THE DYNAMICS AND GEOMETRY OF THE FATOU FUNCTIONS
JANINA KOTUS AND MARIUSZ URBANSKI

ABSTRACT. We deal with the Fatou functions fx(z) = z+e 4+ )\, ReA > 1. We consider the
set Ji.(f) consisting of those points of the Julia set of f) whose real parts do not escape to
infinity under positive iterates of fy. Our ultimate result is that the function A — HD(J,.(f)))
is real-analytic. In order to prove it we develop the thermodynamic formalism of potentials of
the form —tlog |Fy|, where F) is the projection of fy to the infinite cylinder. It includes ap-
propriately defined topological pressure, Perron-Frobenius operators, geometric and invariant
generalized conformal measures (Gibbs states). We show that our Perron-Frobenius operators
are quasicompact, that they embed into a family of operators depending holomorphically on
an appropriate parameter and we obtain several other properties of these operators. We prove
an appropriate version of Bowen’s formula that the Hausdorff dimension of the set J,.(fx)
is equal to the unique zero of the pressure function. Since the formula for the topological
pressure is independent of the set J,.(fy), Bowen’s formula also indicates that J,.(f) is the
right set to deal with. What concerns geometry of the set J.(f)) we also prove that the
HD(J,-(fx))-dimensional Hausdorff measure of the set .J,.(F)) is positive and finite whereas
its HD(J,.(f\))-dimensional packing measure is locally infinite. This last property allows us
to conclude that HD(J,.(f\)) < 2. We also study in detail the properties of quasiconformal
conjugations between the maps f). As a byproduct of our main course of reasoning we prove
stochastic properties of the dynamical system generated by F» and the invariant Gibbs states
¢ such as the Central Limit Theorem and the exponential decay of correlations.

1. INTRODUCTION

Given A € ¢* = €'\ {0}, let the transcendental entire function f) : €' — € be defined by the
formula

() =z24+e 7+ A (1.1)
Its derivative is this.
A =1-¢" (1.2)

For A =1, fi(2) = 2z + 1 + e * is the function considered by P. Fatou (see [14], Example 1).
To his honor we will call all the functions f, Fatou functions. The equivalence relation ~ on
@ x T'is defined by the requirement that w ~ z if and only if w — 2 € 2miZ. The quotient
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spaces €'/ ~ is the infinite cylinder endowed with Riemann surface structure induced by the
canonical quotient map

INH:— Q.

Since the map f) : @' — @' respects the equivalence relation ~, it induces a unique map

F\:Q—Q

such that F) oIl = ITo f,. This map will be our main auxiliary, and also interesting itself,
object of interest in this paper. As long as we are not interested in our considerations in the
dependence on the parameter \, we will skip the superscript A and will simply write f and
F for f) and F) respectively.

The aim of this paper is multi-fold. It is well known and very easy to check that all Fatou
functions with ReA > 1 (in fact ReA > 0) have Baker’s domain at infinity. Given the
“asymptotic” similarity to the exponential function z — e™*, we wanted to check whether
Baker’s domain prevails and destroys the fractal geometry of hyperbolic exponential functions
discovered in [25] and [26], or, just the contrary, the similarities take over and the fractal
geometry of the Julia sets of Fatou functions with Re\ > 1 flourishes. Our idea to deal
with this issue was to synthesize the approaches from [25] and [26] into one coherent entity.
And indeed, this project has proved to work and the class of Fatou functions with ReA > 1
has turned out to posses the same kind of strikingly regular fractal geometry as the class of
hyperbolic exponential functions. Undertaking such approach we have frequently repeated
many parts of [25] and [26] very closely. As a result we have provided a uniform approach,
including all the proofs for the sake of completeness and the convenience of the reader. Most
often the technical details of our proofs were different than those in [25] and [26], especially
in Section 3 and Section 9.

It follows from Bergweiler’s result ([6]) that J(F) =TI(J(f)). In view of Lemma 2.7 the Julia
set J(f) is thin in the sense of [20]. Since all the critical points of the Fatou function f) are
of the form z, = 2kni, k € Z, its all critical values of are of the form 2kni + 1 + \. So, if
ReA > 1, these points escape uniformly to oo, and in consequence (invoking also Theorem 2.3),
the Julia set J(f) is at a positive distance from their forward trajectory. Combining this fact
and thinness of J(f), it follows from [24] that the Lebesgue measure of J(f) = 0. Let

Io(F) ={2 € Q: lim F"(z) = oo}.
and let
Io(f):={z € C:Re(f"(z)) —» —0}.
I.(F) is the set of points escaping to infinity under forward iterates of F'. Obviously
Io(F) = {2 € Q: lim Re(F"(2)) = —o0} = I(La(f).

Following closely the reasoning from [20] one can show that HD(I(F)) = HD(I,(f)) =
HD(J(F)) = HD(J(f)) = 2. These sets are dynamically rather boring and their fractal
geometry has drastically different features (see [17]) than those characteristic for (classical)
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conformal expanding repellers. Therefore, following [25] and [26], we introduce the following
sets.

Jo(F) = J(F)\ Ioo(F) and Jo(f) = J(f) \ Lo (f)-

Obviously J,.(F') = II(J.(f)). Our ultimate aim is to show that the function A — HD(J(F),)),
Re) > 1, is real-analytic. In the course of the paper we also establish other interesting fractal
and dynamical properties of the set J.(F). We mention them describing now in greater detail
the content of our paper. Section 2 contains some basic properties of the Fatou functions.
Section 3 consists of the proof of the fact that the bounded orbits of F' have Hausdorff dimen-
sion strictly greater than 1. Since each bounded orbit is contained in J,(F’), this implies that
HD(J.(F)) > 1. In Section 4 we define appropriate in this context topological pressure of the
potentials —tlog |F'|, ¢ > 0, Perron-Frobenius operators with some more general potentials
and generalized conformal (Gibbs) measures, whose existence is shown by proving tightness
of an appropriate sequence of Borel probability measures on the Julia set. Using the exis-
tence of these measures we prove three basic properties of the Perron-Frobenius operators in
Lemmas 4.6, 4.7 and 4.8. It is also shown that these generalized conformal measures give full
measure to the set .J,(F'). We end this section with the proof of the uniqueness and ergodicity
of conformal measures. In Section 5 we show that our Perron-Frobenius operators satisfy the
assumptions of the Ionescu-Tulcea and Marinescu theorem. In particular the Perron-Frobenius
operator acting on an appropriate Banach space is quasicompact and the full description of
its spectral properties is provided in Theorem 5.4. The Section 6 is very short. It establishes
the existence of F-invariant Borel probability measures p; equivalent to conformal measures
my. This section also collects straightforward (by now) ergodic and stochastic consequences of
the spectral properties of Perron-Frobenius operators, proven in the previous section, to the
dynamical systems (F, u;). The Section 7 is devoted to the presentation of fractal properties
of the set J,.(F). First, it contains the appropriated version of Bowen’s formula: Hausdorff di-
mension of the set J,.(F') is equal to the unique zero of the pressure function. Since the formula
for the topological pressure is independent of the set J,.(f), Bowen’s formula also indicates
that, similarly as for exponential functions, this is the right set to deal with. The next result
in this section concerns packing measures. It states that the h-dimensional (h = HD(J,(F)))
packing measure of J,(F') is locally bounded at every point of J.(F'). As an immediate con-
sequence of this fact, we conclude that HD(J,.(F)) < 2 = HD(J(F')). Section 8 provides a
sufficient condition (Corollary 8.7) for our Perron-Frobenius operators to depend holomor-
phically on the appropriate parameters. Section 9 establishes quasiconformal conjugations
between maps F), ReA > 1, proves that they form a holomorphic motion and shows that
this motion has a “bounded speed” (Proposition 9.5). As its consequence the uniform Holder
continuity of these quasiconformal conjugations is established. These results are in particular
used to prove in Section 10 the boundedness of |log, ()| (formula (10.5)) and its Holder
continuity. We remark that the function 1 plays the main role among all the auxiliary objects
appearing in the proof of Proposition 10.2. In this Section 10, perhaps most technical part of
our paper, we first prove continuity of the topological pressure with respect to the parameter
A and then we check that the conditions presented in Section 8 are satisfied. This means
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that, as our main technical argument, we carefully construct complex analytic extensions of
our Perron-Frobenius operators so that the assumptions of Corollary 8.7 are satisfied. The
section ends with, perhaps the main result of our paper, saying that the Hausdorff dimension
function A — HD(J,.(F))), ReX > 1, is real-analytic.

Ending this introduction we would like to mention that all the analysis we did in this paper
for parameters A with ReX > 1 could be, in view of (9.1) and the whole paragraph containing
it, actually done assuming only that ReA > 0 (in particular a Baker’s domain at infinity the
exists). However, this would bring additional technical difficulties, and would make the whole

paper much less readable. So, we have decided to work only with parameters A for which
Rel > 1.

2. PRELIMINARIES

Put
P:={ze:0<Im(z) < 2r}.

Abusing a little bit notation, we will also frequently treat the strip P as a subset of the
cylinder Q. Given M <0, D C C'and E C @, we let

Dy={2€@: M <Re<0} and Eyy = {2 € Q: M <Re <0}.
We also put DS, = €'\ Dy, ES; = Q \ Ejr.- Let us prove the following.

Lemma 2.1. The map [ : P — @' is bijective.
Proof. Put
P ={zeC:0<Im(z) <7} and P :={zel:7<Im(z) < 2r}.
If 2 € P_ then sin(Im(2)) > 0 and therefore
Im(f,(2)) = Im(2) + Im(\) — e "% sin(Im(2)) < Im(2) + Im(\) < 7 + Im(}).

Hence

f(P.) C{z € @:Im(z) <7+ Im(N)}. (2.1)
An analogous argument shows that

H(PT)Cc{zeC:Im(z) > 7 +Im(N)}. (2.2)

Now, if 2 € P_ then Im(f(2)) = —e %) sin(Im(2)) < 0. Therefore, using also the fact that
P_ is convex we conclude (see [22]) that the map f|p_ is injective. Analogously, if z € P,
then Im(f’(z)) > 0, and the map f|p- is also injective. Combining these two facts with
(2.1) and (2.2), we see that the map fy restricted to the union P_ U P~ is one-to-one. Since
f{z € P:Im(z) =7}) ={z € P:Im(z) =7+ Im(\)}, and, since by a direct inspection, f
is one-to-one on the set {z € P : Im(z) = 7}, we finally conclude that f|p is injective. Since a
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direct calculation shows that 9(f(P)) C f(OP) C f(P), we conclude that df(P) = (). Thus,
f(P) = € and we are done. B

Let PC(F) denote the postcritical set of F', i.e.
PC(F) = {F™(I1(0)) : n > 0}.

Note that f (and F') has no finite asymptotic values. Let f;' : @ — P be the (holomorphic)
inverse map to the map f : P — @ proven to be bijective in Lemma 2.1. We shall show that
the projected Fatou function F'is expanding on its Julia set. We start with the following
weaker result.

Lemma 2.2. If z € J(F), then limsup,_,.. [(F")(2)| = +oo.

Proof. Let p(z)|dz| be the Poincaré metric on @ \ PC(F') and let ||F'(z)|| denote the norm
of the derivative of F' at a point z € Q \ PC(F') taken with respect to the Poincaré metric p.
Notice that F~!'(Q \ PC(F)) is an open connected subset of Q \ PC(F') containing the Julia
set J(F') and the map F': Q \ PC(F) — @ is a covering map. Hence, F': Q \ PC(F) — @ is
a local isometry with respect to the Poincaré metrics respectively on @ \ PC(F') and on Q.
Since the norm of the derivative of the injection map from F~(Q \ PC(F)) to @\ PC(F) is
at every point less than 1 when taken with respective Poincare metrics, we conclude that

IF'(2)[] > 1 (2:3)

for all z € F~1(Q \ PC(F)). Now fix z € J(F). If lim,,_,o, F"(z) = —o0, then it immediately
follows from (1.2) that lim, , |(F™)'(z)| = +00. So, suppose that F"(z) does not tend to
—o0. Then there exists a compact set L C @ and an increasing sequence {n; };";1 of positive
integers such that F™(z) € L for all j > 1. Since the function w — ||F'(w)|| is continuous,
it follows from (2.3)

n:=inf{||F'(2)|| : z € L} > 1. (2.4)
Since the function w — p(w) is continuous, we get
v :=sup{p(z):z € L} < o0. (2.5)
Since for every n > 1, |(F™)'(2)| = p(2)||[(F™)'(2)||/p(F™ (%)), combining (2.5), (2.4) and (2.3),
we conclude that for every j > 1
Iy > 2y

The proof is complete. R.

A direct calculation show that if Re(A) > 1 (Re(A) > 1), then if Re(z) > 0 (Re(z) > 0), then
Re(fx(z)) > Re(z). This proofs the following.
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Theorem 2.3. If Re(\) > 1 (Re(\) > 1), then the map fy : € — @ has a Baker domain D at
oo and {z € €': Re(z) > 0} ({z € C': Re(z) > 0}) is contained in this domain. In particular
J(fy) C {z € @:Re(z) <0} ({z € C:Re(z) <0}). Even more, if Re(\) > 1, then there
exists €y > 0 such that J(f)) C {z € €': Re(z) < —ey}.

From now on A is assumed to have the real part Re(\) > 1.

The following theorem provides a complete description of the structure of the Fatou set of
the function f : €' — .

Theorem 2.4. The Fatou set of the Fatou function f : @'— @ consists exactly of the images
of all backward iterates of the Baker’s domain D at infinity containing the right half-plane.

Proof. Fix w in the Fatou set of f and a ball B centered at w and contained in the
connected component of the Fatou set that contains w. The map HoIl : ¢ — €'\ {0} is
a conformal semiconjugacy between fy and G : € — € (see the paragraph containing (9.1)
for the definitions of H and G, and the relations between them). Since in addition G has
only two singular values: z = 0 is the asymptotic value, which is an attracting fixed point of
G and z = 1 is the only critical point and it is attracted to 0 under forward iterates of G.
In particular GG is in the class §. Therefore the Fatou set of G is formed by the basin of
attraction to 0. Since (H oII) o f{(B) = G% o (H o I1)(B), n > 0, and since by Bergweiler’s
result ([6]), II(B) is contained in the Fatou set of G, we conclude that for all n > 0 large
enough H oII(f}(B)) is contained in as small neighborhood of of 0 as one wishes. It therefore
follows (H(+00) = 0)) that all points of II( f}'(B)) have uniformly arbitrarily large real parts.
Obviously then the same is true for f7'(B), and consequently, f¥'(B) is contained in D. We
are done. W

Utilizing this theorem and iterating backward the half-plane {z € €': Rez > 0}, we see that
the following is true.

Proposition 2.5. The Julia set J(f) is a Cantor bouquet in the sense of [12].
Let us prove now the following stronger property of F”’, the one we were really after.

Proposition 2.6. There are ¢ > 0 and k > 1 such that
[(F™)(2)] > ex™
for all z € J(F) and alln > 1.
Proof. For every k > 1 let
Ay ={z € J(F): |(F*(2)| > 2}.
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In view of Lemma 2.2, U2, Ar D J(F) and in view of (1.2) there exists M < 0 such that
QS; C Aj. Since by Lemma 2.3 J(F) \ Qf; is a compact set and all the sets Ay, k > 1, are
open, there exists ¢ > 1 such that J(F)\ Q5 C A1 UA,U...U A, Thus

J(F) CA1UA2U...UAq.
Since J(F') is a closed subset of () without critical points, using (1.2), we deduce that
w:=min{l,inf{|F'(z)| : z € J(F)}} > 0.

Fix z € J(F) and n > 1. Using the finite cover {A;, Ay, ... , A} of J(F), we can divide the
sequence z, F'(2),..., F"(z) into blocks of length < ¢ such that the modulus of the derivative
of the composition along each (possibly except for the last one) such a block is larger than 2.
This gives that |(F")'(2)| > 2E("/ 947 and we are done. m

Let us prove now the following simple but useful lemma.

Lemma 2.7. There exists 0 > 0 such that

J(f)c U{zeC:2mn+0 <Im(z) < 27(n+ 1) — 6}.

nEZ

Proof. Since the function is x — Re(f(x)) = = + €™ + Re(\) is decreasing at semi-line
(=00, 0], the image of this semi-line under the map Ref is contained in [1+Re()\), 00) C (0, 00).
It therefore follows from Theorem 2.3 that the semi-line (—oo, 0] is contained in the Fatou
set of (fy). Since the Fatou set is invariant under translation by 23, it therefore suffices to
show the existence of some M < 0 such that

J(f)ﬂP]f/,C{zEG’:g<Im(z) <27r—g and Re(z) < M}.

And indeed, obviously there exists M < 0 so small that if + < M, then = + %e"” > 0.
Hence, if 2 € Pf; and either 0 < Im(z) < % or 27 — § < Im(z) < 27, then Re(f\(2)) =
Re(z) + e~ cos(Im(z)) + Re(\) > Re(z) + 2e7R¢() + 1. Thus f(2) is in the Fatou set of f,

and consequently the point z is also in this set. We are done. B

N —

3. BOUNDED ORBITS
Set
Jpa(F) = {2z € J(F) : inf{Re(F"(z)) : n > 0} > —o0}.
Obviously J,e(F) C J,(F). We shall prove the following.

Theorem 3.1. We have that HD(Jyy(F)) > 1
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Proof. In order to prove this theorem we shall estimate from below the Hausdorff dimension
of the limit sets Jg of the iterated functions systems Hgr whose construction we just begin to
describe. Fix R > 1. Let

Sp={2€ P:—-4R <Re(z2) < —R and 0<ep <Im(z)<2m —eg},

where er will be defined later in the course of the proof. Fix an integer £ > 1. Consider the
inverse map F, ' : Sp — P given by the formula

F N 2) = £ (2 + 2kmi).
We want to find k > 1 and R > 1such that F, '(S) C Sg. Notice that e Fx &+ F ()41 =
z + 2kmi and therefore
|2+ 2k < e O 4 |F7N(2)| 4 |A] < 27 ReFi )
for all k£ > 1 sufficiently large. Also

— 1 -
2 2kmi] 2 [ | = |F! (2)] = A] 2 e o)

for all k > 1 large enough. Therefore, if k € [¢*f, e3f] and R > 1 is large enough, then
—4R < Re(F;'(2)) < —R.
Now, if w =z + iy € P\ Sg, then
Imf(w)| = [Im(e™) + Im(w) + Im(A)| < e™|siny| + |y| + [Im(})]

1
< e'fsin(eg) + 27 + [Im(N)| < §eR

provided that ez > 0 is sufficiently small. So, if k € [e*, €3] and e > 0 is small enough, we
have that
We have produced in this way the iterated function system Hp defined as

Hp:={F;':Sp — Sg, <k <Y, (3.1)

By the location of Sg and due to Koebe’s distortion theorem, the iterated function system
Hp, satisfies all the requirements of [21], and consequently, all the results proven there apply
to the system Hpg. Let Jg be the limit set (see [21]) of the system Hpg. Since Jg C Jyy(F), it
suffices to show that HD(Jg) > 1. First note that, if w = f(z2) = 2 + e~ % + A, then

1

Y 0) = Sy e T (32)

Let z € Sg. Applying then (3.2), we get
1 1
F*l ! — >
I(Fe ) )l |fr'(z + 2kmi) — (2 4+ 2kmi) + 1+ A| — |2+ 2kmi| + (4R + 2mwi + 1 + |A])

1 1
> > (3.3)
9k + (4R +2m + 1+ |A]) — 10k
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if R is sufficiently large and k € [e*£, €3%]. Fix t > 0 and let Pg(t) be the topological pressure
of the iterated function system Hp evaluated at ¢ (see [21] for its definition, basic properties
and further references). Then by (3.3) we have for some z € S that

63R 1
Pr( log(Z|Fk z)zlog(z I(J—k)

k—=e2R k=e2R
= —log10 + (log(e3R) - log(eQR))
—log10+ R >0

if R > 1 is sufficiently large. It therefore follows from Theorem 3.15 of [21] that HD(Jg) > 1
We are done. B

4. PRESSURE, PERRON-FROBENIUS OPERATORS AND GENERALIZED CONFORMAL
MEASURES

For every ¢ > 0 and every z € @ \ PC(F) define the lower and upper topological pressure
respectively by

P.(t) = liminf — 1 log Z |(F™)(x)|~" and P,(t) = limsup%log Z [(F™) (z)] "

n—00
n rzEF—"(z) n—roo rEF—"(z)

Since any two points in J(F') belong to an open simply connected set disjoint from PC(F),
it follows from Koebe’s distortion theorem that P, (#) and P,(t) are independent of z and we
denote their respective values by P(¢) and P(¢). It follows from (1.1) that for every ¢ > 0 and
every z € ) \ PC(F)

P(Lt):= 3 [F'@)|™"= 3 N-e"= Z L= e

zeF—1(z) zeF~1(2) k=—o0
+00
= > 142+ A= (Z+2mik)|

k=—00

(4.1)

where Z is the only point in 77! (2) N P and 2, = f,'(2 + 2mik), k € Z is the only point in P
such that f(zx) = Z + 2mik. This meaning of Z and zj will be kept from now on throughout
the entire paper. We will several times need the following.

Lemma 4.1. Ift > 1, then
[|P(1,t)]]oo :=sup{P.(1,t) : z € J(F)} < +o0.

Proof. Let
Zy\=A{k € Z : wlk| > |Im\| + 47}.
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If z € J(F) and k € Z,, then

114 2z + A — (2 +2mik)| > |Im(1 + 2, + A — (2 + 2mik))| > 27|k| — [ImA| > 7|k|
(4.2)

Fix now T > 0 so large that if Rez < —T, then Re(z;) < —1 for all k € Z. So, for all such z
and all k € Z

1 —e | > e | —1=e®) —1>e—1>1. (4.3)

Since zi, € J(F), it follows from Theorem 2.3 that the equality 1 — e~% = 0 never holds, and
therefore

M=inf{{l—e**|:2€Q_y, ke Z\ Z\} > 0.
Combining this along with (4.3) and (4.2), we get for all ¢ > 1 and all z € J(F') that

P.(L,t)= > |14z + A= (Z+27mik)| "+ Y [1—e |

keZy keZ\Zx
< N (wlk))T + H(Z \ Z)) max(1, M) ™" < 4o0.
KEZ

We are done.

Observe now that for every n > 1 and every z € J(F)

> IFEY@T = X > 1EFEY ) F @)

zEF~N(z) weF~(n=1)(z) zeF~1(w)
= > \EH T > [F@l
weF~(n=1)(z) z€F~(w)

<Pl >0 (F ) ()™

weF~(=1)(z)

Therefore, we obtain by induction that 3= ,cp—n(,) [(F™) (x)| " < [[P(1,1)]|2, and consequently

P(t) = P.(t) < log |[P(1, )] (4.4)

for all ¢ > 1. We shall now establish the existence of conformal measures for the map
F : J(F)— J(F). A Borel measure m, is called (¢, oy)-conformal (with ¢t > 1 and o, > 0) if
for any Borel set A C ) on which F' is injective, we have

m(F(A)) = /Aat|F’|tdmt

As the first and most important step in the proof of the existence of these measures we shall
prove the tightness of an appropriate sequence of “semi”-conformal measures. In order to
define this sequence we apply the general method worked out in [11] (comp. also Chapter 10
of [23]). So, fix n > 1 and consider the set

K, = F7(Q)

j20
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Since F': () — @ is continuous, K, is a F-forward invariant compact subset of (). The results
from [11] and Chapter 10 of [23] establish for all n > 1 the existence of a Borel probability
measure m,, supported on K, and a non-decreasing sequence {P,(¢)}32, of “pressure-like”
numbers with the following two properties. If A C Q_,, is a Borel set such that F'|4 is 1-to-1,
then

mn(F(A)) > ePr® / |F'tdm,.
A

If in addition, ANOQ_, = (), the inequality sign in the above formula can be replaced by the
equality sign. We are now ready to state and to prove the announced tightness.

Proposition 4.2. The sequence {my}>2, is tight.

Proof. Fix € > 0 and M > 0. We shall estimate the measure m,, of the following set
mp,({z € J(F) : Re(F(2)) < —M}) < mp(F~'({z € Q : Re(2) < —M}))
=m,(|J F,'({z € Q: Re(z) < —M})

keZz

= > ma(Fy Q%)

keZ

< > e sup {|(F) () hma(QC )

keZ 2€Q%

<e ™03 sup {[(F, 1) (2)])

kez 2€Q%
If z € Q%,,, then
1
F by = )
(B ) (=) |fot (2 + 2kmi) — (2 4 2kmi) + 1+ A
Recall that for every z € () we have set
2 = F7N2) = fH (2 + 2kmi). (4.6)

If M > 0 is large enough, then it easily follows from (1.1) that —Re(2;) becomes as large as
we wish uniformly with respect to k € Z. Since in addition 0 < Im(z) < 27, we therefore
get that [e * + z, + A| > L|e % | = le Re(). Hence 2|z + 2mik| > e ®*(*) and consequently
—Re(F, '(2)) <log2 + log |z + 2mik|. Thus

|Re(zx) — Re(2)| > Re(zx) — Re(z) > —log2 — log |z + 2mik| — Re(z) (4.7)

(4.5)

Consider k, the largest k > 0 such that log |z + 27ki| < —sRe(z) for all k € Z with [k| < k.
Then log |z + 2mi(k + 1)| > —sRe(2) or equivalently |z + ori(k 4+ 1)] > e Re)3_ Since
2+ 2mi(k+1)| < 2m(k+1)+ |2 < 2m(k+1) + 1e Re(2)/3 "assuming that M is large enough,
we get 21 (k + 1) > le Re(®)/3 consequently

o> e Re()/4 > M/4 (4.8)
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again provided that M > 0 is sufficiently large. Now if |k| < k, then using (4.7) we get
2 1
|Re(z) — Re(z)| > —log2 — gRe(z) > —§Re(z) > M/2

if only M > 0 is large enough. Therefore
|z —(z + 2m‘k) + A+ 1|

> — |Re(z,c — (z+2mik) + A+ 1)| + = |Im(z,c — (2 +2mik) + A + 1)

1 4.9
= L | Re(24) — Re(2)] 5|Re(A + )|+ 5 (@rlk| - 47— Im(A + 1)) (4.9
M 1 1 M
> = — 5IRe( + )] + 5 (2nlk| — 47 — Im(A+1)) = = + 7l

provided that M is large enough. If |k| > k then
|2k — (2 4 2mik) + A+ 1| > |Im(2, — (2 + 27k) + A+ 1)| > 27 |k| — 4|7| — Im(A + 1) > 7|k|
if only M is sufficiently large. Combining this, (4.9) and (4.8) we obtain

> e sup (B ()Y

keZz
=e O sup {|(F) (@)Y +e O sup (B ()Y
i<k €9 | *€ 9=
1
< e—Pn(t) < —+ 7T|k'|> _Pn
< t
W<k |M>,; (m|kl)
< 26713”() ( +7r|k> 05 -t (4.10)
k>k
< C’ o~ Pl )Ml—t_|_C e~ Pr(t) p1-t
< Cye PO max{ Mt e - 0}

= Cle PO p1t
if M is large enough, where C; > 0 is a constant depending only on ¢. Since
sup{|F'(2)| : z € K,,} < o0,

P,(t) > —oo for all n large enough, say n > ny. Since the sequence {P, ()}, is non-
decreasing, we get from (4.10) that for all n > ng and all B C Q°,,

my(F~Y(B)) < Cie P M1 =tm, (B) (4.11)

If Rez < —M, then |e?*| = e ®* > M Hence, if in addition Re(f(z)) > —M, then
Tm(f(2))| > VeM — M2 > M /2 provided that M > 0 is sufficiently large. Now, for every
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k> e*M /2, we have |(F; ') (2)| = | f7 (2 + 2kmi) — (2 4+ 2kmi) + 1+ A| > 27k —dm— A+ 1] > k
if only M is large enough. Hence

ma({z € J(F) : Re(z) < —M and Re(f(2)) > —M}) < e Fr® $° =8 < e7ProlllM =0,
k>eM /2 (4.12)

Combining this and (4.11), we see that the sequence {m,, },>; is tight. ®

Recall that for every n > ng, P,(t) € [Py, (t), P(#)], and that the sequence {P,()}5°, is non-
decreasing. Denote the exponent of its limit by «;. It follows from Lemma 4.2 and Prokhorov’s
theorem that passing to a subsequence {n;};2,, we may assume that the sequence {m,, }32,
converges weakly, say to a measure m; on (). Since there could be a problem with conformality
of measures m,, only on sets {z € J(F) : |Rez| = —ng}, since ny 400 when k£ 7 400,
and since F' : J(F) — J(F) is an open map, which has no critical points, proceeding, with
obvious modifications, as in [11] (comp. Chapter 10 of [23]), we obtain the following first
basic result.

Theorem 4.3. For every t > 1 there exist o, > 0 and a (t, ay)-conformal measure my for the
map F : J(F) — J(F). In addition m,(J(F)) = 1.

Let C, = Cy(J(F')) be the Banach space of all bounded continuous complex-valued functions
on J(F). Lemma 4.1 enables us to define for all ¢ € €' with Ret > 1 the Perron-Frobenius
operator L = L; : Cy, — C,, by the formula

Lg(z)= > |F'(@)gl@)= > [1—-e"g(z)= io 1 — e[ g(z)

z€F~1(2) zeF~1(2) k=—o00
+00
= 3 |14z 4+ A — (2 + 27ik)| tg(21) (4.13)
k=—00
It immediately follows from (4.13) that
1£:9(2)] < (£ |09 loo- (4.14)

Applying and improving the formulas obtained in the proof of Lemma 4.1, we shall prove the
following.

Lemma 4.4. We have
lim £,1(z) =0.

Z2—r—00
Proof. Consider z € J(F) and z € IT"*(z) N P. It follows from (1.1) that
lim z, = —o0 (4.15)

Z—>—00
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uniformly with respect to k € Z. Hence, applying (1.1) again, we see that

lim (2 — 2x) = oo or equivalently lim |Re(Z — z1,)| = +o0 (4.16)

uniformly with respect to k € Z. Fix M > 0. Then for all ¥ € Z and all z € J(F)%, with
—T7 > 0 large enough, we get

1
11+ 2z, + A — (3 + 2mik)| > 5(|Im(1 + 25+ A= (24 2mik) )| + Re(1 + 2z + A — (2 + 2mik) ) |

1
> 21kl + 5 (Re(z — 2) — (1+Red)) > ZJk|+ M. (4.17)
Therefore, applying (4.13), we get for all z € J(F)7, that

L) < X (Shear)

keZ
So, the proof is concluded by letting M 7 +oco. B

Notice also that £, : C;, — C} is a bounded operator and its norm is equal to ||P(1,1)||.
Assume from now on throughout this section that ¢t € (1, 00) and consider the dual operator
L; . Cf — Cf given by the formula £;u(g) = pu(Lig). A straightforward calculation (see
Proposition 2.2 in [8] for example, where the finiteness of the partition can be replaced by its
countability) shows the following.

Proposition 4.5. For every t > 1, Lim;, = aymy.

Let

§ = % min {% dist(J(F), PC(F))} (4.18)

Observe that for every v € J(F) and every n > 1 there exists a unique holomorphic inverse
branch F, " : B(F"(v),20) — P of F~" sending F"(v) to v. In particular F,"(J(F) N

v
B(F™(v),26)) C J(F). Fix now ¢ > 1 and define
ﬁt = Oé;lﬁt.

Fix any two points w and z in @, \ PC(F"). There then exists the shortest smooth arc 7, ,
joining w and z in @\ B(PC(F), 26). The supremum of (Euclidean) lengths of arcs 7, , taken
over all pairs w, z € P, is finite and consequently there exists a number [, > 1 such that each
such arc v, , can be covered by a chain of at most balls [, balls of radius  centered at points
of vy,.. We may assume in addition that U, ., the union of these balls is a simply connected
set. It then follows from Koebe’s distortion theorem that there exists K, > 1 such that if
F.":Uy,, — @ is a holomorphic branch of F""", then

(F=) ()]
(Ey() =
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and consequently
Kot < GO g (4.19)
Ly (1)(2)

In the remaining part of this section we develop the corresponding arguments from [26]. We
start with the following.

Lemma 4.6. © = sup, {||£/(11)]|s} < 0.

Proof. In view of Lemma 4.4 there exists z < 0 so large in absolute value that for every
w € QF

oy 'Ly(1)(w) < 1. (4.20)
We shall prove by induction that for every n > 0
Kt

And indeed, for n = 0 this estimate is }mmediate. So, suppose that it holds for some n > 0
and let 2"+ € @ be such a point that £} (1)(2"*!) = ||£}T(1)||s (such a point exists due
to Lemma 4.4). If z2"*! € Q,, then using (4.19) and (4.13), we obtain

1£5(1)loo <

1= [ £ @ydm > /Q £ (Wydm > K20 (1) om Q)

R —1
and consequently ||[£7(1)]]e < K (m(Qw)) . If 2" ¢ Q,, then it follows from (4.20)
and the inductive assumption that

400
An An n An n — _zn+l,
1L (W) ]|oo = Ly (M) (") = S0 L7(W) (24 oy L — e
k=—oc0
-1 Fn+1 -1 1 I s+l
< S MWl - e < K (@) ! S - e
k=—00 k=-00

= KL (m(Qy)) oy L)) < KL (m(Q,))

where the meaning of the points 2{*! is provided by (4.6). We are done. W

Lemma 4.7. There exists xo < 0 such that for every x > x,

inf sup {£/(1)()} > |
zEQ
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Proof. Let © come from Lemma 4.6. Let xg < 0 be so large in absolute value that
m(QS ) < 1/(40). Suppose for the contrary that £ (1)(z) < 1/4 for some n > 0 and all

Zo

Z € (Qz,- Then
L= [ LrWdm= [ LiWdm+ [ £p)dm < (@) +Om(@S,) < + 015 =
T ST o, T Jg AT = ) TR ) = T Ve Ty

This contradiction finishes the proof. ®

As an immediate consequence of this lemma and (4.19) we get the following.

Lemma 4.8. For every x < xy we have
inf inf {£7(1)(2)} > -

n>0z2€Q,

(max{Km, Kmo})

RS

We shall prove the following.

Proposition 4.9. For every t > 1 we have P(t) = P(t) = log a;.

t)
Proof. Tt follows from Lemma 4.6 that £}(1)(z) < ©a} for every z € P. Hence

B(t) = P. (¢) = lim sup — log £"(1)(2) < log a.

n—oo N

In view of Lemma 4.8, L}}(1)(z) > $ K, o} and therefore

| n
P(t)=P,(t) = h,{%%}.}fﬁ log L7(1)(z) > log ay.

We are done. &

Denote the common value of P(#) and P(t) by P(t). Its basic properties are listed in the
following.

Lemma 4.10. The function t — P(t), t > 0, has the following properties.
e (a) There exists t € (0,1) such that 0 < P(t) < 4o0.
e (b) P(t) < +oo for allt > 1.
e (¢) The function P(t) restricted to the interval (1,4+00) is conver, continuous and
strictly decreasing.

e (d)lim;, o P(t) = —0c0.
e (¢) There exists exactly one t > 1 such that P(t) = 0.

Proof. The convexity of the function ¢ — P(¢), ¢ > 1, follows immediately from Holders

inequality. Thus, this function is continuous. The facts that P(¢), ¢t > 1, is strictly decreasing
and that lim; ,,, P(t) = —oo follow from Proposition 2.6. Thus, the items (c) and (d) are
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proven. The item (b) follows from Lemma 4.1 and (4.4). In order to prove item (a), consider
the iterated function system Hp introduced in the proof of Theorem 3.1 with R > 0 so large
that HD(Jg) > 1. Then by (b) P(HD(Jg)) < 400 and P(HD(Jg)) > Pr(HD(Jg)) = 0. So,
item (a) is proved. Item (e) is an immediate consequence of items (a)-(d). We are done. ®

Recall
Io(F) ={z € J(F) : lim F"(z) = —oc},

i.e. Io(F) is the set of points escaping to infinity under forward iterates of F'. Analogously
define

Io(f) = {z € J(f) : lim Re(f"(2)) = —o0}.
Denote
Jo(F) = J(F)\ I(F) and J,(f) = J(f) \ Ioo(f)
and notice that
Io(f) = I (Io(F)).
For t > 1 let m; be the (t,e®)-conformal measure constructed in Theorem 4.3 (due to
Proposition 4.9 oy = e"®). We shall prove the following.

Proposition 4.11. For every t > 1 there exists M > 0 such that for my-a.e. x
limsup Re(F"(z)) > —M.
n—00
In particular, my(I(F)) = 0 or equivalently m,(J,(F)) = 1.

Proof. Replacing in the formula (4.11) m,, by m; (and consequently P, (t) by P(t)), we get
for all M > 0 large enough and all B C J¢,, that

my(FY(B)) < Cye POM'm,(B) (4.21)

Hence, by a straightforward induction,
m(F'(B) N+~ N F™(B)) < (Ce PO M'~")"my(B)
This implies that for all M large enough
() P (@) = 0

and consequently _ ' _

mt(U F_k(ﬂ F7M(Q%))) = 0.
The proof is finished. & . "

Let us show now that the estimates used in Proposition 4.11 and Proposition 4.2 lead to the
following.
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Corollary 4.12.
my(Q° ) < Cel=IM

for some constant C' and all M > 0 large enough.
Proof. Tt follows from (4.21) that
mi(Q% N F Q% ) < Cre POM 'my(Q° )
The formula (4.12) with m,, replaced by m, reads that
my (QC_M N F_IQ,M) < C«teM(l—t)

with an appropriate constant C, > 0. These two sets cover the whole set Q° ;- The first
inequality says that (for all M sufficiently large) the first set covers less than, say, one half of
the measure of Q¢ ,,. Thus,

my(Q y) < 2m(Q% N F'Q_pr) < 200

and the proof is complete. B

In order to prove Theorem 4.14 we will need the following generalization of Proposition 4.11.

Lemma 4.13. If v is a (t, 87)-conformal measure for F7 witht > 1 and 3 > 0, then there
exists M > 0 such that

lim sup Re(F/"(x)) > — M.
n— o0

for v-a.e. z € J(F). In particular, v(I(F)) =0 or equivalently v(J.(F)) = 1.

Proof. Define inductively for all integers & > 0 respectively the functions v; whose domains
coincide with all Borel sets A C J(F)) such that F¥|, is injective, as follows

(F ) )

The same computation as that leading to (4.10) and (4.11) gives us that if k¥ > 0, F*|p is
injective and B C J(F)¢,,, then

v (F1(B)) < OB 'M" "1y (B).

vo(A) = v(A) and vyi1(A) = / 51 ",

Fk(4)

Thus we get by induction that for every B C J(F)°,, and every n > 0
va(F7"(B)) < (CB~'M'™)"u(B).
Since, by our assumptions, v; = v, we therefore get

v(F7(B)) < (CB*M'™Yu(B).
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Similarly as in the proof of Proposition 4.11 this implies that v ( 0 F’js(QiM)) = 0 and
consequently

v(U F7H F7™Q2w)) = 0.
k=0 n=0
The proof is finished. &

Theorem 4.14. The (t,e"®)-conformal measure m = my is a unique (t, 3)-conformal mea-
sure for F' with t > 1. In addition it is ergodic with respect to each iterate of F'.

Proof. Fix j > 1. Suppose that v is a (t, 37)-conformal measure for F7 with some ¢ > 1 and
£ > 0. In view of Lemma 4.13 we have v(I(F)) = 0. Given N < 0 let .J, 5 (F) be the subset
of J.(F) defined as follows: z € J, y(F) if the trajectory of z under F7 has an accumulation
point in J(F)%. Obviously, Uy Jrn(F) = J,(F) and by Proposition 4.11 and Lemma 4.13
there exists M < 0 such that v(J, p(F)) = m(Jom(F)) = 1. Fix z € J, y(F) and let us
recall that 0 < dist(J(F'), PC(F))/2. Then there exist y € J(F') such that Re(y) > N and an
increasing sequence {n;}%, such that y = lim;_,o, F'™(z). Considering for k large enough
the sets F, 7" (B(y,d)) and F, 7" (B(y,d/K)), where F; 7™ is the holomorphic inverse branch
of F™ defined on B(y,2d) and sending F7"(z) to z, using conformality of measures m and
v along with Koebe’s distortion theorem we easily deduce that

By (v) ™' B |(F™) (2)] 7 < v(B(z, o (F™)'(2)]71)) < By (v) 877" | (F7)'(z)| ™
(4.22)

for all £ > 1 large enough, where ¢ < 1, K > 1 is the constant appearing in the Koebe’s
distortion theorem and ascribed to the scale 1/2, By (v) is some constant depending on v and
N. Let M be fixed as above. Fix now E, an arbitrary bounded Borel set contained in .J,.(F)
and let E' = EN J, p(F). Since m is regular, for every x € E' there exists a radius r(x) > 0
of the form from (4.22) (and the corresponding number n(x) = ny(x) for an appropriate k)
such that

m( |J B(z,r(z))\ E') <e. (4.23)

Tz€E'

Now by the Besicovi¢ theorem (see [G]) we can choose a countable subcover { B(x;, r(x;))}2,
with r(z;) < e and jn(x;) > €', from the cover {B(x,7(x))}ser of E', of multiplicity
bounded by some constant C' > 1, independent of the cover. Therefore, assuming e’ < S
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and using (4.22) along with (4.23), we obtain

v(E) =v(E") < Z B(wi,r(2:)))87™) < B (v ir (:) 677
i=1 =1
< By, f:m iy (2:))) B P O
< BM(u)BM(m)Om(i[le(xi, r(xi)))(eP(t)ﬁfl)jn(wi) (4.24)

< Bag(v) Bar(m)Cm(|J Bz, r(2:))) ("0 571)

=1

< OBy (v) Bar(m) (¢"0571)" e+ m(E))

(
= CBu(v) Bur(m) ("3~ ) (e + m(E)).
(

)

Hence letting € ~\, 0 we obtain v(E) = 0 and consequently v(J(F')) = 0 which is a contra-
diction. We obtain a similar Contradlctlon assuming that 3 < e’® and replacing in (4.24)
the roles of m and v. Thus 3 = e® and letting ¢ \, 0 again, we obtain from (4.24) that

v(E) < CBy(v) By (m)m(E). Exchanglngmandl/ we obtain m(E) < CBy(v) By (m)v(E).
These two conclusions along with the already mentioned fact that m(J,(F)) = v(J.(F)) = 1,
imply that the measures m and v are equivalent with Radon-Nikodym derivatives bounded
away from zero and infinity.

Let us now prove that any (¢, e”®)-conformal measure v is ergodic with respect to FV.
Indeed, suppose to the contrary that F7(G) = G for some Borel set G C J(F) with 0 <
v(G) < 1. But then the two conditional measures vz and vy«

vBNG) i G(B):z/(BﬂJ(F)\G)
v(G) T v(J(F)\G)

would be (¢, e’"®)-conformal for F7 and mutually singular. This contradiction finishes the
proof. H

Vg(B) =

5. OLD AND NEW PERRON-FROBENIUS OPERATORS AND THEIR FINER PROPERTIES

Recall that C, = Cy(J(F)) is the space of all bounded continuous complex valued functions
defined on J(F). Fix a € (0,1]. Given g € C let

=inf{L > 0: |g(y) — g(x)| < L|ly — z|* for all z,y € J(F) with |y —z| < 4},
be the a-variation of the function g, where § > 0 was defined in formula (4.18) and let

llglla = valg) + lg]l-

Clearly the space
Ho = Ho(J(F)) ={g € J(F) : [|g]la < oo}
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endowed with the norm || - ||, is a Banach space densely contained in C}, with respect to the
|| - ||co nOTrm.

Recall that for every n > 1 and every v € J(F),
F":B(F"(v),20) = @

was defined to be the holomorphic inverse branch of F™ defined on B(F™(v),2d) and sending
F™(v) to v. It follows from Proposition 2.6 and Koebe’s distortion theorem that there exist
constants L > 0 and 0 < < 1 such that for every n > 0, every v € J(F) and every
z € B(F™(v),0d), we have

() (2)] < Lp" (5.1)

We say that a continuous function ¢ : J(F) — €'is dynamically Holder with an exponent
a > 0 if there exists ¢4 > 0 such that

|6n(F, " (1)) = 0n(F"(2)] < oln (K" (2)) [y — [ (5:2)
foralln > 1, all z,y € J(F) with |z — y| < 0 and all v € F~"(x), where
on(2) = $(2)(F(2)) ... o(F"(2)).
We say that a continuous function ¢ : J(F') — €'is summable if
sup Yo lpo Fy e p < 0.
z€J(F) veEF—1(z)

If the continuous function ¢ is summable then the formula

Log(z) = 3 )@5(33)9(33) (5-3)

zeF~1(z

defines a bounded operator L, : C, — Cj called the Perron-Frobenius operator associated
with the potential ¢. We shall prove the following.

Lemma 5.1. If ¢ : J(F) — @' is a summable dynamically Hélder potential with an exponent
a > 0 then Ly(Ha) C Hy. If, in addition, ¢(J(F)) C [0,00) and sup,>{||L3(1)||e} < o0,
then there exists a constant ¢; > 0 such that

1
1£591la < Sllglla + eillgllo

for all n > 1 large enough and every g € H,.
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Proof. Fixn > 1, g € H, and z,y € J(F) with |y — z| < 6. Put V,, = F~'(z). Then we
have

Log(y) — Log(a)| =

> Ol FT W) g(F" (1) = 32 du(F,"(2)g(F, " (2))

={g%@ﬂMMﬁ%Wih D)+ 3 9F @G ) = 6alF )
sgfmﬂ%mﬂ%wwwn—mwqu+n
+§i% o)lg(Fy™ () — g(Fy™(x))

EéMuan o=yl 4 X 10u(F @) eal9)| () — ()]
SZ;Lch@i;kxny—wda+va(xL5n09%:ﬂa§:|¢n
<Nl eolllle LBy — e

This shows that
0a(L39) < £ (W) (collgllo + L8 lglla) < o0 (5.4)

and, in particular, £}(g) € H,. The inclusion L4(H,) C H, is proved. Suppose now that
¢(J(F)) C [0,00) and Oy = sup,,»1{||LF(1)|[|w} is finite. It then follows from (5.4) that

1£69]la < ©p LB [|g]la + ¢4Osll9]lo0 + [[£591lc < Op LB [|glla + Op(cs + 1)][g]|oo-

The proof is thus finished by taking n > 1 so large that ©,L*3%" < % [ |

We say that a summable dynamically Holder potential ¢ : J(F) — (0, 00) satisfies condition
(*) if
O = sup{[|L5(1)[[oe} < 00

and we say that ¢ is rapidly decreasing if
lim L4(1)(z) = 0.

Rez——o0

In order to apply the theorem of Ionescu-Tulcea and Marinescu we also need the following.

Lemma 5.2. Suppose that ¢ : J(F) — (0,00) is a rapidly decreasing summable dynamically
Hélder potential satisfying condition (*). If B is a bounded subset of H, (with the || - ||
norm), then L4(B) is a pre-compact subset of Cy, (with the || - ||s norm).
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Proof. Fix an arbitrary sequence {g,}3>, C B. Since, by Lemma 5.1, the family £,(B) is
equicontinuous and, since the operator L4 is bounded, this family is bounded, it follows from
Ascoli’s theorem that we can choose from {L4(g,)}72, an infinite subsequence {Lg(gn,)}52,
converging uniformly on compact subsets of J(F') to a function ¢ € C,. Fix now e > 0.
Since B is a bounded subset of C, it follows from (4.14) that there exists 7' < 0 such that
|L£,9(2)| < €/2for all g € B and all z € J(F)5. Hence

[¥(2)] < €/2 (5.5)
for all z € Jf. Thus [L4(gn,)(2) —(2)| < e for all j > 1 and all z € J¢. In addition, there
exists p > 1 such that |Ly(gn;)(2) — 1 (2)| < € for every j > p and every z € Jp. Therefore
|L4(gn;)(2) —p(2)] < e forall j > pand all z € J(F'). This means that [|[Ly(gn;) — ¢||o < €
for all j > p. Letting ¢ N\, 0 we conclude from this and from (5.5) that L4(g,;) converges
uniformly on J(F) to ¢ € C,. We are done. B

Combining now Lemma 5.1 and Lemma 5.2, we see that the assumptions of Theorem 1.5
in [16] are satisfied with Banach spaces H, C C} and the bounded operator L, : C, — C),
preserves H,. It gives us the following.

Theorem 5.3. If the assumptions of Lemma 5.2 are satisfied then there exist finite numbers
Yiy-o sy € St = {2z € C: |2| = 1}, finitely many bounded finitely dimensional operators
Q1,...,Q,: Hy = H, and an operator S : H, — H, such that

p
6= Y Qi+ 85"
i=1

foralln > 1,
Q =Qi, QioQ;=0,(i#)), QoS =50Q;=0

and

15"l < CE€"
for some constant C > 0, some constant & € (0,1) and all n > 1. In particular all numbers
Yis---,7p are isolated eigenvalues of the operator L4 : Hy — Hy and this operator is quasi-
compact.

Since for all ¢t € €' with Ret > 0, alln > 1, all z,y € J(F) with |y —z| < §, all v € F"(x)
and some constant M; > 0,

1Y W)= (™) @) < My (B ()" ly — ],
it follows from Lemma 4.1, Lemma 4.4 and Lemma 4.6 that if ¢ is real and Ret > 1, then
¢y(2) = e PO|F'(2)| is a rapidly decreasing summable dynamically Holder potential satis-
fying condition (*) which means that all the assumptions of Theorem 5.3 are satisfied. Note
that L4, = £;. Using heavily Theorem 5.3 we shall prove the following
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Theorem 5.4. Ift > 1 then we have the following.

(a) The number 1 is a simple isolated eigenvalue of the operator L,:H, — H,.

(b) The eigenspace of the eigenvalue 1 is generated by nowhere vanishing function 1, € Hy,
such that [ 1pydmy; =1 and limge, s o ¥y(z) = 0.

(c) The number 1 is the only eigenvalue of modulus 1.

(d) With S :H, — H, as in Theorem 5.3, we have

ﬁt - Ql + 57

where Q1 : Hy — @)y is a projector on the eigenspace Tihy, Q105 =S o Q1 =0 and
15"]la < C€”

for some constant C > 0, some constant £ € (0,1) and all n > 1.

Proof. Let us show that 1 is an eigenvalue of L, and let us identify the eigenfunction
claimed in part (b). And indeed, in view of Lemma 5.1, ||£}(1)||o < C for some constant
Ci > 0 and all n > 0. Thus,

n—1

Ly g =z (1 > ﬁ%(n))
n o n

for every n > 1. Therefore, it follows from Lemma 5.2 that there exists a strictly increasing
sequence of positive integers {ny }x>1 such that the sequence {nik ik LE{(]I)}]C>1 converges in
the Banach space Cj, to a function v : J(F) — IR. Obviously, ||[¢||o < C; and, in particular
Yy € H,. Since m; is a fixed point of the operator conjugate to L., fﬁ{(]l)d m; = 1 for
every j > 0. Consequently, [ % E?;OI ﬁ{(]l)dmt =1 for every n > 1. So, applying Lebesgue’s

dominated convergence theorem along with Lemma 4.6, we conclude that [i¢,dm;, = 1. It
immediately follows from Lemma 4.8 that ¢, > 0 throughout J(F). Since ¢, = Ly, it
follows from Lemma 4.4 that lim, , . 1;(2) = 0. Thus, in order to complete the proof of the
items (a), (b), (c) (that 1 is an isolated eigenvalue of £, : H, — H, follows from Theorem 5.3)
it suffices to show that if 8 € S! is an eigenvalue of £, : H, — H, and p is its eigenfunction,
then f =1 and p € @%;. But this can be done in exactly the same way as in the proof of
Theorem 35(ii) in [9] using ergodicity of each iterate of F' proven in Theorem 4.14 (comp.

also Theorem 6.1). The item (d) is now an immediate consequence of Theorem 5.3 and items
(a), (b) and (c). =

<

« «

6. INVARIANT MEASURES

The following theorem immediately follows from Theorem 5.4, Proposition 4.11 and Theo-
rem 4.14.

Theorem 6.1. Ift > 1, then the measure p = py = Yymy is F-invariant, ergodic with respect
to each iterate of F' and equivalent to the measure my. In particular p(J.(F)) = 1.



THE DYNAMICS AND GEOMETRY OF THE FATOU FUNCTIONS 25

Due to Theorem 5.4 the F-invariant measure p has much finer stochastic properties than
ergodicity of all iterates of F'. Here these follow.

Theorem 6.2. The dynamical system (F,p;) is metrically exact i.e., its Rokhlin natural
extension is a K-system.

The proof of this fact is the same as the proof of Corollary 37 in [9]. The next two theorems
are standard consequences of Theorem 5.4 (see [7] and [23] for example). Let g; and go be
real square-y integrable functions on J,.(F). For every positive integer n the n-th correlation
of the pair g1, ¢go, is the number

Cn(g1,92) = /91 (g2 0 F")dp — /91 du/gzdu-

provided the above integrals exist. Notice that due to the F-invariance of ;1 we can also write

Calgr,2) = [ (91 = Bg0) (92 — Ege) o F") dp

where we write Fg = [ gdu. We have the following.

Theorem 6.3. There exists C > 1 and p < 1 such that for all g, € Hy(P), g2 € L' (1)

Cn(g1,92) < Cp"|lg1 — Egillallge — Ego|| 1.

Let g : J.(F) — R be a square-integrable function. The limit

n—oo n,

1 n—1 . 2
o(g) = lim ~ (Z go F7 — nEg) dpy
=0

is called asymptotic variance or dispersion, provided it exists.

Theorem 6.4. If g € Hy(P), a € (0,1), then o*(g) ewists and, if a*(g) > 0, then the sequence
of random variables {go F™}22, with respect to the probability measure u; satisfies the Central
Limit Theorem, i.e.

nlgoFl —nE 1 o
M({xEJr(F)i =09° " g<r}>—> / et/ gt

Vn oV 2T
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7. BOWEN’S FORMULA, HAUSDORFF AND PACKING MEASURES

For every n > 1 let
A,={z€ J(F): —n—1<Rez < —n}
We shall prove the following

Lemma 7.1. Ift > 1 then, [log|F'|du; < +00.

Proof. Since ¢ : J(F) — (0,+00) is bounded (even more lim,, , ¢;(z) = 0), applying
(1.2) and Corollary 4.12, we obtain

/log|F’|dut =< /log|F'|dmt = Z/ log |F'|dm,
n=1"4n

< > mi (@) Tog(1 + )
< i C’exp((l — t)n)(l +n) < +o0.

Il
_

n

We are done. &

We shall prove now an analog of the celebrated Bowen’s formula. Since the definition of the
pressure function P(¢) has apriori nothing to do with the set J,.(F’), this theorem in particular
indicates that J,.(F) is the right object to deal with. From now on throughout the whole
paper we put

h = HD(J,.(F)).

Theorem 7.2. h = HD(J,.(F)) is the unique zero of the pressure function t — P(t), t > 1.

Proof. Let n > 1 be the unique number ¢ (produced in Lemma 4.10) such that P(¢) = 0.
Given k > 1 let

Xy ={z€ J.(F): lim_)supRe(F”(z)) > —k}.

Choose an arbitrary point z € J(F). Fix t > n. Take n > 1 so large that

Log S 1(FY @) <

z€F—I(z)

P(t) (note that P(¢) < 0 by Lemma 4.10).

DN | =

for all j > n. Cover Q_ by finitely many open balls B(z1,6), B(22,0),...,B(z,0). Since

welUU U E‘@Qw.

Jj=ni=1geF~i(z;)
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we conclude that

oo | 00

: ; - : 1 .
() < Jim 33 Y KUF) (@) (20)' < H20K) Jim Y esp(5P(1)) = 0

j=ni=12eF=i(z;) j=n
since P(t)/2 < 0. Hence HD(X},) < t. Since J,.(F) = U2y Xk, this implies that HD(.J,.(F)) <
t. Letting now ¢t ~\, n, we conclude that HD(J,.(F)) < n. In order to prove the opposite
inequality fix € > 0. Since y,(J;(F)) =1 and since p, is ergodic F-invariant, it follows from

Birkhoft’s ergodic theorem and Jegorov’s theorem that there exist a Borel set Y C J,.(F') and
the integer k& > 1 such that ;(Y) > § and for every z € Y and every n > k

log (Y ()] = | < e (7.1)

where x = [log|F’|du, is finite due to Lemma 7.1. Put v = My Given z € Y and
0 <r <9, let n >0 be the largest integer such that

B(xz,r) C F,"(B(F"(x),9)). (7.2)

Then B(z,r) is not contained in F, "*V(B(F"!(z),§)) and applying i-Koebe’s distortion
theorem, we get

r > 47| (FY (o))t (7.3)

Taking r > 0 sufficiently small, we may assume that n > k. Combining now (7.2) along with
P(n) = 0, Koebe’s Distortion Theorem and (7.3), we obtain

my(B(z,r)) < my(F, "(B(F"(x),0))) < |(F, ") (F"(2))|"my,(B(F"(x), 6))
- |(F ) ()]
SE) FH @) 2 s S
|(F)' ()"
Employing now (7.1), we thus get
my(B(z, 1)) < rlebtamth e==an — pne2en (7.4)
Now, it follows from (7.2), Koebe’s distortion theorem and (7.1) that r < K§|(F™) (z)|! <
K&e~x=9n Thus eX=97 < =1 and consequently ¢ < 7 x-<. This and (7.4) imply that
2e
v(B(x,r)) < my(z,r)) 2 r""x=<. Consequently HD(.J,(F)) > HD(v) > n — XZ; and letting
¢ — 0 we finally obtain HD(J,(F)) > n. We are done. B

Remark 7.3. We have already used this fact in the proof of Theorem 7.2 but we would like to
emphasize it separately that due to Theorem 4.14 my, is a unique t-conformal ((t, 1)-conformal)
measure for F with t > 1. From now onwards the measure my, will be simply denoted by m.

Let H" and P" be be respectively the h-dimensional Hausdorff and packing measures (see
[10], comp. [23] for example, for its definition and some basic properties). The results of this
section provide in a sense a complete description of the geometrical structure of the sets .J,.(F')
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and J,.(f) and also they exhibit the geometrical meaning of the h-conformal measure m. The
short proof of the first result improves on the argument from the proof of Proposition 4.9 in
[25].

Proposition 7.4. We have P"(J,(F)) = co. In fact P"(G) = oo for every open nonempty
subset of J.(F).

Proof. Since m(J,(F) N Q5;)) > 0 for every M € IR, it follows from Birkhoff’s ergodic
theorem, Theorem 6.1 and Theorem 4.14 that there exists aset E C J,(F') such that m(E) =1

and lim sup,,_,.. ReF"™(z) = —oo for every z € E. Fix z € E. The above formula means that
there exists an unbounded increasing sequence {n;}°,, depending on z, such that
klirn Re(F™(z)) = —oo. (7.5)
—00

Since B(F™(z),25) N PC(F) = (), for every k > 1 there exists a unique analytic inverse
branch F, ™ : B(F"(z),1) — € of F™ mapping F"(z) to z. In virtue of ;- Koebe’s distortion
theorem we have

B(z, 47 '0|(F™)'|(2)|7") € F™ (B(F™(2),9)),
Applying the standard version of Koebe’s distortion theorem and conformality of the measure
m, we obtain

m(B(z, 4 0|(F"™)'(2)| 1) < K"|(F™)'(2)]""m(B(F™ (2),0))
< (4K (A7HE™) ()71 ' m(QRerme (2)+5)
Since by (7.5), limy o0 M(QRepri(2)15) = 0, We see that

limint PBED)
r—0 rh

Since m(G N J.(F)) > 0 for every non-empty open subset of .J.(F), this implies (see an

appropriate Converse Frostman’s Type Theorem in [10] or [23]) that P"(G) = co. We are

therefore done. B

Since the 2-dimensional packing measure on 'is proportional to the 2-dimensional Lebesgue
measure and this latter one is not locally infinite, we immediately get from Proposition 7.4
the following.

Corollary 7.5. It holds h = HD(J,(F)) < 2.

Theorem 7.6. 0 < H"(J,(F)) < oco.

Proof. Tt follows from (4.22) applied with the measure m that the h-dimensional Haus-
dorff measure H"(J,5/(F)) is finite, where M is given by Lemma 4.11. Since for every
n>M, m(J,,(F)\ J.p(F)) =0 (for the definiotion of the set J, ; see the beginning of the



THE DYNAMICS AND GEOMETRY OF THE FATOU FUNCTIONS 29

proof of Theorem 4.14, we deduce in the similar way (using again (4.22)) that H*(J,,(F) \
Jrar(F)) = 0foralln > M. Since Ups s Jrn(F) = J.(F), we thus conclude that H"(.J,.(F)) =
H"(J, i (F)) < co. We are therefore to show that H"(J,.(F)) > 0. The proof follows closely
the proof of Theorem 4.10 in [25]. Since m(J,(F)) = 1, it suffices to demonstrate that for
every z € J.(F) and all r > 0 sufficiently small (depending on z)

m(B(z,r)) < Cr"
for some constant 0 < C' < oo independent of z and r. And indeed, put
0 = min{r, dist(J(f), 1T 1 (PC(F)))}.

Fix 2 € J,(F), 0 <r < 0(32|f'(2)|)~". Since F : J(F) — J(F) is an expanding map, there
exists a largest n > 1 such that

Ayt 0
YR < 5. (7.6)
Thus
n+1\/ 9
r|(f") ()] > 35 (7.7)

It follows from the definition of @ that the holomorphic inverse branch f," : B(f"(z),0) — €
of f* sending f"(2) to z, is well-defined. Since f|p(sn(2),9) is 1-to-1 and since, by Koebe’s
t-Theorem, f(B(f"(z),0)) D B(f"“(z), i9|f’(f"(z))|), we conclude that the holomorphic
inverse branch f ("*1 . B(f”“(z),i9|f’(f”(z))|) — @ of f"! mapping f"*(z) to z, is

well-defined. Since
4r|(f"Y (2)] = 4r| (£ (2)] - | (F(2)] = 9(%Tl(f”)’(2’)|) : §|f'(f”(z>>|
and since, by (7.6), 27|(f")'(z)| < 1, we conclude that 4r|(f"*!)'(2)] < 0| (f/"(2))|. Ap-
plying Koebe’s i—Theorem again, we see that
fD (B ) A ()1)) 2 B2 1 @) () (2)]) = Bz, r).

Since the ball B(f”“(z), 4r|(f™1Y(2) |) intersects at most s=4r|(f" 1) (2)[+1 < r[(f*™)'(2)]
horizontal strips of the form 2mik + P, k € Z, using Koebe’s Distortion Theorem, h-
conformality of the measure m and, at the end, (7.7), we get

r M m(B(z, 1)) < T KM ()M (@) m (TH(B (1 (2), 4] (1) (2)1)))
< KM (Y ()R (PN (2)])
= Kl <K ()

We are done by applying an appropriate Converse Frostman’s Type Theorem in [10] or [23]).
|
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8. ANALYTICITY OF PERRON-FROBENIUS OPERATORS

Let us start this section with the following.

Lemma 8.1. Supppose that {¢, : J(F) — C},cc is a family of continuous summable po-
tentials , where G is an open connected subset of C. If for every z € J(F) the function
o — ¢,(2),0 € G, is holomorphic and the map o — Ly, € L(H,) is continuous on G, then
the map o — Ly, € L(H,) is holomorphic on G.

Proof. Let v C G be a simple closed curve. Fix g € H, and z € J(F). Let W C G be
a bounded open set such that v C W € W C G. Since for each z € F~'(z) the function
o +— g(x)¢,(z) is holomorphic on G and since for each 0 € W

> 9(@)d(2)

zeF~1(2)

< 1€, 9110 < 1£4,9lla < llgllasup{[|Ls, o : 0 € W} < 00

by compactness of W and continuity of the mapping o — Ly, , we conclude that the function
0 Ly, g(z) = Y. ds(2)9(x) €T, o €W,

zeF~1(2)

is holomorphic. Hence, by Cauchy’s theorem [ L4 g(2)do = 0. Since the function o —
Ls,9 € H, is continuous, the integral [ L4, gdo exists and for every z € J(F'), we have
[, Ly,9do(z) = [ Ly,g(2)do = 0. Hence, [ Ly, gdo = 0. Now, since the function o
Ly, € L(H,) is continuous, the integral [ L4, do exists and for every g € Ha, [, Ly, do(g) =
[, Ly,9do = 0. Thus, [ L4,do =0 and in view of Morera’s theorem, the function o — L, €
L(H,) is holomorphic in G. The proof is complete. B

In order to prove the main result of this section we need the following auxiliary definitions
and few elementary lemmas. Given w € J(F') we define H,,, to be the set of all bounded
functions g : B(w,d) — € such that there exists a constant C' > 0 such that if x,y € B(w, ¢)
and |y — x| < 6, then |g(y) — g(z)| < Cly — z|*. The a-variation v,(g) is defined to be the
least C' with this property. H,, endowed with the norm ||g||o = va(g) + ||9|| is a Banach
space.

Lemma 8.2. If v € J(F) and ¢ € H, then the operator A, : Hy, — Hy p) given by the
formula
Augg(2) = 3(F 1 (2))g(F; ' (2), 2z € B(F(v),6)
18 continuous, and
[ Avglla < 2+ (LB)*)@ 0 Fy o

(L
Proof. For every g € H, and z € B(F(v),d) we have
[Aupg(2)] = [o(F, ()] - 1g(F, ()] < Mg o F, M la - llglla (8.1)
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If, in addition, w € B(F(v),0) and |w — z| <, then similarly as in the proof of Lemma 5.1,
we get
|Aygg(w) — Ay pg(2)| <
g(F ()| o FH(w) = g o 7 (2)| + [d o F (2)|lg (B (w)) — g(Fy (2)))]
< lglloolld 0 F M lalw = 2|% +va(9) [l 0 Fy [0 LB w — 2|
< lglla( + (LAY)I¢ 0 FHla|w — 2|

Hence, va(Ay59) < (1 + (LB)*)||¢ © F, Y]allg||le and combining this with (8.1), we obtain
Ay eglla < (24 (LB)M)||¢ o F, M ]allglla- Consequently, A, s(H,) C Hy g, the operator
Ayg © Hy — Hap() is continuous, and |[Ayelle < (2 + (LB)Y)||¢ o F, |- The proof is
complete. B

Lemma 8.3. If ¢ : J(F) — @ is dynamically Hélder then for every v € J(F),
160 F, M la < (e5+ D60 F, oo
Proof. Tt follows from (5.2) that for all z,y € B(F(v),d) with |z — y| < § we have
o Fy M (y) — ¢ o Fy ' (2)] < cold (B ()] - |y — 21 < egllpo By |ooly — x)
and, therefore, v, (¢ o F, ') < cyllpo F; |- Thus, |[¢po Ey e < (cg+1) - [|po F oo We

are done. H

A straightforward calculation proves the following.

Lemma 8.4. If ¢ € H,, then for every n > 1 and every v € J(F)

¢ 0 7" lo < (14 LES)]|0]a
where g — go Fy ™ : B(F™(v),8) = @'is an operator from Hy to Ho pn(y)-

Lemma 8.5. If p: X — H, is a continuous mapping defined on a metric space X , then for
every v € J(F) the function x +— Ay pz) € L(Ha, Ho i), © € X, is continuous.

Proof. Fix xy € X, ¢ > 0 and take 6 > 0 so small that for every x € B(x,6) and every
v e J(F), ||p(x) — p(xo)||la < (24 (LB)*)2e. Then applying Lemma 8.2 and Lemma 8.4 we
see that for every = € B(zo, ) and every v € V;, we have
14v0) = Avgpeolla = 11 Av p@)=pien [l < 2+ (LB))(p(x) = p(2d)) © F, |«
< 24 (LAY A+ (LB))p(x) = plwo)lla < €

The proof is complete. B
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Denote the class of Holder continuous summable functions on J(F) by H5. Now we are in
position to prove the main result of this section.

Theorem 8.6. Suppose that G is an open connected subset of the complex plane @ and that
b, : J(F) = @, 0 € G, is a family of mappings such that the following assumptions are
satisfied.

(a) For every o € G, ¢, is in H,.
)

) The function o — ¢, € H, (0 € G) is continuous.
d) The family {cy, }sec is bounded.
)

)

The function o — ¢,(2) € T, 0 € G, is holomorphic for every z € J(F).
V(O’Q € G) E'(T > 0) 3(0’1 € G)

{ ¢
sup

Py
Then the function o — Ly, € L(H,), 0 € G, is holomorphic.

1o € B(JQ,T)} < 00.

Proof. In view of Lemma 8.1 it suffices to demonstrate that the function o — L, € L(H,),
o € (G, is continuous. First notice that in view of Lemma 8.2, Lema 8.3 and the assumption
(d), we have for every v € J(F) and every o € B(o,,r) that

14v6,1la < 2+ (LA)¢o 0 Fy M la < Ml|s 0 Fy oo

where M = (2+(LF)*) sup{cy,,0 € G} < co. We can continue the above estimate as follows.

by, 0 F7 boo k. E
g1

1 i
el < M0 P o= 31 o 0 - 2220

- ¢o 0 F!
< 1 re v :
_M||¢0’10Fu ||00‘¢0_10Fu—1 - (82)
¢U - .
SM‘ﬁf)— 160, 0 Fy lloo < MT |6, © F, oo,
o1 |00

where T is the supremum taken from the assumption (f). For every z € J(F) define the
operator Ly, . : Hy — H, . by the formula

Ly, .= Z ¢o Fv_1 ~go Fv_1 = Z Ay - (8.3)
)

vEF~1(z) vEF—1(z

Notice that

Ly, -(9) = Ly, (9)|B(:0) (8.4)
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for every ¢ € H,. Fix now ¢ > 0 and two elements 0,7 € B(oy,7). Then there exist
ge € By, (0,1) and two points z,y € J(F') such that

1£6, = Lo, llo = sup {[|L4,(9) = L4, (9)lla = g € Bu, (0,1)}

€
S ||£¢a(gf) - Ld’r(ge)Ha + 5

= va (Lo, (9) = Lo, (9) + 5 + 1L, (9) = Lo (90) |

€ € €
< Vg (»C¢>a,:v(ge) - £¢r,x(ge)) + 5 + ||£¢J’y(ge) — £¢r,y(ge)||oo + g + 5

3€ 8.5
N9 = Lo (g o+ 1Ly (90) = Loy (@) o + (8:5)

3e ’
< 2[|Lg,w(9e) = Lo, w(ge)lla + 5
3e
5
where w is either = or y depending upon which number || Ly, »(9¢) — L. 2(ge)||a 0oF || Lo, 4 (ge) —

Ly, y(ge)|]a is larger. Since ¢,, is a summable function (see (a)), there exists a finite set
V C F~'(w) such that

S 2||£¢0'7w - L¢T7w||a +

€
10MT"

> g o F s <

veEF~1(w)\V

(8.6)

Since, by (c), the function & — ¢, € H, is continuous, it follows from Lemma 8.5 that the
function § — A, 4, € L(Ha, Ha,r) is continuous. Consequently there exists 7 € (0,7) such
that

€

Apolla < ——

for all 0,7 € B(02,7n) and all v € V. Combining now (8.5), (8.4), (8.3), (8.7) and (8.6), we
get

||A’U,¢0' - (87)

3e e € €
||‘C¢a_£¢r||a < €+2 Z ||Av,¢a_Av,¢r||a+2 Z (||Av,¢a||a+||Av,¢r||a) < EJFEJFE =€

veV vEF~1(w)\V
We are done. B
Due to Hartogs’ theorem, as an immediate consequence of Theorem 8.6 we obtain the
following.

Corollary 8.7. Suppose that G is an open connected subset of @™, n > 1, and that ¢, :

J(F) — @, 0 € G, is a family of mappings such that the following assumptions are satisfied.
(a) For every o € G, ¢, is in HS,.

(b) For every o € G the function ¢, is dynamically Hélder.

(c) The function o — ¢, € Hy (0 € G) is continuous.

(d) The family {cy, e is bounded.

(e) The function o — ¢,(2) € T, 0 € G, is holomorphic for every z € J(F).
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(f) V(oo € G)3(r > 0) (01 € G)

sup{ ¢
¢

o1

1o € B(JQ,T)} < 00.

Then the function o — Ly, € L(H,), 0 € G, is holomorphic.

9. QUASICONFORMAL CONJUGACIES IN THE FAMILY {fy}

We will need in the sequel the following simple result.

Lemma 9.1. IfRe\g > 1, lim, 00 Ay = Ao, if 2, € J(F),) foralln > 1, and if lim, o0 2, = 2
for some z € @, then z € J(F),).

Proof. Suppose on the contrary that z is in the Fatou set of F),. Then there exists £ > 1 so
large that Re(FA’“O(z)) > 1. By continuity, Re(FA’“n(z)) > 1 for all n > 1 large enough. Hence

F)’fn(z), and consequently also z, belong to the Fatou set of F)\ for all n > 1 large enough.
This contradition finishes the proof. ®

The two covering maps IT : €' — @ = €/ ~ and the map z — e * € €'\ {0}, z € €, induce a
conformal homeomorphism H : @ — €'\ {0} which extends to a conformal homeomorphism,
denoted by the same symbol H, from @ U {+oo} to €, sending +oo to 0. Each map G, =
HoF\oH™!:@— is given by the formula

Gi(z) = e Pze™ . (9.1)

Assuming that ReA > 0, the map G has exactly one attracting fixed point, namely z = 0,
and its multiplier is equal to e *. Gy has only one singularity z = 1, which its critical
point. This critical point belongs to the Fatou set of GG and is attracted to 0 under forward
iterates of G\. In particular G, is in the class S. Obviously, with the terminology of [13],
G\ € M = Mg, , even more {G}{rer>0} C . It was shown in the proof of Theorem 10 in [13]
that each element of ¥ is structurally stable and the conjugating maps are quasiconformal.

In particular, we get the following.

Theorem 9.2. Fiz \y € € with Re(\g) > 0. Then for every A € € with Re(\) > 0, there ezists
a quasiconformal homeomorphism conjugating Gy and G, (i.e. Gyo Hy = Hy0G),). These
conjugating homeomorphisms can be chosen so that the following properties are satisfied.

(a) For every z € @, the map X\ — Hy(z) is holomorphic.
(b) The mapping (A, z) — Hx(z) is continuous.
(c) The dilation of the maps Hy converges to 1 when X\ — Ag.
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Since each map F), is conjugated with GG, by the same conformal homeomorphism H : () —
@'\ {0}, as an immediate consequence of Theorem 9.2, we get the following.

Theorem 9.3. Fiz A\ € € with Re(\g) > 0. Then for every X\ € € with Re(\) > 0, there exists
a quasiconformal homeomorphism conjugating Fy and F\, (i.e. Fyohy = hyo F),). These
congugating homeomorphisms can be chosen so that the following properties are satisfied.

(a) For every z € @), the map X\ — hy(z) is holomorphic.
(b) The mapping (A, z) — hyx(2) is continuous.
(c) The dilation of the maps hy converges to 1 when A — Xq.

We will need the following improvment of Proposition 2.6.

Lemma 9.4. If Re\y > 1, then there exist constants r > 0, ¢ > 0 and k > 1 such that
|(£X)'(2)] > ex”
for all X € B(Xo,7), all z € J(F\) and alln > 1.
Proof. For every A with ReA > 1 and every k£ > 1 let
Ax(A) = {z € C: |(FY)'(2)] > 2}.
In view of (1.2) there exists M < 0 so small that
Qi C A1(N) (9-2)

for all A with ReA > 1. It was shown in the proof of Proposition 2.6 that there exists ¢ > 1
such that

J(Fyy) C A1(Ag) U Az(Ng) U ... U A (No). (9.3)
We shall show that
J(Fy) C Ai(N) UAs(A)U... U AN (9.4)

for all A €  sufficiently close to A\g. Indeed, suppose on the contrary that there exist a
sequence {\,}22, converging to A\¢ and a sequence {z,}22, (z, € J(F),)) such that
|(F,) (za)| < 2 (9.5)

foralln > 1 and all j = 1,2,...,¢q. By (9.2) z, € Q) for all n > 1. Since in addition
Rez, < 0 for all n > 1, passing to a subsequence, we may assume without loss of generality

that the sequence {z,}°°, converges to a point z € €. It therefore follows from Lemma 9.1
that

z € J(Fy,). (9.6)
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Since due to Hartogs’s theorem, each map (A, z) — F}(2), n > 1, is an analytic function from
@* — @, using (9.5) we obtain

(F)' ()] = Tim [(FY,) ()] <2

for all j = 1,2,...,q. Since z € J(F),) (see (9.6)), these inequalities (for j = 1,2,...,q)
contradict (9.3), and the proof of formula (9.4) is finished. Now the proof of our lemma can
be concluded in exactly the same way as the proof of Proposition 2.6 was concluded. B

For every z € @ we will write h)(z) to denote the derivative of the holomorphic function
A — hy(z). Also, in order to use a more convenient notation in the proof of the next
proposition, we will freaquently write F'(), z) for F)(z) and more generally F™ (), z) for F{(z).
We shall now prove the following.

Proposition 9.5. For every Ay € € with Re(\o) > 1 there exists r > 0 such that
T :=sup{|h\(2)| : A € B(X\o, 1),z € J(F)\y)} < 00.
Proof. Consider a periodic point z € J(F),) of F),. Fix a period n > 1 of z. This means
that
FM(A, ha(2)) = ha(2)
for all A € @ with Re) > 1. Differentiating this equation with respect to the (first) variable
A, we get
DyF™ (A, ha(2)) + D2 F™ (A, ha(2)) iy (2) = Ry (2)
or equivalently
DiF™(\ h
hi\(Z) _ 1 ( ) /\(Z)) )
1 — DyF™(\ hy(2))
It follows from Proposition 2.6 that if n > 1, kept to be a period of z, is large (depending on
A) enough, then

[DLE™ (A, ha(2))]
| D2F (A, ha(2)) |

So, all we need to do is to get a satisfactory upper bound for the right-hand side of this
inequality. We have for all A € € with ReA > 1, all w € €'and all n > 1, that

DyF™(\,w) = Dy (F(\, F*~' (A, w)))
=D F(\, F" YO\ w)) + DaF(\ F™ YO\ w)) D F™ (A w)
=1+ DyF(\, F" Y\, w)) D F™ (A w).

Therefore, by induction

[PA(2)] < 2

9.7)

n—1
DiF*(\w) =1+ Y DoF" 7 (A, FI (A w)).

=0
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Hence, it follows from (9.7) and Lemma 9.4 hat

< 00

9.8)

M) < 22 1) ()™ < 23 1B ()™ < 267 Y- =

=0 =0 =0 c(k —1)

for all A € € sufficiently close to Ao, say for A\ € B(\g,r). Now fix an arbitrary point
w € J(F),). Since periodic points of F are dense in J(F),), there exists a sequence {w, }5, C
J(F),) consisting of periodic points of F), such that lim, ,,, w, = w. It then follows from
condition (b) of Theorem 9.3 that the sequence {\ — hy(w,)}°; converges to the function
A +— hy(w) uniformly on all compact subsets of {z € €': Rez > 1}. Since the item (a) of
Theorem 9.3 says that all the functions A — hy(€), & € J(F),), are analytic, it follows from
(9.8) that

I R T /
)] = Jim, [ )] <

We are done. B

Given K, > 0 and A € € with ReX > 1 we say that a map h : € — C'is (K, «, \)-Holder
continuous if

|h(z) = h(y)| < K|z —y|*

for all z € J(F)) and all 7,y € B(z,27'9).

Proposition 9.6. For every \g € € with Re\g > 1 there exists R’)\O > 1 such that if A € @ 1s
sufficiently close to Xg, then the conjugating homeomorphism hy : @ — @ is (Ky,,1/qx, Xo)-
Holder continuous, where qy 1s the quasiconformality constant of hy.

Proof. In view of Theorem 9.3, we may assume > 0 produced in Proposition 9.5 to be so
small that gy < 2forall A € B(X\g,7). Fixx € J(F),). Let G = hy(B(z,1))). Since hy : € — T
is a homeomorphism, G is an open connected simply connected set. Let R : B(0,1) — G be
its conformal representation such that R(0) = hy(x). In view of Proposition 2.5, there exists
a connected subset of the Julia set J(F),) joining = and the boundary 0B(z,1) of B(x,1).
Since J(Fy) = hy (J(F)\O)), there thus exists a connected subset of J(F)) joining hy(x) and
0G. Consequently, there exists z € dB(0,1/2) such that R(z) € J(F\). Hence, R(B(0,1/2))
does not contain any ball centered at hy(z) and with radius > |R(z) — hy(z)|. But writing
R(z) = hy(w), where w € B(z,1)NJ(F)\,) as R(z) € GNJ(F)), it follows from Proposition 9.5
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that
|R(2) — ha(@)] = [ha(w) = ha(z)] < [ha(w) — w| + |w — 2| + |z — ha(z)|

= [ha(w) = hog (w)| + 1 4 [hr, (x) = ha(2)]
= ‘/)\: h;(w)dfy‘ +1+ ‘/A:\ h;(x)d*y‘

A A
< [O R )l + 1+ [ )y
)\0 )\0
<14+2T A= N <14 2rT.

Therefore R(B(0,1/2)) does not contain the ball B(hy(z),2(1 + 2rT)). So, Koebe’s ;-
distortion theorem implies that

|R'(0)| < 16(1 + 2rT). (9.9)

The map g = R™' o hy : B(x,1) — B(0,1) is a quasiconformal homeomorphism between
two disks of radius 1. Hence, by Mori’s theorem, |g(21) — g(22)| < 16|z, — 2|/ for all
22y € B(z,1). In particular, for every z € B(zx, 1),

9(2)] = lg(2) = g()| < 16|z — x|/®.
This implies that if |z —z| < 2719, then |g(2)| < 16(2’10)1”A < 16(2*10)1/2 = 1/2. Therefore,
if |21 — x|, |22 — x| < 27'° then using (9.9), we obtain
|ha(22) — ha(z1)] = [R(g(22)) — R(9(22))| < K|R(0)]|g(22) — g(z1)]
< 16K|R'(0)] - |22 — 21 |Y ™ < 16K (14 2rT) |z — 2 |/ ™

where K is the Koebe distortion constant corresponding to the scale 1/2. We are done. B

10. REAL ANALYTICITY OF THE HAUSDORFF DIMENSION

In this section we prove Theorem 10.3, our main result in this paper. We will need the
following continuity result.

Lemma 10.1. The function (t,\) — Py(t), (t,\) € (1,400) x {A € € : ReA > 1}, is
continuous.

Proof. A standard application of Holder’s inequality shows that for every A € @ with
ReA > 1, the function ¢ +— P, (t), t € (1,00), is continuous. There thus exists & € (0,ty — 1)
such that if t € (to — &1, to + &), then

|P/\0(t) — P)\O(t[))| < 6/2 (101)
Now fix now vy > 1 so small that (t, + &;)logy < ¢/3. Let 0 < r; < r be so small that
Mg = sup{sup{Re(J(F))} : X € B(\o,71)} <O0.
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Then there exists 0 < 5 < r; so small that if Rez, Rew < My and |z — w| < ry then
[1—e™]
[1—e?|
In view of Proposition 9.5 there exists n € (0, min{;, r2}) so small that if |\ — A\¢| < £ then
|ha(2) — 2| < ry away from a small fixed neighbourhood of the attracting periodic orbit. Now
fix 2 € J(F),). Take n > 1 and 2 € Fy"(2). Since the homeomorphism h, described in
Section 8 conjugates F and Fy,, ha(Fy,"(2)) = F) "(2). Also, for every 0 < i < n and every
r € Fy."(2), ha(f3, () = f'(ha(z)) and, therefore | f5 () — f{(hr(z))| < ro. Hence,

((F) (ha@)] _ JUR) (@) _ TS A (a(2)))]

7*1 < < 7.

|(FX,)" ()] ((f5) @) T S, (F, (@)
L —exp(= i@ .
= . € (v ™"
U i —eorp,or 07"
Since hy : F)"(2) — F) "(ha(2)) is a bijection, we therefore conclude that
2w ™ (ha(2)) |(F5) ()]~
Trero (B V@]

c (,yftn, ,}/tn)

and from this,

1 1

nlog( > (Ff)'(m)t) - nlog( > (Fi’o)’(x)t) € (~tlog7,tlog).
z€F, " (ha(2)) xEF;O"(z)

So, Px(t) — Py, (t) € (—tlog~y,tlog~y) for all A € B(\g,&) and consequently |Py(t) — Py, (t)| <

€/2 for all (t,\) € (to — & to + &) x B(XN,&). Combining this with (10.1), we see that

|PA(t) — Py, (to)] < € forall (t,X) € (to — &, to + &) x B(Ag,§). The continuity of the function

(t, A) = Pa(t), A € (1,400) X {A € €': Re\ > 1} is established.

Fix now Ay € €'with Re)\y > 1 and ¢, € (1,00). Since by Proposition 9.6, hy : J(F\,) — J(F))
is Holder continuous with the Holder exponent 1/¢, depending on A and since g, converges
to 1 as A — \g, we get that for every r > 0 sufficiently small that

1
Oé:inf{—i)\GB()\g,’l“)} > 0. (10.2)
ax
For every A € B(Xo,7) and every t > 1 let L3 , : Ho(J(F,)) = Ha(J(F),)) be the operator
induced by the weight function |F} o hy| ™" : J(F),) — IR, i.e.
L3.9()= 3 |E(ha@)| " g()-
mGF;OI(z)

Our aim is to use Corollary 8.7. However, the potential |F§ o hy|™* does not depend on
(A, t) € @° in a holomorphic way. For this reason, we have to embed ) into €% and ¢ into .



40 JANINA KOTUS AND MARIUSZ URBANSKI

We embed the complex plane @ into @° by the formula  + iy — (z,y) € @*. So, A € €' = IR?
may be treated as an element of €%. Fix
f = f)\o and F' = F/\O.

The technical result of this section is provided by the following.

Proposition 10.2. Fixz Ay with Rely > 1 and ty > 1. There then exist R > 0 and a
holomorphic function

L : Dge (Ao, o), ) = L(Ha(J(F(Xo))))
(\o is treated here as elements of @°, ty as an element of @ and o comes from (10.2) with r
replaced by R) such that for every (A, t) € B(\g, R) x B(ty,R) C U'x IR
L(At) = L3, (10.3)

Proof. For every A € ( sufficiently close to g, say A € U, let 8, = F} o h) and for every
z € J(F) let

P (2) = [0x(2)] (10.4)

and

6.0 = g

We claim that there exists r > 0 such that for every z € J(F') the holomorphic function
log, : B(Ag,7) — @'is well defined and there exists a universal constant (independent of
z € J(F) in particular) M; > 0 such that

[ log ¢, (A)| < M, (10.5)

for all A\ € B(M\o, ), where the branch logi,()) is determined by the requirement that
log 1. (A\o) = 0. Indeed, since

(A, 2) e U x J(F).

we see that

e
1 —¢*

:Rez < —6,\0} < 00, (10.6)

where €), comes from Theorem 2.3. Taking r > 0 suficiently small, it follows from Proposi-
tion 9.5 that

a(2) = =1 = 16) = ) = |

A
< [ Nldn < TIA= 2ol < Tr.
Ao (10.7)

Observe that
1 —e"| < Elw (10.8)
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for all w € B(0,7Tr) and some E > 0. Now, for every z € J(F'), we have
F'(h 1— —hx(z) 1— ¢ ? —z _ ,—hx(?) —z _ ,—hx(?)
bo(\) = A(,A(z)): c - _lmce de e S
(%) 1—e* l—e* 1—e*

Hence, using (10.6), (10.8) and (10.7), we obtain

e~% — e—h,\(z) —z

1—e*

[, (\) — 1| = 11— e )| < ME|hy(2) — 2| < METr < 1/2,

e
1 —¢*

where the last inequality was written assuming that r > 0 is small enough. So, the required
branch of log 1), is proven to exist and formula (10.5) is established . Fix &;,& € J(F). Since,
by Theorem 2.3, the segment [£1,&,] joining the points & and & lies entirely in {z € @ :

Rez < —¢),}, it follows from (10.6) that
&2 2
</ dz] < M|& — &].
&1 1

/62 _eiz dz —
a -1 € = (10.9)
Fix now z1, 29 € J(F') with |23 — 21| < d. Applying Proposition 9.6, (10.2) and (10.9), we get
| log ¢z, (A) —log ¥z, (M) =
= [log(F} 0 ha(20)) — log(F}, 0 ha(22)) — log(F} 0 ha(21)) + log (F}, © hay (1))
= ‘log(l — e’hx(”)) — log(l — e’”) — log(l — e””(“)) + log(l — e’zl)
< ‘log(l — e_h*(”)) — log(l — e_h*(“))‘ + ‘log(l — 6_22) — log(l — e‘zl)
< M|hy(z2) — ha(z1)| + M|zy — 21|
< MKy, |21 — 2"

Hence for every A € B(\g,r) the function z — logv,(\), z € J(F), belongs to H, and its

Holder constant is bounded from above by MK,,. Since the function logv, : B(A,7) — @
is holomorphic, it is uniquely represented as a power series

log s (\) = 3 an(2)(A — Ao)™

n=1

(&

|log(e"£2 — 1) — log(e’61 — 1)| =

By Cauchy’s inequalities,

lan(2)] < 21 (10.10)

Tn
for all n > 0. For every A = 2 + iy € B(\y,7) C €, we have

Relog¥,(\) = Re <§ an(z)((x — Re(No)) + (y — Im()\g))i)n>

(10.11)

o0

= 3 epal2) (2~ Re(h))" (y — Im(Xo))",

p,q=0
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where ¢, 4(2) = api4(2) (p;“q)iq. Due to (10.10)
[ep.a(2)] < laprq(2)] - 270 < My 2Py =40 (10.12)

Hence, Relog ¥, extends by the same power series expansion
> q
> pa(2) (2 = Re(X))” (y — Im (X))
P,4=0

to a holomorphic function on the polydisk Dge (Ao, 7/4). We denote this extension by the
same symbol Relog, and we have

IRelog 1, (M| < Z M2~ P+ — 40, (10.13)
p,q=0
on Dgz (Ao, r/4). So, for every t € Bg(ty, p), where p = t, — 1, the formula
Coan(2) = — (tRelog b, (A) + tlog |6, (2)]) (10.14)

extends —tlog |0, (z)| on the polydisk Dge(Ng, 7/4) X Be(to, p). Now, due to (10.13), for every
(A, t) € Bge(Ao,7/4) X Bg(to, p) and every z € J(F'), we have

|eCM | = exp (Re(—tRelog 1, (\) — tlog |0y, (2)]))

(
xp(Re(—tRe log i, (1)))]63, (2)] *© < exp([t]|Relog i (A)]) 6, ()] "
1t||9}\ ( )|—Re(t) (10.15)

| —Ret

<e

Since the function |6, is summable, it therefore follows that each function

¢(/\at) = GC(A,t), ()‘7 t) € DGZ()‘Oa 7"/4) X B@(tm p)a

is summable. In order to prove the proposition, we shall check that the family of func-
tions ¢(ry satisfies all assumptions of Corollary 8.7. One part of the assumption (a) of
Corollary 8.7 (summability) is already proven. Of course putting L(\,t) = L3, (A1) €
Dg2 (Ao, 7/4) % Befto, p), the condition (10.3) is satisfied. Obviously, the function (A, t) —
oo (2), (A1) € Dga(Ng,7/4) X Be(to, p), is holomorphic for every z € J(F) and the assump-
tion (e) of Corollary 8.7 is established.

Now we shall show that for every A € Dge(Ag,r/4) the function z — Relog,(N), z € J(F),
is in H,. Since we have already proved that for every A € B(\g, ) the function z — log v, (),
z € J(F), is in H, and its Holder constant is bounded from above by 2C', using Cauchy’s
inequalities, we conclude that

~ AN\
an(2) = an(w)| < My, (5) 12 = wl?
for all z,w € J(F) with |z — w| < §. Therefore,
4 p+q R 8 p+q
palz) = Cpalw)] £ 2C-270 (2) 2wl = MRy, (5) 2 = wl?
" " (10.16)
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Hence,

N O s8\PHL s p NP /o \Y A
Relog (V) — Reloguu (W < My, 3 (5) (15) (55) 12 — it = MR — wl?
p.q=0 (10.17)

for every A € Dgz(Ag,7/16)) and all z,w € J(F) with |z — w| < §. Hence, using (10.13), we
see that the function z — Relog,(A), z € J(F), is in H, for every A € Dg2(Ag,r/4). Since
Ox(2) = F3,(2) = 1 —e %, we get that log|fy,(2)| = log |1l — e *|. Utilizing (10.17), (10.14)
and (10.9), we conclude that

[Con(2) = Can(w)] = [t ([Relog v (A) — Relog v, (A)] + log |6, (2)[ — log [, (w)]])

< (to + p) (AM Ky |2 — w]™ + [log [0, (2)] — log |, (w)]])

= (to + p) (AM K, |z — w]|* + [log|e™* — 1] — log [e™ — 1)

= (to + p) (AM K|z — w|* + |Re(log(e™ — 1) — log(e ™ — 1))J)

< (to+ p) (4Mk,\0|z —w|*+ ‘log(e’z —1) —log(e ™™ — 1)‘) (10.18)
(to + p) (4M K|z — w]* + M|z — w])

for every (\,t) € Dge(Xo,7/16) x Bgl(ty, p), where C' = M (4K, + 1). We shall now check
the second part of the assumption (a) of Corollary 8.7 that ¢, = efon e Hy, for all
(A, t) € Dge(Xo,7/16) X Bg(ty, p). Indeed, first observe that due to (10.15) there exists a
constant My > 0 such that

[6(X, 1) (2)] = |00 @] < My (10.19)

for all (A, t) € Dge(Ag,7/16) x Bg(to, p) and all z € J(F). Obviously, there exists a constant
M3 > 0 such that |e" — 1| < Mj3|n| for all n € € with |n| < C§*. Applying (10.18) and (10.19),
we obtain

600 (2) — B ()| = |eC00 @] efonEI=Con®) — 1| < My M| ¢y (2) — G (w))]
< CMaMs([to| + p)|z — w|®

for all (A, t) € Dga (Ao, r/16) X Be(to, p) and all z,w € J(F) with |z — w| < ¢§. In particular,
P € Hy and assumption (a) of Corollary 8.7 is verified.

We shall now check the assumptions (b) and (d) of Corollary 8.7, i.e. that all the functions
Py = €500, (A1) € Dga(Ag,7/16) X Belto, p), are dynamically Holder (with the exponent
«) with uniformly bounded constants c4,. So, fix A € Dge (Ao, r/16), n > 1, v € F~"(z) and
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z,y € J(F) with |z — y| < J. Applying (5.1) and (10.18), we obtain

|5 CanlF W) = I o (P )

i
L

< 5 Jeonl P (E ) = G (P )
< j::C(|to| + PP () = F(F )
< CL%(Jto| +p 25

< ff’;aw +p)ly = al°

67_1‘ 2] < 25 (Jto] +p)} < 00, we get
Pt (Fy " (1Y) — o (F, " (2))] <

Therefore, putting M, = sup{

= 0P (o)) - (SR U |
— 601a(F @Dl esp (5 G (PO "0 = 3 o (FF ) 1
< ff‘fj:(w + 0)dnm (@) - [y — .

and the assumptions (b) and (d) of Corollary 8.7 have been verified. We shall now check the
assumption (c) of Corollary 8.7 that the function

()\,t) — qﬁ(,\,t) € H,
is continuous in some neighbourhood of (g, tp) in @B Since

d)()\,t)( ) ftRelogq/;z |9 ( )|7t,

it is enough to show that both maps z r+ e~Rel8¥:(V) and » s |0, (2)|~* are in H, and that
both maps
()\,t) — e—tRelogw(.)(/\) € H,
and
(A1) = |03, ()] € Hay

are continuous. First recall that the function z — Relogi,()\), z € J(F), is in H, and
consequently the function z — tRelog,()), z € J(F), is in H, for every ¢ € IR. Our most
direct aim now is to show first that the mapping (X, t) — tRelog)(\) € Hq is continuous on
a polydisk Dga ((Ao, to), R) with sufficiently small R > 0. This function is obviously continuous
with respect to the variable ¢ on the polydisk Dgz (Ao, /16) X Bg(to, p). It is therefore sufficient
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to prove the Lipschitz continuity of the functions A — —tRelog.y(\) € H, with Lipschitz
constants independent of ¢. In order to do it, fix A = (As, Ay), A = (A}, A)) € Dgz (Ao, 7/16)
In view of (10.11) we have for all z € J(F) that

|Re log ¢z(A1) —Re log 1/)2(>‘)| =

oo

= 3 cpa(2) (X, = ReAo)”(N, = TmAg)” — (Aa — Reo)” (N, — ImAO)m:QO)

P,4=0
Put a, = A, — Re)o, a, = A, — ImAo, b, = A\, — Re)g and b, = A, — ImAy. We then have
abal — bEbE| = |ab (al — b) + bl (ah — )]
q—1

< lagllay — byl Y lay['1by "~ + (0§ llaz — bal 3 laa| [P~
1=0

1=0

() () +r () (&) Y= oz

16 r\P/r
— A=A
(p+q)<16> <16> =
Combining this, (10.20) and (10.12), we obtain

| /\

1601

16
Relog i (X) — Relog (V)] < ¥ = All 3 (p+)8 %% = LY| - |

p,q=0

(where Cy = 50 _o(p+¢)8 P9 is finite) for all ¢ € Bg(to, p/2) and all A, X' € Dga (Ao, /16).
Now fix z,w € J(F) with |z — w| < 6. It follows from (10.16) and (10.21) that

[#]|Relog 4, () — Relog h,(A) — (Relog .(X') — Relog ¢s=()))|

= |t] zo(cp,qw) — cp(2)) (X, = ReAg)P (A — TmAg)? — (A, — Redo)” (A, — Im)y)?))
P,q=
32C
< (ol + 92 s — PN AL S (p o+ g2 @0
r p,q=0
UMK, C
< 222 o] + )X = Az — wl

where Cy = E;f’qzo(p + q)27P+9) ig finite. Thus,
va(~Relog vy (A) — (~1Relog iy (X)) < AM R, Calltal + p)r [N = Al

for all A, X" € Dgz (Ao, 7/16) and t € Bg(to, p). Thus the proof of the continuity of the function
(A, t) = —tRelog ¢y (A), (A, t) € Dga(Ao,7/16) x Be(to, p), is complete. The continuity of the
function (A, £) = ¢y () = exp(—tRelogty(N), (A1) € Dga(o, 7/16) x Belto, p) follows
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now immediately from (10.13) and inequality |e’ — e?| = |e?||eb=® — 1] < A|b — al, where A
depends on the upper bound of |al.

We shall now show that for every (\,t) € Dge (Ao, 7/16) X Bg(to, p) the function z — |0, ()| 7,
z € J(F),is € H,. Indeed, for every z € J(F'), we have

() = [1 = e = exp(—tlog |1 — 7).

Since Rez < 0 and Ret > 0, we see from this formula that the supremum norm Mj5 of the
function z — |0,,(-)|7%, 2z € J(F), is finite. Fix in addition w € J(F) N B(z,d). Then, by
(10.9), we have

|log |1 — 7% = log [1 — ™[] < M|z — w,

and therefore, using (10.8) with 7'r enlarged to Md(ty + p), we get
103 (2)] 1] = 103, (w)] '] = |exp(~tlog[1 = e *|) — exp(~tlog |1 — ¢ "]
= 1= et [1 —exp(t(log 1 — e7*| — log [l — ¢™"|))|
< MsElt(log |1 — e 7| — log|1 — e~"])
< MsE(to + p) M|z — w
< M;E(ty + p) M|z — w|®.

So, it remains to show that the function (), ¢) — |0y, (-)| ™| € H, is continuous. Since |6y, (2)|™*
does not depend on A, we only need to check its continuity with respect to the variable ¢.
First notice that

V(1 —e?)=e?(1,i)
and

VI—e?#)=V(1—-e?) =e*(1,—i) =e?(1,—i).
Hence, using the Leibniz rule, we get
V(i—eP)=V(1-e?)T—€ 7)) =0—ee (1L, —i)+ (1 —e e *(1,i).
Assuming now that Rez < 0, we therefore obtain
IV (11 =PI < 2le™?e=2|||(1, =)l + 2le=2e~|||(1, 0) || = 4v/2]e™.
Thus
—z —z 1 —z|— —z —2z —z|—
V(L= =1V ((1=e*)")]| = ST=e [TV = e Pl < 2v20e7 |1 e
Since
V(62 (™) = V(1= e 7") = =t[1 — e[ V(1 — 7)),

we therefore get for all t1,t, € B(ty, p) that

[V (105" =100 ()] 2) | = 1= el —e 2 " = ol — e 7|

IV(I1 = el
<2V2le (L= e[ ||1 - e 1 — 7"
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Since (ta™")" = a~*(1 — tloga), using the Mean Value Inequality, we can continue the above
estimate as follows.
| <

|7 (163 ()] = 1050 (2)] %)
< 2v20e7 (|1 — e~ 2sup {1 — e 771 — tlog |1 — e7|) : € [tr, ta] f |2 — 1.
Since J(F) C {z € Q : Rez < —¢), }, we get that

—Zz

MG::sup{ 16

—Z2

:zeJ(F)}<oo.

And since obviously
My :=sup{|l — e ?|7"(1 —tlog|l — e *|): z € J(F), t € [t;,t2]} < 0
we therefore obtain
V(1030 ()" = 102 (2)] )| < 2V2M Mzt — .

Thus, for every z € J(F') and every w € B(z,d), we get that
103 (w)| 7" = 03, (w)| " — (|9A()(Z)|_t1 — |63, (2)] ")
< [T 9 (051" = () 7")
< V2Mg M|ty — t||w — 2|
< IV2Mg M|ty — t||w — 2|
Utilizing the Mean Value inequality we also obtain that
103 (2)| 1 = [, ()] "

<log|l —e ?|sup{|l —e | " : 2z € J(F), t € [t1,ta] }|ta — t:]
< Mty — t].

<

||

<

These last two estimates complete the proof of the item (c) that the function (A, ¢) —
10\, (-)|~" € H, is continuous. So, it remains to check item (f), the last assumption in
Corollary 8.7. In order to do it fix arbitrary Ay € Dge(Ag,r/16) and ¢ty € Bg(to, p). Take
v > 0 so small that Dge(Ag,y) C Dge(Ag, 7/16) and Bg(ta, 27y) C Bg(to, p). Then fix arbitrary
A1 € Dgz(No,7/16) and t; € (1,Re(ty) — ) Then for every (A, t) € Dgz(A2,7) X Bel(ta, ), we
have

Z) ftRelogz/)h( ) i i
|0 ( )| (t=t1) _ ethelong(/\l) tRelog v (A |0/\ ( )| (t—t1)
d) A1,t1) (Z _theIng‘ (A1) Ao % 0
—¢ t1(Relog . (A1)—Relog ¥ (N)) | e(tl t)Relog ¢, (A |9}\0( )| (t—t1)

Using (10.13) we can estimate

|et1 (Relog ¢» (A\1)— Relong(/\))| — eRe(t1(Relogipz(/\l)—Relog;ipz(/\))) < e\tl(Relong(/\l)—Relogwz()\))\ < 68t1M1.
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and

|6(t17t)Re10g1/1z()\)| — eRe((tlft)Relogq/Jz()\)) < e|(t1ﬂt)Relogz/,vz(/\)| < e4pM1.
Since A = inf,c ;) |05, (2)| is positive, since Re(t; —t) < 0 and since Re(t; —t) > —p, we can
write
02 ()77 = 103 (2)F 7 < min{1, 03, (2) [} < min{1, 03, (2)]} 7 < min{1, A},
Therefore
¢(A,t)(2’)
¢()\1,t1)(z)
and the item (e) is verified. The assumptions of Corollary 8.7 are therefore checked with
G = ]D)@Z ()‘07 7"/16) X B@'(t07 p) u

< exp(8t1M1 + 4pM1) min{1, A}~

We are now in a position to conclude the proof of the following main result of our paper.

Theorem 10.3. The function A — HD(J,.(F))), ReX > 1, is real-analytic.

Proof. Fix Ay € € with ReXA > 1 and ¢ € (1,00). Since by Proposition 9.6, hy : J(F),) —
J(F)) is Holder continuous with the Hélder exponent a/(\) depending on A but converging to
1 as A — Ap, we get that for every r > 0 sufficiently small

a =inf{ay : A € B(\y,7)} > 0.

Recall now that for every A € B(Xg,7) and every t > 1, L3, : Ho(J(F),)) = Ho(J(Fy,)) is
the operator induced by the weight function |F§ o hy|™*: J(F),) — IR, i.e.
B = ¥ IEm@) " o).
xEF;OI(z)
Proposition 10.2 says that there exist R > 0 and a holomorphic function
L : Dgz (Ao, to), R) — L(Ha(J(F X))
(Mo is treated here as elements of €° and ¢, as an element of @) such that for every (\,t) €
B(\o, R) x Blto,p) C O x R
L(\t) =LY, (10.22)
Now, in view of Theorem 5.4 and Proposition 4.9, e"® (¢ € B(ty, R) is a simple isolated
eigenvalue of the operator L(Xo,t) = L3, : Ha(J(F),) = Ha(J(F),)). Applying now the
perturbation theory for linear operators (see [18]), we see that there exists 0 < Ry < R and
a holomorphic function v : Dgs((Xo, ), R1) — @ such that (A, ty) = e™0() and for every
(A, t) € Dga((No, t), Ry) the number y(\, ) is a simple isolated eigenvalue of L(\,t) with the

remainder part of the spectrum uniformly separated from (A, t). In particular there exist
0 < Ry < Ry and k > 0 such that

o(L(\ 1) N BP0 k) = {y(), 1)} (10.23)
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for all (A, t) € Dgs ((Ao, to), Rz). Consider now for each (A, t) € B(\y,to) X (to — R, ty + R) the
operator Ly, : Hy(J(Fy)) — Hi(J(F))) (see Lemma 5.1) given by the formula

Lag(z) = > [F(2)]g(2).
zeF~1(2)

It is easy to see that the map T : Cy(J(F))) — Cy(J(F),)) defined by the formula T)(g) =
g o hy establishes a bounded linear conjugacy between Ly, : Cy(J(Fy)) — Cy(J(F))) and
LY, 2 Co(J(Fyy)) = Cy(J(Fy,)). Since the map hy : J(Fy,) — J(Fy) is Holder continuous
with the Holder exponent «a;, we obtain

TA(Hi(J(F)))) C Ha(J(Fy,))-
is an eigenvalue of the operator

L3, Ha(J(F/\o)) — Ho(J(F),))

Hence e ®)

and, by Lemma 10.1, e B(eM ) k) for all A € B(\g, R3) and all t € (tg — p,to + p)
if p € (0, mln{to,RZ} and R3 € (0 ]RQ) are sufficiently small. Combining this, (10.22) and
(10.23) we see that (A, t) = e ® for A, t as above. Therefore the function ()\ t) — Py(t),
(A, t) € B(Xo, R3) X (to — p, to + p), is real-analytic. Since, by Theorem 7.2, Py(s,) = 0, where
sy = HD(J(F))), it follows from the Implicite Function Theorem that in order to conclude
the proof it suffices to show that
8P

for all (A, t) € B(\o, R3) X (to — p,to + p). So fix such A and ¢. Fix z € J(F)). Since for every
u > 0 and every n > 1

> E) @) = 3 E) @ EY @ <L Y [(F) (@)

TEF "(2) TEF " (2) zeF " (2)

we conclude that Py (¢ + u) — Py(¢) < ulog 8 which implies that BP* (), 1) < log < 0. We
are done. W

REFERENCES

[1] I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. 49 (1984),
563-576.

[2] I. N. Baker, Infinite limits in the ietration of entire functions, Ergod.ic Th. and Dynam. Sys. 8 (1988)
503-507

[3] I. N. Baker, J.Kotus, Y. Lii, Iterates of meromorphic functions IIT: Preperiodic domains, Ergod. Th. and
Dynam. Sys. 11 (1991), 603-618.

[4] I. N. Baker, J.Kotus, Y. Lii, Iterates of meromorphic functions IV, Results Math. 22 (1992), 651-656.

[5] W. Bergweiler, Iteration of meromorphic functions. Bull. Amer. Math. Soc., 29:2 (1993), 151-188.

[6] W. Bergweiler, On the Julia set of analytic self-map of the punctured plane, Analysis 15, (1995), 251-256.

[7] M. Denker, F. Przytycki, M. Urbariski, On the transfer operator for rational functions on the Riemann
sphere, Ergod. Th. and Dynam. Sys. 16 (1996), 255-266.

[8] M. Denker, M. Urbaniski, On the existence of conformal measures, Trans. A.M.S. 328 (1991), 563-587.



50 JANINA KOTUS AND MARIUSZ URBANSKI

[9] M. Denker, M. Urbariski, Ergodic theory of equilibrium states for rational maps, Nonlinearity 4 (1991),

103-134.

[10] M. Denker, M. Urbariski, Geometric measures for parabolic rational maps, Ergod. Th. and Dynam. Sys.
12 (1992), 53-66.

[11] M. Denker, M. Urbaiiski, On Sullivan’s conformal measures for rational maps of the Riemann sphere,
Nonlinearity 4 (1991), 365-384.

[12] R. Devaney, M. Krych, Dynamics of Exp(z), Ergod. Th. & Dynam. Sys. 4 (1984), 35-52.

[13] A. E. Eremenko, M. Lyubich, Dynamical properties of some class of entire functions, Ann. Inst. Fourier
42 (1992), 989-1020.

[14] P. Fatou, Sur iteration des fonctions transcendantes entieres, Acta Math. 47 (1926), 337-360.

[15] M. Guzmén: Differentiation of integrals in IR™. Lect. Notes in Math. 481, Springer Verlag.

[16] C. Ionescu-Tulcea, G. Marinescu, Théorie ergodique pour des classes d’operations non-complement con-
tinues, Ann. Math. 52, (1950), 140-147.

[17] B. Karpidska, M. Urbaski, Dependence of the Hausdorff dimension on the rate of growth of itineraries
for complex exponential functions, in preparation.

[18] T. Kato, Perturbation theory for linear operators, Springer (1995).

[19] M. Martens, The existence of o-finite invariant measures, Applications to real one-dimensional dynamics,
Front for the Mathematics ArXiv, http://front.math.ucdavis.edu/; math.DS/9201300.

[20] C. McMullen, Are and Hausdorff dimension of Julia set of entire functions. Trans. Amer. Math. Soc. 300
(1987), 329-342.

[21] R. L. Mauldin, M. Urbadski, Dimensions and measures in infinite iterated function systems. Proc. London
Math. Soc. 73:3 (1996), 105-154.

[22] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer 1992.

[23] F. Przytycki, M. Urbarski, Factals in the Plane - Ergodic Theory Methods, to appear, availaible on
Urbanski’s webpage.

[24] G.M. Stallard, Entire functions with Julia sets of zero measure, Math. Proc. Camb. Phil. Soc. 108, (1990),
551-557.

[25] M. Urbaniski, A. Zdunik, The finer geometry and dynamics of exponential family, Michigan Math. J. 51
(2003), 227-250.

[26] M. Urbariski, A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family,
Ergod. Th. & Dynam. Sys.24 (2004), 279-315.

JANINA KOTUS, FACULTY OF MATHEMATICS AND INFORMATION SCIENCES
WaRSAW UNIVERSITY OF TECHNOLOGY
Warsaw 00-661, POLAND
E-MAIL: JANINAKQIMPAN.CGOV.PL

MARIUSZ URBANSKI, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, P.O. Box
311430, DENTON, TX 76203-1430, USA
E-MAIL:URBANSKIQUNT.EDU
WEB: HTTP://WWW.MATH.UNT.EDU/~URBANSKI



