DIOPHANTINE APPROXIMATION AND SELF-CONFORMAL
MEASURES

MARIUSZ URBANSKI

ABSTRACT. It is proved that the Hausdorff measure on the limit set of a finite conformal
iterated function system is strongly extremal, meaning that almost all points with respect to
this measure are not multiplicatively very well approximable. This proves Conjecture 10.6
from [2]. The strong extremality of all (S, P)-invariant measures is established, where S is a
finite conformal iterated function system and P is a probability vector. Both above results
are consequences of the much more general Theorem 1.5 concerning Gibbs states of Holder
families of functions.

1. INTRODUCTION, PRELIMINARIES

A point x € IR" is very well multiplicatively approximable if there is ¢ > 0, infinitely many
points p = (p1, P2, ..., pn) € Z", and integers ¢ > 1 such that

n
I laz: — pi| < q )
i=1

where x = (1, %9, ..., ;). A point x = (1, T9, ..., x,) € IR™ is called very well approximable
if there is § > 0, infinitely many points p = (p1, p2, ..., pn) € Z™, and integers ¢ > 1 such that
lox = pl| < ¢~ (7).
Obviously every very well approximable point is very well multiplicatively approximable.
Much effort has been devoted (Khintchine, Grosher, and others) to study these well approx-
imable points and the complement of these points from the point of view of the Lebesgue
measure on IR™. It is a classical result that the set of very well multiplicatively approximable
points (and so the set of very well approximable points) has Lebesgue measure zero but Haus-
dorff dimension equal to n. Thus the natural question arises about other measures. To be
more precise, a Borel measure p on IR™ is is called extremal (strongly extremal) if p-almost
every point in IR" is not very well (multiplicatively very well) approximable. It was proven in
[3] that the Riemann measure on any non-degenerate submanifold of IR" is strongly extremal,
solving therefore positively a conjecture of Sprindzuk ([9]). In [2] the concept of a friendly
measure has been introduced. In the class of friendly measures the authors of [2] distinguished
the measures called in [8] absolutely friendly. This is the basic notion for us in this paper
and it definition reads as follows. A Borel measure p on IR" is called absolutely friendly if it
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satisfies the doubling (Federer) property and with some constants C, R, a > 0

u(B(z,r) N B(H,)) < C (;)a u(B(z,r)) (1.1)

for all r € (0, R), all z € supp(p), all € > 0, and all affine hyperspaces H of codimension 1.
In [2] every friendly measure was shown to be strongly extremal; comp. also [8] for related
results. In [4] more diophantine consequences of absolutely friendly measures are derived.
Exhibiting a large class of examples, the authors in [2] proved that the Hausdorff measure on
the limit set of an irreducible iterated function system consisting of finitely many similitudes,
is absolutely friendly, and consequently, strongly extremal. Utilizing our techniques worked
out in the process of developing the theory of conformal iterated function systems, we prove
Corollary 1.6, which is just Conjecture 10.6 from [2]. This result generalizes the just men-
tioned result of Kleinbock, Lindenstrauss and Weiss about strong extremality of Hausdorff
measures on limit sets to the non-linear case. Corollary 1.6 is obtained as an immediate con-
sequence of the much more general Theorem 1.5 concerning Gibbs states of Holder families
of functions. As its another immediate consequence, Corollary 1.7 is obtained establishing
strong extremality of all (S, P)-invariant measures, where S is a conformal iterated function
system and P is a probability vector.

Passing to preliminaries, let I be a finite index set with at least two elements and let S = {¢; :
X — X : i € I} be a collection of injective contractions from a compact metric X endowed
with a metric d into X for which there exists 0 < s < 1 such that d(¢;(z), ¢:(y)) < sd(z,y)
for every ¢ € I and for every pair of points x,y € X. Thus, the system S is uniformly
contractive. Any such collection S of contractions is called an iterated function system. We
are particularly interested in the properties of the limit set defined by such a system. We
can define this set as the image of the coding space under a coding map as follows. Let
I* = J,>1 I", the space of finite words, and for w € I", n > 1, let ¢, = ¢, © Py, 0+ 0 Py, .
Let 1°° = IV he the space of all infinite sequences of elements of I. If w € I*UI® and n > 1
does not exceed the length of w, we denote by w|, the word wyws .. .w,. Since given w € I°°,
the diameters of the compact sets ¢, (X), n > 1, converge to zero and since they form a
descending family, the set

Fj) Dol (X)

is a singleton and therefore, its unique element 7(w) defines the coding map 7 : I — X.
The main object in the theory of iterated function systems is the limit set defined as follows.

1= = U F’i onlX) = 1 U 0ulX)

Observe that J satisfies the natural invariance equality, J = U;c; ¢i(J). Notice that J is
compact.
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An iterated function system S = {¢; : X — X : i € I} issaid to satisfy the open set condition
if there exists a nonempty open set U C X (in the topology of X) such that ¢;(U) C U for
every i € I and ¢;(U) N ¢;(U) = 0 for every pair 4,5 € I, i # j.

An iterated function system S satisfying the open set condition is said to be conformal if
X C IR? for some d > 2 and the following conditions are satisfied.

(1a) U = Int ga(X).

(1b) There exists an open connected set X C V C IR such that all maps ¢;, i € I, extend
to C'*¢ conformal contracting diffeomorphisms ¢; of V into V' (throughout this entire
paper we assume that if d = 2, then all the maps ¢, : V' — V| i € I, are holomorphic).

Due to the result proved in [7], we may assume that J N U # (), the property known in the
literature as the strong open set condition. It is by now a straightforward observation that
(1b) implies the following.

(1c) Bounded Distortion Property(BDP). There exists K > 1 such that
62, ()] < K[d,,(x)]

for every w € I* and every pair of points z,y € V, where |$:d(x)| means the norm of
the derivative.

One may also deal with the case when d =1 and to take (1c) as an extra assumption but we
restrict ourselves in this paper exclusively to the case when d > 2. Let us now collect some
geometric consequences of (BDP). We have for all words w € I* and all convex subsets C' of
V' that

diam(¢,(C)) < |[,,||diam(C) (1.2)
and

diam(¢., (1)) < DI[g,|l; (1.3)

where D > 1 is a universal constant, |[@, || = sup{|@, (z)| : z € V} and ||¢,|| = sup{|s,(z)] :
z € X}. Tn addition,

diam(¢,(J)) > D[4, || (1.4)
and
0,(V) D ¢u(B(x,1)) D B(gu(x), K[, [Ir), (1.5)
for every x € X, every 0 < r < dist(X,dV), and every word w € I*.

Let o : I*® U I* — I°° U I* be the shift map, i.e. cutting off the first coordinate. Passing to
Hoélder families of functions, introduced in [10], [1] and thoroughly explored in [6], fix 8 > 0
and let F' = {f®:X — IR:i € I} be a family of continuous functions. For each n > 1 put

Va(F) = sup. sup {|1) (8o (2)) = [ (Do) (1) [},

wel™ z,yeX
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and assume that
Va(F) = sup{V,(F)} < oc.
n>1

The collection F' is then called a Holder family of functions (of order /). Throughout this
paper the family F is always assumed to be Holder of some order 3 > 0. Note that in [10], [1]
and [6] we have primarily dealt with infinite countable index sets I and we needed the concept
of summable Holder families of functions. If the index set is finite, all the Holder families
are summable in the sens of [10], [1] and [6]. We have made the conventions that the empty
word () is the only word of length 0 and ¢y = Idx. Following the classical thermodynamic
formalism, we defined the topological pressure of F' by setting

P(F) = lim llog > exp (supzn:f"’f o q&(,jw) .
X

n—0o0
" lwl=n j=1

Notice that the limit indeed exists since the logarithm of the partition function
Zn(F) = 3 exp(sup(S,(F)))
|w|=n

is subadditive, where
n

SW(F) = Zf(WJ) © ¢(rfw'

i=1
Moreover

P(F) = inf {%loan(F)}.

n>1
Now, a Borel probability measure mp is said to be F-conformal provided it is supported on
J, for every Borel set A C X

(6o (A)) = /Aexp(Sw(F) —P(F)|w|) dmp, YweI' (1.6)

and

m(¢u(X) N ér(X)) =0 (1.7)
for all incomparable w,7 € I*. A Borel probability measure p supported on the limit set
J is said to be S-invariant if and only if (¢, (X) N ¢,(X)) = 0 for all incomparable words
w,T € I* and for every set A C X

> n(9i(A)) = u(A).
icl
In ([10], [1] comp. [6]) we have proved the following.

Theorem 1.1. If F is a Holder family of functions, then there exists exactly one F-conformal
measure mp and exactly one S-invariant measure g absolutely continuous with respect to mp.
In addition, the Radon-Nikodym derivative dup/dmyp is uniformly bounded away from zero
and infinity.
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The measure up is called the Gibbs state of the Holder family F'.

Remark 1.2. It is well known that the both measures mg and pr satisfy the doubling property
saying that there exists a constant E > 1 such that for every x € IR? and every radius r > 0,
we have that mp(B(z,2r)) < Emp(B(z,1)) and the same inequality holds with mp replaced

by up.

We end the list of facts concerning Holder families of functions by stating the following
technical but frequently used result.

Lemma 1.3. Suppose that F is a Holder family of functions. Then there exists a constant
Q > 1 such that if v,y € ¢,.(X) for some T € I*, then for all w € I*

1S (F)(2) = Su(F)(y)] < QeI
Put
T =" (1.8)

Definition 1.4. If d > 3, then the iterated function system S is said to be irreducible pro-
vided that its limit set is not contained in a geometric sphere nor in an affine hyperplane of
dimension < d — 1. If d = 2, then the iterated function system S 1is said to be irreducible
provided that its limit set is not contained in a union of the boundary of X and finitely many
real-analytic curves of finite length.

The main, most general result of this section is the following.

Theorem 1.5. If S = {¢;}icr is a conformal irreducible iterated function system in IRY,
d > 2, and {fD}icr is a Hélder family of functions, then the corresponding Gibbs measure
wr and, equivalently, mg is absolutely friendly, and consequently, strongly extremal.

Let HD(A) denote the Hausdorff dimension of the set A. It is well known (see for example
[5], comp. [6]) that the HD(J)-dimensional Hausdorff measure restricted to J is finite and
positive; it is remarkable that this measure is a multiple of the measure myr,0y, where hLog =
{hlog |¢}|}icr is a Holder family of functions. Therefore, as an immediate consequence of
Theorem 1.5, we get the following result stated in [2] as Conjecture 10.6.

Corollary 1.6. If S = {¢;}ics is a conformal irreducible iterated function system in IRY,
d > 2, then the HD(J)-dimensional Hausdorff measure restricted to J is absolutely friendly,
and consequently, strongly extremal.
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This corollary extends Theorem 2.2 in [2], where all the generators ¢;, i € I, were assumed
to be similarity self-maps of IR?. Given a probability vector P = (p;)ic; with all positive
coordinates p;, © € I, a probability measure p on J is said to be invariant with respect to the
pair (S, P) if and only if
H= ZPW o (¢ils)™"
iel

It is easy to see any (.S, P)-invariant measure coincides with the Gibbs state pp of the H'older
family F' = {log(p;) }ier- In particular there exists a unique (S, P)-invariant measure and it
will be denoted by pp. As an immediate consequence of Theorem 1.5, we therefore get the
following.

Corollary 1.7. If S = {¢;}ic1 is a conformal irreducible iterated function system in IRY,
d > 2 and P is a probability vector, then the (S, P)-invariant measure is absolutely friendly,
and consequently, strongly extremal.

Acknowledgment. I wish to thank D. Kleinbock for his valuable comments, which improved
the final version of this paper.

2. PROOFS.

If d > 3 we define F to be the family of all compact subsets of all intersections H N X, where
H is either an arbitrary geometric sphere or an affine hyperplane of codimension 1. If d = 2,
by Fy we denote the family of all intersections X N L, where L ranges over all affine straight
lines in €. We then define

Foo ={0'(T):T € Fyand w € I*} and F = F,

where the closure is taken with respect to the Hausdorff topology (metric) in the space of all
compact subsets of X. We will need the following properties of F.

Lemma 2.1. The family F is compact. If I' € F and w € I*, then there exists H € F such
that

¢, () C H.

Proof. The compactness of F if d > 3 is clear. If d = 2 this is true since F is closed.
Passing to the proof of the second part of this lemma, suppose first that d > 3. Then there
exists (), a geometric sphere or an affine hyperplane of codimension 1 such that I' C Q). Thus
é-L(T) C d51(Q)N X, where ¢t : TR — TR" is the unique conformal extension of ¢: V — V
from V' to @. So, we are done in this case. Thus, we may assume that d = 2. Then obviously
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¢ (T) € Fu if T € Fy. So, suppose that I' = lim,,_,, [, where all T,, € F.,. Fix an integer
k>1

> 1 and take ny > 1 so large that
di(T,Ty) < K[|k, (2.1)

Consider an arbitrary z € ¢_'(T"). This means that x € X and ¢, (z) € T'. Hence, by (2.1),
there exists y € [, such that |y — ¢ (2)] < K~Y|4,|[k~". If k > 1 is large enough, then
it follows from (1.5) that [y, ¢, ()] C ¢ (V). Hence |5;1(y) — 2| < K|, ||y — du(z)| <
1/k. Thus = € B(@, (I,),1/k). But z € X and ¢, (V' \ X) C V \ X, and therefore,

T € B(¢;1(Fnk), 1/k) Consequently

65" (1) € B(o5" (), 1/k). (2.2)

But each set ¢, '(T',,) belongs to I'y, and therefore (compactness of F has been already
proved) passing yet to another subsequence, we may assume that the sequence {¢;*(I'y, )},
converges to an element H € F. It then follows form (2.2) that ¢_'(I') C H, and we are
done. ®

Lemma 2.2. If d = 2, then there exists an integer N > 1 such that each element of F 1is
contained in a union of at most N real-analytic curves of finite length.

Proof. Let p = dist(X,0V). Then for every w € I*, dist(¢,(X),d¢,(V)) > K~1p||o. |-
Consider an arbitrary affine straight line . C €. Fix any two components C and Cy of LN X
such that the open segment A lying between their endpoints is disjoint from X, and that
|A] > (2K)'p||#,]|. Since diam(¢, (X)) < D||¢L ||, we conclude that the number of such
segments A is bounded above by 2K Dp~!. Since, if |A] < (2K)7!p||#,]|, then A C ¢_(V),
we therefore deduce that L N ¢,(X) can be covered by [ = [2KDp~'] + 1 mutually disjoint
intervals Aq,...,4A;, all of them contained in ¢_(V). Thus, the lemma is proved for all
members of the family F,,. So, suppose that I' € F. This means that there exist a sequence
{L,}%2, of straight lines in € and a sequence {w(™}>, C I'* such that

— 1 -1
P= lim ¢ ., (Ln 0 X), (2.3)

where the limit is taken with respect to the Hausdorff metric dg on compact subsets of X.
Let A7,..., A C X be the segments associated to the element L,, n > 1. One can cover
each segment A; N X, j=1,...,[, by at most

N; = [21A7]/2K) " pllé,onll] = [4Kp AT 6L, ] ']

balls (in @) B(xﬁ, (2K)*1p||(/);(n)||), u=1,2,...,Nj, all contained in ¢, (V) with centers
2t € ¢um(X). Since Yi_ |A?] < diam(¢,wm (V), we see that Y5, N; < 4KDp~'. So,
repeating some balls if necessary, we have covered the set L, N ¢ m (X) by N = [4KDp™']
balls B(xz, (2K)*1p||¢;(n)||), u=1,2,...,Nj;, all contained in ¢, (V) with centers 2" €



8 MARIUSZ URBANSKI

Py (X). For every n > 1 and u € {1,2,..., N} consider now the map F,, : ¢ — ' given
by the formula

Fou(z) = ||¢;(n)||71|2 — 7.
Then
Fro(z) = 2y + ¢l
We have
Foa(B0,K ")) € B(al, K pl|¢mll) C Guin (V),
and therefore the map
By © Fo.:B(0,K 'p) -V

is well defined. Let us look now at the sets
Fn,u (Ln N E(IL‘Z, K_1p| |¢:,.;(n) | |))

These are closed segments in B(0, K 'p). We can therefore find an unbounded increasing
sequence {n;}>, and, for every u € {1,2,... , N}, a segment I, C B(0, K~'p) such that

lim Foy (Lo, 0 B(205, K pllé o l)) = L, (2.4)
where the limit is understood in the sense of Hausdorff metric. Since the family
(0o o Frl i BO,K™'p) 5V}

is normal in the sense of Montel, passing to yet another subsequence and dropping the sub-
script &, we may assume that there exists a holomorphic function G, : B(0, K~'p) — V such
that

. —-—1 -1
Gu — kll)r{.lo ¢w(”) < Fn,u

uniformly on compact subsets of B(0, K~'p). Fix now £ € T and then € > 0. There then
exists ¢ > 1 so large that

Gul2) = Bt 0 Fh(2)] < < (2.5)

allu € {1,2,...,N}, all 2 € B(0,(2K) 'p), and all k > ¢. By (2.4) we may assume ¢ > 1 to
be so large that

i (P (Lo 0B (2, Kl dnll)): L) < min { (45) ", 1ol o ’1”’||°°1}(26)

for all n > ¢. By (2.3) there exist n > ¢q and &, € L,, N ¢, x) (X) such that

€ = 65 (&) < 3. (2.7)
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There now exists u, € {1,2,...,N} such that &, € B(xﬁ, (2K)*1p||¢)(’u(n)||). Passing yet to
another subsequence, we may assume that u, does not depend on n; say u, = u. We have
F..(&) € B(0,(2K)™'p). Therefore, by (2.7) and (2.5), we get that

1€ = Gul(Fru(&))] < 1€ = G ()] + 00 (&) — Gu(Fru(6n))]

= |§ - ¢w(n) (gn)| + |¢)w(n) © n,u( n,u(gn)) - Gu(Fn,u(gn)”
£, e_2 (2.8)
< 3 + 3= 36.

Since &, € L, N B(xz, (2K)_1p||¢;(n)||), it follows from (2.6) that there exists 6, € I, such
that

|Fnu<sn>—en|<min{<4f<> O[T ) ¥
Hence, 6,, € B(0, ((4/3)K)'p). Thus

|Gu(Fuul&n)) = GulOn)] < 1G 50, a3ym0) 1y lloo Fra(6n) = 9n|<§

(I |GLlB0,0a/3)5)-1 )10 = 0, then Gy is a constant function, and omitting the middle term,
we get even better estimate: /3 replaced by 0.) So, combining this and (2.8), we conclude
that [£ — Gu(0,)| < . Since 6, € I,, this implies that £ € B(G,(l,),e). Consequently,
I'cB ( N Gu(L), 5), and letting £ \, 0, we see that T' C U)_, G,(I,). We are done. B

Proof of Theorem 1.5. Let F be the family defined in the beginning of this section. We
will conduct this proof without distinguishing the cases d = 2 and d > 3. It will consist
of two preparatory lemmas and the concluding argument. Put m = mpg and p = pup. It is
known (see [1], comp. [6]) that there exist a Borel probability measure m on I* and a unique
ergodic o-invariant measure fi equivalent to m such that m = monr ' and p=jor . We
shall prove first the following.

Lemma 2.3. We have that m(H) = 0 for every H € F.

Proof. Indeed, seeking contradiction, suppose that m(H) > 0 for some H € F. Since the
system S satisfies the strong open set condition with the set X, there exists x € J and R > 0
such that B(x,2R) C IntX. Since x € J, m(B(z, R)) > 0. Since the measure m is equivalent
to the shift-invariant ergodic measure fi, it follows from Birkhoft’s ergodic theorem that there
exists a Borel set G C I® such that m(G) = 1, and the set {n > 0: 7(c"(w)) € B(x, R)} is
infinite for all w € G. Fix one w € G such that 7(w) € H (m(GN71(H)) > 0) is a Lebesgue
density point of the set H with respect to the measure m. For every n > 0 put

B, = B(w(c"(w)), R).
Fix ¢ > 0 and then fix such an n = n. > 0 (sufficiently large) that 7(c"(w)) € B(z, R) and

m(B(n(w), Blldy, ) \ H) < em(B(n(w), Bl|6L, 1)) (2.9)
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Since B, C X, we get
m((bw\n (Bn \ qﬁ;ﬁn(H))) = /IBn\¢‘1 » exp(S’w|nF - nP(F))dm
> T~"exp(sup (S, F) — nP(F))m(B, \ ¢ (H)),

where T' > 1 is the number defined in (1.8). Hence, using (2.9) and applying Lemma 1.3, we
get

m(B,\ ¢, (H)) < Texp(P(E)n —sup(S., ) Jm(u, (B \ 65, (1))
E (2.10)

(
< Texp(P(F)n — sup( wln ))m( (7r w R||¢w|n||) \H)
< sTexp(P(F)n - sup( wln )m( (7‘(’ w R||¢w|n||))

Again, since B, C X, using the bounded distortion property (BDP) and the doubling property
of the measure m (see Remark 1.2), we obtain

exp(sup(5w|nF) - nP(F)) > exp(sup(Sw‘ F) - nP(F))m(Bn) > m(¢w|n(Bn))
> m(B(n(w), K 'R||¢, 1)) = Cm(B(n(w), Rl|¢,, 1))

with some universal constant C' > 0. Combining this and (2.10), we get that

m(By \ ¢, (H)) <TC'e. (2.11)
Putting now ny = nyy, k > 1, and passing to a subsequence if necessary, we may assume
that 7T(0'nk (w)) converges to a point z € J when k£  oo. In view of Lemma 2.1 that for

every k > 1 there exists M, € F such that gb;llnk (H) C Mjy. Tt follows again from Lemma 2.1

that passing to a subsequence, we may assume without loss of generality that the sequence
{M}}32, converges in the Hausdorff metric dy to some element M € F. Letting k 7 oo, it
therefore follows from (2.11) that

m(B(z, R/2) \ M) = 0. (2.12)

Suppose now that (J N B(z, R/2)) \ M # (. Since this is a nonempty open subset of .J, it
would be of positive measure, contrary to (2.12). Thus

JNB(z,R/2) C M. (2.13)

Since z € J, we have that z € 7(r) for some 7 € I*®. Then for every n > 1 sufficiently
large, ¢-,(J) C B(z, R/2), and as ¢,,(J) C J, we conclude from (2.13) that ¢,,(J) C M,
or equivalently, J C qﬁ;‘i(M) Applying now Lemma 2.1 and Lemma 2.2, we see that this
contradicts irreducibility of the system .S, and finishes the proof of Lemma 2.3. B

For every € > 0 let
t(e) =sup{m(H,e): H € F}.
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Since the family F is compact, applying Lemma 2.3, we easily see that

ll{%t(&“) =0. (2.14)

Put
u= Hlellll{lnf{|¢;(2)| :z € V}} and p = dist(X, 0V).

Our next step is to prove the following.

Lemma 2.4. There is a constant o > 0 such that for every e € (0, min{1, K up})
t(e?) < Tt (ae).
Proof. Fix ¢ € (0,min{1, K 'up}) and H € F. Define

P={wel:|[g,l <eand ||g,, Il ><}

w'\u\ 1

Obviously all the elements of P are mutually incomparable and each element of I*° has an
initial block belonging to P. Put

P={weP:q¢,(J)NB(H,:) #0}.
Then
JNB(H,2%) = | ¢u(J) N B(H,z*). (2.15)

weP

Fix now w € P and y € ¢,(J) N B(H,<2). If z € ¢,(J), then it follows from the definition of
P that
dist(z, H) < ||z — y|| + dist(y, H) < diam(¢,(J)) +£* < D||¢.,|| + &

< De+e*=(D+e)e < (D+1)e.
Hence, ¢,(J) C B(H,(D + 1)¢) and consequently
U ¢.(J) € B(H, (D + 1)e).

weP

Thus,

H(D+1)2) = m(BUH, (D + 1)e)) > (U b0 ) = Y ml6u())

weP weP

> Z T 1 exp(sup(5w¢ - P(¢)|w|) (2.16)

=77 Y (sup(Sus — P(6)wl).

weP
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Take now w € P and consider the set J N ¢, (B(H,e?)). Fix = € J N ¢, (B(H,2)).
This relation means that ¢, (z) € ¢,(J) N B(H,e?). Thus, there exists y € H such that
l|ly — ¢u(7)|| < 2 < K~ 'upe. Since w € P, we get using (1.5) that

0,(V) D B(6u(X), K Y[6,]1p) D B(¢u(T), KB, ]Ip) D B(du(J), K tupe).
Therefore (¢ (x),y] C ¢,(V) and consequently,
—1 — -1 ——1
Iz — 6, Wl =118, (6 (2)) — &, W < 16, )'[15, 1|6 (x) — ]l

< K|[g,]]7'e? < Ku™'e™'e? = K2u™e.
This shows that = € B(E;l(H), Ku~'¢), and in consequence

JNe3 (B(H,e%) C B(g, (H),Ku™'e).
Therefore, using (2.15), Lemma 2.1 and (2.16), we obtain

m(B(H,e%) = Y m(¢,(J) N B(H,e?)) = Y m(¢u(J N o, (B(H),£2))))

< Z exp(sup(quﬁ) - P(¢)|w|)m(J N ¢;1(B(H, 52)))
< Z exp(sup(quﬁ) - P(¢)|w|)m(B(phi;l(H), Ku’ls))
< t(KPule) 3 exp (sup(S.¢) — P(¢)|wl)

< Tt((D + 1)e)t(K?u e).
So, taking & = max{D + 1, Ku~'} finishes the proof of our lemma.

We are now ready to do the last step of the proof of Theorem 1.5. It follows from (2.14) that
we can choose v € (0, min{1, K 'up}) so small that

t(y) < (eT)™". (2.17)
Keep now ¢ € (0,7) and consider the largest n > 1 such that o2 2" "¢2 " < ~. Applying
Lemma 2.4 n times and using (2.17), we then get

- 1\ n
He) < T* 12" (7) < T (T—T> =Tl (2.18)
[#

2_21—(n+1)62—(n+1) 9—(n+1)

But « > ya~2. Equivalently (ya~2)%" < ¢!/2
N —1

or exp(—2” log(aZV*I)) < ¢!/2. This gives that e 2" < ¢, where 8 = (2 log(a2fy*1)) It

therefore follows from (2.18) that ¢(¢) < T 1. Since m is a probability measure, replacing

if necessary T~! by a bigger constant, say C, we get that

t(e) < C&P (2.19)

> 7, which implies that ¢



DIOPHANTINE APPROXIMATION AND SELF-CONFORMAL MEASURES 13

for alle > 0. Fix now 2 € J, H € F, £ € (0,min{1, K~'up}) and r € (0,u). Define

Po={we I :|[g,|| <rand g, Il >r}
and set
P={weP:¢,(J)NB(zr)#0}.
Then
JNB(z,r)= | du(J) N B(z,r). (2.20)
weP

Fix now w € P and y € ¢,,(J) N B(z,r). If 2 € ¢,,(J), then it follows from the definition of
P that

|z —z[| < [lz = yll+ lly — z[| < diam(¢(J)) +r < D@, [| +r < Dr+r = (D + 1)r.

Hence,
U~ bu(J) C B(z, (D + 1)r).
So,
m(B(z, (D + 1)r) (U b (] ) =Y m(¢u(])) = 3 T~ exp(sup(S.6) — P(4)|wl)
=77 Y exp(sup(S.0) ~ P(4)]). (221)

Take now w € P and consider the set J N ¢ (B(H,re)). Fix o € JN ¢; (B(H,re)). This
means that ¢,(z) € ¢,(J) N B(H,re). Thus, there exists y € H such that ||y — ¢, (2)|| < re.
Since w € P, and since ¢ < K lup, using (1.5), we get that
0,(V) D B(u(X), K7[6,]1p) D B(¢u(J), K7 ([8,]1p) D B(eu (), K~ upr) D B(gu(J), re)
Therefore ¢, (x),y] C ¢,(V) and consequently,

——1 -1 -1 ——1 —1 - _
o =0 W1 =118y (8u()) = o I < 1180 )' 17,0160 (x) = yll < KNGl re < Ku'e.

This shows that € B(d);l(H), K2u*16), and in consequence

J N5 (B(H,re)) C B(6' (H), K*u™'z).
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Therefore, using (2.20) and (2.21), we obtain

m(B(H, re) N B(z,r)) => m(qﬁw(J) N B(z,r)) => m(qﬁw(Jm ¢w1(B(z,7"))))

< 3 exp(sup(Su0) — P(@)|wl)m (7 N4, (B(z.1))
< Y exp(sup(Su6) — P(9)|w|)m(B(B(4, (H), Ku™'¢))

—1

< Tm(B(B(s, (H), Ku™'e))m(B(z(D + 1)r))
< t(Ku~'e)m(B(z, (D + 1)r)).

Using (2.19) and the doubling property of the measure m, we therefore get

m(B(H,re) N B(z,1)) < Cem(B(z,7)).

Thus the proof that the measure m is absolutely firendly (and so, by a result from [2], strongly
extremal), is complete. B
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