RANDOM SHIFTS OF FINITE TYPE
WITH
WEAKLY POSITIVE TRANSFER OPERATOR

VOLKER MAYER AND MARIUSZ URBANSKI

ABSTRACT. We deal with countable alphabet random subshifts of finite type
under the absence of Big Images Property and under the absence of uniform
positivity of the transfer operator. We first establish the existence of random
conformal measures along with good bounds for the iterates of the Perron-
Frobenius operator. Then, using the technique of positive cones and proving
a version of Bowen’s type contraction (see [2]), we also establish a fairly com-
plete thermodynamical formalism. This means that we prove the existence and
uniqueness of fiberwise invariant measures (giving rise to a global invariant mea-
sure) equivalent to the fiberwise conformal measures. Furthermore, we establish
the existence of a spectral gap for the transfer operators, which in the random
context precisely means the exponential rate of convergence of the normalized
iterated transfer operator. This latter property in a relatively straightforward
way entails the exponential decay of correlations and the Central Limit Theo-
rem.

1. INTRODUCTION

The thermodynamic formalism of finite and countable topological Markov shifts
(subshifts of finite type) with Holder continuous potentials is by now quite well
understood. The case of finite alphabet was settled already in nineteen seventies,
primarily due to the work of R. Bowen, [2], and Ruelle, [9]. For the case of
countable infinite alphabet, the existence and uniqueness of conformal measures
and invariant Gibbs states for finitely irreducible shifts was established in [5]. The
necessity of finite irreducibility for the existence of invariant Gibbs states was
shown in [I0]. The spectral gap of the corresponding Perron-Frobenius (transfer)
operator, and resulting from it exponential decay of correlations, the Central Limit
Theorem and the Law of Iterated logarithm were established in [6]. As a matter
of fact, this book contains a systematic exposition of the theory of deterministic
subshifts of finite type. The work [11] is also a good reference with a different
viewpoint based on the concept of so called recurrent potentials.
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In the case of random dynamics, Bogenschiitz and Gundlach [I] have considered
the finite shift case. Then Denker, Kifer and Stadlbauer in [4], Stadlbauer [12] 13]
and [8] dealt with the case of random countable topological Markov shifts. All
these papers assumed some version of finite irreducibility or, to put it in different
words, Big Images Property. In all these cases the Perron-Frobenius evaluated at
the function identically equal to one was strictly positive, in fact its infimum over
the whole space was positive.

The present paper lies on just the opposite spectrum. It is devoted to random
countable subshifts of finite type but in our setting the Big Images Property does
always fail. Also, strict positivity of the Perron-Frobenius does always fail, see
Property (B) in Section 4l This happens however with some control as can be seen
from properties (A) and (C) of the same section.

In our present paper, utilizing the concept of narrow topology and Prokhorov’s
Compactness Theorem, we first establish the existence of conformal measures along
with good bounds for the iterates of the Perron-Frobenius operator. Then, using
the technique of positive cones and proving a version of Bowen’s type contraction
(see [2]), by developing in the present setting our approach from a non-Markovian
context of [7], we also establish a fairly complete thermodynamical formalism.
First of all, we prove the existence and uniqueness of fiberwise invariant measures
(giving rise to a global invariant measure) equivalent to the fiberwise conformal
measures. Furthermore, we establish the existence of a spectral gap for the transfer
operators, which in the random context precisely means the exponential rate of
convergence of iterates of the normalized transfer operator. This latter property in
a relatively straightforward way entails the exponential decay of correlations and
the Central Limit Theorem

We would like to stress that the hypotheses under which we work, apart from
topological mixing of the shift map, are of “the first level” type, meaning that these
do not involve iterates of the random shift map, Birkhofl’s sums of potentials, or
iterates of the transfer operator. These involve the transfer operator itself but
only very mildly as condition (C) of Section 4l It is straightforward to see that
abundance of examples fulfill our hypotheses.

2. PRELIMINARIES; TOPOLOGICAL ASPECTS

Let (X,§,m) be a complete probability space with §, a o-algebra of subsets of
X and m a complete probability measure on §. Let 8 : X — X be an invertible
measurable transformation preserving measure m. Let E be a countable infinite
set. For the ease of exposition and without loss of generality we assume throughout
that

E=N=/{0,1,2,...}
is the set of all non-negative integers. Assume that

Xs>z— A(z): ExE— {0,1}
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is a measurable map from X into 0, 1-matrices on E, commonly called incidence
matrices. These matrices define symbol spaces as follows. For every x € X let

(21)  EX =EX(A) = {(wn)i2g € BNt Ay, (0°(z)) = 1 for every i > 0}.

More generally, for every set F' C E, given n € NU {oo}, it is useful to introduce
the sets
(2.2)
Fl'=FMA) = {wowi ...wp € " 0 Ay, (07(2)) =1 forall 0<i<n-—1}.
These are words of length n + 1 over the alphabet F' and they will be called
admissible by the matrix A, also A-admissible, or just admissible. If m < n and if
w € F) then

W = Wow1 ... Wy, € F)"*

is called the truncation, or restriction, of w to m. The cylinder generated by a
word w € EY is defined to be

wle :={T7 € EX : 7| =w}.

A straightforward extension of the notion of cylinder is this. For any F' C E,

JEF
The symbol spaces E2°, x € X, are naturally endowed with the subspace topology
inherited from the product (Tichonov) topology on the Cartesian product EV.
This latter topology, and all respective subspace topologies are generated by many
natural metrics. One of them, the one we will work with, is this:

dw,7) =0 if w=7 and d(w,r):exp<—min{n; wn;éTn}) if w#rT.

The Cartesian product X x EN is further endowed with a natural measurable
structure, i.e. a g-algebra. This is the o-algebra generated by the sets of the form
F x B, where F is a measurable subset of X and B is a Borel subset of EN. This
o-algebra is denoted by § ® B. Let

(2.3) Q:= | J{z} x B € X x EN
reX

By § ® |oB we denote the restriction of §® B to €2, i.e. the o-algebra consisting of
the sets Y NQ, Y € §® B. By B, x € X, we denote the Borel o-algebra of Borel
subsets of E2°. The symbol ¢ stands for the standard shift map from EN to EN
defined by the formula

U((Wn)?zo:o) = (Wn+1)neo-
The spaces EX°, x € X, are invariant under the shift map o : EN — EN in the
sense that

o(E) C Egy
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for all z € X. We then set
Op = O"Ego DB = Egly).

We are interested in the (fiberwise) dynamics, i. e. in the compositions (frequently
referred to as iterates):
O_TL

2 1= Ogn-1(z) © ... 00 E° = Egi )y, n > 0.

Its global version, the random shift map 64 : Q — €2, defined by the formula
(2.4) (z,w) — (0(z), 04 (w)),

is a skew product map with base X and fibers E2°. It will be frequently denoted
simply by . We assume this map to be mixing. The precise definition is the
following.

Definition 2.1. The random shift map 6 : Q — Q is called topologically mixing if
for all letters a,b € E there exists N = N,p > 0 such that for every n > N and
all x € X there exists w € E such that the word awb is A-admissible.

A more adequate name for this concept would be uniform topological mixing, but
we stick to the shorter one since there will be considered in this paper no more
general, or weaker, concepts of mixing.

Remark 2.2. Notice that mizing in particular implies that no cylinders [i], and no
sets a;l([i]g(x)), 1€ FE, x e X, are empty. A reformulation of the latter property
is that for all x € X and all b € E there exists a € E such that Ag(x) = 1.

Definition 2.3. The incidence matrix A and the random shift map 6 : Q — Q
alike, are said to be of finite range if for every e € E there exits a finite set D, C E
such that, for m —a.e. z € X,

{jeE:A(x)=1} C D,
Then also the random shift map 64 : Q2 — Q is said to be of finite range.
The following lemma is a reformulation of this condition.

Lemma 2.4. The mndopz shift map 6 : Q0 — Q is ofﬁr}ite range if and only if for
every l € E there exists | € E such that, for every e > [,
o, ! (lelo@y) N[0, ..illa =0 for m-a.e. z € X.

T

Definition 2.5. The incidence matrix A and the random shift map 6 : Q — Q
alike, are said to be of bounded access if for all b € E there exists b* € E such that
for m-a.e. x € X there exists a = a; < b* such that Agp(z) = 1 (we recall that
E=N).
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3. PRELIMINARIES: FUNCTION SPACES AND BOUNDED DISTORTION

Various function spaces will be used in the sequel. First we consider functions
defined on a fiber E2°. The space of bounded continuous functions on E2° will
be denoted Cp(E) and will be endowed with the supremum norm || - ||. The
a—variation of a function g : EJ° — R is defined to be

va(g):—inf{w D THw, To—wo}.

The vector space Hq(E2°) by definition consists of all functions g € Cp(EX°) that
have finite a—variation. This space will be endowed with the canonical norm

I lla = [+ lloo + va(-)-
Clearly, both normed spaces Cp(ES°) and Hq(ES) are Banach.

We now define global functions g : 2 — R and bring up their basic properties.
Measurability of such functions will always be with respect to the o—algebra F®|oB
on ). A measurable function g : 2 — R is called essentially continuous if g, €
Cho(EYX), x € X, and if the essential supremum over X of the measurable function
Z + ||gz||oo is finite. The vector space of such functions will be denoted by Cy(€2).
It becomes a Banach space when equipped with the norm

|9]oc := esssup{||ga|loc : @ € X}.

We also have to consider various spaces of global Holder functions especially in
the context of the stochastic laws at the end of Section For the moment, let
us introduce essentially a-Holder functions. These will be measurable functions
g : Q — R such that g, € Ho(E°), v € X, and such that

Va(g) := esssup{va(gs) 1z € X} < 00.

Functions that are in the same time essentially a-Holder and essentially continuous
form a Banach space, denoted by H,(€2). The norm of a function g € H(2) is

|9l := esssup{||gz|la : ® € X}.

For every integer n > 1 and every function g : 2 — R, let

n—1
Sng =) god,
§=0
be the nth Birkhoff’s sum of g with respect to 6. We will frequently need the
following technical but indispensable fact.

Lemma 3.1. There exists a constant C > 0 such that

(3.1) 1Sng(2,w) = Sng(z,7)| < CVa(g)d(w, )"
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and

(3.2) lexp (Sng(x,w) = Sng(, 7)) — 1| < CVa(g)d(w, )

for every essentially a-Holder function g : Q — R, every x € X, every integer
n>1, and all w, 7 € EX with w|p—1 = T|p—1.

The proof of this lemma is standard in hyperbolic dynamics and is left for the
reader.

4. TRANSFER OPERATORS AND FINE SHIFTS

We want to associate to a function ¢ :  — R a family of operators L., z € X,
by the formula

Lrg.(w) := Z go(ew)e?= &) where g, € Gy (E) and w € EX.

eckE
Aewo (z)=1

Taking the particular function 1y ;. where [ € E, then
Lo(Lp,.. 1¢)(w) = Z erslew) e B

e>l
Aewo (z)=1

Clearly, ¢ must satisfy some additional properties for these operators being well

defined.

Definition 4.1. Given « > 0, we call an essentially a-Hélder function ¢ : Q@ — R
a summable potential if for every e € E there exists 0 < c. < Ce < 00 such that

(4.1) Ce < €xp gox‘ i <C,

le]
and if the operators L, are uniformy summable in the following sense:

(4.2) ll_1>no10 esssup (‘Em (]l[O,...,l],%) T E X) =0.

This summability condition deserves some comments. First of all, (4.1) and (4.2)
imply that there exists M < oo such that

(4.3) L1 <M forae ze€lX.

Then, is formulated in terms of the transfer operator and thus this condition
does depend on the random incidence matrices. But, in general, one can use
instead of the above uniform summability the following simpler condition which
does only involve the function ¢ itself:

(4.4) Z exp (esssup <p$|[ ) < +oo.

ecE zeX el
Clearly, implies . However, for some shifts and potentials does not
hold whereas the weaker assumption does. This is the case for the following
(deterministic) example. Since we want also treat such shifts the condition
is appropriate.
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Example 4.2. The incidence matriz A here does not depend on x since we simple
describe a deterministic example (which can be randomized in many ways). The
one values of this matriz are defined as follows: Ayg = 1 and, for every j > 1,

A;; =1 if and only if
i=(G—-1)+n" for somen eN.

This shift has all required properties: it is mixing, of finite range and of bounded
access (every deterministic shift is of bounded access). Consider then the potential

e(i) =—1In(l1+4+4) , ieN.

Clearly ¢ does not satisfy the summability condition (4.4) but it is obvious that
weaker summability condition (4.2) does hold.

Consider now the following three properties.

(A) For every e € E there exists M, € (0,+00) such that

Mt < Ll for m-a.e. x € X.

6(x)

(B) SIL%O esiselip (ﬁxﬂ‘[e]9<z>> =0.

(C) There are a number 0 < k < 1/4 and a finite set F' C E such that
sup (Ex (]lEgo\[F]z)) < kinf (ﬁmﬂ’[F]g(z>) for ae. z e X.

These conditions deserve some comments. First of all, as explained in the intro-
duction, the goal here is to consider a situation where the transfer operator is no
longer strictly positive in the sense that inf £,1 > 0. Clearly, the condition (B) is
responsible for this whereas (C) gives some control of how £,1(y) — 0 as yp — oo
and (A) is a weak lower bound. An other remark is that these conditions rely only
on the shift and the potential itself and so no higher iterates are involved. They
are, at least for reasonable potentials, quite simple to check. Indeed, condition (C)
relies on the potential but, for summable potentials, (A) and (B) totally rely on
the shift, hence the incidence matrix.

Lemma 4.3. Let ¢ : Q = R be a summable potential. Then we have the following:
(1) The shift is of bounded access if an only if (A) holds.
(2) The shift is of finite range if and only if (B) holds.

The proof of this remark is obvious.

Definition 4.4. A random shift 6 : Q@ — Q along with a potential ¢ : Q2 — Q is
called fine if ¢ is summable and if (A, B, C) hold or, equivalently, if ¢ is summable,
the shift ¢ is of finite range and of bounded access and if (C) holds.

Here are some more properties that will be useful in the sequel.
The condition (4.1)) is just a weak bound and it implies the following immediate
observation.
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Lemma 4.5. Suppose that the random shift map 6 : 2 — Q is of finite range and
that ¢ : Q — R is essentially a-Hélder and satisfies (4.1). Then, for every e € E
and every integer n > 1 there exists ¢* = c¢*(e,n) > 0 such that

exp (inf(Sngp\{w}X[e}x)) >c* form ae x € X.

For a summable potential it is clear that L,g, € Cp (Eeofx)) and so
LG (ED)) < Co(ER).
We record the following.

Lemma 4.6. If ¢ : Q@ — R is a summable potential, then for each x € X, the
linear operator

Ly :C(EY) — Co(Egey)
is bounded and its norm is bounded above by M. Also L, (’Ha (E;O)) - Ha(Egz’x))
and the linear operator L, : Ha (Ego) — Ha (ng’z)) is bounded.

Proof. The first assertion of this lemma is obvious while the second results by a
standard calculation. O

The operators L., x € X, are frequently referred to as fiberwise transfer operators.
They give rise to the global operators defined as follows. If g € Cp(2) and = € X,
we set

(Eg)x = Eg—l(w)g.gfl(x) S Cb(Ego).

Lemma 4.7. If p : Q — R is a summable potential, then the function X 3 x — L,
is measurable in the sense that for each g € Cy(Q2) the function

Q5 (z,w) = Lyge(w) ER
is measurable. In consequence Lg € Cp(£2).

Proof. Note that, given e € E, both functions Q > (z,w) — g.(ew) and Q >
(z,w) — e¥=(¢“) are measurable and can be extended to measurable functions on
X x EN by putting the value zero outside . Since we can extend measurably in
the same way the incidence matrix A, the function

X x EN > (x,w) = Aey, (x)ggc(ew)e%(e‘”)

is measurable too. This shows measurability of the function X > z — L;(g)
since the former one can now be expresses as a convrgent series of measurable
functions. O

As a direct consequence of this observation and of Lemma[4.6] we get the following.
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Lemma 4.8. If ¢ : Q — R is a summable potential, then the linear operator
L: Cb(Q) — Cb(Q)

is bounded and its norm is bounded above by M. Also L(Ha(Q)) C Ha(S2) and the
linear operator L : Hao(Q) = Ha(Q) is bounded.

For n > 1, we define the iterated operator
;CZ = Lgnfl(x) 0...0 Em : Cb(Ego) — Cb(Egg(x))

Of course L (Ha(EX)) C HalEg: (x)). A standard straightforward inductive cal-
culation shows that

Li@w) = Y exp(Sup(z,7w))g(Tw).

TEEY
Arnflwo (z)=1

As an immediate consequence of Lemma we get the following.
Lemma 4.9. For everyn > 1, every x € X, and all w, 7 € EZ°, with wy = 19,

Lil(w)
Li1(T)

<14 CVu(p)d(w,)“.

In particular,
L3(w) < KL(7),
where K =1+ CV,(p).

Our goal now is three-folded: to prove the existence of conformal measures, of
their invariant versions and finally to obtain exponential rate of convergence for
the iterated normalized operator along with stochastic laws. This will be done for
random shifts and potentials that satisfy the conditions formulated in the next
section.

5. RANDOM MEASURES AND MAIN THEOREMS

The first thing we want to do in this section is to recall the concept of random
measures and to bring up some of its basic properties. We do this in our context
of the measurable space €2 and measure m on X.

Definition 5.1. A measure v on (Q,S@ |QB) with marginal m, i.e. such that

Vo 77;(1 =m,
is called a random measure if v(Q) = 1, i.e. if it is a probability measure on
Q. FEquivalently, if its disintegrations v, x € X, respectively belong to the spaces
P(EL®) of probability measures on (E3°,Bg). The space of all random measures
(on Q with marginal m) will be denoted by Py, (£2).
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According to this definition, for every random measure v, i. e. belonging to P,,(2),
and for every every function g € Cp(2), we have

(5.1) /gdu—/ /mgxdvmdm ) < |9gloc-

This formula naturally introduces the space g € L!(v), i.e. the space of all real-
valued measurable functions on ) integrable with respect to v. Precisely, g € L' (v)

if and only if
/ / |gz| dvy dm(x) < +00.
x JEg

We would like to mention that random measures, as defined in Crauel’s book
[3], are all probability measures on the set X x EN with marginal m. Denote them
just by P,,. But in this paper we actually are interested only in the class P,,(Q2),
i.e. the one which consists of all random measures v on X x EN with support in
Q, i.e. such that v(Q2) = 1.

The key concept pertaining to random measures is that of narrow topology (a
version of weak convergence). Namely, if A is a directed set, then a net (1/0‘)
in P, is said to converge to a random measure v € P, if

a€N

lin?\ v%(g) = v(g) for every g € Cp(X x EV).
ae

This concept of convergence defines a topology on P, called in [3] the narrow
topology. The narrow topology on P,,(€2) is the one inhereted from the narrow
topology on P,,. Since g, the characteristic function of Q in X x EN, belongs to
Cy(X x EY), we have that

v(llg) = lim v%(1lg) =1

acA

for any net (V‘“)a cp D Pm(£2) converging to a random measure v € P,,. This
means that then v € P,,(Q), leading to the following.

Proposition 5.2. P,,(Q) is a closed subset of P, with respect to the narrow
topology on Pp,.

Recall from [3] that a subset I' of P, is called tight if its projection 7TER1, (T') on

EN is a tight subset of Borel probability measures on EY, the latter (commonly)
meaning that for every € > 0 there exists a compact set K. C EN such that
vo wEé (K:) > 1—c¢for all v € I'. For us, the crucial property of narrow topology
is that of Prohorov’s Compactness Theorem (Theorem 4.4 in [3]) which asserts
that a subset M C P,, is relatively compact with respect to the narrow topology
if and only if it is tight. Along with Proposition this entails the following.

Theorem 5.3. A subset I' C P, () is relatively compact with respect to the
narrow topology if and only if it is tight. Furthermore, it is compact if and only if
it 1s tight and closed.
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We will use tightness heavily in the next section and for this we will need Proposi-
tion 4.3 from [3]), which provides convenient sufficient conditions for tightness to
hold. For this in turn, we will need concepts of random closed and compact sets.
Indeed, following Definition 2.1 in [3]) we say that a function

Xz O

ascribing to each point € X a closed subset C, of EV, is called a random closed
set if for each w € EV the function

X o>z~ dist(w,Cy) €R

is measurable. Since the probability measure m on X is assumed to be complete,
being a closed random set precisely means (see Proposition 2.4 in [3]) that the
union

U {z} x C, (all sets C, are assumed to be closed)
reX

is a measurable subset of X x EN. A random closed set X > z — C, is called
a random compact set if all sets C,, € X, are compact (in EY). A function
X > x — V, is called a random open set if the function X 3 2 — EN\ V, is a
closed random set. The theorems about tightness announced above are these (see
Proposition 4.3 in [3]).

Proposition 5.4. A subset I' C P, (R2) is tight if and only if for every e > 0 there
exists a random compact set X 3 xz — K, such that K, C EX° for all z € X and

/ vp(Kyp)dm(z) >1—¢

X

forallv eT.

As an immediate consequence of this proposition, we get the following.

Corollary 5.5. Let I' be a subset of Pn(S2). Suppose that for every € > 0 there
exists a random compact set X 3 x +— K, such that K, C EX° for all x € X and

vp(Kg) >1—¢
for allv € ' and for m-a.e. x € X, then I is tight.

Passing to dynamics, i. e. to the fine random shift & : Q2 —  and fine potential
p: = R, as indicated in the introduction, the measures we are looking for are
defined in dynamical terms and form some special random measures on ().

Definition 5.6. A random conformal measure is a measure v = (Vz)zex € Pm(Q)
for which there exists a measurable function X 3 x +— X\, € (0,+00) such that

(5.2) LiVo@) = Az for m-a.e. v € X .



12 VOLKER MAYER AND MARIUSZ URBANSKI

We can now present the main results of this paper.

Theorem 5.7. Let the random shift 6 : Q — Q0 and the potential p :  — R be
fine. Then there exists a random conformal measure, i.e. a measure (Vy)zex that
satisfies (5.2)) for some measurable function X > x +— A\, € (0,+00). In addition,

| log Aljoo < 00.
Our second main theorem is this.

Theorem 5.8. Let the random shift 6 : Q — Q and the potential ¢ : Q — R be
fine. Then

(1) There exists a unique positive function p € Ha(Q) such that Lp = p, which
fiberwise means that

Lypz = poz) for m-a.e. x € X.
(2) There exist constants B > 0 and ¥ € (0,1) such that for m-a.e. © € X

Hﬁlﬁg - Vw(g)pen(w)Ha < BY"  for every g € Ho(Xy) .

As an immediate consequence of part (1) of this theorem, we get the following.

Corollary 5.9. Let the random shift 6 : Q@ — Q and the potential ¢ : Q@ — R
be fine. Let p € Ho(2) come from Theorem . Then for the fiber measures
Uy = pzVz € P(EX), v € X, we have that

fa © 05" = pg(z),

and p, the random measure on Q with disintegration (py)zex, 1S the unique &-
tnvariant measure on ) absolutely continuous with respect to v. In addition, the
two measures | and v are equivalent.

We want to conclude this section with two striking stochastic consequences of
Theorem and Theorem [5.8] particularly its item (2). We mean exponential
decay of correlations and the Central Limit Theorem. These follow from Theo-
rems and in an analogous way as corresponding theorems in [7] followed
from its respective counterparts of Theorems[5.7|and[5.8f We therefore only formu-
late the exponential decay of correlations and the Central Limit Theorem inviting
the interested readers to look for proofs to [7]. In order to formulate these theorems
we need some new, more general, function spaces.

Given a number 0 < p < oo let H5(£2) be the space of functions g : Q2 — R with
Holder fibers g, € Hq(ES®) and such that ||gz||o € LP(m) for m-a.e. x € X. The
canonical norm on this spaces is

oo = ([ ||gz||gdm<x>);
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It makes H5(2) a Banach space. Replacing in this definition the a—Hélder condi-
tion on the fiber EX° by a L'(v,) condition leads to a space of functions that will
be denoted by Ly’ (). The natural norm is in this case

1

glL7 = (/ 19 ) )

Clearly, if p = 1 then L, (Q) = L(v). In both cases we also consider p = oo and
then the LP norms are understood as the sup—norms.

Theorem 5.10 (Exponential Decay of Correlations). Let the random shift & : Q —
Q and the potential p : 1 — R be ﬁne Let p be the corresponding 6- mvamant
measure on ) produced in Theorem (5.8, Let p,q € [1,00] be such that 1 —|— = =1.

Then, for every g € LiP (), h € HL(Q) with Jxo ha dpie = 0 and for every n>1,

we have
| [ Gy 062 ha sz dmo)
X JEx

[@eoo hdu' _ < bo" |glL7
Q
for some positive constant b and some 9 € (0,1).

Theorem 5.11 (Central Limit Theorem). Let the random shift 6 : Q@ — Q and
the potential p : Q@ — R be fine. Let p be the corresponding &-invariant measure
on Q produced in Theorem . Let 1) € Ha(Q) such that ono Yedpy =0, z € X .

If 1 is not cohomologous to 0, then there exists o > 0 such that, for every t € R,
zeJ; Spt(z) <t ) / exp(—u?/20?) du
(et oo en) -

6. THE EXISTENCE OF CONFORMAL MEASURES

This section is devoted to prove Theorem It follows from the invariance

relation (5.2) that
>\m = /[:I]l dl/g(x)

and so our task is to look for random measures (v;)zex that are invariant under
the map @ : P, (Q) — P (Q) that is fiberwise defined as follows:

B(v), = %,

LV (e (1)
We want to obtain these measures in the usual way by employing Schauder—
Tychonov Fixed Point Theorem. But, since the sets E°° need not be compact,
this can be done only if a convex compact and ®—invariant subset M of P,, ()
can found, and if in addition the map &, restricted to this set, is continuous. Such
a subspace will now be found with, in particular, the help of the assumption (C).
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Remember that this assumption involves a finite union of cylinders F. Reenumer-
ating E = N if necessary, we may assume that F' = {0, 1, ..., ¢} for some ¢ > 0. We
shall prove the following.

Lemma 6.1. Let the random shift & : @ — Q and the potential ¢ : Q@ — R be fine.
Then, there ezists (7)., a sequence of measurable positive functions defined on
X, with the following properties:

(1) r0(x) = 3,
(2) limy, 00 Yu(x) =0 for m-a.e. z € X,
(3) there exists an ascending sequence of compact random sets, whose fibers we

denote by Ky o, v € X, and a measurable point x — &(x) such that

(3.1) &(z) € Ko C [Flg for m-a.e. x € X, and

(3.2) the set

M= {v ePn(Q), n(K;,) <yn(z) foral n>0 and a.e. x € X}
is ®—invariant, precisely meaning that ®(M) C M.

Proof. First of all, notice that F = U {z} X [F]; is a closed random set with non-

rzeX
empty fibers [F], (see Remark [2.2)). Therefore, the Selection Theorem (Theorem

2.6 in [3]) implies that there exists a measurable point £ € F, i.e. a measurable
map z — &(z) € [Fls.

We will now define inductively a required sequence (7). During this induc-
tive process we will also define an auxiliary sequence (X Sz Np(z) € N) ;L.OZO of
integer-valued functions meeting the following properties:

(1) the functions N, (x) are measurable for all integers n > 0.
(2) (Nn(IE))ZO:O is an increasing sequence for every x € X.

(3) No = q and N,(x) > &,(z) for all integres n > 0 and all x € X,
where &, (z) is the n—th coordinate of the measurable function £ define just above.
Assuming that such a sequence N, (z) is given, define further

ij_j(fﬁ) = Nn(.%')
for all 7 =0,1,...,n, and define also
(6.1) Kng = {w € E°: w; < N;,(0'(x)) for all i >0}.

Notice that these sets K, are compact subsets of FE2° and that, due to the
measurability of the functions N, the family (K, ;)yex forms a compact random
set. Moreover,

&(r) € Kop C[Fly and Ky p C Kpjio
for all integres n > 0 and all x € X. In order to demonstrate ®—invariance of the
set M, let us first make the following observation. Let 7 € K, () and j € E be
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such that j7 € EX or, equivalently, such that A;; () = 1. Then Ike, (jr)=11if
and only if either

j > Ny(x) orelse 73> Niqn(07(x)) = Nypir1 (077 (2)) for some i >0.

On the other hand, 7; < N;,+1(0°(8(2))) = Nptit1(07(z)) since 7 € Kp1,6(2)-

Consequently, 7 € K41 0(;) and Lgg (j7) = 1 if and only if j > N,(x). This
allows us to make the following estimation valid for all 7 € K, 1 g(,):

(6‘2) ﬁxﬂKﬁ,z(T) = Z ewz(jT)]lKﬁ,z(jT) = Z egoz(jf) < Zx(Nn(x))

jEE >Nn ()
JTEEZ® JTEER®

where, for every k > 0 and every x € X,

Z;C(k‘) (= Sup ([%]1[0,1,,..,]{]5) = sup Z e‘Pz(jT)
T€Eg(x)

>k
JTEEZ®
Summability of the potential ¢ (see Definition implies that
(6.3) lim Z,(k)=0 for m—a.e. z € X.
k—o00

Take now an arbitrary v € M. Since

Lovy)(Kp o) = /ﬁmﬂK,a,dee(x)

:/ ‘Cff]lKﬁ,;chH(@ +/ ExIlK%’deQ(;B),
Ky Kn+1,6(ac)

n+1,0(x)
it follows from summability of ¢ and from (6.2 that
Lovp) (K5 o) < [[Lallloovpa) (Kyi1 00)) + Za(Nn(2)) Vo) (Kni1,002))
< M1 (0(2)) + Za(Na()).
On the other hand, since v € M, we have

(6.4)

‘C;VB(JU)(H) > / ['x]]-dyﬁ(m) > Vo(x) (KO,G(m)) KiIlf ('Casll>
Koo(z) 0,6(z)

I
= 3, )
zlim(gﬂy:c>0
[Flo(x)

For some constant ¢ > 0 because of (A). Together with (6.4)) this leads to

2(0)e (K5) < - (Mnsa (0)) + Zo(Na(0)))
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Therefore, assuming that a measurable function =, is given, if we can find mea-
surable functions 7,11 and N, such that

(6.5) Myn41(0(2)) + Zo (N (7)) < cyn(2),
then the proof of our lemma will be complete.

Let us first consider the case of n = 0. Since we have put vy = 1/2 and Ny = ¢,
formula (6.5)) then takes on the form

1
My1(0(z)) + Zz(q) < — inf (L,1).
[Flo(z)

Therefore, condition (C) yields that it is sufficient to take measurable 1 (6(x))
such that

1
M~1(60(x <</§> inf (L,1).
o) < (5-n) jof (e
This is possible as k < 1/4.

Suppose finally that, for some n > 0, a measurable function ~,, is given.
Then, because of (6.3]), one can find a measurable function N,, > &, such that
Zy(Nn(z)) < evn(). So, setting then

Y1 () 1= M~ e (07 (@) = Zg-1() (Nu (07 (2)))

defines a measurable function from X to (0, +o0) for which (6.5) holds. The proof
is complete. ]

The set of measures M produced in this lemma is not only ®-invariant but it has
all the required properties.

Lemma 6.2. The set M is non-empty, convex, and compact.

Proof. With the same notation as in Lemma we have {(x) € Koy C Kpg
for every n > 0 and a.e. x € X. Consider then the measure v defined fiberwise
by vz = J¢(y), the Dirac 6-measure supported at {(x), x € X. Then obviously
ve(K5, ) = 0 < yp(z), which shows that v € M and thus M # (. Convexity of M
is obvious. In order to prove compactness of M, we shall show that M is closed
and tight.

Tightness first. Fix € > 0 arbitrary. Since, by item (2) of Lemma the
sequence (7;,), converges pointwise to 0, there exists an integer k = k(¢) > 0 such
that m(7;, ' ([e/2, +00))) < &/2. Then, for every v € M we have that

/ v (K§ ) dm(x) = /1 v (K§ ) dm(x) + /1 v (K§ ) dm(x)
X Vi ([‘5/2700)) Vi ([075/2))
_ £
< m(oi (e/2,00)) + &

<E+§—€
2 2
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Therefore, the set M is tight (see Proposition .

To see that M is closed let A be a directed set and (v%),ea a net in M converging
to a measure v € P, (2) in the narrow topology. Let H be an arbitrary measurable
subset of X. Then, for every integer n > 0, the function

Ko, if zeH
X3z — ’ .
0 if ¢ H

defines a random open set. It then follows from Portmenteau’s Theorem (see
Theorem 3.14 (iv) in [3]) that

/H v (K,) dm(z) = v (U {} x K) < lim v, (U {} x K)

zeH reH

=lim [ Vagu (K,ix) dm(x)
acEANJH

< / Yo () dm(x).
H
Hence, arbitrariness of H yields v, (Kfm) < Yp(x) for m-a.e. x € X. Thus, v € M,
yielding closeness of M.

So, since the set M is closed and tight, its compactness follows from Prohorov’s
Compactness Theorem (Theorem 4.4 in [3]). The proof is complete. O

The last step in the proof of Theorem is the following.

Proposition 6.3. Let M be the invariant set of random measures coming from
Lemma [6.1. Then the map ® : M — M is continuous with respect to the narrow
topology.

Proof. Suppose that A is a directed set and (r*)qen is a net in P, () converging
to some measure v € M in the narrow topology. If hg() o = 1/1/90‘(x) (L;1), then

o * 1 fe _ px fe
(I)(V )x = ‘Cx (WVG(QD)> = ,Cz (hg(z),a 1/9(90)) .

We have to estimate hg(y) - Since Ko g(y) C [F]; and since v € M, we have

1
Vo) (Lol 2/ L,Ndvy,, > inf ( (L1 Voo (Ko o(z)) = =
0(x) (L) Koo 0(z) (( )‘[F],) o) (Ko.0()) 2%p

where cljl = essinf (inf ((Ex]l)‘[F]) S X) > 0 by (A) since the set F' is finite.
Therefore,
(66) 1/M S he(a:),a S QCF .

The measures h,v®, o € A, need not be random probability measures but, thanks
to , their fiber total values he(x)@ug(x)(EgO) are uniformly bounded away from
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zero and oo. Since M is compact, it follows that {h,v® : a € A} is a tight
family. Let p be an arbitrary accumulation point of this net. It has been shown
(as a matter of fact for sequences but the same argument works for all nets) in
Lemma 2.9 of [§] that then

w=hv
for some measurable function h : X — (0,00). Since the dual operator £* :
Cr(R2) — C; () is continuous, the measure £*u is an accumulation point of the
net (£*(hav®) : a € A). But all elements of this net belong to Pp,(€2), whence
L*1 € Pp (). This means that the disintegrations of this measure
Loz = ho@)La(Vo))s = € X,

are all (Borel) probability measures in respective spaces ES°. Therefore,

1= Lo po() (1) = ho(a) L3 (Vo)) (1),

which implies that
1
Ho(z) = par oy Vo) o
W L) (@)

This means that £*p = ®(v). Since also (L*(hav®) : a € A) = (2(v*) : a € A),
we thus conclude that the net (®(v*) : a € A) converges to ®(v). The proof of
continuity of ® is complete. O

reX.

Proof of Theorem[5.7. Consider the vector space Cy(Q) but now endowed with
the narrow (weak convergence) topology analogously as for P,,,(X). It is standard
to see that C;(£2) becomes then a locally convex topological vector space. Since,
by Lemma M is a non-empty convex compact subset of Cy (), since, by
Lemma M is ®—invariant and since, by Proposition [6.3, ® continuous, the
Schauder-Tichonov Fixed Point Theorem applies and yields a fixed point v of ®
in M. But being such a fixed point v € M precisely means being a random
conformal measure. Finally, Ay = L1y, (E£5°), and thus [[log Al < oo results

from the estimate . O

Here and in the sequel v € M is a conformal measure obtained in Lemma (6.1]).
We will frequently need the following useful estimate.

Lemma 6.4. Suppose that 6 : Q@ — Q and ¢ : Q@ — R are fine. Then, for every
finite set D C E and for every integer n > 0 there exists a constant B = Bp, >0
such that

ve([wlz) > B

for every integer 0 < k < n, every tuple w € DI} and m-a.e. x € X.

Proof. Tt is enough to show this statement for k = n. We keep the same notation

as in Lemma and its proof. Since v € M, by Lemma (6.1) (1) and (3.2),
we have v5(Koz) > 1 —7o(x) = 1/2 for m-a.e x € X. Along with item (3.1) of
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Lemma (6.1]), this yields v, ([F];) > 1/2 for m-a.e. x € X. In consequence, for
each such z there exists b, € F' such that

(6.7) Ve([bele) > 21(], where ¢ = #F.

Since both sets D and F' are finite, by the topological mixing property of the map
6 : Q0 — (, there exists an integer N > 0 such that, for every x € X, every a € D
and every b € F' can be connected by a word 7 = 7(a,b) € Eé\(lx), i.e. axb € ENT2,
We will use this fact in what follows with b = b,., the point defined just above, see

6.7)-
Let w € Dy be a word of length n+1 over the alphabet D and let b := bgn+n (4.

Let also 7 := 7(wp, b) € Eé\fLJrl(x). Then, by conformality of v,

ve([w]e) > v(jwrbly) > A7 "N exp (inf(Sn+N<,0‘[mb]z)> Vgn 5 (2 [Dgn+ ()] -
Notice that
Q. = inf {exp (SH+N¢‘[wa] ) rreX, we Dg}

is positive because of (4.1)) since D is finite and byn+n(,) € F' varies in a finite set
too. Therefore,

ve([w]e) > 21qexp(—(n 4 N)|log Allso)Qn > 0 .

The proof is complete. 0

7. UNIFORM BOUNDS AND TWO-NORM INEQUALITY

In this section we establish uniform bounds for the iterated normalized operators

Ll =X\,"L} where A= \p..A\gn-1(z)-

x

We will then conclude from these estimates the existence of a random invariant
measure equivalent to the random conformal measure produced in the previous
section. From now on, the map & : © — € and the potential ¢ : 2 — R are
assumed again to be fine. We start with the following.

Proposition 7.1. There exisits a constant M < +o00 such that
1L oo = [1£00]|oo < M~ for every n >0 and every z € X.
Proof. The first equality is obvious. Conformality of v and the distortion result,
Lemma yield, for every w € Eg7 ),
A 1 -
1= /E LoAdvgn(z) 2 5=L31(@)ven @) ([wolon (@)))
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Givenl > 1, let B := Byo1,.. 13,0 come from Lemma Then V@n(m)([WO]en(m))) >4
if wg € {0, ...,1}. For such points w we therefore get

(7.1) Lill(w) < K/B.

By the property (B) and since log A € L>°, we can adjust (increasing if necessary)
the integer [ such that

(7.2) L1,(w) <1
for m-a.e. z€ X ifw € ngx) and wg > [. We shall prove by induction that
(7.3) 1£:1 |0 < K/

for m-a.e. € X. For n = 1 this directly results from (7.1)) and (7.2). For the
inductive step, assume that ([7.3)) holds for some n > 1. For all points w € E3

(g
with wg < [ everything is fine due to (7.1)). So, suppose that wy > [. Then ([7.2))
along with the inductive hypothesis yield,

Lt (w) = Lony (£21) @) < (K/B)LgnnyL(w) < K/B.
The proof is complete by taking M = K/b. O

Having this uniform bound and the distortion Lemma [3.1] we can now obtain the
following two-norm inequality.

Lemma 7.2. There exists a constant S < oo such that
va(£29) < 5(llglle + e va(g) ) -
for every x € X, every integer n > 0 and every g € Hq (EgO)

Proof. Let x € z,n > 0, g € ’Ha(Ego) and let w, 7 € ngi(x) with wg = 19 € E.
Then,
1L29(w) — L3g(T)] < 1 + Xy,

where
So = A" > exp(Snp(x,77))glyw) — g(y7)| < LE(T)valg)e ¥ d (w, T)°
vEEY
7w0€E;+1
and

S=A" Y ‘exp(Snso(fvaw))—eXP(SnSD(mT))‘\g(W”

YEEy
ywoeEZT!

~—

exp(Sne(z,y7)

1 _
exp(Snep(z, Yw)

<lgllors™ D exp(Snep(z,yw))

vEEY
ywoeERH

<Nlglloc I3 Ll CValp)d(w, 7)°,

~—
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where the last inequality results from Lemma and the fact that ¢ : Q@ — R is
essentially a-Holder. It suffices now to combine the above estimates of both terms
Y1 and Yy along with the uniform bound from Proposition O

As an immediate consequence of the preceding lemma and of Proposition
we get the following.

Proposition 7.3. For every integer n > 0 and m-a.e. x € X, we have that
12 ]a < M,

where here M is the mazimum of S and the former M.

8. INVARIANT POSITIVE CONES, BOWEN’S CONTRACTION AND
THE SPECTRAL GAP

From the uniform bounds obtained in the previous section one can construct
immediately invariant densities and measures by bare hands. However, in order
to get further, more sophisticated, properties, especially a spectral gap, additional
investigations are needed. Since the phase spaces E° are not compact, we are
here in a situation similar to that of random iterations of transcendental functions
considered in [7]. Therefore, we will now introduce, apply and develop analogues
of these tools worked out in the context of transcendental situation. Particularly,
appropriated invariant positive cones and employment of a Bowen’s type contrac-
tion. Doing this, the invariant densities, hence the invariant measures equivalent
to conformal measures, will emerge in a sense for free.

8.1. Invariant cones. Consider the following cones:
(8.1)

Cp = {g:Ego — [0, 4+00) : ||glleo <A/gd1/r < oo and v4(g) <H/gdz/x} .

(8‘2) Cm,O — {g eC, : g < 2M.A (/ gdl/x> ﬁ@l(m)]l} .

Since we are primarily interested in the projective features of these cones, it is
convenient to use the following slices

(8.3) Ap={9€Cy, v(9) =1} and Ay,o=A,NCypo , z€X.

The constant M , which is here and in the sequel, still forms a common upper
bound of Proposition [7.1] and Proposition [7.3] Both type of cones do depend on
the constants @ < 1, A > 0, H > 0. Those must be chosen carefully in the sequel
in order to obtain invariant cones.

We continue to write C' for the distortion constant appearing in Lemma [3.1] and
Lemma First of all, fix an integer k > 1 so large that

(8.4) % +(2M +4)e < 1.
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Then, property (B) and the fact that |[log\||sc < oo yield the existence of an
integer ly > 0 such that
(8.5) IML A(x) <1 forallwe Eg(y) with wo > o
for m-a.e. = € X. Let lp > 0 be the integer associated to Iy by Lemma
Iterating this procedure define further
l1:= [0, ly =11 .. l = Zk—l
Set
(8.6) Ki={weE? : wj<l; forall j=0,1,...,k}, ze€X.

Then, for every w € E° \ K, we have that wg > lo.
Now, if D = {0, ..., maxo<;<x l;} and 8 = fp is from Lemma define

(8.7) A::Qmax{l,M,ﬁ_l} and H:=2MA+4.

Notice that A > 1. This ensures that the constant function 1 € C,, x € X. Let
finally Ny > 1 be such that

(8.8) MHe N < 1.

Proposition 8.1. With the above choice of constants and for every n > Ny, we
have A
,C; (Cx) C an(x)70 C an(z) , xeX.

Proof. Let g € C,. We may assume without loss of generality that [ gdv, = 1. Fix

n > Ny arbitrarily. We will show that ﬁ;‘g € Con(z),0- Clearly ﬁgg > 0. From the
two-norm type inequality in Lemma and from the definition of the cones, we
get that

(8.9) va(Llg) <M (A+e “"H) < MA+1<H,
where the last two inequalities result from the choice of Ny, i.e. (8.8, and from
the definition of H. Since vgn(y) ([ﬁ" ) = 1v,(g9) = 1, the second condition for

belonging to Cgn(,) is thus satisfied by the function Ln "g. Also, by Proposition
(810) Egg = £9n—1(x) (,CZ_19> < MHgHooEG"—l(m)]l < MAE@n—l z)]l

Hence, in order to conclude that L7g € Cgn(y) o it remains to estimate 1279100
from above by A. Since we already have (8.9), we obtain, for every w € Kgn(,),

the following:
1= /Emgdygn _/ ﬁngygn(m)
[wlklon ()

> (£29(w) = He™) vy oy ([lilon )

> (Lrg(w) - He*) 8.
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where the last inequality was written due to Lemma Therefore,
A~ 1 R
Llg(w) < B+ He ™ < A (2 + (2M + 4)6—“’“) < A,

by (8.7) and (8.4). If, on the other hand, w & Kgn(,), then wy > lp and it follows
from (8.10) and (8.5)) that

Llg(w) < MALgn-1(5)1(w) < A.
The proof is complete. 0

8.2. Cone Contraction via Bowen’s Lemma. This part is based on a slightly
stronger version of (8.5)). Increasing Iy > 1 if necessary we may assume that

(8.11) 2AML, 1 (w) <1 for all w € Egp,y with wy > I
for m-a.e. x € X. We shall prove the following.
Lemma 8.2. For every l > ly there are N = N; > Ny and a = a; > 0 such that

ﬁivg}[o 1 >a forevery g€ Ayp and x € X.
yeblon ()

Proof. Let g € Ago. Since [gdv, = 1, we have that ||g]lc > 1. On the other
hand, the choice of [y implies that
g<2MALy 11 <1 in {we EX: wy>lo}-

Thus, there exists @ € [0,...,lp], with g(w) > 1. Let ¢ > 1 be so large that
He % < 1/2. Since our random shift 6 : @ —  is fine, hence topologically
mixing, there exists N = N; > Ny such that 6V ([@|4]z) D [0, ..., lolgn (z)- So, fixing
an arbitrary 7 € [0, ..., lo]gn (4, there exists 7 € [0]y] N 6~N(1). We therefore get
that

LY g(r) > A NeSnee g (7).

Now, g(7) > g(&) — He™® > 1 — (1/2) = 1/2 and \; VeSv#=(7) is bounded away
from zero because of Lemma and inequality || log Al|oc < 400 which is a part
of Theorem This shows the existence of a required constant a > 0 and the
proof is complete. U

Notice that there is no way to get a global version of Lemma valid on the
whole shift space 2. This is why we have to work with the following truncated
functions: R

X1z = ]1’[0,._.7”1[:971@)]1 , >0 and z € X.
Then,
(8.12) 0<x,, <Lp1ml and valx,,) < va(Lo-10n1).
Moreover, we may suppose that Iy > 1 is sufficiently large so that

X. € Czpo forall [>1y and m-a.e. z € X.
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We will now obtain a version of Bowen’s contraction lemma [2, Lemma 1.9]. In
order to do so, we have to define one more constant: let > 0 be such that

1 1 la
. < i - p—— T~ .
(8.13) o<n_mm{37 i }

Lemma 8.3. For every | > ly and with N = N; given by Lemma[8.3,
EAng =X N () S C(;N(w)p for every g€ Agp.

Proof. Let x € X, let g € Ay, and let [ > lp. Lemma and Proposition
(applied with n = 1) show that for 0 < 1 < 2/(aM),

A a
Eivg—nwam < 3> 0 on [0,...,0 g -
Set

LY g —nx
1,6N (z)
(8.14) 4 := — , where 7y =1 X, o (o) V0N () -
1 'f] Eo°
l,@N(ac) gN(z)

Then [ ¢'dvgn(,) =1 and g’ > 0. Hence, by Proposition and since g € A, we
have,
(L =1, v ) 9 < L2 9D + 1%, v,y < MllgllooLonv—1 () L+ nLov-—1 (o)L
< (MA+n) Lo
But as 0 < Moong <1< 1/3, and n < 1/H, the inequality above along with
the definition of H yield ¢’ < 2M ALyn-1)(y 1. In conclusion, the function g €

Agn (2),0 provided that we can show that g’ € Con (4 -

In order to estimate the a-variation of ¢’ we use the two-norm type inequality,
i. e. Lemma [T.2}

1 ~ ~ p—
v0(6') € 7o (Mo + Mva(e)e ™™ +m0a(x, 1)) -
1,oN (z)

€ Cg, that n <min{1/3,1/H}, and that we have (8.8).

Remember that g, x

1,6 (z)
Therefore,

va(g) <2AMA+1+1)=2MA+4=H.

It remains to estimate [|g'|lco. If w € [0, ..., lo]gn (4, then

N

Using Lemma |6.4| and the choice of k in (8.4)), we thus obtain

g'dvgn () > /[ . g dvgn () > (g' (W) — He™ *®)vgn () ([wlklon (2)) -
WlkloN (z)

g (w) < B—-1+He < g +(2MA+ ek < A (; + (2M + 4)e_°‘k> < A.
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Ifwe ng%(x) \[0, ..., lolgn (z), then ¢'(w) < 2MAE@(N—1)(x)ﬂ(W) < A by the choice

of Iy (see (8.11)). Thus [|¢'[lc < .A. Consequently g' € Agn(, o, implying that
g € Cyn(y),0- The proof is complete. 0

Applying repeatedly Lemma [8.3] we now shall prove the desired contraction of
Perron-Frobenius operators.

Proposition 8.4. For every € > 0 there exists n. > 1 such that for every n > n.
and m—a.e. x € X,

(8.15) LGy — L7y

<e forall gz hy€Agp.

Proof. Let | > Iy and N = N; > Ny be the same as in Lemma Let g = gg([;o) €
Az 0. With the notation of the previous proof, and in particular with the numbers

U defined in (8.14), we get from Lemma that

AN 1
Eﬂ? 9= nXl,HN(z) + (1 o nz,eN(z))géJ\z(a:)

for some gé}\,) @ € Agzv(xm. Applying EA% (@) to this equation and using once more
Lemma [B:3] gives

AN AN (2)
Ly g= 77£9N(93)Xz,91\’(z) +(1 - nz,9N<z))77Xz,o2N(z) +(1- nl,GN(z))(l o 771,92N<z))g(92N(x)

gz\, @) € Agan (3)0- Inductively, it follows that for every k > 1 there is a

function gélgv(x) € Agrn ()0 such that

k j—1 k
ARN A(k—j)N (k)
L9 = ”Z (H(l - nz,eiN(z))> [’OJ'N(:c) X1,09N (2) + H(l o nz,eiN(z))gekN(m) :
=1

j=1 \i=1

for some g

Observe that the first of these two terms does not depend on g. Therefore, for

(ﬁ) BB e Agrn (3),0 such that

every two g, h € Ay there are g, N () PR (1)

k
ALN ARN 7 (k) (k)
(8.16) Lyg— Ly h = H(l - 775791'1\/(:,:)) (ggkN(m) - hgkN(z)) .
=1

But, by property (A),
Qi, = ess inf(ﬁwﬂ][o’m,l()]z,af €X)>0.
Therefore, we have for all [ > [y and all z € X that

Mo = n/ X1 V2 > n/[ o Lo-1(yLdvy > nQuovu([0, ... lo]z) = nQu By > O,
Ego 0,...,l0]z

where 3, := fp,, > 0, comes from Lemma Thus, writing, 7 := 1Q, 51, > 0,
we have that
l—n,<1l-n<l
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Along with , this allows us to deduce the uniform bound of Proposition
with some ny. > 1 sufficiently large, for the supremum norm rather than the
Hoélder one. In fact, in what follows we want n; . to witness £/ max{2, AM } rather
than merely . In order to get the appropriate estimate for the a—variation, we need
once more the two-norm type inequality, i. e. Lemma[7.2] Write n = m+ng.+n .
with some integer ns . > 0 to be determined in a moment and some integer m > 0.
Then for all g,h € Ay o, we have

(,c"g £”h> — g (EQ’LTZ?;) (221’5 (9— h)))
<M (Hﬁgl (9— h)HOO +emalmtnag (ﬁ;”’s (9 — h)))

< M EA +e M2
4M

€
— 2 —Oén275H
g e ’

where the second summand in the second last inequality was written due to the
fact that Egl’ag, Lioveh e Apri e (),0° It suffices now to choose the integer ng . > 0
sufficiently large so that 2He "2 < /4. Then v, (ﬁgg - ﬁgh) < ¢/2, and in
consequence

A A e €
1£5g — £2hlla < 5+ = =

[\

The proof is complete. O

Proof of Theorem . For every integer k > 0 set p¥) = ﬁkﬂ, i. e. pgk) =

*) e Ay for every k >

ﬁ’g_k( )]1 First of all Proposmon implies that pg
No. Given € > 0 arbitrary, put ¢ := max{No,n./}, the latter coming from
Proposition Proposition also implies that ﬁgff(m)]l € Ap-a(z),0 for every

integer n > q + N() Hence Proposition applies to give

108 = [l = 12500y B = L5nay 1l = 16510y B = Loy (Lg=liy ) || < /2
for all z € X. Therefore, if k,1 > g+ Ny, then
o = okl < ek = ol + 1ot = okl < 5+ 5 =

for all x € X. This shows that (p(wn));’f’:O is a Cauchy sequence in (Hq(E2°), ||.|/5)
uniformly with respect to x € X. Hence, this sequence has a limit, call it p,, in
Ho(EX), and py € Ay . Since also

[:xpg(,; n) _ pnet 1 (n+1)

0~ (n+1)(9( N = Po@) o
and since L, : Ho(EF) — Ha(Eg?x)) is a continuous operator, we conclude that

[ﬁpr = pp(z) for m-a.e. x € X. Uniqueness of this function follows immediately
from the contraction formula (8.15)) of Proposition O
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Proof of Theorem (2). Since A, H > 2, we have that
{1+ hy: ||halla < 1/4} CC,
for all z € X. Let g € Ho(EZ®), g # 0, be arbitrary. Then

g
8[lglla
is a difference of two functions from C,. If ¢ > 0 and if n = n. is given by

Proposition then applying this proposition we get:

Ln <h— ( / hdugC) pgn(x)>‘ Lrh — ( / hdz/z> Pon ()

ﬁyn+m—/m+hm%%%w

<

67

S ’

< ‘ LI~ pgn(z)

|
«

[0}

Sa/@+hM%+€

<17
—_— 8 .

This shows that for every € > 0 there exists N = N, such that
<ellglla =€

2o (fowee)| <= ()

for every € Ha(Jz). Fix e :=1/2 and let N = Ny 5. Write any integer n > 0 in
a unique form as n = kN + m, where k > 0 and m € {0,..., N — 1}. Then, using
also Proposition for every g € Ho(Ty), we have

Lrg— / 9dvepon (2) Lo () (ﬁﬁN (9 - / gdvgcpz))

(1"
<M <2> g_/gdyxpx
e}
~f( 1 \"
<28 (5 ) @+ loll) ol

This completes the proof of Theorem (2). O

a

« «
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