GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT
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ABSTRACT. We explore the class of elliptic functions whose critical points all contained in
the Julia set are non-recurrent and whose w-limit sets form compact subsets of the complex
plane. In particular, this class comprises hyperbolic, subhyperbolic and parabolic elliptic
maps. Let A be the Hausdorff dimension of the Julia set of such an elliptic function f. We
construct an atomless h-conformal measure m and we show that the h-dimensional Hausdorff
measure of the Julia set of f vanishes unless the Julia set is equal to the entire complex plane
(€. The h-dimensional packing measure is always positive and it is finite if and only if there
are no rationally indifferent periodic points. Furthermore, we prove the existence of a (unique
up to a multiplicative constant) o-finite f-invariant measure p equivalent to m. The measure
1 is then proved to be ergodic and conservative and we identify the set of points whose open
neighborhoods all have infinite measure p. In particular we show that oo is not among them.

1. INTRODUCTION AND GENERAL PRELIMINARIES

1.1. Introduction.

First examples of elliptic (in fact p-Weierstrass) functions with detailed descriptions of their
Julia sets appeared in [14]. Our paper dealing with elliptic functions whose critical points all
contained in the Julia set are non-recurrent and whose w-limit sets form compact subsets of
the complex plane, basically stems from [26], [27] and [15]. Any such elliptic function will
be called non-recurrent. We study geometric properties of the Julia sets ultimately resulting
in Theorem 4.1 which says that the hA-dimensional Hausdorff measure of the Julia set of f
vanishes unless the Julia set is equal to the entire complex plane €. The h-dimensional pack-
ing measure is always positive and it is finite if and only if there are no rationally indifferent
periodic points. We would like to emphasize that the Hausdorff and packing measures ap-
pearing in this theorem are taken with respect to the spherical metric on @. The fact that the
h-dimensional Hausdorff measure of the Julia set vanishes in the case when h < 2 or equiva-
lently when the Julia set is not equal to the entire complex plane (note that due to [15] h > 1),
dramatically differentiates non-recurrent elliptic functions from the akin class of non-recurrent
rational functions. The reason is that for these latter functions the h-dimensional Hausdorff
measure of the Julia set is always finite and positive if and only if A > 1 (see [26]). Our main
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technical tool employed in this paper is the concept of semi-conformal, almost-conformal and
conformal measures. We provide an elaborated proof of the existence, uniqueness and con-
tinuity of an h-conformal measure. Another important tool is provided by Proposition 2.23,
where, expressed in an appropriate language, all non-singular points are shown to be conical.
Although there are some overlaps with rational functions (see [26]), most of the proofs are
substantially different, mainly because of the existence of poles in the Julia set.

Our second major theme in this paper is the dynamics of f with respect to the conformal
measure m. As the first result in this direction, we prove the existence of a conservative
ergodic o-finite measure p equivalent to m. Developing this direction, we study points of
finite and infinite condensation of the measure p, the concepts introduced in [27]. After
collecting some basic facts about these points we show in Subsection 5.2 that oo is always
a point of finite condensation, perhaps the most interesting fact about the measure p. In
the next subsection we relate points of infinite condensation with the set Q(f) of rationally
indifferent periodic points, providing in particular some sufficient conditions (Q2(f) = 0) for
the invariant measure y to be finite. At the end of this section we deal with parabolic points
themselves.

Acknowledgment. We would like to thank the referee of this paper whose valuable remarks
and suggestions influenced the final form of our paper.

1.2. General Preliminaries.

All the points (numbers) appearing in this paper are complex unless it is clear from the
context that they are real. In particular x and y are always assumed to be complex numbers
and not the real and imaginary parts of a complex number. Given A C € and r > 0, the
symbol B(A,r) denotes the Euclidean open r-neighbourhood of the set A. Throughout the
entire paper f*, diamg and Bg(A,r) denote respectively the derivatives, diameters and open
balls defined by means of the spherical metric whereas f’, diam and B(A,r) are considered
in the Euclidean sense. We would like to emphasize that when counting f*, we consider the
spherical metric in the domain and in the codomain.

Definition 1.1. If H : D — @ is an analytic map, z € @, and r > 0, then by
Comp(z, H(z), H,7)
we denote the connected component of H Y(B(H(z),r)) that contains z.

Suppose now that ¢ is a critical point of an analytic map H : D — (€. Then there exists
R=R(H,c)>0and A= A(H,c) > 1 such that

Al =l < |H(2) — H(c)| < Alz — ¢

and
A7z — TP < |H ()] < Alz — ]!
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for every z € Comp(e, H(c), H, R) and that
H(Comp(c, (), H, R)) = B(H(c), R)

where ¢ = q(H, ¢) is the order of H at the critical point ¢. Moreover, by taking R > 0 suffi-
ciently small, we can ensure that the two above inequalities hold for every z € B(c, (R/A)"7)
and the ball B(c, (R/A)'9) U Comp(c, H(c), H, R) can be expressed as a union of ¢ closed
topological disks with smooth boundaries and mutually disjoint interiors such that the map
H restricted to each of these interiors, is injective.

Koebe’s ;-Theorem. If z € €, r > 0 and H : B(z,7) — €'is an arbitrary univalent analytic
function, then H(B(z,r)) D B(H(2),47'|H'(2)|r).

Koebe’s Distortion Theorem, I (Euclidean version). There exists a function & :
[0,1) — [1,00) such that for any z € €, r > 0,¢ € [0,1) and any univalent analytic function
H : B(z,r) — @ we have that

sup{|H'(w)| : w € B(z,tr)} < k(t)inf{|H'(w)| : w € B(z,tr)}.
We put K = k(1/2).

Koebe’s Distortion Theorem, I (spherical version). Given a number s > 0 there exists
a function k, : [0,1) — [1,00) such that for any z € @, r > 0,¢ € [0,1) and any univalent
analytic function H : B(z,r) — @ such that the complement @'\ H(B(z,7)) contains a
spherical ball of radius s we have

sup{|H*(w)| : w € B(z,tr)} < ky(t) inf{|H*(w)| : w € B(z,tr)}.

The following is a straightforward consequence of these two Distortion Theorems.

Lemma 1.2. Suppose that D C @' is an open set, z € D and H : D — @' is an analytic map
which has an analytic inverse H;' defined on B(H(z),2R) for some R > 0. Then for every
0<r<R

B(z, K~'r|H'(2)|™") Cc H;'(B(H(2),7)) C B(z, Kr|H'(2)|™).

Lemma 1.3. Suppose that D C @ is an open set, z € D and H : D — @ is an analytic
map which has an analytic inverse H; ' defined on B(H(z),2R) for some R > 0 avoiding a
spherical ball of some radius s. Then for every 0 <r < R

B(z, k' (1/2)r|H* ()| ') € H, "(B(H(2),7)) C B(z, ks(1/2)r|H"(2)| ).

We shall also use the following more geometric versions of Koebe’s Distortion Theorems
involving moduli of annuli.
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Koebe’s Distortion Theorem, II (Euclidean version). There exists a function w :
(0, +00) — [1, 00) such that for any two open topological disks Q1 C Q2 with Mod(Q\Q1) >t
and any univalent analytic function H : Qo — €'such that the complement €'\ H (Q5) contains
a ball of radius s we have

sup{|H'(¢)[ : £ € @1} < w(t)inf{|H'(§)] : € € Qu}.

Koebe’s Distortion Theorem, II (spherical version). Given a number s > 0 there exists
a function wy : (0,4+00) — [1,00) such that for any two open topological disks Q; C @y with
Mod(Q2\ Q1) > t and any univalent analytic function H : Q, — @ such that the complement
'\ H(Q5) contains a ball of radius s we have

sup{|H' ()] : £ € @1} < ws(t) inf{|H'(§)] : § € Qn}.

Given an analytic function H defined throughout a region D C @, we put
Crit(H) ={z € D: H'(z) = 0}.

We will need in the sequel the following technical lemma proven in [27] as Lemma 2.11.

Lemma 1.4. Suppose that an analytic map Q o H : D — @, a radius R > 0 and a point
z € D are such that

Comp(H (2), Q(H(z)),Q,2R) N Crit(Q) = 0 and Comp(z,Q o H(z),Q o H, R) N Crit(H) # 0,
If ¢ belongs to the last intersection and
diam (Comp(z, Q 0 H(z2),Q o H, R)) < (AR(H, c))"/"

then
|z —c| < KA?|(Qo H)'(2)| 'R.

1.3. Preliminaries concerning iteration of meromorphic functions.

The Fatou set F(f) of a meromorphic function f : @ — @ is defined in exactly the same
manner as for rational functions; F(f) is the set of points z € € such that all the iterates
are defined and form a normal family on a neighborhood of z. The Julia set J(f) is the
complement of F(f) in €. Thus, F(f) is open, J(f) is closed, F(f) is completely invariant
while f=1(J(f)) € J(f) and f(J(f)) = J(f)U{oo}. For a general description of the dynamics
of meromorphic functions see e.g. [6]. We would however like to note that it easily follows
from Montel’s criterion of normality that if f : @ — @ has at least one pole which is not an
omitted value then

T(f) = U f(c0).

n>0
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In further sections we will be dealing with the foolowing set of points escaping to oo under
iterates of f.

Io(f)={z€@:ze [ f "(o0) or lim f"(z) = oo}

n—00
n>0

Let us now provide two related concepts, which play the central role in the approach un-
dertaken in this paper. If ¢ > 0, then a measure m supported on J(f) is said to be semi
t-conformal for f: €' — @ if

m(f(4)) > [ |f|*dm (1)

for every Borel set A C J(f) such that f| is injective and m is said to be t-conformal for
0T if

m(f(4) = [ 15| dm (12)

for these sets A.

2. THE DYNAMICS OF NON-RECURRENT KELLIPTIC FUNCTIONS

2.1. Preliminary Results Concerning Elliptic Functions. As we already indicated in
the introduction, throughout the entire paper f : € — @ denotes a non-constant elliptic
function. Every such function is doubly periodic and meromorphic. In particular there exist
two vectors wy, w, Im(3t) # 0, such that for every 2 € C'and n,m € Z,
f(z) = f(z + mw; + nw,).
The set
A ={mw, +nwy : m,n € Z}

will be called the lattice of the elliptic function f. This object is independent of the choice of
its generators w; and w,. Let

R = {t1w1 +t2U)2 :0 S tl,tQ S 1},

be the basic fundamental parallelogram of f. It follows from the periodicity of f that f(€) =
f(R). Therefore f(@) as a closed and open subset of the connected set € is equal to €. This
means that each elliptic function is surjective. It also follows from the periodicity of f that

f o) = U (Rﬂffl(oo)+mw1+nw2).

mneZ
For every pole b of f let ¢, denote its multiplicity. We define
q:=sup{q : b€ f~'(c0)} = max{g, : b€ f(c0) NR}.

Let
Br={z€:|2| > R}.
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For every pole b of f by By(R) we denote the connected component of f~'(Bg) containing b.
Recall that Crit(f) is the set of critical points of f i.e.

Crit(f) ={z: f'(z) =0}.

Its image, f(Crit(f)), is called the set of critical values of f. Since R N Crit(f) is finite and
since f(Crit(f)) = f(R N Crit(f)), the set of critical values f(Crit(f)) is also finite. Thus, if
R > 0 is large enough, say R > Ry, then Bg contains no critical values of f, all sets By(R)
are simply connected, mutually disjoint, and for z € B,(R)

Gb(Z)

f(z) = G_bw (2.1)

where G, : By(R) — 'is a holomorphic function taking values out of some neighbourhood
of 0. If U C Bg \ {oo} is an open simply connected set, then all the holomorphic inverse

branches fb_,l},la e ,fbj&qb of f are well-defined on U and for every 1 < j < ¢, and all z € U
we have
_ _aptt
|(fow) () = 2] (2.2)

Therefore, comp. [15]

ap—1 @1
2| o 2]
-

i) ()= 1 =< g 2.3

where the second comparability sign we wrote assuming in addition that |b| is large enough,
say |b| > Ry > Ry. It is shown in [15] that there exists a constant L > 1 such that for all
poles b and all R > R, we have

L'R™w <diam(B,(R)) < LR, o
L 'R (14 [b2) ! <diam,(By(R)) < LR % (1 + [b[?) L. '

We will frequently use the following fact proven in [15].

Theorem 2.1. If f : @ — @ is an arbitrary elliptic function, then

2
it B

HD(J(f)) > =15 >

Y

where g = sup{qy : b € inf '(00)} = max{g,: b€ RN f1(c0)}.
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2.2. Local behavior around parabolic fixed points.

In this section f : @ — ('is an arbitrary elliptic function of degree > 2; in fact all the results
stated here are of local character and are true for all meromorphic functions. In particular
the map f is not assumed yet to be non-recurrent. In what follows we basically summarize
the results concerning local behavior around parabolic fixed points which have been proved
in [1], [10], and [11]. Although they were formulated and proved in the context of parabolic
rational maps that is assuming that the Julia set contains no critical points, nevertheless they
and their proofs are of local character and, in particular, extend to the class of all elliptic
functions. Through this section w is a simple parabolic fixed point of f, that is f(w) = w and

fl(w)=1.

First note that on a sufficiently small open neighbourhood V' of w a holomorphic inverse
branch f;':V — @ of f is well defined which sends w to w. Moreover, V' can be taken so
small that on V' the transformation f;' can be expressed in the form

7'z =2z —alz —w)P™ +ay(z — w)P? +az(z —w)PP + ... (2.5)
where a # 0 and p = p(w) is a positive integer.
712 —w=z2—w—a(z —w)’ +as(z — )P + az(z — W) 4 ...
Consider the set {z : a(z — w)? € IR and a(z — w)? > 0}. This set is the union of p rays
beginning in w and forming angles which are integer multiples of 27 /p. Denote these rays by
Ly,Ly,... L, For1<j<p 0<r<ooand0 < a< 27 let Sj(r,a) CV be the set of
those points z lying in the open ball B(w, ) for which the angle between the rays L; and the

interval which joins the points w and z does not exceed . Using (2.5) an easy computation
leads to the following

Va>03r(a) >030 < <aVli<ji<p
£ (Sj(ri(a), ap)) € Sj(00,q)
and there are § > 0 and #; > 0 such that
£, (2) —wl < |z —w] and |(f,")'(2)] <1 (2.7)

w

(2.6)

for every w # z € S1(01,8) U...US,(0, ). The following version of Fatou’s flower theorem,
(see [5], [21], comp. [1]) shows that the Julia set .J(f) approaches the fixed point w tangentially
to the lines Ly, Lo, ... , L,. This can be precisely formulated as follows.

Lemma 2.2. (Fatou’s flower theorem) For every o > 0 there ezists ro(«) > 0 such that
J(f) N B(w,ra(a)) C Si(ra(a),a) U...USy(r2(a), ).

Since the Julia set J(f) is fully invariant (f~'(J(f)) = J(f) and f(J(f)) = J(f) U {co},
we conclude from this lemma and (2.7) that for every 0 < 0y < min{6,r3(3)} we have

5 (J(F) N B(w, b)) C J(f) N B(w,0).
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Thus all iterates " : J(f) N B(w,8;) — J(f) N B(w,63), n = 0,1,2,... are well defined.
From (2.6), Lemma 2.2, and (2.7) we obtain the following

Va>03r;(a) >0V1<j<p

78,00, ) NLI() € 85 rs(e), ). =
Put
0 = 0(f,w) = min{by, r5(5),r3(5)} (2.9)
Then, it follows from (2.7), (2.6), and Lemma 2.2 that for every z € J(f) N B(w,#).
lim f"(2) = w (2.10)

n—0o0

In fact it can be proved that this convergence is uniform on compact subsets of B(w,f) N
J(f) \ {w}. See (2.11) for even stronger result. By precise computations one can prove the
following.

Lemma 2.3. For every T > 0 sufficiently small and every z € J(f) N B(w,0)
fo'(B(z, 7|z = w|)) € B(f, ' (2), 71/ (2) = wl).

This lemma immediately leads to the following.

Lemma 2.4. For every T > 0 sufficiently small, every z € J(f) N B(w,0) and every n > 0
there exists a unique holomorphic inverse branch

e B(2,27]2 —wl) = B(f;"(2), 27] /5" (2) — wl)

w,z

of f™ which sends z to f;™(z).

The following two results (comp. Lemma 1 and Lemma 2 of [10] and Lemma 4.8 of [11]) can
be proved in exactly the same way as in [10] and [11].

lim |£27(2) = wln'” = (lalp) ™7 and 0™ < |(f22) (), [(f52) ()] <0~

n—oo

uniformly on compact subsets of B(w, ) N J(f) \ {w}.

Lemma 2.5. Let m be a semi t-conformal measure for f. Then for every R > 0 there exists
a constant C' = C(t,w, R) > 1 such that for every 0 <r < R

m(B(w, ) \ {w}) m(By(w,r) \{w})

Tat( w) rat( w)
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where ay(w) =t + p(w)(t — 1). If m is t-conformal, then in addition
m(B(w,r) \{w}) m(Bs(w,r) \{w}) _ 1

rou (w) ) rou (w)

2.3. Basic properties of non-recurrent elliptic functions. .
We say that the elliptic function f : ¢ — 'is non-recurrent, if the following conditions are
satisfied:
(1) If ¢ € Crit(f)NJ(f), then the w-limit set w(c) is a compact subset of €' (i.e. 0o ¢ w(c))
and ¢ ¢ w(c)
(2) If ¢ € Crit(f) N F(f) then either there exists an attracting periodic point w or a
rationally indifferent periodic point w such that w(c) C {w, f(w),..., fP"Hw)}, p is
a period.

From now on, unless otherwise stated, we assume throughout the entire paper that the elliptic
function f : @€ — €'is non-recurrent. We denote for every set A C €

04(4) = U f"(4).

n>0

As an immediate consequence of the definition of non-recurrent elliptic functions and the
finiteness of the set f(Crit(J(f))), we get the following easy but useful fact.

Proposition 2.6. O (f(Crit(J(f)))) is a compact subset of .

We recall that a periodic point w of f is called parabolic if there exits ¢ > 1 such that
f9(w) = w and (f9)'(w) = 1. The set of all parabolic points will be denoted by Q(f). Since
the set of critical values of f is finite, it follows from transcendental meromorphic version
of Fatou’s theorem (proven in [3] that Q(f) is also finite. In addition, Q(f) is contained
in the Julia set J(f). A crucial tool for our approach in this paper is the following elliptic
counterpart of Mane’s theorem proven in [17] for non-recurrent rational functions.

Theorem 2.7. Let f : @ — @ be a non-recurrent elliptic function. If X C J(f) \ Q(f) is
a closed subset of @, then for every € > 0 there exists & > 0 such that for every x € X and
every n > 0, all the connected components of f~"(B(x,0)) have Fuclidean diameters < e.

Since this theorem forms an extremally important tool in our paper and promptly distin-
guishes the class of non-recurrent elliptic functions from among all other elliptic functions,
we would like to provide a few words of comment. First, Mane’s original most general result
is this.
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Theorem 2.8. Suppose that f : @ — @ is a rational function of degree d > 1. Suppose also
that x € J(f) is not a rationally indifferent periodic point nor x belongs to the w-limit set of
any recurrent critical point. Then for every € > 0 there exists & > 0 such that for everyn >0
all the connected components of f~"(Bs(x,0)) have spherical diameters < e.

It is easy to see that in the context of rational functions Theorem 2.7 follows from Theorem 2.8
if C'is replaced by @ and Euclidean diameters are replaced by spherical ones. In the Appendix
we formulate and prove Theorem 6.3, the elliptic counterpart of Theorem 2.8. Although the
proof very closely follows Manne’s original arguments and the proof of Przytycki’s lemma,
we have decided to include it for the following reasons. First, Mane’s original paper [17] is
not easy accessible. Secondly, the original Mane’s proof of Theorem 2.8 contains some minor
misprints and one gap which is filled in by Przytycki’s lemma from [23]. The last, third reason,
is that elliptic functions seem to form the only ”"reasonable” class of transcendental entire and
meromorphic functions for which an appropriate version of Theorem 2.8 or Theorem 2.7 could
hold and we do want to check it rigorously. Although we have a bunch of counterexamples of
meromorphic functions that do not satisfy Mane’s theorem, we feel that our paper is not the
right place to describe them. However, we would like to add that a weaker form of Mane’s
theorem (hyperbolicity on compact forward invariant subsets with some other appropriate
technical assumption of Mane’s flavors) for fairly large class of meromorphic functions has
been proved in [12]. We would also like to point out that Theorem 2.7 easily follows from
Theorem 6.3, the elliptic counterpart of Theorem 2.8, as long as the set X C J(f) \ Q(f) is
assumed to be a compact subset of the complex plane €. The proof that Theorem 2.7 is also
true for closed, not compact, subsets of €' results from its ”compact” part as follows. Suppose
that X C J(f) \ Q(f) is a closed subset of €. Let A = dist(2(f), f~'(cc)) > 0. In view of
(2.2) and (2.4) there exists R > 0 so large that if |f(z)| > R/2, then for some b € f~'(c0),
z € By(R/2)

|f'(2)| > 2 and diam(B,(R/2)) < A/2. (2.12)
Consider now the compact set Y = X U (J(f) \ B(2(f),A/2)) \ Br and the corresponding
number 0 < 0 < min{e, R/2} ascribed to Y and the number min{e, R/2} according to the
”compact” part of Theorem 2.7. In order to complete the proof it suffices to show that if
x € Bpg, then the diameter of each connected component C,(z) of f~™(B(x,d)) does not
exceed € for every € > 0. And indeed, fix w € f~™(x) N Cy(z) and let 1 < k < n be the least
integer such that f" *(w) ¢ Bp provided it exists. Otherwise, set k& = n. We shall show by
mathematical induction that

diam(f"~7(Cy(x))) < 6 < min{e, R/2} (2.13)
for every 0 < j < k. For j = 0 this formula is true since f"(C,(z)) = B(z,d). So, suppose that

it is true for some 0 < j < k — 1. Since f" J(w) € By and since diam (f"7(C,(z))) < R/2,
we conclude that
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It therefore follows from the first part of formula (2.12) that
. 1 .
diam (f"~UD(C,(2))) < 5onam( " (Culx))) < 0.

This proves formula (2.13). In the case when k = n, the result follows from (2.13). Oth-
erwise, it follows from (2.14) and the second part of formula (2.12) that f"~*(C,(x)) C
@'\ B(Q(f),A/2). Since we also know that f"~*(w) ¢ Bg, we conclude that f"~*(w) € Y,
we see that diam(C,(z)) < min{e, R/2} <. We are done.

As a consequence of Theorem 2.7 we shall prove the following.

Corollary 2.9. Let f : € — € be a non-recurrent elliptic function. If X C J(f)U{oo}\Q(f)
is compact, then for every e > 0 there exists 0 > 0 such that for every x € X and everyn > 0,
all connected components of f~'(By(x,0)) have Euclidean diameters < e.

Proof. Apply Theorem 2.7 for the set f~!'(occ) and given € > 0. This gives us the cor-
responding number §; > 0. Taking now & > 0 so small that each connected component of
f7(Bs(00,€)) is contained in B(b,d;) for some pole b € f~'(co) consider the set ¥ = X \
Bg(00, ). Since Y is a compact subset of €, it follows from Theorem 2.7 that there exists do >
0 such that for every x € Y and every n > 0 all the connected components of f~"(B;s(z,?))
have Euclidean diameters < e. Consider a finite cover {Bs(x1,0s), ... , Bs(Tg, 02), Bs(c0, &)}
of X, where z; € Y for all j =1,2,... k. Taking as ¢ half of the Lebesgue number of this
cover (see [16]) finishes the proof. ®

Let us introduce the following notation.

0 = 0(f) = min{min{0(/*,w) : w € AN}, %dist(sz(f), Crit(/)} >0 (215)

where a > 1 is so large that all parabolic points of f® are simple and the numbers 0(f, w)
are defined in (2.9). We denote

A= A(f) =max{A(f,c): c € Crit(f)}, (2.16)

where A(f,c) was defined just after Definition 1.1. We call two points z and w equivalent and
we write z ~ w if w—z € A, the lattice associated with the elliptic function f. Obviously z ~ w
implies that O, (z) = O (w) and w(z) = w(w). Since the set Crit(f)NR is finite, we conclude
that the sets w(Crit(f)) = Uececnin(pnr w(c) and O (f(Crit(f))) = Ueecns(pnr O+(f(¢)) are
compact subsets of €. A positive number 5 < #/2 is now chosen to be less than the following
three numbers.

min{dist(c, O, (f(c)) : ¢ € Crit(f)}
min{(A(c)R(f,¢))"/* : ¢ € Crit(f)}
min{|c — | : ¢, € Crit(f) and ¢ # '},
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where ¢(¢) = q(f,c) is the order of the critical point ¢ of f and R(f,c¢) was defined just
after Definition 1.1. Notice that the first of these numbers is positive since O (f(Crit(f))
is a compact subset of €' and Crit(f) has no accumulation points in €. Since f contains no
recurrent critical points, it follows from Theorem 2.7 that there exists 0 < v < 1/4 such that
if n > 0 is an integer, z € J(f) and f"(z) ¢ B(Q2(f),0), then

diam(Comp(z, f"(z),f”,?y)) < p. (2.17)

From now on fix also 0 < 7 < 7' min{3, 27} so small as required in Lemma 2.4 for every
w € Q(f) and so small that for every z € J(f)

diam(Comp(z,f(z),f, 97)) < min{f, 2v}. (2.18)
Lemma 2.10. If n > 0 is an integer, n > 0, z € J(f) and for every k € {0,1,... ,n}
diam (Comp(f*(2), f"(2), f* *,n)) < B,

then each connected component Comp(f*(2), f™(2), f*~*,n) contains at most one critical point
of f and the equivalence class of each critical point intersects at most one of these components.

Proof. The first part is obvious by the choice of 3. In order to prove the second part
suppose that

er € Crit(£) N Comp( 4 (2), £"(2), £~ m), e2 € Comp(f*(2), (=), £+, )
and ¢; ~ ¢, where 0 < ky < ks < n. But then

£ o) = 527 (e1) € Comp(£2(2), (), £, )
and therefore | f¥2=%1(c,) — ¢;| < 3, contrary to the choice of 3. m

Let k = (Hcecm(f)mgq(c))il. We shall prove the following.

Lemma 2.11. If z € J(f), f"(2) ¢ B(X(f),0), then
Mod(Comp(z, f"(2), f*,2y) \ Comp(z, f"(2), fn77)) > rlog2/#(Crit(f) NR)

Proof. By Lemma 2.10 there exists a geometric annulus R C B(f"(z),2y) \ B(f"(2),7)
centered at f™(z) of modulus log 2/#(Crit(f)NR) such that f~"(R)NComp(z, f*(z), f™,2y)N
Crit(f™)) = 0. Since covering maps increase moduli of annuli at most by factors equal to
their degrees, we conclude that

Mod (Comp(z, £"(2), 4,27) \ Comp(z, f"(2), ", 7))

> Mod(R,) > (log2/#(Crit(f) N'R))/Mecciv(pyrra(c)
klog?2
#(Crit(f)NR)’
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where R, C Comp(z, f"(z2), f™,27v) is the connected component of f~"(B(f™(z),27)) enclos-
ing Comp(z, f"(2), f",7). &

As an immediate consequence of this lemma and Koebe’s Distortion Theorem, IT (Euclidean
version) we get the following.

Lemma 2.12. Suppose that z € J(f) and f*(z) ¢ B(Q(f),0). If0 < k < n and f* :
Comp(z, f*(2), f,2v) — Comp(f*(2), f*(2), f*7*,2v) is univalent, then

() (W)

o < const

|(f%) ()]
forallz,y € Comp(z, f*(z), f™, ), where const is a number depending only on #(Crit(f)NR)
and K.

For A, B, any two subsets of a metric space put
dist(A, B) = inf{dist(a,b) : a € A,b € B}

and
Dist(A, B) = sup{dist(a,b) : a € A,b € B}.
We shall prove the following.

Lemma 2.13. Suppose that z € J(f) and f*(z) ¢ B(Q(f),0). Suppose also that QY C
Q¥ C B(f™(2),7) are connected sets. If Q\?) is a connected component of f~™(Q®) contained
in Comp(z, f*(2), f*, ') and Q\V is a connected component of f~"(QW) contained in QP

then
diam (le>) diam(Q<1>)
. ) i :
d1am(Qn ) d]&m(Q@))
Proof. Let 1 <ny <...<mn, <n be all the integers k£ between 1 and n such that

Crit(f) N Comp(f"~*(2), f"(2), f*,27) # 0.
Fix 1 <i<w. If j € [n;,ni11 — 1] (we set n,1 =n — 1), then by Lemma 2.11 there exists a
universal constant 7" > 0 such that

dian(@)) | i (Q1)) 2.19)
dinm (Qf)) diam(Q%zi))

Since, in view of Lemma 2.10, u < #(Crit(f) NR), in order to conclude the proof is therefore
enough to show the existence of a universal constant £ > 0 such that for every 1 <i < wu—1.

diam(Qg;l) y Ediam(Qgi)).
diam(lel) N diam(Qy(z%-))
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And indeed, let ¢ be the critical point contained in Comp(f™~"+(2), f*(z), f™+',2v) and let

q denote its order. Since both sets le and Q') are connected, we get for i = 1,2 that

1 Nit1

diam(Qgi)H,l) = diam(QﬁfBﬂ) sup{|f'(z)| : z € ngi)H} = diam(Qﬁfi)H)Dist(c, ngi)Jrl).

Hence, using (2.19), we obtain

diam(Qf}ill) . diam(Qgill_l) . Dist(e, Q7(12)+1) S diam(Qgill_l)
diam (Q17,, ) B diam (Q,_,) Dist(c, Qi) ~ diam(Q%,, _,)
diam(Qf}i))
>T——£L
N diam(Qg))

We are done.

2.4. Partial order in Crit(J(f)) and stratifications of closed forward-invariant sub-
sets of J(f).
We put

Crit(J(f)) = Crit(f) N J(f).
We start with the following.

Lemma 2.14. The set w(Crit(J(f))) is nowhere dense in J(f).

Proof. Suppose that the interior (relative to J(f)) of w(Crit(J(f))) is nonempty. Then
there exists ¢ € Crit(J(f)) such that w(c) has nonempty interior. But then there would
exist n > 0 such that f"(w(c)) = J(f) and consequently w(c) = J(f). This however is a
contradiction as ¢ ¢ w(c). B

Now we introduce in Crit(J(f)) a relation < which, in view of Lemma 2.15 below, is an
ordering relation, by putting

(1 <cy <= ¢ €w(e). (2.20)

Since ¢y ~ c¢3 implies w(ey) = w(cy), then if ¢ < ¢y and ¢z ~ ¢3, then ¢; < ¢3

Lemma 2.15. If ¢; < ¢ and ¢y < c3, then ¢ < c3.

Proof. Indeed, we have ¢; € w(cy) C w(c;). W

Lemma 2.16. There is no infinite, linear subset of the partially ordered set (Crit(.J(f)), <)
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Proof. Indeed, suppose on the contrary that ¢; < ¢ < ... is an infinite, linearly or-
dered subset of Crit(.J(f)). Since the number of equivalency classes of relation ~ is equal to
#(Crit(J(f)) NR) which is finite, there exist two numbers 1 < i < j such that w(c;) = w(c;).
But this implies that ¢; € w(cj) = w(e;) and we get a contradiction. The proof is finished. W

The following observation is a reformulation of the condition that J(f) contains no recurrent
critical points.

Lemma 2.17. If ¢ € Crit(J(f)), then it is not the case that ¢ < c.

Define now inductively a sequence {Cr;(f)} of subsets of Crit(.J(f)) by setting Cro(f) = 0
and

Cri(f) = {c € Crit(J(f)) \ LZJ Cri(f): if ¢ <e, then ¢ € Cro(f)U... UC?"Z-(f)i "

Lemma 2.18. We have

(a) If c € Cri(f) and ¢ ~ ¢, then ¢ € Cr;(f).

(b) The sets {Cr;(f)} are mutually disjoint.

(€) Fpz1 Vispr1 Cri(f) =0

(d) Cro(f)U...UCry(f) = Crit(J(f))

(e) Cri(f) #0

Proof. The part (a) follows immediately from the definition of the sets C'r; and the fact that

two equivalent points have the same w-limit sets. By definition Cr;1(f) N U§:1 Cri(f) =10,
so disjointness in (b) is clear. As the number of equivalency classes of the relation ~ is equal
to #(Crit(J(f)) "R which is finite, (a) and (b) imply (c). Take p to be the minimal number
satisfying (c) and suppose that ¢ € Crit(J(f)) \ Uj=, Cr;(f). Since Cryppi(f) = 0, there
exists ¢ ¢ U?_; Cr;(f) such that ¢’ < c. Iterating this procedure we would obtain an infinite
sequence of critical points ¢; = ¢ > ¢ = ¢ > ¢3 > .... But this contradicts Lemma 2.16
proving (d). Now part (e) follows from (c) and (2.21). &

As an immediate consequence of the definition of the sequence {Cr;(f)} we get the following
simple lemma.

Lemma 2.19. Ifc,d € Cri(f), then it is not the case that ¢ < ¢'.

For every point z € J(f) define the set
Crit(z) = {c € Crit(J(f)) : c € w(z)}
We shall prove the following.
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Lemma 2.20. If z € J(f) \ I(f), then either z € U,>o f"(Uf)) or w(z) \ {oc} is not
contained in O, (f(Crit(z)) U Q(f).

Proof. Suppose that z ¢ U,so f7"((f)) U Ioo(f). Then by (2.10) the set w(z) \ {oo} is
not contained in Q(f). So, if we suppose that

w(2) \ {oo} C O (f(Crit(z)) UQ(F), (2.22)

then, as w(z) \ {oo} # 0, we conclude that Crit(z) # 0. Let ¢; € Crit(z). It means that
c1 € w(z) and as ¢; ¢ Q(f), it follows from (2.22) that there exists ¢, € Crit(z) such that
either ¢; € w(ey) or ¢4 = f™(co) for some ny > 1. Iterating this procedure we obtain an
infinite sequence {c;}32, such that for every j > 1 either ¢; € w(cjy1) or ¢; = f"(cj41) for
some n; > 1. Consider an arbitrary block ¢, ¢xi1,. .., ¢ such that ¢; = f™(cj41) for every
k < j <1 —1 and suppose that [ — (k — 1) > #(Crit(f) NR). Then there are two indexes
k <a<b<[such that ¢, ~ ¢,. Then

fna+na+1+...+nb71(ca) — fna+na+l+...+nb71(0b) = Cq

and consequently, as n, + ng11 + ... +np1 > b—a > 1, ¢, is a super-attracting periodic
point of f. Since ¢, € J(f), this is a contradiction, and in consequence the length of the
block ¢k, ¢ki1,--.,¢ is bounded above by #(Crit(f) N'R). Hence, there exists an infinite
subsequence {ny}x>1 such that ¢,, € w(cy,41) for every k > 1 or equivalently ¢,, < cy,,, for
every k > 1. This however contradicts Lemma 2.16 and we are done. B

Recall that the integer p was defined in Lemma 2.18. Define now for every : =0,1,... ,p
Si(f) =Cro(f)U...UCri(f) (2.23)

and for every 1 = 0,1,... ,p— 1 consider ¢’ € Uecr,,, () w(c) NCrit(J(f)). Then there exists
¢ € Criy1(f) such that ¢ € w(c) which equivalently means that ¢’ < c¢. Thus, by (2.21) we
get ¢ € Si(f). So

U wle)n(Crit(J(£))\ Si(f)) =0 (2.24)

c€Crit1(f)
Therefore, since the set U.ccy,,, () w(c) C @'is compact and Crit(J(f)) \ Si(f) has no accu-
mulation point in @,
gi=dist( U wl(e), Crit(J(£)\ Si(f)) >0 (2.25)
CEC?"i_H(f)

Set

p=min{d;/2:i=0,1,...,p—1}.
Fix a closed forward-invariant subset E of J(f) and for every i = 0,1,... ,p define

Ei(f) = {z € E : dist(0.(2), Crit(J(f)) \ Si(f)) > p}.

Let us now prove the following two lemmas concerning the sets E;(f).
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Lemma 2.21. Eg CEI C... CEPZE

Proof. Since S;11(f) D Si(f), the inclusions E; C E;iy is obvious. Since S,(f) =
Crit(J(f)), it holds E, = E. We are done. B

Let

PC(f) = O4(Crit(J(f)))

We shall prove the following.

Lemma 2.22. There exists | = I(f) such that for everyi=0,1,... ,p—1
U wle) CO(f1(Crina(f))) € PC(f);

ce C’riJrl (f)

Proof. The left-hand inclusion is obvious regardless whatever [(f) is. In order to prove the
right-hand one fix i € {0,1,...,p — 1}. By the definition of w-limit sets there exists [; > 1

such that for every ¢ € Cr;y1(f) we have dist(0+(fli(c)),Ucecrm(f)w(c)) < §;/2. Thus,
by (2.25), dist(0+(fli(c)),Crit(J(f)) \ Si(f)) > §;/2. Since p < §;/2 and since for every

z € O4(fl(c)) also O, (z) C O,(f%(c)), we therefore get O, (f'(Cr;iy1(f))) € PC(f);. So,
putting [(f) = max{l; : i =0,1,... ,p — 1} the proof is completed. ®

2.5. Holomorphic inverse branches. In this section we prove the existence of suitable
holomorphic inverse branches-our basic tools in the next section. Set
Sing™(f) = [ £ "(Q(f) UCrit(J(f)) U f(o0)) and T_(f) = |J f "(c0).
n>0 n>1
We start with the following.

Proposition 2.23. If z € J(f) \ Sing (f), then there exist a positive number n(z), an
increasing sequence of positive integers {n;};>1, and a point v = x(z) € w(z) \ (Q(f) U

w(Crit(z))) such that x # oo if z ¢ Ino(f), lim; e [ (2) = = and

Comp(z, f"(z), [, n(2)) N Crit(f™) =0
for every 7 > 0.

Proof. Suppose first that z € I(f)\Sing™(f). Since O, (f(Crit(f))) is a compact subset, of
@, we conclude that for all n large enough dist(f™(z), O (f(Crit(f)))) > 1. We are therefore
done taking x = oo and n(z) = 1. So, suppose that z ¢ I(f). This means that w(z)\ {co} #
(). Suppose that w(z) \ {oo} is unbounded. Since O, (f(Crit(f))) is a compact subset of @,
there thus exists = € w(z) \ {oc} such that dist(z, O, (f(Crit(f)))) > 2 and we are done fixing
a sequence {n;}52, such |f"(z)—z| < 1 and taking n(z) = 1. So, assume that w(z) = FU{oo}




18 JANINA KOTUS AND MARIUSZ URBANSKI

where F' C ('is a compact set. Then FNf~"(c0) # () and so we can fix z € FNf~!(c0). Again,
since O (f(Crit(f))) is a compact subset of €'and since f(O+(f(Crit(f)))) C O4(f(Crit(f))),

we see that @ ¢ O, (f(Crit(f))) and we are done taking n(z) = sdist(z, O, (f(Crit(f)))). So
suppose finally that w(z) is a compact subset of €. In view of Lemma 2.20 there exists
z € w(z)\ (f) UOL(f(Crit(z)) U {oc}). The number n = dist(x, 2(f) U O,(f(Crit(z)))
is positive since w(Crit(z)) is a compact subset of €'and €Q(f) is finite. Then there exists an
infinite increasing sequence {m;};>; such that

jli)rl;) fMi(z)==x (2.26)
and
B(f™i(z),n) N [J f*(Crit(z)) = 0. (2.27)

Now we claim that there exists 7(z) such that for every j > 1 large enough
Comp(z, f™ (=), ™, n(2)) N Crit(f™) = 0. (2.28)

Otherwise we would find an increasing to infinity subsequence {m, } of {m;} and a decreasing
to zero sequence of positive numbers 7; such that n; < n and
Comp(z, f™i(z), f™i,n;) N Crit(f™i) # 0

Let ¢; € Comp(z, f™i(z), f™i,n;) N Crit(f™i). Then there exists ¢; € Crit(f) such that
fPi(¢;) = ¢ for some 0 < p; < my, — 1. Since the set f !(z) is at a positive distance
from Q(f) and since n; — 0, it follows from Theorem 2.7 that lim; ,o, ¢ = z. Since z ¢
Unso f™(Crit(f)), it implies that lim; ,,, p; = co. But then using Theorem 2.7 again and
the formula f?i(¢;) = ¢; we conclude that the set of all accumulation points of the sequence
{¢;} is contained in w(z). Hence, passing to a subsequence, we may assume that the limit
¢ = lim;_,, ¢; exists. But since ¢ € w(z), since w(z) is a compact subset of €' and since oo is the
only accumulation point of Crit(f), we conclude that the sequence ¢; is eventually constant.
Thus, dropping some finite number of initial terms, we may assume that this sequence is
constant. This means that ¢; = ¢ for all i = 1,2,.... Since ¢ = fPi(¢;), we get

|[f™i(2) = [P ()| = [f™i(2) — f™(@)] < i
Since lim;_, », 7; = 0 and since w(z) is a compact subset of €, we conclude that lim;_,, | f™i (2)—
fmi7Pi(c)| = 0. Since ¢ € Crit(z), in view of (2.27) this implies that m;, — p; < 0 for all 4
large enough. So, we get a contradiction as 0 < p; < m;, — 1 and (2.28) is proved. We are
done. m

It is well-known in meromorphic dynamics that if z € J(f) \ (Sing™ (f) U Ix(f)), then the
limit points of the normal family

fo" 1 B(x(z),n(2)/2) = €
consist only of constant functions. Therefore we get the following.
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Corollary 2.24. If z € J(f) \ (Sing™ (f) U I(f)) and the sequence {n;}32, is taken from
Proposition 2.23, then

limsup |[(f*)*(2)] = Limsup |(f*)(2)| = lim [(f*)'(2)] = +oo.

n—0o0

In addition, if we assume only that z € J(f) \ Sing™ (f), then

lim sup |(f")'(2)] = oc.

3. CONFORMAL MEASURES

In this section we deal in detail with the existence, uniqueness and some geometrical properties
of conformal measures. We start with the subsection describing some basic facts from the
geometric measure theory.

3.1. Preliminaries from Geometric Measure Theory. Given a subset A of a metric
space (X,d), a countable family {B(x;,r;)}2, of open balls centered at the set A is said to
be a packing of A if and only if for any pair 7 # j

d(a:i, ZL‘j) > 1+ Ty
Given ¢ > 0, the t-dimensional outer Hausdorff measure H*(A) of the set A is defined as
H(A) = sup inf{z rf}
e>0 i=1

where infimum is taken over all covers {B(x;,r;)}2, of the set A by open balls centered at A
with radii which do not exceed e.

The t-dimensional outer packing measure I1¢(A) of the set A is defined as
bOAY — t(4.
IT'(A) = U;ggA{Xi: I (A4;) }
(A; are arbitrary subsets of A), where
I, (A) = sup sup{z rf}
e>0 i=1

Here the second supremum is taken over all packings { B(z;, ;) }$2; of the set A by open balls
centered at A with radii which do not exceed e. These two outer measures define countable
additive measures on Borel o-algebra of X.

The definition of the Hausdorff dimension HD(A) of the set A is the following
HD(A) = inf{t : H(4) = 0} = sup{t : H'(A) = oo}.
Let v be a Borel probability measure on X which is positive on open sets. Define the function
p=p(v): X x(0,00) — (0,00) by
v(B(z,r))

ple,r) = 220
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The following two theorems (see [DU5]) are for our aims the key facts from geometric measure
theory. Their proofs are an easy consequence of Besicovi¢ covering theorem (see [G]).

Theorem 3.1. Let X = IR" for some n > 1. Then there exists a constant b(n) depending

only on n with the following properties. If A is a Borel subset of IR™ and C' > 0 is a positive
constant such that

(1) for all (but countably many) x € A

limsup p(x,7) > C 1,

r—0
then for every Borel subset E C A we have H(E) < b(n)Cv(E) and, in particular,
H!(A) < oo.
or

(2) for allz e A
limsup p(z,7) < C7F,

r—0

then for every Borel subset E C A we have HY(E) > Cv(E).

Theorem 3.2. Let X = IR" for some n > 1. Then there exists a constant b(n) depending

only on n with the following properties. If A is a Borel subset of IR" and C' > 0 is a positive
constant such that

(1) for allz e A
. . —1
llgl)lglfp(l‘ﬂ“) <C7,
then for every Borel subset E C A we have II'(E) > Cb(n)~'v(E),

or
(2) forallz e A

liminf p(z,r) > C 1,
r—0
then II'(E) < Cv(E) and, consequently, IT'(A) < oo.

(1) If v is non—atomic then (1) holds under the weaker assumption that the hypothesis of
part (1) is satisfied on the complement of a countable set.

3.2. Support of Conformal Measure. From now on throughout this section and the entire
paper we set

h=HD(J(f)).
We begin with the following.

Lemma 3.3. If m is a t-conformal measure for f : J(f) — J(f) U {oo}, then t > HD(J(f))
and H|5¢s) is absolutely continuous with respect to m.
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Proof. Fix z € J(f) \ (Sing™ (f) U Io(f)). Let n(z) > 0, x € w(z) \ {oo} and the sequence
{n;};>1 be taken from Proposition 2.23. It then follows from this proposition and Koebe’s
Distortion Theorem, I(spherical version) that

£ (B(f(2),m(2)/2) < B(z|(f)"(2)] 'n(2)/2).

Applying again this Koebe’s Distortion Theorem and conformality of the measure m, we get
for all j > 1 large enough

m(B(z |(f") (2)[7'n(2)/2)) < [(f™)" ()| 'm(B(f" (2),1(2)/2))
= |(f")" (2)[T'm(B(x,n(2)/4))
= [(f")(2)|"'m(B(x,n(2)/4))
= (2n(=) )'m(B (e, n(2)/)) (|(F) ()] n(2)/2))

where the second comparability sign depends on |z| and holds for all j > 1 large enough so
that f™ (z) is sufficiently close to z. In particular

lim supw > R(z) >0,

where R(z) = (2n(2)7")'m(B(z,n(z)/4)). Therefore, putting
Xp={z € J(f)\ (Sing (f)UIx(f))) : |2 <k and R(z) > 1/k}
we have U2, X = J(f)\(Sing™ (f) Ul (f)), and in view of Theorem 3.1(1), dHt/dm < b(2)k

on Xi. In particular H* < m on J(f) \ (Sing (f) U I(f)). Hence HD( \ (Sing™ (f) U
Ioo(f))) < t. By Theorem 1 and Theorem 2 in [15]), HD(J ( )) > HD(IOO( )) Of course
HD(Sing (f)) = 0 as Sing™ (f) is a countable set. Thus HD(J (J( (Sing ™ (f) U

Io(f))) <t and H < m on J(f). m

We will need in the sequel the following result which is interesting itself.

Lemma 3.4. If m is a t-conformal measure for f : @ — @, then m(I(f)\I_(f)) = 0. Even
more, there exists R > 0 such that

m({z : liminf[f"(z)| > R}) = 0.

Proof. Let b be a pole of f : @ — €. We shall obtain first an upper estimate on m(By(R))
similar to the second inequality in (2.4). And indeed, covering Bg \ {oc} by two simply
connected domains

B} ={z€ Br\ {0} :Imz >0} and By = {z € B\ {o0} : Imz < 1}
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we obtain
m(By(R) \ {b}) <2/ Ik |dm+2/ o) ltdm.

Using now (2.3), we obtain

/1?;|( bB+]) |‘dm v/ <1+|b|2|Z| 1) dm(z) = ﬁ/ |Z|qbq;1tdm(z)
<@ [ 1T dm(2).

R

Looking at the ﬁrst line of this formula with a pole b of maximal multiplicity, we see that the

integral [5+ Elxa dm( ) is finite and even more:
: =1y
}%glgo " 2|7 dm(z) = 0. (3.1)

-1
Similarly, the integral [p1 2| tdm(z) is finite and it also converges to 0 as R — co. Putting

Sp= max{/ |z|"2—1tdm(z),/ |z|qutdm(z)}
BF BL

R R

we therefore conclude that
m(By(R) \ {b}) < 2¢Zr(1 4+ |b]*)™" < 2¢XR|b|7%. (3.2)

Now the argument goes essentially in the same way as in [15]. We present it here for the sake
of completeness. We take Ry > R; defined in Section 2.1 so large that

LR & < R, (3.3)

for all poles b € Bg, and all R > R,. Given two poles by,by € Byg, we denote by fb;}bhj :
B(bi, Ry) — € all the holomorphic inverse branches fb_z,lB(bl,RO)J. It follows from (2.4) and
(3.3) that

Frhi i (B(bi, Ro)) € By, (2R, — Ry) C By, (Ry) C B(bs, Ro) (3.4)
Set

Since the series Y yer-1(50)\j0y [b|7° converges for all s > 2 and since by Lemma 3.3 and
Theorem 3 from [15], ¢ > h > 2‘1 there exists R3 > Ry such that

MY T <2 (3.5)
bGBR3ﬁf_1(oo)
Consider R > 4R3. Put
I = f_l(oo) N B(R/z)
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Since R/2+ Ry < R/2+ R3 < R/2+ R/2 = R, it follows from (3.4), (2.4) and (3.3) that for
every [ > 1 the family W, defined as

{fbﬁlfl,jz O for b a1 @+ © Fombr o © Fon o (Bbo(R/Q) \ JH(OO))} ;

where b; € I : 1 < j; < q,,i = 0,1,...,1, is well-defined and covers Ip(f). Applying (2.3)
and (2.4) we may now estimate as follows.

m(Ig(f)) <
ab, by X . ) .
< Z Z T Z Z Z m (fbl:bl—lzjl ° fbl—l:bl—2:jl—1 ©...0 fbmbl,jz © fbl,bo,jl (Bbo (R/Q)))
biel j;=1 biel j1=1boel
qbl dbq %
<3S Y b © Pt iarsiis © -0 Fonbin © Forbaa) 1B |l (Buo (1/2))
bel ji=1 b1l j1=1boel
ay -\t Wty L ap =1\
b by |by_y| ™ |by_g| -1 |bg| %

1
It ) t
< Z Z Z Z Z M e T e (2¢XRr) [bo |2

b el j;=1 bi€l j1=1bo€El

qbl by

= (2¢%p) Mltz Z Z Z Z Iby|~ 2t(|bl 1|_¢t |b0|_q_+1)

blEIJz 1 biel j1=1boel
b,

qu Mlt Z Z Z Z Z(|bl|——t|bl 1|——t |b |—q+ t)

biel ji=1 biel j1=1boel

l
_g+1
< (2¢%g)'M" (Z|b| “ t) q

bel

< (2¢Zg)" (th S )

beBRSfol( )

Applying (3.5) we therefore get m(Ir(f)) < (2¢Xr)!27!. Letting I — oo we therefore get
m(I(f)) = 0. Since mo f~! < m and since {z : liminf, o [f"(2)] > R} = U2y f 7 (Ir(f)),
we conclude that m({z liminf, o [f"(2)] > R}) = 0. We are done. B

3.3. The Existence of h-Conformal Measure. Developing the general scheme from [9]
we shall now prove in several steps the existence of an h-conformal measure. In order to begin
we call Y C {00} UQ(f) UU,s1 f"(Crit(J(f))) a crossing set if Y is finite and the following
four conditions are satisfied.

(yl) o €Y.

(y2) YN {f™(x):n > 1} is a singleton for all x € Crit(J(f)).
(v3) YﬂCrlt( ) =10

(y4) Q(f) C
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Since f(Crit(f)) is finite, crossing sets do exist. Let V C @ be an open neighbourhood of YV’
such that

Crit(J(f)) N AV = 0. (3.6)

Notice that there exists a decreasing to zero sequence {r,}5, of positve radii such that the
sets V' of the form B,(Y,r,) satisfy all the above requirements. We define

K(V)={z€J(f): ["(2) ¢V ¥V(n = 0)}.

Obviously f(K(V)) € K(V) and since f : € — @'is continuous and V is open, we see that
K(V) is a closed subset of €. Since in addition K(V) C €'\ V, we conclude that K (V) is a
compact subset of €. Fix w € K(V) and ¢t > 0. For all n > 1 consider the sets

En=(flxw) ()
and the number
. 1 n\* —
c(t) =limsup —log > |(f")*(z)| "
n—oo M 2€E,

Since the continuous map f|x) : K(V) — K(V) has no critical points, all the sets F, are
(n,d)-separated (meaning that max{|f’(z) — f/(y)] : 0 < j < n — 1} > ¢ for all different
points x,y € E,,), where

: : -1
§ = yellI(l(fV){mHlﬂZ —x|:x,2 € (f|K(V)) (y) and = # z}} > 0.

Therefore
e(t) < P (flxq, —tlog|f7]), (3.7)

where the right-hand side of this inequality is the topological pressure (see [28], [7], [25] or
[24] for its definition and an extensive amount of useful properties) of the potential —tlog | f*|
with respect to the dynamical system f|x ) : K(V) — K(V'). Denote this pressure simply by
P(f,V). We call a Borel set A C @'special if f|, is injective. Having in mind (3.6, Lemma 3.1
and 3.2 from [9] (comp. [8]) enlarged by the reasoning started from the second paragraph of
the proof of Lemma 5.3 in [9] can now be formulated together as follows.

Lemma 3.5. For everyt > 0 there erists a Borel probability measure my,; supported on K(V)
such that

(a) my(f(A)) > [4 O f*|tdmy, for every special set A C @ and
(b) my(f(A) = [, eO|f*|tdmy, for every special set A C @\ V.

We will need the following technical lemma.

Lemma 3.6. The function t — c(t) is continuous, c¢(0) > 0 and ¢ 1(0) N (0,h] # O if V has
a sufficiently small diameter.
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Proof. Continuity of the function ¢(t) follows from the fact that 0 < infx ) {|f*|} <
supg ) {|f*]} < co. Since periodic points of f are dense in J(f), K(V') # 0 for all V' suffi-
ciently small. Also if V' is sufficiently small and w € K(V'), then #E,, > 2" and consequently
c(0) > log2 > 0. Since ¢(0) > 0 and since the function ¢(t) is continuous, in order to prove
the last claim of our lemma, it suffices to show that ¢(¢) < 0 for all ¢ > h. So, suppose on the
contrary that ¢(¢) > 0 for some ¢ > h. It follows from (3.7) that

P(f,V) > 0. (3.8)

Since the proof of Lemma 4.1 and Corollary 4.2 from [9] go word by word in our context,
we conclude that the Lyapunov exponent y, = [log|f*|du > 0 for every Borel probability
f-invariant measure p supported on K (V). It follows from (3.8) and the variational principle
for topological pressure that there exists a Borel probability f-invariant measure p supported
on K (V) such that h,(f) —tx, > 0. Since x, > 0, this implies that h,(f) > 0 and due
to Ruelle’s inequality x, > 0. Hence, applying Przytycki’s-Manne volume lemma (see [22],
comp. [18]), we can write

h
< ) g <
Xu
and this contradiction finishes the proof. B

Let
s(V) = min{c '(0) N (0,h]} > 0.

Combining Lemma 3.5 and Lemma 3.6 we get the following.

Lemma 3.7. There exists a Borel probability measure my supported on K(V') such that

(a) my (f(A) > [4|f1°Vdmy for every special set A C @ and
(b) my (f(A)) = [, | 1PV )dmy for every special set A C T\'V.

Fix now a descending sequence {Crit},>; of neighbourds of Y satisfying (3.6) and such that
diam,(V},) < 1/n. Since the sequence n — s(V,,) is monotonically non-decreasing, proceeding
similarly as in the proof of Lemma 5.4 from [9] (note that in the place where Lemma 3.3 from
9] is invoked, only the first inequality in (d) is needed; in particular my (c0) = 0, where my- is
an arbitrary weak accumulation point of the sequence {my, }°°,, we obtained the following.

Lemma 3.8. For every s(Y'), an accumulation point of the sequence s(Bs(Y,1/n)), s(Y) €
(0,h] and there exists a Borel probability measure my (an appropriate weak accumulation
point of the sequence {mp,(y,1/n)}n>1) supported on J(f) such that

(a) my (f(A) > [, |f1*VVdmy for every special set A C @ and
(b) my (f(A) = [, |15 dmy for every special set A C T'\Y.
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The next fact proven in this section is provided by the following.

Lemma 3.9. For every crossing set Y, m = my is an s(Y')-conformal measure for f : J(f) —
J(f)U{oo}, s(Y) = h, and all atoms of m are contained in I_(f) UU,>o f~"(Crit(J(f)).

Proof. Since we already know that m(oco) = 0 (see the paragraph proceeding Lemma 3.8)
and since Y N (Sing™ (f) U Io(f)) € Q(f) U {oc}, it follows from Lemma 3.8(b) and Corol-
lary 2.24 that

m(Y \ Q(f)) = 0. (3.9)

We shall show now that m(Q(f)) = 0. And indeed, fix w € Q(f). Take a > 1 so large
that f*(w) = w and (f*)'(w) = 1. It then follows from (2.11) that there exist a compact set
F, C B(w,0) \ {w} and a constant C' > 1 such that for every £ > 1 and all z € F,,, we have

pw)
CTTIT < (£ ()] < Ok (3.10)

and for every n > 1 there exists k,, > 1 such that
B(w,1/n)C |J f;%(F,) and lim &, = oo. (3.11)

J=kn
It follows from Lemma 3.8(b), (3.10) and the fact that the family { f,, **(F,,)}n>1 is of bounded
multiplicity, that
_p(w)+1 S(Y)
Z n  pw < 00.

n>1

In particular p(ij)rl s(Y') > 1. Denote mly, by m, and s(V,) by s,. Since lim, , s, = s(Y),

we see that for every n > 1 large enough, say n > ny,
pw)+1
p(w)
for some o > 0. It therefore follows from Lemma 3.8(a), (3.11) and (3.10) that for all n > ny
and alll >1

S, >1+o0.

ol . plw)l X plw)+1
ma(B(w, 1/1)) < 3 m, (f;‘”(Fw)) < OBy e
Jj=ki j=k;

Consequently

Since lim;_,, k; = 0o, we infer
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Combining this and (3.9), we see that m(Y) = 0. Since f(Q(f)) = Q(f), in order to prove
s(Y)-conformality of the measure m, it therefore suffices to show that m(f(Y \ Q(f))) =
0. Butif y € Y\ (2(f) U {oo}), then due to our definition of YV, y ¢ Sing™ (f) and the
formula m(f(y)) = 0 immediately follows from Corollary 2.24, the formula m(f™(f(y))) >
)Y (fF)]*Ym(f(y)) and inequality s(Y) > 0 stated in Lemma 3.8. Thus the s(Y)-
conformality of m is proven and in addition all the atoms of m must be contained in J(f)\ €2.
In view of Lemma 3.8 and Lemma 3.3, s(Y) = h. Applying now Lemma 3.4 and Corollary 2.24
we see that all atoms of m must be contained in I_(f) U U, > f " (Crit(J(f)). The proof is
complete. B -

4. HAUSDORFF AND PACKING MEASURES

In this section H” and IT" denote respectively the Hausdorff and packing measures considered
with respect to the spherical metric on €. Our aim here is to prove first that the conformal
measure m produced in Lemma 3.9 is atomless and then the following main result.

Theorem 4.1. Let f : @ — @ be a non-recurrent elliptic function. If h = HD(J(f)) = 2,
then J(f) = @. So suppose that h < 2. Then
(a) H"(J(f)) = 0.
(b) II*(J(f)) > 0.
(¢) TI"(J(f)) = oo if and only if Q(f) # 0.

As an immediate consequence of this theorem we get the following.

Corollary 4.2. If Q(f) = 0, then the Fuclidean h-dimensional packing measure 1" is finite
on each bounded subset of J(f).

4.1. Special Facts from the Geometric Measure Theory. We list in this subsection
without proofs some more technical facts taken from Section 2, Section 3 and Section 4 of

126].

Definition 4.3. Given r > 0 and L > 0 a point © € @ is said to be (r, L)-t-upper estimable
if p(x,r) < L and is said to be (r,L)-t-lower estimable if p(x,r) > L. We will frequently
abbreviate the notation writing (r, L)-t-u.e. for (r, L)-t-upper estimable and (r,L)-t-l.e. for
(r, L)-t-lower estimable. We also say that the point x is t-upper estimable (t-lower estimable)
if it is (r,L)-t-upper estimable ((r,L)-t-lower estimable) for some L > 0 and all r > 0
sufficiently small.

We will also need the following more technical notion.
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Definition 4.4. Givenr > 0, 0 > 0 and L > 0 the point x € X is said to be (r, o, L)-t-strongly
lower estimable, or shorter (r,o, L)-t-s.l.e. if v(B(y,or)) > Lrt for every y € B(z,r).

We collect now from [26] the technical facts about the notions defined above.

Lemma 4.5. If z is (r,0, L)-t-s.l.e., then every point v € B(z,1/2) is (r/2,20,2'L)-t-s.l.e..
Lemma 4.6. If x is (r,0, L)-t-s.l.e., then for every 0 < u < 1 it is (ur,o/u, Lu *)-t-s.l.e..

Lemma 4.7. If v is positive on nonempty open sets, then for every r > 0 there exists E(r) > 1
such that every point x € X is (r, E(r))-t-u.e. and (r, E(r) *)-t-lLe..

Passing to conformal maps we consider now the situation where H : U; — U, is an analytic
map of open subsets U;, Us of the complex plane €. We say that given ¢ > 0, the Borel
measure v finite on bounded sets of €'is a Euclidean semi ¢-conformal measure if and only if

v(H(A)) > /A \H'|! dv

for every Borel subset A of U; such that H|4 is one-to-one and is called ¢-conformal if the

“w_»

“>” sign can be replaced by an “=" sign.

Lemma 4.8. Let v be a Euclidean semi t-conformal measure. Suppose that D C @' is an open
set, z€ D and H : D — @ is an analytic map which has an analytic inverse H; ' defined on
B(H(z),2R) for some R > 0. Then for every 0 <r < R

Ku(B(e, K| H'(2)| ) < |H'(2)| w((B(H(2),7))).
If, in addition, v is t-conformal, then also
|H'(2)|"'v((B(H(2),7))) < K'v(B(z, Kr|H'(2)| ).

Lemma 4.9. Suppose that v is a Euclidean t-conformal measure. If the point H(z) is (r,0, L)-
t-s.l.e., where r < R/2 and o < 1, then the point z is (K '|H'(z)|"'r, K%0, L)-t-s.l.e..

Lemma 4.10. Suppose that v is a FEuclidean t-conformal measure. Let ¢ be a critical point
of an analytic map H : D — €. If 0 < r < R(H,c) and H(c) is (r,L)-t-l.e., then c is
((Ar)Ye A=) t-le..
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Lemma 4.11. Let ¢ be a critical point of an analytic map H : D — @. Let v be a Fuclidean
semi t-conformal measure such that v(c) = 0. If 0 < r < R(H,c) and H(c) is (s, L)-t-u.e.
for all 0 < s <, then c is ((Aflr)l/q, q(2A%)! (241 — 1)*1L) t-u.e..

Note that the proof of this lemma is the same as the proof of Lemma 3.4 in [26]. The only
modification is that the equality sign in the first line of the first displayed formula of this
proof is to be replaced by the “>” sign.

Lemma 4.12. Suppose that v is a Euclidean t-conformal measure. Let ¢ be a critical point
of an analytic map H : D — €. If 0 <r < :R(H,c), 0 <o <1 and H(c) is (r,o,L)-t-s.le,

then ¢ is (A 'r)Y4, 5, L)-t-s.l.e, where & = (2971 K A20)'/ and L = L min{ K, (Aza)lq;qt}.

Notice now that if m is a semi t-conformal measure for f : J(f) — J(f) U {oo}, then the
measure m, = (1 + |z|?)'m is Euclidean semi ¢-conformal, i.e.

mo(F(4) = [ [/ V'dm,

for every Borel set A C J(f) such that f|4 is 1-to-1. If m is t-conformal, then so is m, in
the obvious sense. The measure m, is called the Euclidean version of m. Obviously m, is
equivalent to m and is finite on bounded subsets of €. From now on throughout the entire
paper we fix a crossing set ¥ and we consider an open neighbourhood V C @ of Y such
that the closure of V is disjoint from at least one fundamental parallelogram of f. A semi
t-conformal measure m is said to be almost t-conformal if

m(f(4)) = [ |f|'dm

for every Borel set A C J(f) such that f|4 is 1-to-1 and ANV = (). Hence for every Borel
set A such that f|4 is 1-to-1 and ANV =) and for every w € A, we have

[ 17t dme = me(F(4) = mo(F(A+w) = [ |7 )tdm,

and the last inequality sign becomes an equality either if in addition (A +w) NV = or if
m is a t-conformal measure and we assume only that f|4 is 1-to-1. Since f’ is periodic with
respect to the lattice A, all the above statements and assumptions lead to the following.

Lemma 4.13. For every w € A, every Borel set A C @ such that ANV = 0 and every almost
t-conformal measure m

me(A 4+ w) < me(A).

If either in addition (A +w) NV =0 or if m is h-conformal and we assume only that f|a is
1-to-1, then this inequality becomes an equality. For every r > 0 there exists M(r) € (0, 00)
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independent of any almost t-conformal measure m such that
me(F) < M(r). (4.1)

for every Borel set F' C @' with the diameter < r. If in addition m is h-conformal, then for
every R > 0 there exist constants Q(R) and Qn(R) such that

me(Beo(z,7)) > Q(R)r* > Qu(R)r" (4.2)
for all x € J(f) and all 7 > R.

The following lemma, is proven in the same way as the corresponding lemma from Section 4
of [26].

Lemma 4.14. Suppose that m, is a Fuclidean t-conformal measure. Then for every R > 0
and every 0 < o < 1 there exists L = L(w, R,0) > 0 such that for every 0 < r < R every
point w € Q(f) is (r,0, L)-ay(w)-s.l.e. with respect to the measure m.

4.2. Conformal Measure and Holomorphic Inverse Branches.

In this subsection we prove two technical propositions modeled on Proposition 6.3 and Propo-
sition 6.4 from [26]. The proofs we present also follow those in [26]. However, in our context,
unchanged formulations of Proposition 6.3 and Proposition 6.4 fail to be meaningful since
|f'||5¢5y = 4+00. The remedy, sufficient for our purposes, is to replace J(f) by an arbitrary
closed forward invariant subset of J(f) on which the modulus of the derivative of f is uni-
formly bounded above. For the convenience of the reader and the sake of completness we
check below that appropriate modifications of Proposition 6.3 and Proposition 6.4 from [26]
turn out to be true. Let m be an almost ¢-conformal measure and let m, be its Euclidean ver-
sion. The upper estimability and strongly lower estimability will be considered in this section
with respect to the measure m,. When we speak about lower estimability we assume more,
that the measure m is t-conformal. Since the number of parabolic points is finite, passing to
an appropriate iteration, we assume in this and the next section without loosing generality
that all parabolic points of f are simple. Consider a forward f-invariant closed subset E of
@ such that

1f'|| == sup{|f'(2)| : 2 € B} < 0.
Such sets will be called f-pseudo-compact. Obviously, each f-invariant compact subset F

of €'is f-pseudo-compact. Recall that 6 was defined in (2.9) and that 7 > 0 is so small as
required in Lemma 2.3.

Proposition 4.15. Fiz an f-pseudo-compact subset E of . Let z € E, X > 0 and let
0 < r < 70||f'||z'A"" be a real number. Suppose that at least one of the following two
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conditions is satisfied:

ze E\ |J f™(Crit(J(f))
n>0
or
z€E and r>70|f |z A inf{|(f") (2)] " in=1,2,...}.
Then there exists an integer u = u(\,r, z) > 0 such that r|(f*)'(z)| < A7 and the following
four conditions are satisfied

diam (Comp(f7(2), f*(2), f*7,7|(f*) (2)])) < B (4.3)
for every 7 = 0,1,... ,u. For every n > 0 there exists a continuous function t — B; =
Bi(\,n) >0, t € [0,00), (independent of z, n, and r) and such that if f*(z) € B(w,0) for
some w € Q(f), then

fU(z) is (e[ (f*)'(2)], Br) — cu(w)-u.e. (4.4)
and there exists a function Wy = Wi(A,n) : (0,1] — (0,1] (independent of z, n, and r) such
that if f*(z) € B(w,0) for some w € Q(f), then for every o € (0,1]

() is (mr|(f")(2)], 0, Wi(0)) — ay(w)-s.l.e. (4.5)
If f*(2) ¢ B(QUf),0), then formulas (4.4) and (4.5) are also true with oy(w) replaced b(gi1 %)

Proof. Suppose first that sup{Ar|(f7) ()] : j > 1} > 07||f'||z" and let n = n(\, z,7) > 0
be a minimal integer such that

Ar|(fm) (2)] > orllfIE" (4.7)
Then n > 1 (due to the assumption imposed on r) and also
Ar|(f*)'(2)] < o7 (4.8)

If f"(z) ¢ B(Q2(f),0) set u = u(A,r,z) =n. The items (4.4), (4.5) and (4.6) are obvious in
view of our assumptions imposed on E.

So suppose that f"(z) € B(2(f),0), say f"(z) € B(w,0), w € Q(f). Let 0 <k =k(\, z,7) <
n be the smallest integer such that f7(z) € B(Q(f),0) for every j = k,k+1,... ,n. Consider
all the numbers

ri = |f'(2) = wll(F) ()]~
where i = k,k+1,...,n. By (4.7) we have
= |f"(2) = wll (") ()7 < ONfE0™ 7 A = || f]ler " Ar
and therefore there exists a minimal & < u = u(\, 7, 2) < n such that r, < ||f'||z7 *\r. In
other words

[f*(2) = wl S I llem A () () < (LTt | (F7)'(2)] (4.9)

If sup{\r|(f9)'(z)] : j > 1} < O7||f'||z", then it follows from Corollary 2.24 that z €
Ujsof 7 (Q(f)). Define then u(X, z,7) = k(X,z,r) to be the minimal integer j > 0 such
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that f7(z) € Q(f) and put w = f¥(z). Notice that in this case formulas (4.8) and (4.9) are
also satisfied. Our further considerations are valid in both cases. First note that by (4.9) we
have

B(f"(2),nr1(f*)' (2)]) € Blw, @+ [[fler™ 0~ Nur|(f) (2)]) (4.10)
and in view of Lemma 2.5 and (4.8)
me(B(f"(2)mr|(£") (2)])) <

< Clw, L+ [Nl 0™ NOrpA™ ) L+ [ e~ 0~ )@ (| () (2)) )
So, item (4.4) is proved. Also applying (4.9), Lemma 4.14, Lemma 4.5 and 4.8) we see that
the point f“(z) is
(e Al ()] o7l £ 1 A 22 Lw, 2] £']] 20, or 2| l|E) 'nA ™)) = au(w)-s.Le.
So, if || f'[|leT~"A > n, then by Lemma 4.6, f“(z) is

(Y ) o @I ™ Mg~ O L, 21| ] 66, o (21| ]) m)AT) = ar(w)-s.le
If instead || f'||z7~'A < 1, then again it follows from (4.9), Lemma 4.14, Lemma 4.5 and (4.8)
that the point f*(z) is (777"|(f“)’(z)|,0, 20 [(w, 297’)\*177,0/2)) — ay(w)-s.le.. So, part (4.5)
is also proved.

In order to prove (4.3) suppose first that v = k. In particular this is the case if z €
Ujzo /77 (€2(f))- Then
Comp(f*='(2), f*(2), f,rI(f*) (2)]) € Comp(f*~'(2), f*(2), f, 07)

and by the choice of k and (2.7) we have f*1(z) ¢ B(Q(f),0). Therefore (4.3) follows from
the choice of 7 (see (2.18)) and (2.17).
If u > k (so the first case holds), then r, | > ||f'||e7~"Ar and by (2.17) we get

r, = m

N (R) — vl
So, A\r|(f*)'(2)| < 7|f*(z) — w| and applying Lemma 2.4 and (2.7) u — k times we conclude
that for every £ < j <u

diam (Comp(f7(2), f"(2), 7, Ar|(f*) (2)])) < 07 < 8

And now for j =k —1,k—2,...,1,0, the same argument applies as in the case v = k. B

U D > W s > 7

Proposition 4.16. Fiz an f-pseudo-compact subset E of @. Let € and X be both positive num-
bers such that € < Amin{1, 771071771y}, If 0 < r < 70||f'||z'A7! and z € E\ Crit(J(f)),
then there exists an integer s = s(\, €,r,z) > 1 with the following three properties.

|(f*)' ()] # 0. (4.11)
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If = u(\, 1, 2) is well-defined, then s < u(\,r,2). If either u is not defined or s < u, then
there ezists a critical point ¢ € Crit(f) such that

f°(2) = | < er|(f7)'(2)]- (4.12)
In any case
Comp(z, £(2), f*, (K A?) =12 #COTer| (£2)(2)]) N Crit(f°) = 0. (4.13)

Proof. Since z ¢ Crit(f) and in view of Proposition 4.15, there exists a minimal number
s = s(A, €, 1, z) for which at least one of the following two conditions is satisfied

|1°(2) — e < er|(£°)'(2)] (4.14)
for some ¢ € Crit(J(f)) or
u(\, 7, z) is well-defined and s(\ e, 7, 2) = u(A,r, 2) (4.15)
Since |(f*)'(z)| # 0, the parts (4.11) and (4.12) are proved.

In order to prove (4.13) notice first that no matter which of the two numbers s is, in view of
Proposition 4.15 we always have

er|(f5) (2)] < e 'Or (4.16)
Let us now argue that for every 0 < j <s
diam(Comp(fs_j(z),f (2), f7 er|(f ) (4.17)

Indeed, if s = u, it follows immediately from Proposition 4.15 and (4. ) since € < \. Otherwise
|f5(2) — ¢] < 67”|( $)'(2)] < eA7'07 < 0 and therefore, by (2.15), f(z) ¢ B(Q(f),0). Thus
(4.17) follows from (2.17).

Now by (4.17) and Lemma 2.10, there exists 0 < p < #(Crit(f) NR), an increasing sequence

of integers 1 < ky < ky < ... <k, < s and mutually distinct critical points ¢, ca,... , ¢, of f
such that
{er} = Comp(f*~M(2), f1(2), f*, er| () (2)]) N Crit(f). (4.18)
for every [ =1,2,... ,pand if j & {ky, kq,... ,k,}, then
Comp(f*~(2), f*(2), 7, er|(f*)'(2)]) N Crit(f) = 0. (4.19)
Setting ky = 0 we shall show by induction that for every 0 <[ <p
Comp(f*~"(2), f*(2), f, (KA*)™'2 er|(f*)'(2)]) N Crit(f*) = 0. (4.20)

Indeed, for [ = 0 there is nothing to prove. So, suppose that (4.20) is true for some 0 <[ <
p — 1. Then by (4.19)

Comp(f*~F+7D(2), f2(2), !, (KA?) 727 er|(f°)'(2)]) 0 Crit(ff+71) = 0.
So, if
cry1 € Comp(f*F1(2), f2(2), ff+1, (KA?) 7127 er|(£9) (2)))
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then by Lemma 1.4 applied for holomorphic maps H = f, Q@ = f*+~! and the radius
R = (KA?)™' 2= Der|(£5)(2)] < v we get

7 (2) = el < KAZ|(FRn) (£ () (K A%) 2O 0er|(77) (2)
= 2 (R (2))
< erl(f4 (=)

which contradicts the definition of s and proves (4.20) for [ + 1. In particular it follows from
(4.20) that

Comp(z, f*(2), f*, (K A?) 712 #HOMDer|(£2)!(2)[) N Crit(f*) = 0
The proof is finished. m

4.3. Hausdorff and Conformal Measure.

Let m be a Borel probability measure on €'and let m, be its Euclidean version, i.e. “fi"rze (2) =
(1+ |z|%)". We will need in this and the next section the following.

Lemma 4.17. If z € J(f), rn, \ 0 and M =lim,,_, 7, 'me¢(B(z,17,)), then
m(Bu(z, (2(1 + [2[) ')

li < 2'M
el T (O P S
and
m(Bs(z,2(1 + |2]>)"tr,
lim inf ( (= =P ) > 27t

BT B T
Proof. Since for every r > 0 sufficiently small

B(z,27 (1 + |2]*)r) C Bs(z,7) C B(z,2(1 + |z|*)r)

and since (B(z.r)
m z,r
l' € ) — 1 2\t
B~ LD
we get
m(Bs(z, (2(1 + |2]?)) ", B
— (Ba(z 201+ [2%)""ra) i _MBCTD)
n— 00 (21 4 |2]?))~trp)t n—o0 27H(1 + |z|2)~trt
and
m(Bs(z,2(1 + |2>) 7 r, B
lim inf (Bi(=20 + |2)'r,) > fim PBEM) oy,
BT R B ) AR (T )

We are done.
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Our first goal is to show that the h-conformal measure m proven to exist in Lemma 3.9 is
atomless and that H*(J(f)) = 0 if h < 2. We will consider almost ¢-conformal measures v
with ¢ > 1. The notion of upper estimability introduced in Definition 4.3 is considered with
respect to the Euclidean almost t-conformal measure v,. Recall that [ = I(f) > 1 is the

integer claimed in Lemma 2.22 and put
Ri(f) =inf{R(f’,c) : c € Crit(f) and 1 < j < I(f)} (4.21)
=min{R(f’,c): c € Crit(f)NR and 1 < j <I(f)} < o0 '

and
Ay(f) = sup{A(f?,c) : c € Crit(f) and 1 < j < I(f)}
=max{A(f/,¢c):c€ Crit(f)NR and 1 < j < I(f)}
where the numbers R(f7,c) and A(f7?,c) are defined just above Definition 1.1. Since
O, (f(Crit(J(f)))) is a compact f-invariant subset of €' (so disjoint from f~'(co)) and since

PC(f) = OL(Crit(J(f))) = Crit(J(f)) UOL(f(Crit(J(f)))), we have the following straight-
forward but useful fact.

(4.22)

Lemma 4.18. The set PC(f) is f-pseudo-compact.

Recall for the needs of the two next lemmas that the sequence {Cr;(f)} was defined induc-
tively by the formula (2.23) and the sequence S;(f) was defined by the formula (2.23).

Since the number of equivalence classes of the relation ~ is finite, looking at Lemma 2.22
and Lemma 4.13, the following lemma follows immediately from Lemma 4.11.

Lemma 4.19. If R > 0 is a positive constant and t — C’t(ff) € (0,00), t € [1,00), is a
continuous function such that all points z € PC(f); are (r, Ct(j;))—t—u.e. with respect to any

Fuclidean almost t-conformal measure v, (witht > 1) for all 0 < r < RZ(“), then there exists
a continuous function t — C’t(ff) >0, t € [1,00), such that all critical points ¢ € Crip1(f) are

(r, C’Sf))—t—u.e. with respect to any Euclidean almost t-conformal measure v, for all 0 < r <

AR,

In the above lemma the superscript u stands for "upper”. In the lemma below it has the
same connotation. The number u is also used to denote the value of the function u(A,r, 2)
defined in Proposition 4.15. This should not cause any confusion.

Lemma 4.20. If Rz(,ul) > 0 is a positive constant and t — C’t(ff?l € (0,00), t € [1,00), is a
continuous function such that all critical points ¢ € S;(f) are (r, Ct(ff,)l)—t—u.e. with respect to

any Euclidean almost t-conformal measure v, (with t > 1) for all 0 < r < R(ul), then there

iy
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exist a continuous function t CN’t&f)l >0, s € [1,00), and RZ(UI) > 0 such that all points

z € PC(f); are (r, C’lt(f;,)l)—t—u.e. with respect to any Euclidean almost t-conformal measure v,
(with t > 1) for all 0 < r < Rz(,ul)

Proof. We shall show that one can take
) = min{ro11 2 1) and OfY = max{K*2'C[%), K*B,).

Indeed, denote #(Crit(f) N'R) by #. Put e = 2K (K A%)2# and then choose A > 0 so large
that

€< A min{l, 7L 0~ 7~  min{y, p, RE?‘I)/2}}. (4.23)

Consider 0 < r < IN%Z(UI) and z € PC(f);. If z € Crit(J(f)), then z € S;(f) and we are done.
Thus, we may assume that z ¢ Crit(J(f)). Let s = s(\, €, 7, z). By the definition of e,

2K7|(f°)'(2)] = (KA?) ™27 er|(f°) ()] (4.24)

Suppose first that u(\, r, z) is well defined and s = u(A, r, z). Then by Proposition 4.15(4.4) or
Proposition 4.15(4.6), applied with n = 2K, we see that the point f*(z) is (2K7r|(f*)'(2)|, B:)-
t-u.e.. Using (4.24), it follows from Proposition 4.16(4.13) and Lemma 4.8 that the point z is
(r, K*By)-h-u.e..

If either u is not defined or s < wu(\,r,z), then in view of Proposition 4.16(4.13), there
exists a critical point ¢ € Crit(J(f)) such that |f*(z) — ¢| < er|(f*)'(z)]. Since s < u, by
Proposition 4.15 and (4.23) we get

2K7|(f°)'(2)] < er|(f°)'(2)| < er@A ' min{p, R /2} (4.25)

Since z € PC(f);, it implies that ¢ € S;(f). Therefore using (4.25), the assumptions
of Lemma 4.20, and (4.24) and then applying Proposition 4.16(4.13) (remember that by
Lemma 4.18 the set PC(f) is f-pseudo-compact) and Lemma 4.8, we conclude that z is

(r, K22t(]§5,)1)—t—u.e.. The proof is complete. B

Recall that for any pole b of f, the number ¢, denotes its multiplicity and B,(R) is the
connected component of f~!(By) containing b.

Lemma 4.21. If b € f~'(0), if v is a Euclidean almost t-conformal measure with t > qf%

such that v(b) =0, and if m is the h-conformal measure proven to ezist in Lemma 3.9, then

a1

v(By(R)) X R~ % '

and
me(B(b, 1)) = rlethh=2a
forall 0 <r < 1.
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Proof. 1t follows from Lemma 4.13 that m.({z € €: R < |z] < 2R}) < R* and v({z € C':
R < |z| < 2R}) < R? for all R > 0 large enough. It therefore follows from (2.2) that

m.((By(R)\ B,(2R)) < R*R"

b+1h

(4.26)

and
+1

v((By(R)\ B,2R)) < R*R™ v . (4.27)
Fix now r > 0 so small that R = (r/L)~% is large enough for the formula (4.26) and (4.27)
to hold. Using (2.4) and (4.27) we therefore get

V(By(R)) = (U (Bs(2'R) \W)) = S V(BB BTR)

§>0 §=0

+1 aptl, X Z,qb"'lt)
2 t Z 2]( ap

<3S (PR}*(2'R)" @ ‘=R @
7=0

j=0
9 @+l ) ( b+1t>
- qu( ap (gp+1)t—2q Z o’ a — T(Qb+1)t*2%,

where the last comparability sign was written since %t > 2. We are done with the first part
of our lemma. Replace now in the above formula v by m. and t by A, which is greater than
qz'ﬁ’l due to Theorem 2.1. Since in this case the “<” sign can be, due to (4.26), replaced by
the comparability sign “<”, since the first equality sign becomes “>” (we do not rule out the
possibility that m.(b) > 0 yet), and since m¢(B(b,r)) > v(By(R)), we are also done in this

case.

We shall prove now the following.

Lemma 4.22. The h-conformal measure m for f : J(f) — J(f) U {oo} proven to exist in
Lemma 3.9 is atomless.

Proof. Using the induction on ¢ = 0,1,...,p, it follows immediately from Lemma 4.20
(this lemma provides the base of induction as Sy(f) = () and simultaneously contributes to
the inductive step), Lemma 4.19, and Lemma 2.21 that there exists a continuous function
t — C; € (0,00), t € [1,00), such that if v is an arbitrary almost t-conformal measure on
J(f), then

ve(B(z, 7)) < Oyt (4.28)

for all z € PC(f) and all r < ry for some ry > 0 sufficiently small. Consider now the almost
tp-conformal measures m, = mp (v, 1/s) (7 is assumed to be so large that By(Y,1/n) C V),
where t,, = S(Bs(Y,1/n)). Letting n — oo and recalling that m is a weak limit of measures
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my, formula (4.28) gives
me(B(w,r)) < Cpr” (4.29)
for all x € PC(f) and all < r. It now follows from Lemma 4.17 that
lim sup %f’r) < 2hCy,.
rN\0 r
for all z € PC(f). In particular m(Crit(f)) = 0 and consequently

m (U f”(Crit(f))) =0. (4.30)

n>0

Fix now b € f!(c0). Fixt € (;%,h). Consider all integers n > 1 so large that ¢, > t.
Since my, (f 1 (00)) < my,(f 1 (Bs(Y,1/n)) = 0, it then follows from Lemma 4.21 that
2 ttly 2—dtly
mp(By(R)) < R™ % " <R w .
Hence m,(b) = 0. Since m and m, are equivalent on (, this gives m(b) = 0. Since
Unso f7"(b) N Crit(f) = O, this implies that m (UnZO f’”(b)) = 0. Invoking now (4.30)
and Lemma 3.9 finishes the proof. m

Denote by Tr(f) C J(f) the set of all transitive points of f, that is the set of points in J(f)
such that O4(z) = J(f).

Theorem 4.23. There ezists a unique atomless t-conformal measure m for f : J(f) —
J(f)U{oo}. Thent = h, m is ergodic conservative and all other conformal measures are purely
atomic, supported on Sing™ (f) with exponents larger than h. Consequently m(Tr(f)) = 1.

Proof. In view of Lemma 4.22 there exists an atomless h-conformal measure m for f :
J(f) = J(f)U{oo}. Suppose that v is an arbitrary t-conformal measure for f and some ¢ > 0.
By Lemma 3.3, ¢t > h. Fix z € J(f) \ ({(f) USing™ (f)). Then in view of Proposition 2.23
there exist a point x = x(2) € J(f) and an increasing sequence {n;}32, such that z(z) =
limy_,00 f™(2). Define for every [ > 1

Zi=A{z€ J(f)\ Ux(f)USing (f)) : |#(z)] <l and n(z) > 1/1},
fix | > 1and z € Z;. Consider for k large enough the sets f;7™(B(x, 7)) and f;7™(B(x, 117))),
where f;" is the holomorphic inverse branch of f™ defined on B(z, 5;) and sending f"*(z)
to z. Using conformality of the measure v along with Koebe’s distortion theorem, we easily
deduce now that
B, 1) e (f") ()" < v(By(z,e|(f) ()] 1)) < B el (/™) (2)] "

(4.31)
for all £ > 1 large enough, where K > 1 is the constant appearing in the Koebe’s distortion
theorem and ascribed to the scale 1/2 and ¢ > 0 is some constant comparable with 1. Fix
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now F, an arbitrary bounded Borel set contained in Z;. Since m is regular, for every x € F
there exists a radius r(x) > Ohe form from (4.31) such that

m(|J Bs(z,r(z)) \ E) <e. (4.32)

zeFR

Now by the Besicovi¢ theorem (see [G]) we can choose a countable subcover { By(x;, r(z;))}52,,
r(z;) < €, from the cover {By(z,7(2))}rer of E, of multiplicity bounded by some constant
C > 1, independent of the cover. Therefore by (4.31) and (4.32), we obtain

<Z s(@i,r <BVZZ7"
i=1

< B(v,))B(m, 1) ; r(2i)" " m(By(wi, r(2:)) (4.33)

< B(l/, l)B(m, l)cﬁtihm([j B, (xia T(ZL‘Z)))

=1

< CB(v,[)B(m,)e" " (e + m(E)).

In the case when ¢ > h, letting € N\, 0 we obtain v(Z;) = 0. Since J(f)\ (I (f)USing™(f)) =
U2, Zi, we therefore get V(J(f) \ (U(f) U Sing’(f))) = 0 which by Lemma 3.4 implies that
v(Sing ™ (f)) = 1 and the last part of our theorem is proved . Suppose now that ¢ = h. Since,

in view of Lemma 3.4, v(I(f)\ I-(f)) = m(Ix(f)) = 0, using (4.33) and letting [ ,* oo, we
conclude that v|; sy sing— (1) << M| s(p)\sing-(f)- Exchanging the roles of m and v we infer that
)

the measures V| ;()\sing= () a0d M| ;(p)\sing- () are equivalent. Suppose that v(Sing™ (f)) > 0.
Then there exists y € Crit(J(f)) U Q(f) U f~'(oc) such that m(y) > 0. But then
O " < o0,

fey™
where ¥y~ = Up>o f "(y) and for every £ € y—, n(§) is the least integer n > 0 such that
/(€)= . Hence,

S Oy ()

T ey [(fO) ()1
is an h-conformal measure supported on y~ C Sing ™ (f). This contradicts the proven fact that
the measures v, | p\ging— () A0d 1| ;(pn\sing—(y) are equivalent and m(J(f) \ Sing™(f)) = 1.
Thus v and m are equivalent.
Let us now prove that any h-conformal measure v is ergodic. Indeed, suppose to the contrary
that f~'(G) = G for some Borel set G C J(f) with 0 < m(G) < 1. But then the two
conditional measures vg and v;)\a

vVBNG) gy MBNID\G)
v(G) T v(J(/)\ G)

would be h-conformal and mutually singular; a contradiction.

Vg(B) =
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If now v is again an arbitrary h-conformal measure, then by a simple computation based on
the definition of conformal measures we see that the Radon-Nikodyn derivative ¢ = dv/dm
is constant on grand orbits of f. Therefore by ergodicity of m we conclude that ¢ is constant
m-almost everywhere. As both m and v are probability measures, it implies that ¢ =1 a.e.,
hence v = m.

Let us show now that m is conservative. We shall prove first that every forward invariant
(f(E) C E) subset E of J(f) is either of measure 0 or 1. Indeed, suppose to the contrary
that 0 < m(E) < 1. Since m(I(f) U Sing™ (f)) = 0, it suffices to show that
m(E\ (In(f) USing™ (1)) = 0.

Denote by Z the set of all points z € E'\ (Io(f) U Sing (f))) such that

L m(B(er) 0 (B (e (]) USing=()))

r—0 m(B(z,1))
In view of the Lebesgue density theorem (see for example Theorem 2.9.11 in [Fe]), m(Z) =
m(FE). Since m(E) > 0 we find at least one point z € Z. Since z € J(f)\ (Io(f)USing (f)),
let z € J(f), n(z) > 0, and an increasing sequence {ny}?>, be given by Proposition 2.23. Put

0 =1(2)/8.

Suppose that m(B(z,d) \ E) = 0. By conformality of m, m(f(Y’)) = 0 for all Borel sets ¥
such that m(Y’) = 0. Hence,

0=m(f"(B(x,0)\ E)) >m(f"(B(x,0)\ f(E))
> m(f"(B(x,0)) \ E) > m(f"(B(x,0)) — m(E)

for all n > 0. Since J(f) = Upsy f7"(00), for some p > 2, the image f*~'(B(z,d)) con-
tains an open neighbourhood of co. Thus, it contains at least one (in fact infinitely many)

copy of the fundamental parallelogram R and consequently f?(B(x,d)) = €' . In particular
m(fp(B(x,é))) = 1. Then (4.35) implies that 0 > 1 — m(E) which is a contradiction. Con-
sequently m(B(z,d) \ F) > 0. Hence for every j > 1 large enough, m(B(f”f(z), 29) \E) >

m(B(x,é) \ E) > 0. Therefore, as f~*(J(f)\ E) € J(f) \ E, the standard application of
Koebe’s Distortion Theorem shows that

= 1. (4.34)

(4.35)

 m(B(zr)\ E)
S (B, r)

which contradicts (4.34). Thus either m(E) =0 or m(E) = 1.

>0

Now conservativity is straightforward. One needs to prove that for every Borel set B C J(f)
with m(B) > 0 one has m(G) = 0, where

G={zxeJ(f): ZXB(f"(x)) < 400}.

n>0
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Indeed, suppose that m(G) > 0 and for all n > 0 let
Gon={z€J(f): > xa(f*(x) =0} ={z € J(f): ff(x) ¢ B forall k>n}.

k>n
Since G = U,,;»9 Gn, there exists k£ > 0 such that m(Gy) > 0. Since all the sets G,, are forward
invariant we conclude that m(Gy) = 1. But on the other hand all the sets f™(B), n > k,
are of positive measure and are disjoint from Gj. This contradiction finishes the proof of
conservativity of m. Consequently m(Tr(f)) = 1. We are done. B

The proof of part (a) of Theorem 4.1. Let m be the unique h-conformal atomless
measure proven to exist in Theorem 4.23. Consider an arbitrary point z € Tr(f). Fix a pole
b€ f~(c0). Since b ¢ O, (Crit(f)), there exists v > 0 such that

B(b,v) N O, (Crit(f)) = 0. (4.36)
Since 2 € Tr(f), there exists an infinite increasing sequence {n;}22, such that
lim f%(2) =b and |f"(2) — b < v/4 (4.37)

]*)
for every j > 1. It follows from this and (4.36) that for every j > 1 there exists a holomorphic
inverse branch f: ™ : B(f"%(2),3v/4) — @ of f" sending f" (z) to 2. Using now Koebe’s
Distortion Theorem (Euclidean version) and Lemma 4.21, we conclude that

me (2, B(K|(f") (2)[ 2] (2) = b]) ) = me(B(f"(2), 21" (2) = b]) ) |(£")'(2)| "

> me(B(b, |f"(2) = b)) (™) (=) "
|7 () — | IR () ()

= (K| ()] (=) — b)) P () — b,

Since h < 2, using (4.37), this implies that lim, or "m.(B(z,7)) = co. Hence H"(Tr(f)) =0
in view of Theorem 3.1. Since by Theorem 4.23 me( (f) \ Tr(f)) = 0, it follows from
Lemma 3.3 that H*(.J(f)\ Tr(f)) = 0. In conclusion H*(.J(f)) = 0 and the proof is complete.
|

Proposition 4.24. The conformal measure m s absolutely continuous with respect to the
packing measure 11" and moreover, the Radon-Nikodym derivative dm/dI" is uniformly bounded
away from infinity. In particular TI"(J(f)) > 0.

Proof. Since J(f) N w(Crit(f) \ Crit(J(f))) = Q(f), we conclude from Lemma 2.14 that

there exists y € J(f) at a positive distance, say 87, from O, (Crit(f)). Fix z € Tr(f). Then
there exists an infinite sequence n; > 1 of increasing integers such that " (2) € B(y,n).
Therefore B(f™ (z),4n) N O4(Crit(f)) = 0 and consequently

Comp(z, f"(2), f",n/2) N Crit(f") =
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Hence, it follows from Lemma 1.2 and Lemma 4.8 that
.. me(B(z,r
lim inf M < B
r—0 rh

for some constant B € (0,00) and all z € Tr(f). Applying Lemma 4.17 we therefore get that
(BS(Za 7"))

lim inf <2'B.
r—0 Th
Hence, by Theorem 3.2(1), the measure m|rs is absolutely continuous with respect to

Hh|’I‘r(f). Since, by Theorem 4.23, m(J(f) \ Tr(f)) = 0, we are done. B

Lemma 4.25. If Q(f) # 0, then TI"(J(f)) = +o0.

Proof. Fix £ € Q. Since U,>o f7"(£) is dense in J(f) and, by Lemma 2.14, w(Crit(f))
is nowhere dense in J(f), there exist an integer s > 0, a real number n > 0, and a point
y € f5(&) \B(UnZU f™(Crit(f)), 77). Since by Theorem 2.1, h > 1, it follows from Lemma 2.5
and Lemma 4.11 (y may happen to be a critical point of f*!) that

lim inf 7me(3(y, )
r—0 'rh

= 0. (4.38)

Consider now a transitive point z € J(f), i.e. z € Tr(f). Then there exists an infinite
increasing sequence n; = n;(z) > 1 of positive integers such that

Jim [f79(z) =yl =0 and v =[fY() —yl <n/T
forevery j = 1,2,.... By the choice of y, for all j > 1 there exist holomorphic inverse branches
f"  B(f"(2),6r;) — @ sending " (2) to 2. So, applying Lemma 1.2 and Lemma 4.8 with
R = 3rj, we conclude from (4.38) that

lim inf 7me(Bgz, )

r—0 r

=0.

Applying Lemma 4.17, we conclude that the same formulas remain true with m, replaced
by m and B(z,r) by Bs(z,r). Therefore, it follows from Theorem 4.23 (m(Tr(f)) = 1) and
Theorem 3.2(1) that I1"(J(f)) = +oc. We are done. B

From now on let m denote the unique atomless h-conformal measure m proven to exist in
Theorem 4.23.

Recall that the numbers R;(f) and A;(f) have been defined by formulas (4.21) and (4.22)
respectively. Since the number of equivalence classes of the relation ~ is finite, looking at
Lemma 2.22 and Lemma 4.13, the following lemma (where the superscript [ indicates that we
mean the “lower” estimates) follows immediately from Lemma 4.12.
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Lemma 4.26. If " >0, 0 < R" < Ri(f)/3, and 0 < o < 1 are three real numbers such
that all points z € PC(f); are (r,o, Ci(l))—h—s.l.e. with respect to the measure m,, then there
exists C~’Z-(l) > 0 such that all critical points c € Crip1(f) are (r, o, éfl))—h—s.l.e. with respect to

the measure m, for all 0 <r < A;(f)~ LRD  where & was defined in Lemma 4.12.

(A

Let us prove the following.

Lemma 4.27. Suppose that Q(f) = 0. Assume that C’ i >0, Rgi >0and0 <o <1 are
three real numbers such that all critical points ¢ € S;(f) are (r,o, Oz,l) -h-s.l.e. with respect
to the measure m, for all 0 < r < Rgfi Then there exist C’i(fl) > 0, Rﬁf{ > 0 and such that
all points z € PC(f); are (r, 8K3A22#(Crit(/)iNR) 5 (:*i(’ll))—h—s.l.e. with respect to the measure m,
forall0<r < Rfli

Proof. Recall that by Lemma 4.18 the set PC(f) is f-pseudo-compact. We shall show that
this time one can take

RY) = min{r0||f'|[z*A ", B, 1} and CU) = (8(K A%)2#)"C(,

where || f'|| = ||f'||pc(s),- Indeed, denote again #(Crit(f) N'R) by #. Take e = 4K (K A?)2#
and then choose \ > O so large that

e < Amin {1,710 '7 " min{y,p, R} /2}} . (4.39)

Consider 0 < r < RE? and z € PC(f);. If z € Crit(J(f)), then z € S;(f) and we are done.
Thus, we may assume that z ¢ Crit(J(f)). Let s = s(\, €, 7, z). By the definition of €
AKT|(f°)'(2)] = (KA*) 27 er|(£°)'(2)]. (4.40)
Suppose first that u(\,r, z) is well defined and s = u(\,r, z). Then by Proposition 4.15(4.5)
or Proposition 4.15(4.6), applied with n = K, we see that the point
f2(z) is (Kr||(f°) (2)ll, 0/ K2, Wi(0/ K?)) — h-s.Le..

Using (4.40) it follows from Proposition 4.16(4.13) and Lemma 4.9 that the point z is
(r,0, Wi(0/K?))-h-s.l.e.. If either u is not defined or s < u(\,r, z), then in view of Proposi-
tion 4.16(4.12), there exists a critical point ¢ € Crit(f) such that |f*(z) — ¢| < er|(f*)'(2)].
Since s < u, by Proposition 4.15 and (4.39) we get

4KT|(f*) ()] < erl(f*)'(2)] < erdA™" min{p, R{}/2}. (4.41)

Since z € PC(f);, it implies that ¢ € S;(f). Therefore, by the assumptions of Lemma 4.27
and by (4.41) we conclude that ¢ is (2er|(f%)'(2)], o, C’Z-(,ll))—h—s.l.e.. Consequently, in view of
Lemma 4.5, the point f*(z) is (er|(f*)'(2)], 20, 2hCi(’l1))—h,—s.l.e.. So, by Lemma 4.6 this point is

(Kr|(f*)(2)],20¢/ K, (2¢K~)'C")) = h-sle.

2
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Using now formula (4.40) and Proposition 4.16(4.13) it follows from Lemma 4.9 that the point
z is (r,2Keo, (QGK_l)hC§7l1))—h—S.l.e.. If z € Crit(J(f)), then by the definition of PC(f); we
see that z € S;(f) and we are done in view of the assumption of the lemma and in view of
the definitions of fz“{ and C’l(ll) ). The proof is completed. ®

iy

Lemma 4.28. If Q(f) =0, then I"(F) < oo for every bounded Borel set F C (.

Proof. Recall that for any pole b of f, the number ¢, denotes its multiplicity. Let

Jmin = min{qb b€ f_l(oo)}

Take x € (0,1) so small that if z € @, then f|p(.,q) is 1-to-1 for every d < rdist(z, Crit(f)U
f7!(0)). Using induction on i = 0,1,... ,p, it follows immediately from Lemma 4.27 (this
lemma provides the base of induction as Sp(f) = () and simultaneously contributes to the
inductive step), Lemma 4.26, and Lemma 2.21 that each point z € PC(f) is (r, 0, G)-h-s.l.e.
for some o € (0,1), G > 0, R > 0 and all » € (0, R). Without loss of generality we may
assume R € (0,1) to be so small that

5R < dist(PC(f), f (c0)) (4.42)
and
e =07 <[f(2)] < Elz 07" (4.43)

for all b € f1(c0), all z € B(b,R) and some £ > 1. Fix a point z € J(f) \ Sing™ (f) and
r € (0, R). In view of Corollary 2.24 there exists the least n > 1 such that either

dist(f"(2), PO(S)) < 8(Kw) r(f"Y ()] or KHl(f"Y(2)] > SwF.

There are the following three possibilities.

0
K77/ ()] < gt
This in particular implies that
dist(£7(2), PC(F)) < 8(Kw)r|(F) (2)].
»
K77 ()] > ghR and dist(f" (), PC(f) > 8(KR) rl(f7) ()]
.

E=r|(f) (2)] = éﬁR and dist(f"(2), PC(f)) < 8(Kx)~'r|(f")'(2)|-
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Let us consider the case 1°. Since
8(Kr) 'r(f" ) (2)] < dist(f™ *(2), PC(f)), (4.44)
we get
SK'r|(f" 1) (2)] < wdist(f"~*(z), Crit(f)). (4.45)
Suppose now that
8K 'r|(f" 1) (2)] = mdist(f" ' (2), f*(00)).
This implies that there exists b € f~'(oo) such that
/771 (2) = b < 8(K k)T |(f" ) ()| < R. (4.46)
Hence
B(f" *(2), 32(Kk) 'r|(f* 1)(2)]) € B(b,40(Kr) 'r|(f* 1) (2)]) € B(b,5R).
In view of (4.42) this implies that B(f"~!(z), 32(K«x)~'r|(f*~')'(2)|) N PC(f) = 0, and con-
sequently there exists a unique holomorphic inverse branch
f7OD B (), 32(KR) () ())) - @
sending f"~'(z) to 2. Since 8(K«x)~'r|(f*~1)(2)| < R, it follows from Lemma 4.21 that
me(B(b,8(K®) 'r|(f* 1) (2)]) = C(8(Kk) r[(f* 1) (z)]) @t 20 (4.47)
with some universal constant C' > 0. Since, it follows from (4.46) that
B(f"~!(2), 16(Kr)~"r|(f"71)'(2)]) D B(b,8(Kw)~'r|(f*~) (2)]),
applying (4.47) and Koebe’s Distortion Theorem, I (Euclidean version), we obtain
me(B(z,165 " 'r)) = me(f, ™ D(B(f* *(2), 16(Kx) 'r|(f" ) (2)]))
> K771 ()" me(B(f" 71 (2), 16(K k)| (f" 1) (2)]))
> K" ()| ™" me(B(b, 8(K k) ™| (f*71)(2)1)
> CKEM|(f"1) (2) |7 (k) r|(f771)' (z)]) ot D=2 (4.48)
> CKM8(R) (7 ()
> CK "Rt

r

So, we may assume that

SK'r|(f"71) (2)] < mdist(f" 7 (2), 7 (00)).

Along with (4.45) and the definition of «, this implies that the map f restricted to the ball
B(f" (2),8K 'r|(f"')'(2)]), is univalent. It therefore follows from Koebe’s -theorem that

F(BU™ (=), 8K r|(f* ) (2)])) D B(F™(2), 2K 'r|(f") (2)])- (4.49)
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Thus, there exists a unique holomorphic inverse branch f ' : B(f™(z),2K~'r|(f")'(2)]) —
B(f"'(2),8K~r|(f"')(2)]) of f sending f"(z) to f*~'(z). Since
B(f"~(2), 8K~r|(f") (2)) N PC(f) =0
there exists a unique holomorphic inverse branch
£V B ) 8K () ())) = @
of "' sending f"'(2) to z. Therefore, the composition
=10 fo B(fM(2), 2K | (f) (2))) = @

is a well-defined holomorphic inverse branch of f™ sending f"(z) to z. Asdist(f™(z), PC(f)) <
R, since K'r|(f")'(z)| < R and since each point z € PC(f) is (r, 0, G)-h-s.l.e., we obtain

that
me(B(f"(2), K7'r|(fY (2)))) = GE ™ r|(f") ()"
Using now Koebe’s Distortion Theorem, I (Euclidean version), we conclude that
me(B(z,7)) > me(f7"(B("(2), K™r|(f7Y (2)))))

> K7M|(f") ()T me(B(f"(2), K~'r|(£")' (2)1) (4.50)

> K7 (") ()G KT () ()" = (GE )"
Let us now deal with the case 2°. 1In this case the holomorphic inverse branch f ™ :
B(f"(2),2K'r|(f")(2)|) — € of f™ sending f"(z) to z is well-defined. Using Koebe’s dis-
tortion theorem and Lemma 4.13, we get

me(B(z,7)) = me(f (B (2), K'r|(£7Y (2))) )
> K7"(f") ()| "me(B(f"(2), K| (f") (2)]))

> K (Y0 (5Re) (K () 421
—q, ( Rn) K 2hph

Case 3°. Suppose first that
1) — b < K| (4.52)

for some pole b € f~!(c0). The argument to be presented now is very similar to that used in
the very first part of the Case 1°. By (4.52) we get

BU™ @), KA @10 B (b 3K G)) (4.5
Since 1 K 'r|(f" 1) (2)| < skR < R, similarly as (4.47), we obtain

me(BO, 5K D) = CETEYE) T s
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Since 2K~ 'r|(f") ()| < 8K~'w~'r|(f"")(2)| < dist(f"'(2),PC(f)), we see that there
exists a unique holomorphic inverse branch f("=Y : B(f"1(2), 2K 'r|(f* 1) (2)|) — @ of
" sending f" !(z) to 2. Therefore, applying (4.53), (4.54) and Koebe’s Distortion Theorem,
I (Euclidean version), we obtain

me(B(z,1)) > me (- (B(f"(2), K~'r|(f71) (2)]))
> KM () G me (B (), K (D)
> K ) e (Bl 5 K7 ()
> K G R ) @ 8
> CEM (K| () () e

h

Qmax(h*Z)
e

> CK™" (énR
So, suppose finally that
77 ) =0l > K @)
for all poles b € f~1(c0). Since also
dist (" 1(2), PC(f)) > 4K 'x Mr|(f" 1 (2)], (4.56)

we conclude that the map f : €' — @, restricted to the ball B(f"~'(2), 2cK~'r|(f*™')(2)]),
is univalent. It therefore follows from Koebe’s i—theorem that

1 1
n—1 —1q( Fn—1y/ —11( £/
FBUH @), K| () 5 B(gaE (") (2)])-
Hence, there exists a unique holomorphic inverse branch f ! : B(f”(z), énK‘1r|(f”)'(z)|) —
B(f™'(2), 56K ~'r|(f*1)(2)|) of f sending f™(z) to f"~'(z). In view of (4.56) there exists
a unique holomorphic inverse branch f7 =1 : B(f"='(2), 2k K='r|(f"")(2)|) = @ of f"~!
sending f"~'(z) to 2. Hence, the composition

fon = F0 o 7 B(f R, R KUY G)) > @

is a well-defined holomorphic inverse branch of f* sending f"(z) to z. Since =K ~'r|(f")'(2)| >
27 7k%R, applying Koebe’s Distortion Theorem, I (Euclidean version) and Lemma 4.13, we
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get
me(B(z,7)) = me(f."(B(f"(2). { mK (Y (2)))
> K7M(f")' (=)~ ( (f"(2), A6K) ™ kr| (F")(2)]))
> KCu(2 TR R) (£ ()| ((16K)wr (£ (2)])
= (16) 'K ?"xCy (27K R)r".
Combining this inequality and (4.48), (4.50), (4.51), (4.55), we see that m.(B(z, 16x"'r)) >
Cr" for all r € (0, R) and some universal connstant C' > 0. Hence, for all r € (0, R), we

obtain me(B(z, 7)) = me(B(z, 165 (2 1kr)) > C(2 *kr)" = C(2 *kr)"r". Thus, applying
Theorem 3.2(2), we see that [1"(F) < co. We are done.

Our last lemma in this section is this.

Lemma 4.29. If Q(f) = 0, then the spherical packing measure TI"(J(f)) is finite.

Proof. Since the packing measure [1" is A-invariant (recall that A is the lattice associated
with our elliptic function f : @ — @), it follows from Lemma 4.28 and Proposition 4.24 that

I’ (J(f) N (B(0,2R) \ B(O,R)) =< R? for all R > 1. Since in addition ggh (2) = (14 |z]%)~"
and since h > 1, we get

I (J(f) N (@\ B(0,1))) = Znh( N (B(0,2"1)\ B(0,2")))

= 3" 27 () 1 (B0, 2\ B(0,2"))

n=0

< Z 2—2hn22n — Z 2(2—2h)n < 00
n=0

n=0

We are done. B

The proof of Theorem 4.1 is therefore complete. B

5. INVARIANT MEASURES

In this section we deal with o-finite invariant measures equivalent to the conformal measure
m. We prove their existence, ergodicity, conservativity and we detect the points around which
these measures are finite or infinite. This allows us to provide sufficient conditions for their
finiteness.
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5.1. o-finite invariant measures equivalent to the conformal measure m. In order to
prove Theorem 5.2 below we apply a general sufficient condition for the existence of o-finite
absolutely continuous invariant measure proven in [19]. In order to formulate this condition
suppose that X is a o-compact metric space, v is a Borel probability measure on X, positive
on open sets, and that a measurable map f: X — X is given with respect to which measure
v is quasi-invariant, i.e. v o f~! << v. Moreover we assume the existence of a countable
partition a = {4, : n > 0} of subsets of X which are all o-compact and of positive measure
v. We also assume that v(X \ U,>9 4,) = 0, and if additionally for all m,n > 1 there exists
k > 0 such that N
v(f (A, NA,) >0,

then the partition « is called irreducible. Martens’ result comprising Proposition 2.6 and
Theorem 2.9 of [19] reads as follows.

Theorem 5.1. Suppose that o = {A,, : n > 0} is an irreducible partition for T : X — X.

Suppose that T is conservative and ergodic with respect to the measure v. If for every n > 1
there exists K, > 1 such that for all k > 0 and all Borel subsets A of A,

—k
WA _ VA e vA)
v(An) T v(fF(An)) v(An)
then T has a o-finite T-invariant measure p that is absolutely continuous with respect to v.
In addition, p 1s equivalent to v, conservative and ergodic, and unique up to a multiplicative
constant. Moreover, for every Borel set A C X

N T )
i) = i e o PR (A

K—l

The first result of this section is the following.

Theorem 5.2. There exists a o-finite f-invariant measure p that is absolutely continuous
with respect to the h-conformal measure m. In addition, p is equivalent to m and ergodic.

Proof. Let & € ' be a periodic point of f with some period p > 3. We put
Py(f) = O+ (f(Crit(f))) ULE F(), .- 7O}

Since O (f(Crit(f)) is a forward-invariant nowhere-dense subset of J(f) and since the h-
conformal measure m is positive on nonempty open subsets of J(f), it follows from ergodicity
and conservativity of m (see Theorem 4.23) that m(Oy(f(Crit(f)))) = 0. Since m has no
atoms (see Theorem 4.23) we therefore obtain that m(Ps;(f)) = 0. We shall now construct
the partition « of the set J(f) \ Ps(f). We shall check next that it satisfies the assumptions
of Theorem 5.1. We first define the family of balls

{B <z, %dist(z, P3(f))> }

ceR\Py(f)
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This family obviously covers @'\ P3(f). Since @'\ P3(f) is an open set, it is a Lindel6f space,
and therefore we can choose a countable subcover of €'\ Ps(f), which we denote by

{B <zz, dlSt(Zl, P3(f))> }001

We inductively define a partition A = {A4;}°, of @'\ P3(f) as follows. Let
Ay=B <zo, —dist(zo, P3(f ))

Assume that we have defined the sets Aq,..., A, such that
Ay € B (5 5dist(z, P5())

and
IntA]’ 7£ @

Then A, we define as

n

An—i—l =B <Zn+1; %dlst(an,Pg(f))) \ U Aj.

7j=1
The set A, is disjoint from the sets Ay,..., A, and

1.
A,;1 CB (an, idlst(zn+1, Ps(f > \ U B <z], dlSt(Z],Pg(f))>
7j=1
Thus either A,.; = 0 or IntA,; # 0 and we remove all the empty sets.
We shall now check that the partition is irreducible. And indeed, it follows from the con-
struction of the sets {A;}2, and continuity of the measure m that it suffices to demonstrate
that if z € @, r > 0 and K C C'is a compact set, then there exists n > 1 such that

I (B(Z,T)\ U f‘k(00)> SK\U

k>0 k>0

Since the set of repelling periodic points is dense in the Julia set ([2], comp. [6]), there thus
exists a periodic point x € B(z,r), say of period ¢ > 1. Since z is repelling there exists s > 0
so small that B(z,s) C B(z,r) and f4(B(z,s)) D B(z,s). Since U;»; f¥(B(z,s)) D €, since
K is a compact subset of €' and since {f%(B(z,s))}32, is an increasing family of open sets,
there thus exists k > 1 such that f%*(B(z,s)) D K.

Let us check now the distortion assumption of Theorem 5.1. And indeed, in view of Koebe’s
distortion theorem there exists a constant K > 1 such that if f, ™ : B(zi, dist(z;, Pg(f))) -

is a holomorphic branch of f~™, then for every k£ > Oand allz,y € A, C B (zi, %dist (2, Pg(f)))
we have

(5.1)
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We therefore obtain for all Borel sets A, B C Ay with m(B) > 0 and all n > 0 that
m(f"(A) _ Ll dme _ supa {[F7) 1" Fm(A) o m(A)

m(f(B)) — [al(f7m)[hdm — infa {|(f77)*Im(B) = m(B)’
and similarly (F-(A) n
n((B) = (B)

Since by Theorem 4.23 the measure is conservative ergodic, all the assumptions of Theorem 5.1
have been checked and we are done. B

The following lemma easily follows from Theorem 5.1.
Lemma 5.3. For every n > 0 we have 0 < pu(A,) < oo.

We say that the f-invariant measure p produced in Theorem 5.2 is of finite condensation
at © € J(f) if and only if there exists an open neighborhood V' of z such that u(V) < oc.
Otherwise u is said to be of infinite condensation at x. We respectively say that x is a point of
finite or infinite condensation of . We end this subsection with the following obvious results.

Lemma 5.4. If x is a point of infinite condensation of p, then each point of the closure
{f™(z) : n > 0} is also of infinite condensation of p.

Lemma 5.5. The set of points of infinite condensation of the measure p is contained in the
ungon O (Crit(f)) U QU {oco}.

Proof. If z ¢ O, (Crit(f)) UQ U {oo}, then by local finiteness of the family {4, : n > 0}
there exist an open neighborhood V' of 2z and an integer £ > 0 such that m(V \ U?ZO Aj) = 0.

Hence, in view of Lemma 5.3 and Theorem 5.2 (u < m) we get pu(V) < E?:o p(Aj) < oo.
The proof is finished. &

5.2. oo is a Point of Finite Condensation of .
Recall given R > 0

Br={z€C:|2| > R}
and given in addition a pole b € f~'(c0) by B,(R) we denote the connected component of
f~Y(Br) containing b. The goal of this subsection is to prove that oo is a point of finite
condensation of the measure p. We start with the following.

Lemma 5.6. For every R > 1 large enough there exists a constant C1(R) > 0 such that
m(By(R)) < C1(R)diam"(By(R)).
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Proof. Recall that for every pole b € f~'(oc0), the number g, stands for its multiplicity. For
every k > 0let Ay p = {2z € €: 2R < |z] < 2F*'R}. As in the proof of Lemma 3.4 let

B} ={z€ Br\ {0} :Imz >0} and B}, = {z € Bg \ {oc} : Imz < 1} and .

We also put Af , = Apr N Bf and Ay = A g N By. Using formula (2.3) we can write for
allb e f~'(o0),all j € {1,...,q} and all k£ > 0 that

b (AL = [ 1(he )7 dm < (14 b2) (24 R) 5 (A )

and similarly
—1 - 2\ —h ok py L h _
m( b,B;’j(Ak,R)) < (1+[0]) " (2"R) » "m(A4R)

Thus
_ _ _ w1y
m(foh;(Arr)) = m(fyr (AL R) +m(fo ki (Aer) < (1+ [b])"(2"R) % "m(Akr).
Summing now over all j € {1,...,¢}, we get

a1

m(Aprs) < (1+ )" (2°R) "% "m(Ar) (5.2)
where Ay gy = By(R) N f~'(Agr). Therefore, putting S = 3, cx (1 + |w[?)™" < oo (since by
Theorem 2.1 h > 1), we obtain

m(f " (Arr)) = Z m(Ag rp)

bef~1(o0)

= Z Z Ak ,R b+w

bERNF~1(00) WEA

= Y Y (+p+up) @RS

beERNf~1(00) wEA

“m(Ar) Y (R (4 bt w?)

beRNf~1(0) wEA

= m(A,g)S(2"R)T".

m(Ax.r)

Hence m(Ay,r) < (2’“R) g m(f*I(Ak,R)) where ¢ = max{q, : b € RN f'(c0)}. Com-
bining this and (5.2), we get for every b € f~1(oo) that

m(Aprs) = (1+ b)) (25 R) =" (2 R) TS T (7 (A p)
< L+ [BP) ST hm(f T (Arr)) < (14 [BP) "m(f " (Ak,r))

Summing now over all k& > 0 we get m(By(R)) < (1 + |b]?) "m(f1(Bgr)) < (1 + [b*)"
Combining in turn this with (2.4) we get

m(By(R)) < L"R7diam"(By(R)) (5.3)
The proof is complete. B
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Lemma 5.7. Fix R > 2 sufficiently large. Re-numerating the elements of the partition
{A;}52, we may assume that Ag C By and diam,(Ag) = 1. For every b € f~'(c0) and every
n >0 let A™ = f~"(Ay) N B,, where B, is a connected component of f~"(Bg). Then there
exists a constant Cy > 0 such that m(B,) < Co(R)m(A™).

Proof. 1t follows from the construction of the partition {4, },>¢ that
m(A™) < diam”(A™) (5.4)
Since dist(0, 4p) > R > 2 and since diam(A,) = 1 using (2.3), and (2.4), we get for every
pole b € f~!(c0) that
qp—1
diam, (Ao) _ (1+ 1]2)~dist (0, A) % diam, (Ap)
diam(By(R)) (1+ |b|2)*1R;_bl
where Ay, = f~ (A[)) N By(R). Since w(Crit(f)) is a compact subset of the complex plane
@, dist(w(Crit(f)), f~'(c0)) > 0. Therefore there exists r > 0 such that for all R > 1 large
enough By(R) C B(b,r) and B(b,2r) N O, (Crit(f)) = 0. Since B, = fr " Y (B,(R)) for
an appropriate holomorphic inverse branch f. =1 p (b,2r) — @ of f (n=1) it follows from
Koebes’s distortion theorem and (5.5)
diamS(A(n)) _ dlams(f*_ n_l)(AO b)) - diams(Ao,b)
diam,(B,)  diam,(f, "V (B,(R)) ~ diam,(By(R))

-l 1
>R % Rw =1, (5.5)

=1

and that
diam?(B,) _ diam’( f " (By(R)) _ diaml(By(R))
m(Ba) m(f. " (By(R))) m(By(R))
Combining the last two formulas and (5.4) we get
diam” (B, (R))
m(By(R))

n(A®) > diam(B,) = ( ) m(By) = m(B,)

The proof is complete. B

We are ready now to prove the main result of this section.

Theorem 5.8. oo s a point of finite condensation of the measure p.

Proof. Take R > 0 so large as required in Lemma 5.7. It follows from this lemma that
m(f~*(Bgr)) < Co(R)m(f~*(Ap)) for every k > 0. Thus, applying Theorem 5.1 , we get
Zn m —k B
ILL(BR) — lim k=0 (f_k( R))
=00 3ok o m(fF(Ao))

S CQ(R) < Q.

We are done. B
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5.3. All Points of Finite and Infinite Condensation. We say that z € J(f) \ Q is
geometrically good if

m(B,) < diam"(B,) (5.6)

for every set B of sufficiently small diameter containing z, every n > 0 and every connected
component B, of f~™(B). The direction of the inequality above means that when checking
geometrical goodness one can assume the sets B to be balls centered at z. The most general
sufficient condition for finite condensation is the following.

Lemma 5.9. If z € J(f) \ Q is geometrically good, then z is a point of finite condensation
of measure L.

Proof. Since z ¢ ), taking 6 > 0 (defined in (2.15)) sufficiently small, z ¢ B(,6). Set
B = B(z,7), where v was defined in (2.17). Since m(B) > 0 and m(U,>qA4,) = 1, there
exists i > 0 such that m(BNA;) > 0. Since BN A;NJ(f) has a non-empty interior relative to
J(f), there exists an open ball F' C BN A; having nonempty intersection with J(f). Of course
m(F) > 0. For every n > 0 let B,, be a connected component of f~"(B) and let F,, C B, be
some connected component of f~"(F') contained in B,. Using Koebe’s Distortion Theorem,
I (Euclidean version) and the fact that the point z is geometrically good, we get

diam(F,,)

diam(Bn)>hdiamh(Bn) = m(By) (

i) = dinn () =

Applying now Lemma 2.13 to the connected sets F' and B we obtain

m(F,) = m(B,) (%)h

Thus

n n

S m(FHB) < o m(FHE) < 30 m(f A,

k=0 k=0
Hence, using Lemma 5.3, we get u(B) =< u(A;) < oo and therefore z is a point of finite
condensation of ;. B

In order to make use of this lemma we need to provide sufficient conditions for points to be
geometrically good. This is done below.

Lemma 5.10. If p is h-upper estimable at every point z € J(f) with the same estimability
constant, then every point z € J(f) is geometrically good.
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Proof. The proof of this lemma follows by a straightforward inductive argument incorpo-
rating Koebe’s Distortion Theorem, Lemma 4.11, finiteness of the equivalence classes of the
relation ~ on the set of critical points of f, Lemma 2.10, and equivalently (2.17). B

Theorem 5.11. The set of points of infinite condensation of u is contained in the set of
parabolic points Q(f).

Proof. The proof of Lemma 4.22 shows that each point z € J(f) is upper estimable with
respect to the Euclidean A-conformal measure m, and so, also with respect to the measure m.
Therefore the proof of Theorem 5.11 is completed by applying Lemma 5.10 and Lemma 5.9.
|

Corollary 5.12. If Q = 0, then there exists an f-invariant probability measure p equivalent
to m.

Since the case J(f) = @, rules out parabolic points, as an immediate consequence of this
corollary we get

Corollary 5.13. If J(f) = @, then there is a unique probability measure pi equivalent to the
Lebesgue’s measure on @.

5.4. Invariant Measure - Parabolic points. From what we have shown in the previous
section, it is clear that in order to identify the points of infinite condensation of x we have to
look at the parabolic points. Proceeding in exactly the same way as in Section 6 of [27], we
can prove the following results.

Proposition 5.14. If w € Q\ O, (Crit(f)), then p has infinite condensation at w if and only

: 2p(w)
ifh < p(w)+1°

As an immediate consequence of this proposition and Theorem 2.1, we get the following
remarkable corollary.

Corollary 5.15. If
max{g,: b € RN f '(00)} > max{p(w) : w € Q(f)},

then the invariant measure p s finite.

Proposition 5.16. Ifw € Q2 and h < p%i()i)l’ then p has infinite condensation at w.
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Theorem 5.17. If ¢ € J(f) is a critical point of f of order s, w = f(¢) € Q, and h < 132(55)(_“;)1,

then p has infinite condensation at w.

6. APPENDIX

The goal of this appendix is to provide a proof of Theorem 6.3, the elliptic version of Mane’s
theorem from [17]. We have justified this decision in the introduction. We first prove a version
of Przytycki’s lemma from [23] for the sake of completeness, since it forms the first step in
the proof of Theorem 6.3 and since there are places, where one has to proceed more subtly
than in the case of rational functions.

Lemma 6.1. For every integer K > 0 and every 0 < A < 1 the following holds. For every
€ > 0 and every k > 0 there exists 6y = 6o(K,€,\, k) > 0 such that for every disk B(x,0)
with 0 < g and every x € @' a distance at least k apart from the set of parabolic points and
attracting points, for every n > 0 and every connected component W = Compf "(B(z,J))
such that fﬁv has at most K critical points counted with multiplicities, for every component

W' = Comp(f~™(B")) in W, for the disc B' = B(x, \d) we have
diamW’' < e
diamW’ — 0 for n — oo uniformly (i.e. independently of the choices of B and W').

Proof. Suppose on the contrary that there exist a sequence {z,}, of points in a distance
at least k apart from the set of parabolic points and attracting points, a sequence 9, \, 0,
a sequence of components W, = Compf~*(B,) with k, — oo, as n — oo such that the
number of critical points of each map f¥» on W, is bounded by K and W/, the sequence
associate to W, as in the statement of the lemma, such that lim, ., diam(W;) # 0. Then
for each n there exists L = L(n) : 0 < L < K such that there is no critical value of f"f,};n in

L+1 L
rﬂ)) \ B(2n, 0n(A+ (1 - A)rﬂ))-

Without loosing generality we may assume that all the components W, intersect the funda-
mental region R. Put

P(n) := B(xp, 0p,(A+ (1 = X)

L(n)
K + 1)))
L(n)+1
K+1

W = Compf =" B(zy, 6, (A + (1 — ))

W2 .= Compf =" B(zp, 0n(A + (1 — \) M)
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the components containing W),
P, =w@H\w

n n

and for every 0 < m < k,, 1 =1,2,
Wil = V), P = (R = WL\ WL,
Let, for each n, the number m = m(n) < k,, be the least integer such that

diamW () > inf dist(cy, ¢2)),

c1,e2€Crit(f),c1#£c2}

So for every 0 < ¢t < m(n) the set P,; is a topological annulus. That is so because at
each step back by f~! from P,; ; to P, there is at most one branch point for f~' from
Wé?,l to Wézz,z = 1,2. Now, all the annuli P, ,,)-1’s have moduli bounded below by
27%(1 = ). Since in addition all the components W, intersect the fundamental region
R, it follows from Montel’s Theorem that there exists a topological (maybe not geometric)

annulus P contained in all P, ;;,»)-1’s for a subsequences ng, which bounds a topological disk
D. So D C Wéf?m(ns)q- Hence f™")=1(D) c B(x,6,). Passing to yet another subsequence
we may assume that the sequence {z,}2°, converges to a point y € (' at the distance at
least k apart from the set of parabolic points and attracting points. Since §,, — 0, we have
also m(n) — oo. Thus D cannot intersect the Julia set J(f). If they were contained in a
preimage of a Siegel disk or a Herman ring, the limit of diameters of iterates f™™s)=1(D)
would be positive. Thus D is either contained in the basin of attraction to an attracting
periodic orbit or a parabolic periodic orbit. In either case the limit of the sets fm(”s)_l(D)
would be contained in either an attracting periodic orbit or a parabolic periodic orbit. Since
this limit would coincide with y, we get a contradiction. The proof is complete. B

Remark 6.2. Obviously this lemma remains true (with the proof requiring only minor mod-
ifications) if instead of the disk B(x,d) one takes the square centered at x and with edges of
length 6. This is the version we will need in the next theorem.

Theorem 6.3. Let f : @ — @ be an elliptic function. If a point x € J(f) \ Q(f) is not
contained in the w-limit set of a recurrent critical point, then for all € > 0 there exists a
neighbourhood U of x such that:

(a) For all n >0, every connected component of f~"(U) has Euclidean diameter < €;
(b) There exists N > 0 such that for all n > 0 and every connected component V' of
f~™(U), the degree of fi 1s < N;

Proof. The core of the theorem is (a), from which the property (b) will easily follow. Given
an open set U C @ denote c(U,n) the set of connected components of f "(U). Observe
that V' € ¢(U,n) implies f/(V) € ¢(Un —j) for all 0 < j < n. If V € ¢(U,n) define
A(Vin) = #{£ € V;(f™)'(§) = 0} counted with algebraic multiplicity. A square is the set S
of the form S = {z € @': |Re(z — p)| < ¢, |Im(z — p)| < §}. The point p is the center and
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§ its radius. Given a square S with center p and radius 6, then, given k£ > 0, denote by S*
the square with center p and radius kd. If S is a square with radius J, denote by £(S) the

family of squares contained in $2 — S and having radius §/4. Denote by £*(S) the family of

3
squares Sg with Sy € £(S). Suppose that x is not a parabolic point and does not belong to
the w-limit set of recurrent critical point. Then there exists dy > 0 such that

(1) There is no critical point ¢ of f such that there exists 0 < ny; < ny satisfying
|f" () — ] < do
and
/" (e) — x| < do.
(2) |x — p| > 100, for every parabolic or attracting periodic point p.

Given € > 0 take €; > 0 satisfying

(3) 0 < €1 < min{e/10,60/10}
(4) if U is an open connected set with diam(U) < 2¢; then diam(W) < ¢ for all W €
c(U,1)

Let Ny be the number of equivalence classes of the relation ~ between critical points of f.
Take N; > 2 such that

(5) If S is a square and V' € ¢(S,n) satisfies A(V,n) < Ny + 1 then the number of
connected components of f~(S3) contained in V is < Nj.

Finally, take ¢ given by

(6) 0 = min{50/10,61/10,5(2Ng,25—}V1,§,50)}, where 5(2]\70,25—]1\,1,%,50) was produced in
Lemma 6.1.

Let Sy be the square of center x and radius §. Suppose that Theorem 6.3(a) fails for U = Sj.

Then there exists n > 0 and V' € ¢(Sp,n) with diamV > ¢ > 10¢;. On the other hand, by

(1), diamS, = 2v/25 < 36 < €;. Hence there exists an integer ny > 0 such that there exists
3

Vo € ¢(S¢, o) satisfying

(7) diam(f~M=9(S) N fi(Vg)) < € for all 1 < i < ng, and
(8) diam(f " (Sy) NVp) > €

Since diamS, < ¢, it follows that nyg > 0. Now, starting with Sy we shall construct a sequence
of squares Sy, S1,Ss, ... and strictly positive integers ng > n; > no ... satisfying

(9) Sj+1 € L*(S)) )
(10) there exists V; € ¢(S7,n;) such that
diam(f©"70(S5) N f1(V))) < e
forall 1 < <n; and

diam(f " (S;) NVj) > €.
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From (7) and (8), it follows that S; satisfies (10). If we construct such a sequence of squares
and integers, then Theorem 6.3 will be proved by contradiction because the condition ng >
ny > Ng...> Ny > ... > 0 implies that n; = n; for all > i for a certain 7. But (a) implies
that the radius of S; is (2)76; in particular diam(S;) — 0 when j — 4oc0. But by (10),

e1 < diam(f " (S;) NV;) = diam(f " (S;) N V),
V; € c(Sj%,nj) = C(S]‘%ani)

Taking j — 400, and recalling that 7 is contained and lim;_,, diamS; = 0, we conclude that
the inequality above cannot hold.

The sequence {S;} and {n;} will be constructed by induction starting with Sy. Suppose S;
and n; are constructed for 0 < ¢ < j. To find S;1; and n;; we begin by observing that from
(a) it follows that if p € S € L*(S;), then, by the contraction of the squares S,

j i+l g i+l 3
p— 2| <3 diam(S;) = Z(g)’diam(&)) = 2V2 Z(g)za < 4/26.
=0 =0 =0

Hence, if a point ¢ satisfies dist(q, S) < dp, we have
g — x| < 4vV/26 + 8§ < 28.

By (2), this means that
(11) dist(q, S) > d for all S € L*(S;) and all parabolic or attracting periodic point g.

For the induction step (i.e. the construction of S;;; and nji1), we shall use the following
lemma.

Lemma 6.4. If U C T is an open neighbourhood of x and V € ¢(U,n) satisfies
diamf'(V) < &, 0<i<n,

then

Proof. If A(V,n) > Ny + 1, there exists Ny + 1 different points z;, 1 <i < Ny+1,in V
such that (f")'(x;) = 0. This means that for each 1 < i < Ny + 1 there exist 1 < m; < n,
such that f™(z;) is a critical point. Recalling that N, is the number of the equivalence
classes of the equivalence relation ~, it follows that there exists two different points in the
set {x;; 1 < i < Ny + 1}, that we shall denote by z1, x5, and two critical points ¢; and
o in the same equivalence class of the equivalence relation ~, such that f™ (z1) = ¢; and
f™2(x9) = 3. Assume without loss of generality that 0 < m; < my. Then by the choice of
(50, my < my and

[T (e2) — cof = [f™ T (1) = eof = [f™ (1) — [ (22)] < diamf™* (V) < dg

and

£ (ea) = 3l = 17 (7 (w2) = 2l = |f"(2) — @] < o
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contradicting property (1) of d,. ®

Now, to find S;;; and n; 1 we first claim that there exists S € £(S;) that for some 0 < n < n;

has V' € ¢(S, n) with diamV" > TR Suppose that the claim is false. Then, for all 1 <17 < n;,

diam(f'(V;)) < diam(f (85 N f1(V;))
+ sup{diam(W); W € ¢(S,n; —1),S € L(S;) }
€1
10Ny
From this inequality applied to i = 1 and property (4), we have

<€+ < 2¢

Moreover, since 2¢; < dy (by (3)),

diam(f'(V})) < do
for all 1 <7 < nj, hence for all 0 < ¢ < n;. By Lemma 6.4, this proves that A(V},n;) < Nj.
Then, since V; € c(S’j%,nj) it follows from (5), (11) and Lemma 6.4 that

[W € ¢(S;,n;), W C V;] = diam(W) < 1()6]1V1.
Moreover, by the way N; was chosen, we have
#HW € c(Sj,n;); W C Vi <INy
and we assume that
S € £(S;),G € C(S,n;)] = diam(G) < 106]\71'

Now observe that V; is the union of sets G € ¢(S,n;),G C V;,S € L(S;) and the sets
W € ¢(Sj,n;),W C V;. Moreover, for any two sets W', W” in this family there exist
W= Wy, Wi, ... , W =W"in ¢(S;,n;) and contained in V; such that for all 0 < i < k there
exist S; € £(S;) and U; € ¢(S;,n;) such that U; N W; # 0 and U; "W, # 0. Then
. €1 €1 €1
d Vi) <N = —
tam(V7) < N, (10N1 * 10N1> 5
contradicting the last inequality in condition (10). This completes the proof of the claim.

Now we can take S € L(S;) such that diam(V) > 5 for some V€ ¢(S,n),0 < n < n;.

Take V € C(Sg,n) containing V. Suppose that A(f/,n) < Ny. Then by Lemma 6.1 and
condition (6)

€1
20N,
since V € ¢((52)3,n) and is contained in V. This contradicts the fact that

diam(V) <

€1

i >
diam(V) > 0N,
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and proves A(V,n) > N, + 1. From Lemma 6.4, it follows that
diam(f1(V)) > 6

for some 0 < i < n. Now we define S;; = S3. Then fi(V) € ¢(S%,n—i) and diam(fi(V)) >
dp > 10€;. Moreover diamSj;; < 20 < €;. Then there exists 0 < nj;; <n —i<n; —17 and
Vis1 € ¢(Sjt+1,nj41) such that

diam(f ™"+ (Sj11) N Vjs1) > €

and _ _
diam(f "7 (Sj10) N f(Vin)) < e

Observe that n;,; > 0 since diam(Sj+1) < 20 < €;. This completes the construction of the

sequence {S;} and {n,} and the proof of part (a) of Theorem 6.3. Property (b) of Theorem 6.3
follows from (a) and Lemma 6.4. W
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