariant and equivalent to mt.

(4) Both measures mt and µt are ergodic and supported on the radial (or conical) Julia
set Jr(f).

(4) The density ρt := dµt/dmt is an everywhere positive continuous and bounded func-
tion on the Julia set Jf .

- The Spectral Gap [24, Theorem 6.5]

Theorem 8.2. If f ∈ D is a function with negative spectrum and t > Θf , then the following
are true.

(a) The number 1 is a simple isolated eigenvalue of the operator L̂t := e−P(t)Lt : Hβ →
Hβ (β ∈ (0, 1] is arbitrary and Hβ is the Banach space of real–valued bounded Hölder
continuous defined on Jf) and all other eigenvalues are contained in a disk of radius
strictly smaller than 1.

(b) There exists a bounded linear operator S : Hβ → Hβ such that

L̂t = Q1 + S,

where Q1 : Hβ → Cρ is a projector on the eigenspace Cρ, given by the formula

Q1(g) =

(∫
g dmφ

)
ρt,

Q1 ◦ S = S ◦Q1 = 0 and

||Sn||β ≤ Cξn

for some constant C > 0, some constant ξ ∈ (0, 1) and all n ≥ 1.

- [24, Corollary 6.6]

Corollary 8.3. With the setting and notation of Theorem 8.2 we have, for every n ≥ 1,
that L̂n = Q1 +Sn and that L̂n(g) converges to

(∫
g dmφ

)
ρ exponentially fast when n→∞.

Precisely, ∥∥∥∥L̂n(g)−
(∫

g dmφ

)
ρ

∥∥∥∥
β

= ‖Sn(g)‖β ≤ Cξn‖g‖β , g ∈ Hβ.

- Exponential Decay of Correlations [24, Theorem 6.16]
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Theorem 8.4. With the setting and notation of Theorem 8.2 there exists a large class of
functions ψ1 such that for all ψ2 ∈ L1(mt) and all integers n ≥ 1, we have that∣∣∣∣∫ (ψ1 ◦ fn · ψ2) dµt −

∫
ψ1 dµt

∫
ψ2 dµt

∣∣∣∣ ≤ O(ξn),

where ξ ∈ (0, 1) comes from Theorem 8.2(b), while the big “O” constant depends on both
ψ1 and ψ2.

- Central Limit Theorem [24, Theorem 6.17]

Theorem 8.5. With the setting and notation of Theorem 8.2 there exists a large class class
of functions ψ such that the sequence of random variables∑n−1

j=0 ψ ◦ f j − n
∫
ψ dµt√

n

converges in distribution with respect to the measure µt to the Gauss (normal) distribution
N (0, σ2) with some σ > 0. Precisely, for every t ∈ R,

lim
n→∞

µt

({
z ∈ Jf :

∑n−1
j=0 ψ ◦ f j(z)− n

∫
ψ dµt√

n
≤ t

})
=

=
1

σ
√

2π

∫ t

−∞
exp

(
− u2

2σ2

)
du.

- Variational Principle [24, Theorem 6.25]

Theorem 8.6. If f ∈ D is a function with negative spectrum and t > Θf , then the f–
invariant measure µt is the only equilibrium state of the potential −t log |f ′|1, that is

P(t) = sup

{
hµ(f)− t

∫
Jf

log |f ′|1 dµ
}
,

where the supremum is taken over all Borel probability f -invariant ergodic measures µ with∫
Jf

log |f ′|1 dµ > −∞, and

P(t) = hµt(f)− t
∫
Jf

log |f ′|1 dµt.

We will obtain conformal measures following the approach in [24, Section 5.3]. For
dynamical systems with compact Julia set theses measures can be produced either as fixed
points of dual Perron-Frobenius operators or as weak limits of some atomic measures using
the fact that the space of probability measures on the Julia set is weakly compact. In the
present setting the Julia set Jf is an unbounded subset of C and so the key point is to
establish the tightness (in C) of an appropriate sequence of measures. This can be done by
following [24, Section 5.3] since we we have the following analogue of [24, Lemma 5.13]:
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Proposition 8.7. Let f ∈ D and suppose that there exists t > 0 for which Lt is a bounded
operator of Cb(Ω) with

lim
w→∞ , w∈Ω

Lt11(w) = 0 .

Then
lim
S→∞

‖Lt11D∗S‖∞ = 0 .

Proof. Let ε > 0 and let Rε > eγ be so large that Lt11(w) < ε for all w ∈ Ω with |w| > Rε.
Then clearly Lt11D∗S(w) ≤ ε for every S > 0 and every w ∈ Ω with |w| > Rε.

We are left to consider points

w ∈ Ω with |w| ≤ Rε.

The set Ω ∩ DeRε is compact and thus admits a finite covering by δ–disks with centers in
Ω. Let w1, ..., wN be these centers. Bounded distortion implies that there exists K < ∞
such that, for every S > 0,

Lt11D∗S(w) ≤ KLt11D∗S(wj) for every w ∈ D(wj, δ) , j = 1, ..., N .

By its very definition, Lt11DcS(w) takes into account only the preimages z ∈ f−1(w) for
which |z| ≥ S. Since Lt11(w) is convergent, for every w ∈ Ω, there exists S > 0 such that
Lt11D∗S(wj) < ε/K for every j = 1, ..., N . This shows Proposition 8.7. �

9. Thermodynamics: Bowen’s Formula

Let f ∈ D have negative spectrum. The pressure function introduced in the previous
section along with its properties established in Theorem 8.1 (2) allows us to provide a
closed formula for the Hausdorff dimension of the radial Julia set of f . This quantity is
called the hyperbolic dimension of f , is denoted by HypDim(f) and is also known (see [36])
to be the supremum of all Hausdorff dimensions of the hyperbolic subsets of Jf . Here is a
reformulation of Theorem 1.3.

Theorem 9.1 (Bowen’s Formula). Let f ∈ D have negative spectrum. Then, the function
(Θf ,+∞) 3 t 7→ P(t) has a (unique) zero h > Θf if and only if HypDim(f) > Θf . In this
case we have

HypDim(f) = h .

Proof. Since f ∈ D is a function with negative spectrum the thermodynamic formalism
of Section 8 applies. In particular, for every t > Θf there exists an eP(t)|f ′|1–conformal
measure. If for some h > Θf we have P(h) = 0, then the corresponding conformal measure
is frequently called geometric conformal measure, i.e. eP(h) = 1. The proof of Theorem 1.2
in [23] then applies yielding HypDim(f) = h(> Θf ).

Conversely, if HypDim(f) > Θf , then (see [36]) there exists a hyperbolic (compact) set
X ⊂ Jf such that HD(X) > Θf . Then, see [35] for ex., P(f |X ,−HD(X) log |f |′X |) = 0.
Therefore, P(HD(X)) ≥ P(f |X ,−HD(X) log |f |′X |) = 0. In conjunction with Theorem 8.1
(2) this implies that there exists h ≥ HD(X) such that P(h) = 0. As HD(X) > Θf , the
proof is complete. �
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The issue yielded by Theorem 9.1 is to be able to tell whether HypDim(f) > Θf . We
know that there is a quite general class of functions for which this holds. Indeed, Barański,
Karpińska and Zdunik showed in [3] that HypDim(f) > 1 for every function f ∈ D. Along
with Theorem 9.1 this implies the following.

Proposition 9.2. Let f ∈ D have negative spectrum with Θf ≤ 1. Then, the pressure
function (Θf ,+∞) 3 t 7→ P(t) of f has a unique zero, call it h, and

HypDim(f) = h .

The problem when Θf > 1 is that then the Θf–Hausdorff measure of the boundary of
a tract may be zero. If this is quantitatively not the case in the sense that ϕT (I) has
Θf–measure greater than some strictly positive constant and if the tract is Hölder then the
hyperbolic dimension can be estimated like in [3]. This has been observed and worked out
for a family of examples in Proposition 4.3 of [22]. The model functions of the Proposition
4.3 in [22] are all the property HypDim(f) > Θf .

In general we can use our optimal estimates for the transfer operator in order to show
directly that the pressure function has a zero. Here, it is done for a large class of linearizers.
Let us mention again that [13] contains a more general version of this result.

Proposition 9.3. Let p : Ĉ→ Ĉ be a hyperbolic polynomial with connected Julia set. Let
z0 ∈ Jp be a repelling fixed point of p and let f be an associated linearizer of disjoint type.
Then, the pressure function (Θf ,+∞) 3 t 7→ P(t) of f has a zero which we denote by h.
In consequence,

HypDim(f) = h .

Proof. We are to estimate Lt11 for t > Θf near Θf . It suffices to show that there exists
R > 1 such that

(9.1) Lt11DR(w) ≥ 2 for all w ∈ DR ∩ Jf
since then it follows by induction that Lnt 11(w) ≥ 2n for all w ∈ DR ∩ Jf ; thus that
P(t) ≥ log 2 > 0. This, along with Theorem 8.1 (2) entails the existence of a unique zero
h > Θf .

For the special type of functions f we consider here we have the estimate from Theo-
rem 7.9:

Lt11(w) � (log |w|)1−t,

With the notations of the proof of Theorem 7.9, let

An := {z ∈ C : |λ|nr < |z| ≤ |λ|n+1r} and Rn = |λ|n+1r , n ≥ 0 .

Then for every integer M ≥ 1 we have that

Lt(11DRM )(w) =
M∑
n=0

∑
z∈f−1(w)∩An

|f ′(z)|−t1 .
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Because of (7.25) and (7.23) we see that the sum over the preimages of w lying in An is
approximately

(9.2) (log |w|)1−t
∑

η∈p−N (ξ)∩V0

∣∣ (pN)′ (η)
∣∣−t

where N = n−Nw. Since the polynomial p : Ĉ→ Ĉ is hyperbolic, it is well known that the
sum of (9.2) is approximately λNt,p where log λt,p is the topological pressure of p evaluated
at t. Also, t > Θf = HypDim(p) = HD(Jp) because of Theorem 7.8 and again since p is
hyperbolic. In particular, λt,p < 1 for all t > Θf and limt→Θf λt,p = λΘf ,p = 1. It follows
that

Lt(11DRM )(w) � (log |w|)1−t1− λM+1
t,p

1− λt,p
� (log |w|)1−tM,

where the latter comparability holds if we make the particular choice M = M(t) := 2
log λt,p

.

So, if w ∈ DRM ∩ Jf then
Lt(11DRM )(w) �M(t)2−t.

Since limt↘Θf M(t) = +∞, we immediately see that there exists t > Θf such that (9.1)
holds with R = RM(t). The proof is complete. �

Proof of Theorem 1.6. This theorem is an immediate consequence of Theorem 7.8, Corol-
lary 8.3, Theorem 9.1 and Theorem 9.11 of [26] (our present theorem is a very special case
of Theorem 9.11 as we now consider only deterministic systems). �

10. Functions of Class S
We finally consider functions of the Speiser class S. For this more restrictive class the

present theory of thermodynamic formalism can be extended in a straightforward way
to hyperbolic functions. This section contains also the promised second application of
quasiconformal invariance of Hölder tracts in Proposition 10.1 and provide a prove for
Theorem 1.4 of the Introduction.

10.1. Hyperbolic Functions in Class S. The object here is to explain how to passe
from the disjoint type case to hyperbolic functions. In order to do so, let us consider a
function f having negative spectrum and the properties of class D excepted the disjoint
type property. Instead, f is assumed hyperbolic and of class S.

We assume as usual that S(f) ⊂ D, that 0 ∈ F(f) and we fix arbitrarily γ > 0. Then,
exactly as in the disjoint type case, the conclusions of Theorem 4.1 hold for every |w| > eγ.
We are thus to consider only points

w ∈ Deγ ∩ Jf
We will compare Lt11(w) to Lt11(ξ) where ξ ∈ C\Deγ is an arbitrarily fixed point. This goes
exactly as in [10, Section 10] (and this is the only point where class S rather than merely
class B is needed) by employing the bounded distortion argument. Indeed, it suffices to
connect w to ξ by a piecewise smooth path σ of Euclidean length uniformly bounded above
with respect two points w ∈ Deγ and such that for some fixed δ > 0, the δ–neighborhood
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of σ does not intersect S(f). Let us recall from [24, Section 4.2] that there exists good
distortion estimates for |(fn)′|1. In conclusion, all of this shows that Theorem 1.2 holds for
f .

10.2. Analytic families of class S. Two entire functions f and g are (topologically)
equivalent if there exist two homeomorphisms Φ,Ψ : C→ C such that

(10.1) Ψ ◦ g = f ◦ Φ .

Given g ∈ S, Eremenko and Lyubich [15] showed that the set Mg of all functions f ∈
S equivalent to g has a natural structure of a complex analytic manifold. It can be
parametrized by the singular values {a1, ..., aq} = S(g) of g.

Proposition 10.1. Let g ∈ S be a function having finitely many tracts all of which are
Hölder. Then all tracts of every function f ∈Mg are Hölder, and thus all functions ofMg

have negative spectrum.

The proof of this fact relies on a special choice of homeomorphisms in the equivalence
relation (10.1). In fact, they can be freely chosen in an isotopy class without changing f, g
and, in particular, there is a quasiconformal choice for these homeomorphisms (see again
[15]). We first shall prove the following.

Lemma 10.2. Let g ∈ S. If f ∈Mg, then the homeomorphism Ψ in (10.1) can be chosen
quasiconformal and such that, for some R ≥ 1,

Ψ|D∗R ≡ Id|D∗R .
Proof. Assume without loss of generality that S(g) = {a1, ...aq} ⊂ D. Let aq+1, aq+2 ∈
D\S(g) be two arbitrary distinct points and let ψ : C→ C be a quasiconformal homeomor-
phism such that (10.1) holds for the given maps g ∈ S and f ∈Mg. A standard application
of the Ahlfors-Bers-Bojarski Measurable Riemann Mapping Theorem is that ψ−1 can be
embedded into a holomorphic motion of quasiconformal mappings ψ−1

λ : C→ C, λ ∈ D. In
particular, ψ−1

0 = Id and ψ−1
λ0

= ψ−1 for some λ0 ∈ D. Define R to be any number

≥ 2 max
{

diam(ψλ(D)) : |λ| ≤ |λ0|
}
,

and consider the holomorphic motion z 7→ zλ defined on ψ(D ∪ D∗R) by

zλ = z if z ∈ ψ(D) and zλ = ψ−1
λ (z) if z ∈ ψ(D∗R).

By Slodkovski’s extension of Mañé-Sad-Sullivan’s λ-Lemma, this holomorphic motion has
an extension to a holomorphic motion hλ : C→ C, |λ| ≤ |λ0|. Consider

Ψλ := hλ ◦ ψ , λ ∈ D .
The map we look for is Ψλ0 and t 7→ Ψtλ0 , t ∈ [0, 1] is a homotopy between ψ = Ψ0 and
Ψλ0 that does not move the points aj, j = 1, ..., q+ 2; in fact does not move any point of D.
Following Section 3 in Eremenko–Lyubich’s paper [15] and in particular Lemma 2 of that
section, we conclude that there exists Φλ0 : C → C quasiconformal such that (10.1) holds
with Ψ and Φ replaced respectively by Ψλ0 and Φλ0 . �
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Proof of Proposition 10.1. Let g, f be as in Proposition 10.1 and let R > 1 so large that the
assertion of Lemma 10.2 holds and that all the components of g−1(Dc

R) are Hölder. Then,
if Ψ is given by Lemma 10.2 and if Φ is the corresponding quasiconformal map such that
(10.1) holds, then clearly Φ identifies the components of g−1(D∗R) with those of f−1(DR∗).
Proposition 10.1 follows now from Lemma 6.1. �

10.3. Proof of Theorem 1.4 and of Corollary 1.5. If g is as in Theorem 1.4, then
Proposition 10.1 yields that every f ∈ Mg has Hölder tracts and negative spectrum.
Therefore, Theorem 1.2 applies first to any disjoint type map ofMg and then also to every
hyperbolic function of this familyMg because of the argument of Section 10.1. This proves
Theorem 1.4. �

Let now g ∈ S be a linearizer of a polynomial p with connected Julia set. The singular
set S(g) equals the post-singular set of the polynomial p (see [28]). Since g ∈ S, p must be
post-critically finite hence TCE. On the other hand, we may assume that g is of disjoint
type so that it satisfies the conclusion of Lemma 7.2. Otherwise it suffices to replace it by
g ◦ κ ∈ Mg with sufficiently small κ 6= 0. It thus follows from Proposition 7.4 that g ∈ D
and that g has finitely many Hölder tracts. It suffices now to apply Theorem 1.4 in order
to complete the proof of Corollary 1.5. �

Appendix A. Integral means spectrum and pressure

For the sake of completeness we provide here the details related to formula (7.16) in the

settings of the proof of Theorem 7.8. Let again p : Ĉ→ Ĉ be a polynomial with connected
Julia set and let h : D∗ → Ap(∞) be a Riemann map such that

(A.1) h ◦D = p ◦ h on D∗ where D(z) = zd .

Suppose we are given a constant c > 0 and circular arcs Cr ⊂ {|z| = r} with

diam(Cr) ≥ c , r > 1 .

Define

β̂h(t) = lim sup
r→1+

log
∫
Cr
|h′(z)|t|dz|

| log(r − 1)| .

Consider also the tree pressure

P(t, w) := lim sup
n→∞

1

n
log

∑
z∈p−n(w)

|(pn)′(z)|−t , t > 0 and w ∈ Ap(∞) .

It has been shown in [31] that this expression does not depend on w. More precisely,
Przytycki has shown that P(t, w) is the same value for every typical w ∈ C. Since now the
polynomial p is assumed to have connected Julia set, every point of Ap(∞) is typical in the
sense of [31]. We can therefore write P(t) for P(t, w), for any w ∈ Ap(∞).
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Proposition A.1. If p : Ĉ→ Ĉ is a polynomial with connected Julia set and d ≥ 2 denotes
its degree then,

β̂h(t) = βh(t) =
P(t)

log d
+ t− 1

for every t ≥ 0.

We adapt the proof given in [35]. There, the second equality is shown in the case of
expanding polynomials.

Proof. Given 1 < r < 2, there exists a unique integer n ≥ 1 such that Rr = Dn(r) ∈ [2, 2d[.
Obviously r − 1 � d−n and the (arcwise) distance between two consecutive elements of
D−n(Rr) is 2πr/dn � d−n. Therefore, applying Koebe’s Distortion Theorem, we get the
following. ∫

Cr

|h′(ξ)|t|dξ| � d−n
∑

ξ∈Cr∩D−n(Rr)

|h′(ξ)|t.

Iterating the functional equation (A.1) and taking derivatives gives

h′(Rr)(D
n)′(ξ) = (pn)′(h(ξ))h′(ξ)

for all ξ ∈ D−n(Rr). Hence, we get for such ξ that

|h′(ξ)| � dn|(pn)′(h(ξ))|−1 .

Thus

(A.2)

∫
Cr

|h′(ξ)|t|dξ| � dn(t−1)
∑

ξ∈Cr∩D−n(Rr)

|(pn)′(h(ξ))|−t

= dn(t−1)
∑

z∈h(Cr)∩p−n(wr)

|(pn)′(z)|−t , wr = h(Rr) .

Since the constant c > 0 from the definition of the circular arcs Cr does not depend on
r > 1, there exists an integer M ≥ 1 (in fact every integer M large enough is good) such
that

DM(Cr) = {|ξ| = rd
M}

for every r > 1. If r is sufficiently close to 1 then n > M . Then

h(Cr) ∩ p−n(wr) = h(Cr) ∩ p−M(p−(n−M)(wr)).

Obviously there exists R ∈ (0,+∞) such that

p−(n−M)(wr) ⊂ DR

for all 1 < r < 2. Since

K := sup
{
|(pM)(v)| : v ∈ DR

}
<∞,
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we thus have that ∑
z∈h(Cr)∩p−n(wr)

|(pn)′(z)|−t ≥ K−t
∑

ξ∈p−(n−M)(wr)

|(pn−M)′(ξ)|−t

�
∑

ξ∈p−(n−M)(h(2))

|(pn−M)′(ξ)|−t.

Therefore ∫
Cr

|h′(ξ)|t|dξ| � dn(t−1)
∑

ξ∈p−(n−M)(h(2))

|(pn−M)′(ξ)|−t,

from which immediately follows that

β̂h(t) ≥ t− 1 +
P(t)

log d
.

On the other hand, β̂h(t) ≤ βh(t) and, arguing exactly as before but with Cr replaced by
the full circle {|ξ| = r} and skipping the, not needed now, mixing argument based on the
existence of the integer M , it follows that

βh(t) ≥ t− 1 +
P(t)

log d
.

�
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Proceedings of the London Mathematical Society, 85(2):467, 2002.

[6] W. Bergweiler, Iteration of meromorphic functions, Bull. A.M.S. 29:2 (1993), 151-188.
[7] Walter Bergweiler and Alexandre Eremenko. Direct singularities and completely invariant domains of

entire functions. Illinois J. Math., 52(1):243–259, 2008.
[8] I. Binder, N. Makarov, and S. Smirnov. Harmonic measure and polynomial Julia sets. Duke Math. J.,

117(2):343–365, 2003.
[9] Christopher J. Bishop. Models for the Eremenko-Lyubich class. J. Lond. Math. Soc. (2), 92(1):202–221,

2015.
[10] Christopher J. Bishop. Models for the Speiser class. prepint, 2016.
[11] Lennart Carleson, Peter W. Jones, and Jean-Christophe Yoccoz. Julia and John. Bol. Soc. Brasil.

Mat. (N.S.), 25(1):1–30, 1994.
[12] David Drasin and Yusuke Okuyama. Singularities of Schroder maps and unhyperbolicity of rational

functions. Comput. Methods Funct. Theory, 8(1-2):285–302, 2008.



THERMODYNAMICAL FORMALISM AND INTEGRAL MEANS SPECTRUM 45

[13] Alexandre Dezotti and Lasse Rempe-Gillen. Measurable transcendental dynamics, eventual hyperbolic
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