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Abstract. Let ΣA be a finitely primitive subshift of finite type
on a countable alphabet. For appropriate functions f : ΣA → IR,
the family of Gibbs-equilibrium states (µtf )t≥1 for the functions
tf is shown to be tight. Any weak∗-accumulation point as t → ∞
is shown to be a maximizing measure for f .

1. Introduction

Let ΣA be a subshift of finite type on a countably infinite alphabet,
and suppose that the function f : ΣA → IR has summable variations.
Further assumptions on f ensure it has a unique Gibbs-equilibrium
state μf (see §2 for more details). The purpose of this article is to
analyse the behaviour, as t → ∞, of the Gibbs-equilibrium states μtf

of tf . It will be shown that the family (μtf )t≥1 is tight, thereby ensuring
that it has a weak∗ accumulation point. Any such accumulation point
is shown to be a maximizing measure for the function f (i.e. its f -
integral dominates the integral of f with respect to other shift-invariant
probability measures). This extends the analogous results of [CG, CLT,
J] which were proved in the setting of finite alphabet subshifts of finite
type.

The thermodynamic interpretation (cf. [Ru]) of the parameter t is
as an inverse temperature of a system, while the measure μtf describes
the equilibrium of the system at temperature 1/t (i.e. the one which
minimizes the “free energy”). The t → ∞ limit is therefore a zero tem-
perature limit, and an accumulation point of the μtf can be interpreted
as a ground state.

If f has a unique maximizing measure then our result asserts that μtf

will converge to that measure. A more intriguing sitution arises when

Date: October 2004.
The first author was partially supported by an EPSRC Advanced Research Fel-

lowship. He acknowledges the warm hospitality of the University of North Texas,
where this research was initiated. The second and third authors were supported in
part by the NSF Grant no. DMS 0100078.

1



2 O. JENKINSON, R. D. MAULDIN, AND M. URBAŃSKI

there are several maximizing measures, in which case we only know
that μtf will accumulate on some non-empty subset of such measures.
However, in all known examples it has been observed that the family
μtf does converge, so a natural conjecture is that this is always the case;
if this conjecture is true then the limit of the μtf may be regarded as
the most “physically relevant” maximizing measure. This problem is
open even for finite alphabet subshifts of finite type, though Brémont
[Br] has shown that if f depends on only finitely many coordinates
then the μtf do converge (cf. [C, J, PS] for related results).

2. Preliminaries

Let Σ = IN IN denote the full shift on the countable alphabet IN =
{1, 2, . . .}, equipped with the product topology.

Given an adjacency matrix A : IN × IN → {0, 1}, let ΣA denote the
associated subshift of finite type

ΣA = {x ∈ Σ : A(xn, xn+1) = 1 for all n ≥ 1} .

We shall suppose that A is finitely primitive, i.e. there exists an
integer N ≥ 0, and a finite sub-alphabet M ⊂ IN , such that for all
x ∈ ΣA and all i ∈ INA there exists w ∈ M

N with iwx ∈ ΣA. This
implies that the shift map T : ΣA → ΣA, defined by (Tx)n = xn+1, is
topologically mixing.

For n ∈ IN , define Πn : ΣA → INn by Πn(x) = (x1, . . . , xn), and πn :
ΣA → IN by πn(x) = xn. If w ∈ INn then the corresponding cylinder
set in ΣA is defined by [w] = {x ∈ ΣA : Πn(x) = w}. The subshift of
finite type ΣA is compact if and only if INA := {i ∈ IN : [i] �= ∅} is
finite.

We shall assume that f : ΣA → IR has summable variations, i.e. that

V (f) :=

∞∑
n=1

varn(f) < ∞ , (1)

where

varn(f) = sup
Πn(x)=Πn(y)

|f(x) − f(y)| .

In particular this implies that f is uniformly continuous (though not
necessarily bounded, since var0(f) = supx,y∈ΣA

|f(x) − f(y)| is not in-
cluded in the above sum).

We also assume that∑
i∈IN

exp(sup f |[i]) < ∞ , (2)
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so in particular f is bounded above, and is unbounded below if and only
if INA is infinite. The summability condition (2) allows much of the
thermodynamic formalism (cf. [Bo, Ru]) for finite alphabet subshifts of
finite type to be generalised to the non-compact setting1. In particular
it is equivalent [MU, Prop. 2.1.9] to the finiteness of the topological
pressure

P (f) = lim
n→∞

1

n
log

∑
T ny=y

exp

(
sup

x∈[Πn(y)]

n−1∑
i=0

f(T ix)

)
,

and implies the variational characterisation [MU, Thm. 2.1.8]

P (f) = sup{h(m) +

∫
f dm : m ∈ M,

∫
f dm > −∞} , (3)

where M denotes the set of T -invariant Borel probability measures on
ΣA, and h(m) the metric entropy of m ∈ M.

Moreover, there is (see [MU, Theorems 2.2.4 and 2.3.3]) a unique
measure μf ∈ M for which there exist constants C2 > C1 > 0 such
that

C1 ≤ μf [Πn(x)]

exp(
∑n−1

i=0 f(T ix) − nP (f))
≤ C2 (4)

for all x ∈ ΣA, n ≥ 1. In fact [MU, Thm. 2.2.7] we may choose

C2 = exp (4V (f)) .

The measure μf is called the Gibbs state for f .
Suppose furthermore that2∑

i∈IN

inf(−f |[i]) exp(inf f |[i]) < ∞ , (5)

so that in particular
∫

f dμf > −∞.
In this case (see [MU, Lem. 2.2.8, Thm. 2.2.9]) μf is an equilibrium

state for f , in the sense that

P (f) = h(μf) +

∫
f dμf . (6)

Indeed it is the unique equilibrium state for f : if m ∈ M\{μf} is any
other invariant measure with

∫
f dm > −∞, then h(m) +

∫
f dm <

1Our reference to this generalised thermodynamic formalism is [MU] (though
see also [Sa1, Sa2]), in which f is assumed to be locally Hölder (i.e. varn(f) → 0
exponentially fast). The proofs in [MU] can, however, be easily adapted to the
more general case where f has summable variations.

2Note that the lefthand side of (5) is well-defined: (2), together with the fact that
var1(f) < ∞, implies that inf(−f |[i]) → ∞, so that inf(−f |[i]) is positive except
for finitely many i.
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P (f). Since μf is both the unique Gibbs state and the unique equilib-
rium state for f , we shall henceforth refer to it as the Gibbs-equilibrium
state for f .

Since f satisfies (1), (2) and (5), so does the function tf for any
t ≥ 1. It follows that each such tf also has a unique Gibbs-equilibrium
state μtf .

A maximizing measure for f is a measure μ ∈ M such that
∫

f dμ ≥∫
f dm for all m ∈ M. Our assumptions on f ensure (see [JMU]) that

this definition of a maximizing measure is equivalent to requiring that∫
f dμ = sup

x∈ΣA

lim sup
n→∞

1

n

n−1∑
i=0

f(T ix) .

They also ensure (see [JMU]) the existence of a maximizing measure.
The set of maximizing measures for f , which in general is not a sin-
gleton, will be denoted Mmax(f). The general properties of a maxi-
mizing measure are rather different from those of a Gibbs-equilibrium
state. For example the support of a Gibbs-equilibrium state is al-
ways the full space ΣA, whereas a maximizing measure has full sup-
port only in the trivial situation where f is cohomologous to a constant
(i.e. f = c+ϕ◦T −ϕ for some c ∈ IR and some bounded continuous ϕ).
This latter fact is because if f is as above then there exists a bounded
continuous ϕ such that the set of maxima of f +ϕ−ϕ ◦T contains the
support of a T -invariant measure (see [JMU]).

3. Proofs of results

To prove our main result, Theorem 1, we first require two preparatory
lemmas. For the first of these we only use the fact that f is continuous
and bounded above.

Lemma 1. The map

M −→ IR

μ �−→
∫

f dμ

is upper semi-continuous with respect to the weak∗ topology on M.

Proof. Suppose that μi → μ in the weak∗ topology. That is,
∫

g dμi →∫
g dμ for all bounded continuous functions g. We must prove that

lim sup
i→∞

∫
f dμi ≤

∫
f dμ . (7)

Let fk ↘ f be a sequence of bounded continuous functions converg-
ing pointwise to f , for example fk = max(f,−k). If I ∈ IR is such
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that I >
∫

fdμ then
∫

fk dμ < I for all sufficiently large k ≥ 1, by the
monotone convergence theorem. Choose one such k, and let δ > 0 be
arbitrary. Since fk is a bounded continuous function, and μi → μ in
the weak∗ topology,

∫
fk dμ >

∫
fk dμi − δ for all i sufficiently large.

But
∫

fk dμi ≥
∫

f dμi since fk ≥ f , hence

I >

∫
fk dμ >

∫
fk dμi − δ ≥

∫
fdμi − δ

for all i sufficiently large. But δ > 0 and I >
∫

f dμ were arbitrary, so
in fact ∫

f dμ ≥
∫

f dμi (8)

for all i sufficiently large, and (7) follows. �

For the second lemma we only use the fact that the μtf are Gibbs
states.

Lemma 2. The family of Gibbs-equilibrium states (μtf )t≥1 is tight,
i.e. for all ε > 0 there exists a compact set K ⊂ ΣA such that μtf (K) >
1 − ε for all t ≥ 1.

Proof. Given ε > 0, we will find an increasing sequence (nk) in IN such
that the compact set K = {x ∈ ΣA : 1 ≤ xk ≤ nk ∀k ∈ IN} satisfies
μtf(K) > 1 − ε for all t ≥ 1. Now

μtf(K) = μtf (ΣA \ ∪∞
k=1{x ∈ ΣA : xk > nk})

≥ 1 −
∞∑

k=1

μtf ({x ∈ ΣA : xk > nk})

= 1 −
∞∑

k=1

∞∑
i=nk+1

μtf (π
−1
k (i))

= 1 −
∞∑

k=1

∞∑
i=nk+1

μtf [i] ,

so to ensure that μtf (K) > 1 − ε it suffices to choose the integers nk

such that
∞∑

i=nk+1

μtf [i] <
ε

2k
for all k ∈ IN, t ≥ 1 . (9)

We now show that such a choice is possible. First, the Gibbs property
(4), with n = 1 and f replaced by tf , gives

μtf [i] ≤ e4tV (f) exp
(
sup{tf |[i]} − P (tf)

)
. (10)
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Now let m ∈ M be any measure for which I :=
∫

f dm is finite
(e.g. we may take m to be supported on a periodic orbit). From (3) we
have

P (tf) − tI = P (t(f − I)) ≥
∫

t(f − I) dm + h(m) ≥ 0 ,

so together with (10) we deduce that

μtf [i]A ≤ e4tV (f) exp
(
sup{t(f − I)|[i]}

)
e−P (t(f−I))

≤ e4tV (f) exp
(
sup{t(f − I)|[i]}

)
(11)

= exp
(
t
(
4V (f) − I + sup{f |[i]}

))
.

The summability condition (2) implies that sup f |[i] → −∞ as i →
∞, with the convention that f |[i] = −∞ if [i] = ∅. In particular there
exists J ∈ IN such that if i ≥ J then

4V (f) − I + sup f |[i] < 0 .

So if t ≥ 1 and i ≥ J then t(4V (f) − I + sup f |[i]) < 4V (f) − I +
sup f |[i] < 0, and from (11) we obtain

μtf [i] ≤ e4V (f)−Iesup f |[i] . (12)

The summability condition (2) means there exists nk ≥ J such that
∞∑

i=nk+1

esup f |[i] <
ε

2k
eI−4V (f) ,

and combined with (12) we deduce (9), as required. �
Theorem 1. The family of Gibbs measures (μtf)t≥1 has a weak∗ ac-
cumulation point as t → ∞. Any such accumulation point μ is a
maximizing measure for f , and

∫
f dμ = limt→∞

∫
f dμtf .

Proof. By Lemma 2 the family (μtf )t≥1 is tight, so by Prohorov’s the-
orem [Bi, p. 37] there exists at least one weak∗ accumulation point.

Now suppose μ is any such accumulation point. If p(t) = P (tf)
for t ≥ 1 then p′(t) =

∫
f dμtf (cf. [MU, Prop. 2.6.13]). But (3)

implies that p is convex, so that t �→ p′(t) =
∫

f dμtf is non-decreasing,
and bounded above by sup f . It follows that the limit limt→∞ p′(t) =
limt→∞

∫
f dμtf exists and is finite. Moreover, Lemma 1 gives

lim
t→∞

∫
f dμtf ≤

∫
f dμ . (13)

In particular
∫

f dμ > −∞. From (3) and (6) it follows that∫
tf dμtf + h(μtf ) ≥

∫
tf dμ + h(μ) ,
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so ∫
f dμtf +

h(μtf )

t
≥
∫

f dμ +
h(μ)

t
. (14)

Now h(μtf) = P (tf) − t
∫

f dμtf = p(t) − tp′(t), so

d

dt
h(μtf ) = −tp′′(t) < 0

for t ≥ 1. Therefore h(μtf) is a decreasing function of t ≥ 1, and in
particular is bounded, so letting t → ∞ in (14) gives

lim
t→∞

∫
f dμtf ≥

∫
f dμ .

Combining this with (13) we see that limt→∞
∫

f dμtf ≥ ∫
f dμ, as

required.
We now show that μ is f -maximizing. If not then there exists ν ∈ M

with
∫

f dν−∫ f dμ = ε > 0. Now f is bounded above, so
∫

f dν < ∞.
Moreover P (f) < ∞, so (3) and (6) imply that h(ν) < ∞. We can
then define the affine map lν : IR → IR by lν(t) = h(ν) + t

∫
f dν. Now

t �→ p′(t) =
∫

f dμtf is a function which increases to its limit
∫

f dμ,
so in particular∫

fdμ ≥
∫

f dμtf = p′(t) for all t ≥ 1 ,

and hence

l′ν(t) =

∫
f dν =

∫
f dμ + ε ≥ p′(t) + ε

for all t ≥ 1. Therefore lν(t) > p(t) for all sufficiently large t. That
is, h(ν) +

∫
tf dν > P (tf) for all sufficiently large t, contradicting (3).

Therefore μ is f -maximizing. �
Note that in the case of a finite alphabet subshift of finite type ΣA,

the identity
∫

f dμ = limt→∞
∫

f dμtf in Theorem 1 follows immedi-
ately from the fact that μ is a weak∗ accumulation point of μtf , since
the continuous function f is automatically bounded on the compact
space ΣA.

In the finite alphabet case some extra information is known about μ :
it is of maximal entropy within the class of f -maximizing measures (see
[CG, CLT, J]). In the infinite alphabet case this is an open problem:

Question 1. If μ is a weak∗ accumulation point of (μtf )t≥1, is it the
case that

h(μ) = sup
m∈Mmax(f)

h(m) ? (15)
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An approach to proving (15) is to first show that

h(μ) = lim
t→∞

h(μtf ) = inf
t≥1

h(μtf) . (16)

The second equality in (16) is certainly true in the inifinite alphabet
case, since t �→ h(μtf) is decreasing (as noted in the proof of Theorem
1), and bounded below. Moreover

lim
t→∞

h(μtf ) ≥ h(μ) , (17)

since μtf is the equilibrium state for tf , while μ is f -maximizing and
hence tf -maximizing for t ≥ 0, so

h(μtf ) − h(μ) ≥
∫

tf dμ −
∫

tf dμtf ≥ 0

for all t ≥ 1.
We do not know, however, if equality holds in (17):

Question 2. If μ is a weak∗ accumulation point of (μtf )t≥1, is it the
case that h(μ) = limt→∞ h(μtf )?

As noted above, in the finite alphabet case the answer is affirma-
tive; this is proved by combining (17) with the well known fact [Wa,
Thm. 8.2] that the entropy map ν �→ h(ν) is upper semi-continuous on
M.

By contrast, for infinite alphabet subshifts of finite type the entropy
map is in general not upper semi-continuous. To see this, let Σ be the
full shift on IN , and define the probability vector Pn by

Pn = (1 − n−1 , (nkn)−1, . . . , (nkn)−1︸ ︷︷ ︸
kn terms

, 0, 0, . . .) ,

where kn = �en2�. Let μn be the Bernoulli measure corresponding to
Pn (so the support of μn is the full shift on the symbols {1, . . . , n+1}).
Then

h(μn) = −(1 − n−1) log(1 − n−1) + n−1 log(nkn) > n .

In particular h(μn) → ∞ as n → ∞, whereas the weak∗ limit of (μn) is
the Dirac measure concentrated on the fixed point (1, 1, . . .). This mea-
sure has zero entropy, so the entropy map is not upper semi-continuous.

Of course this absence of upper semi-continuity does not rule out
an affirmative answer to Question 2. In this case Question 1 could
also be answered affirmatively, by the following argument. If h(μ) =
supm∈Mmax(f) h(m) were not true then we could find m ∈ Mmax(f)
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with h(m) − h(μ) = ε > 0. The affirmative answer to Question 2 then
gives

h(m) − lim
t→∞

h(μtf ) = ε ,

so that
h(m) − h(μtf ) ≥ ε

2
(18)

for sufficiently large t ≥ 1.
But m is f -maximizing, so

∫
f dm ≥ ∫

f dμtf for all t ≥ 1, and
therefore ∫

tf dm ≥
∫

tf dμtf (19)

for all t ≥ 1. Combining (18) and (19) gives

h(m) +

∫
tf dm > h(μtf ) +

∫
tf dμtf

for t ≥ 1 sufficiently large. But this is a contradiction, because μtf is
an equilibrium state for the function tf .
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