THE PARABOLIC MAP f.(2) = %62.

MARIUSZ URBANSKI AND ANNA ZDUNIK

ABSTRACT. We consider the exponential maps fy : € — € defined by the formula f)(z) =
Ae?, XA € (0,1/e]. Let J.(fx) be the subset of the Julia set consisting of points that do
not escape to infinity under forward iterates of f. Our main result is that the function
A hy = HD(J.(f1)), A € (0,1/€], is continuous at the point 1/e. As a preparation for this
result we deal with the map f, /. itself. We prove that the h; /.-dimensional Hausdorff measure
of J.(fi/.) is positive and finite on each horizontal strip, and that the h;/.-dimensional
packing measure of J,.(f)) is locally infinite at each point of J,.(fy). Our main technical
devices are formed by the, associated with fy, maps F) defined on some strip P of height 27
and also associated with them conformal measures.

1. Introduction

We consider the exponential maps fy : @ — € defined by the formula fy(z) = Ae*, A € (0,1/e].
C. McMullen has proved in [McM] that HD(J(f)), the Hausdorff dimension of the Julia set of
f is equal to 2. In fact McMullen has shown more, that the set of points escaping to infinity
under f has Hausdorff dimension equal to 2. In [UZ1] and [UZ2] we extensively explored
Jr(fx), the complement of this latter set in J(f), for hyperbolic parameters A. Hyperbolic
means here that f, has an attracting periodic orbit. This set has turned out to carry the
interesting component of the dynamics and geometry of the maps f,. It was shown in [UZ2]
that the function A — HD(.J,(f))) is real-analytic in some neighbourhood of every hyperbolic
parameter \. In this paper we make the first step beyond hyperbolicity and we consider the
parabolic parameter 1/e. It is called parabolic since fi/(1) = 1 and f{,(1) = 1. Notice
that (0,1/e) is a subset of hyperbolic parameters and therefore the function A — HD(J,(fy)),
A € (0,1/e), is real-analytic. The natural question arises about the asymptotic behavior of
this Hausdorff dimension function when A 7 1/e. Using our main technical devices formed
by the, associated with f,, maps F) defined on some strip P of height 27 and also associated
with them conformal measures, we answer this question by proving the following.

Theorem 1.1. The function A — hy = HD(J,(f\)), A € (0,1/e] is continuous.
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A similar problem was also positively resolved in [BZ] for the quadratic family {z — 2% +
Ctecpon/4)- The general idea of using conformal measures is in our paper the same as in
[BZ]. Our proof is however computationally simpler and clearer, mainly due to the change of
variables which sends the repelling fixed points of all the maps f\ to the one point 0, and is
actually of local character, so it in fact can be applied in a much more general setting.

As a preparation for the proof of Theorem 1.1 we develop in Section 3 the theory of the
map fi/. itself. It is partially modeled on the papers [ADU], [DU1], [DU2], [DU4] and [UZ1].
We provide sketches of proofs and indicate how to complete them using the arguments from
the above mentioned paper. In particular we provide an actually complete description of
the structure of conformal measures of the map fi,., we prove that the h; .-dimensional
Hausdorff measure of J.(fi/.) is positive and finite on each horizontal strip, and that the
h1/.-dimensional packing measure of J,.(fy) is locally infinite at each point of J,.(fy). We also
indicate that there exists a Borel probability F/.-invariant ergodic measure equivalent to the
appropriate conformal measure. The reader familiar with parabolic maps or interested only
in the results proven about them, may skip reading Section 3 or read only the statements
included there and focus on Section 4, the actual proof of Theorem 1.1.

2. Short Preliminaries.

Throughout the entire paper we assume that A € (0,1/e]. Then f,|r has a unique (positive,
repelling in case when A < 1/e and parabolic equal to 1 if A = 1/e) fixed point which we
denote by g,. Let

P={zel: -7 <Im(z) <m}.
Let

m: T — P

be the projection determined by the condition that my(z) = w if and only if w € P and
e® = €“. We define the map F' = F) : P — P we intend to work with by the formula

F(z) = m(f(2)) (2.1)
Recall that a Borel probability measure m supported on P is called ¢ conformal (with ¢ > 0)
if for any Borel set A C P on which F), is injective, we have

m(FA(4)) = [ |F'dm.
A
Throughout the entire paper we use the notation
f=fijes Fi=Fe JJ(F\) =J.(fA) NP, J, =J,(F.) and P, = {z € P:Rez > 1}.

3. Fractal and Dynamical Properties of the Maps f and F.

Our first goal in this section is to prove the existence of a conformal measure and to examine
in detail its properties. In order to do it we begin with the definition and analysis of the sets
Ky, m > 0. Indeed, for every M > 0, let

Wy ={2€ J(F):Re(z) <M and |z —1| > 1/M}
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and let

Ky = () F*(Wu). (3.1)

k>0

Since F' : J(F) — J(F') is continuous, K, is a forward F-invariant compact subset of J(F).
Notice also that if z € P, j > 0, F/(z) € Py and |F7(z)—1| > 1/M, then there exists a unique
holomorphic inverse branch F,7 : B(F’(z),1/M) — Q of F’, sending F’(z) to z. Since for
every u > 1, inf{|F'(z)| : Rez > u} > 1, and since inf{Re(K )} > 1 for every M > 0, we get
the following.

Lemma 3.1. For all M >0
inf{|F'(2)|: z € Ky} > 1.

Given ¢ > 0 a Borel probability measure on P is said to be ¢t-conformal for F': J(F') — J(F)
if and only if m(J(F)) =1 and

m(F(A)) = /A |F'tdm (3.2)

for every Borel set A C J(F') such that Fj4 is one-to-one. First, following [DU1], for every
M > 0 large enough, we shall build a probability Borel measure m,,;, with the topological
support contained in K,;, and which will be ”almost conformal” for some t;; > 0, meaning
that

mar(F(A)) > /A | (2 g (3.3)

for every Borel set A C @ such that F|4 is 1-to-1, and (3.2) holds if we assume in addition
that AN{ze€Q:Rez>Mor|z—1| <1/M} = (. In what follows, throughout Lemma 3.2
we follow closely the appropriate reasoning from [UZ3]|. In the sequel, we will need to refer
to some details of the construction of the measure my,;, so we briefly describe it now. For
every M > 0 large enough choose a finite set £ C Kj; such that the B(E™,1/2M) D> Ky,
and that E™ contains the forward orbit of a periodic point & of F. Notice that, since K, is
F-forward invariant, the whole forward orbit of £ is contained in Kj;. The existence of such
a periodic point follows from the density of periodic points in J(F'). Consider the function

cyr(t) = lim sup%log > > (™) | (w).

n—oo 2By 1
we (F\KM) (z)

The function t +— ¢y, (t), t € IR, has three important properties. First, notice that it follows

from Holder’s inequality that it is convex in IR, so it is continuous. Next, it follows easily

from Lemma 3.1 that this function is strictly decreasing and limy_, ., cps(t) = —oc. Finally,
-1

each set (F|KM) (EM) is not empty as it contains a point from the forward orbit of £. In

particular ¢;/(0) > 0. All these properties imply that there exists a unique value ¢ = t); with
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cu(tyr) = 0. Following the general construction described in [DUI1] (see also [PU], Chapter

10), with the sets E,, = (F|KM)7H(EM) we obtain a measure my;, for which my (Ky) = 1
and which is "almost conformal” with the exponent t;;,. We continue on with the following
lemma; the idea of its proof comes from [UZ3].

Lemma 3.2. For every M large enough there exists p > 0 such that HD(Kps) < tarqp-

Proof. Tt immediately follows from Lemma 3.1 that
L =inf{|(F")(w)|:w € Ky,n>1} >1 and lim |(F™)(2)] = o0 (3.4)

for all z € K. Fix p > 0 so large that KL™" < p(M (M + p))~' and consider the set
Jr4p. Following the construction of almost conformal measures described above, we choose
a finite collection of points EM*? C K., such that the balls B(z, (2(M +p))™'), z € EM*?,
cover the set Ky, Let y € Ky C Kppyp. Given n > 0 there exists x € EM+P guch that
F"(y) € B(z,(2(M + p))~'). By our definition of the set Kjs,,, all holomorphic branches
of F~', i > 0, are well-defined on B(z,1/(M + p)). Fix 0 < i < n and let F,;* be the
holomorphic branch of F~¢ sending F"(y) to F" *(y). Then, by Koebe’s distortion theorem,
for all z € B(z, (2(M +p))~'), we get

EYOL
|(F,) (F™(y))]
So, since F"")(y) € Ky, using (3.4), we obtain |(F,7)'(z)] < K|(F,")'(F"(y))] < KL
Thus, |F,*(z) — F"'(y)] < KL™' < p(M(M + p))~', and consequently, using the fact
that F""*(y) € Wy, we see that F,*(x) € Wy, for all 0 < i < n. This implies that

FM(w) € Kppyp, ie. F7M(2) € (F|KM+p)_n(a:). Let F,,(x) be the collection of all holomorphic
inverse branches F,; " of F™ defined on B(z, (M +p) '), such that F, ™ (z) € Ky, It follows

from the above considerations that

Evc U U BB 2M+p)™). (3.5)

T€EEM+P vEF, (x)

In addition, in view of Lemma 3.1, diam(F,, ™ (B(z, (2(M +p))~')) — 0 uniformly as n — oo,
and for every t > 0

>y (diarn(F,f"(B(x,5M+p)))tj > 2. m

seber el )
w Kprip T

(3.6)

Fix now an arbitrary ¢ > tp/4,. Then cpq,(¢) < 0 and

> > m < exp (%CMer(t)n)

zeEM+p -n
’U)E(F|KM+p) (z)
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for all n large enough. Combining this, (3.5) and (3.6), we conclude that H,(Kj,) = 0 for all
t > ty4p and, consequently, HD(K ) < tpry,. W

The proof of the next, much easier, fact is a simplification of the argument provided in [DU1]
and chapter 10 of [PU] and is written with all details as the proof of Lemma 3.1 in [UZ3].

Lemma 3.3. It holds HD(K ;) > ty.
The main auxiliary result of this section is the following.

Lemma 3.4. There exist h € (1,HD(J.(f))] and an atomless h-conformal measure for F
supported on J(F).

Proof (sketch). In view of the proof of Theorem 2.1 in [UZ1], HD(K)) > s for some s > 1
and all M > 0 large enough. Fix one such M and put s = t;;. Choose p ascribed to this
M according to Lemma 3.2. Then, by this lemma, ¢y;,x > HD(Ky) = s > 1 for all k > p
and tyy < HD(Ky) < 2 by Lemma 3.3. Next, we check that the sequence of measures
{mi}32, is tight. The proof goes through exactly as the proof of Proposition 3.3 in [UZ1].
Now, choose a sequence {m,, }72, such that the limit A = lim,,_, t,, exists. By the above,
h € [s,HD(J.(f))]. It is now rather straightforward to verify that any weak limit measure m
of the sequence {m,, }32, is h-conformal (the argument is a simplification of the argument
provided in [DU1] and chapter 10 of [PU]). Since |F'(z)| > 1 for all z € J(F) \ {1}, all
the atoms of m must be contained in U,~, F (1), and in order to demonstrate that m is
atomless, it suffices to show that m (1) = 0. This in turn can be done in the same way as the
proof of Theorem 8.7 in [ADU], see also the proof of Theorem 1.1 in the next section. B

The proof of the next lemma is the same as the proof of Proposition 3.6 in [UZ1].

Lemma 3.5. If t > 1 and m; is an arbitrary t-conformal probability measure for F, then
mt(Jr) =1.

The proof of the following proposition follows immediately from the left-hand side of the
formula (4.1) established in the proof of Theorem 4.4 in [UZ1].

Proposition 3.6. Ift > 1 and my is an arbitrary t-conformal measure for F, then H*|; 5y <
my. Moreover the Radon-Nikodym derivative j—gz s bounded from above.

As an immediate consequence of this proposition we get the following.
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Corollary 3.7. Ift > 1 and a t-conformal measure ezists, then HD(J,(F)) < t.
Combining this corollary and Lemma 3.4, we immediately get the following.

Corollary 3.8. We have
HD(J,(F)) = HD(J;(f)) = h,

where h is the value described in Lemma 3.4.

We can provide now a fairly complete description of the structure of the set of conformal
measures for F': J(F) — J(F).

Theorem 3.9. The following hold.

(1) h is the unique t for which an atomless conformal measure exists.

(2) There exists a unique h-conformal measure m for F : J(F) — J(F). The measure m
is atomless.

(3) The h-conformal measure m is ergodic and conservative.

(4) Ifv is at-conformal measure for F andt > 1,t # h, thent > h and V(Unzo F”(l)) =
1.

Proof. Since (see Lemma 3.4) an h-conformal atomless measure exists, we can show in ex-
actly the same way as in the proof of Theorem 4.4 in [UZ1] that if ¢ > h then I/(Unzo F‘"(l)) =
1 for any t-conformal measure v; as a matter of fact the argument from the proof of Theo-
rem 4.4 in [UZ1] can be repeated for any point 2 € .J,.(F)\U,>o F~"(1). Since, by Corollary 3.7
and (3.8), if a t-conformal measure exists and ¢ > 1, then ¢ > h, the items (4) and (1) are
therefore proven. We can also show in exactly the same way as in the proof of Theorem 4.4
in [UZ1] that any two h-conformal measures restricted to J.(F) \ U,>o F'7"(1) are equiva-
lent (comp. the second part of the first sentence of this proof). Suppose now that v is an
h-conformal measure with Z/(Unzo F*”(l)) > 0. Since the set U,>o F~"(1) is completely in-
variant, it is straightforward to see that the measure v, defined as v restricted to U,,>o F"(1)
and normalized is h-conformal. This however is a contradiction since, by Lemma 3.4 there ex-
ists an atomless h-conformal measure m. Thus, m(.J.(F)\ (U,>0 F’”(l))) =1 and, obviously,
m and vy restricted to J,.(F)\U,>o F~"(1) are not equivalent. Thus, any h-conformal measure

v is equivalent to m, and items (2) and (3) can be proven as in the proof of Theorem 4.4 in
[UZ1]. m

The following two theorems are included for completeness since they establish fundamental
properties of Hausdorff and packing measures on J,.(F) and provide a complete geometric
interpretation of the h-conformal measure m. The proofs are straightforward modifications of
corresponding proofs in [DU2] and [UZ1]. Thus, we only indicate how to use the arguments
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given there. We would like however to emphasize that neither of these two theorems below is
needed for the proof of Theorem 1.1, the main result of this paper.

Theorem 3.10. We have 0 < H*(J,(F)) < oo.

Proof. The proof that H"(.J,.(F)) < oo repeats word by word the proof of the appropriate
part of the proof of Theorem 4.5 in [UZ1]. The proof that H*(.J,(F)) > 0 is more involved
and it combines the ideas of the proof of Theorem 4.10 in [UZ1] and the proof of Proposition
5.3 in [DU2]. Put

G =B(1,1)Nn{z:Rez > 1}.
Then there exists a unique holomorphic inverse branch f; ' : G — @'of f such that f; *(1) = 1.
Notice that f{'(G) C G and fi™ : G — G converges uniformly to the constant function
z — 1, z € G. Take # € (0,7) (the reader is invited to think about 6 as the number
appearing in the proof of Theorem 4.10 in [UZ1]) so small that

B(z,0) N {f"(0) :n >0} =0

for all z ¢ G with Rez > 1. Take v € (0,6/32) to be so small that if f**(z) € P, \ G, then
the holomorphic inverse branch of f", sending f™(z) to z, is well-defined on B(f"(z),27).
The reader is invited to think about 7 as the number appearing in Sections 4 and 5 of [DU2].
Lemmas 4.7 and 4.8 are in [DU2] are of local character and continue to be true for our
map [ with w replaced by 1. By our choice of 7, the proof of Proposition 4.9 in [DU2]
goes through in our case essentially word by word (one must for instance replace ||T”|| by
1 f'llg = sup{|f'(w)| : w € G}. Replace now n = n(z,r) by n+ 1 and follow Section 5 of
[DU2] to obtain Proposition 5.3, where the assumption (z,7) € R(w) means that ="+ € G,
Since h > 1, it follows from (5.5) in [DU2] and the right-hand side inequality appearing in
Proposition 5.3 of [DU2] that

m(B(z,r)) < ", (3.7)

So, suppose that that f""+1(z) ¢ G. Since r|(f)(2)] < YK~'||f'|lg"* < v < 0/32 and
r|(f)'(2)] > yK|f'||", the proof of Theorem 4.10 in [UZ1] goes essentially word by word
to give

m(B(z,r)) < K" (%)hl rh.

Combining this with (3.7) finishes the proof. B

The proof of Proposition 4.9 in [UZ1] goes through word by word to give the following.

Proposition 3.11. We have P"(J,(f)) = co. In fact P*(G) = oo for every open non-empty
subset of J.(f).
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We end this section with the following two results which can be correspondingly proven in
the same way as the appropriate part of Theorem 4.5 in [UZ1] and Theorem 5.2 in [UZ1].

Theorem 3.12. There exists a unique probability F-invariant measure p absolutely continu-
ous with respect to h-conformal measure m. In addition, u is equivalent to m and ergodic.

4. Proof of Theorem 1.1

It follows from Theorem 4.4 in [UZ1] that for every A € (0,1/e) there exists a unique hy-
conformal conformal measure for F) : J(F\) — J(F\) supported on .J,.(F)), where h), =
HD(J,(F\)) = HD(J,(fx)). We need the following.

Lemma 4.1. If A\, " 1/e as n — oo, then the sequence of measures {my, }°°, is tight.

Proof. Writing P, r(t) for Pg(t) in the proof of Theorem 2.1 in [UZ1], we can find § > 0
so small that the estimate of Py g(¢) provided in this proof holds for some R > 1 and all
A€ (1—46,1406). It is then easy to see that there exists some s > 1 such that Py g(s) > 0
for all A € (1 —40,1+0). Along with Corollary 3.8 this implies that

hy = HD(J,(F))) > HD(r(Jpa)) > s > 1. (4.1)

Now, with obvious modifications, the proof goes in the same way as the proof of Proposition
3.3 in [UZ1]. =

Lemma 4.2. Fiz a sequence {\;}32, such that \, /' 1/e as n — co. Assume that my, — m

weakly and that lim,_, hy, = t for some t > 0. Then m is a t-conformal measure for
F : P — P supported on Py N J(F).

Proof. Put mj = m,, and hy = h,,. Since each measure my is supported on the set
{z € P :Rez > ¢} (see [UZ1]) and since limy_,o qr, = ¢ = 1, we see that m(P;) = 1.
Fix w € P\ J(F). Since the complement of J(f) is the basin B of attraction of ¢, and
B =Un=0%f"(Rez < q), there exists n such that F"(w) = n(f"(w)) € {Rez < q}. This
implies (by continuity) that there exists r = r(w)) such that F}"(B(w,r)) C (Rez < ¢)) and,
consequently, B(w,r) C P\ J(F)) for all A sufficiently close to 1/e, say A € (£,1/e). Hence
my(B(w,r)) = 0 for all A € (£,1/e). Consequently, for every w € P\ J(F) there exists
r = r(w) such that m(B(z,5) = 0. Thus m(P \ J(F)) = 0. Thus the very last claim of this
lemma is prove. Since F(P\ J(F)) = P \ J(F), this implies that also m(F (P \ J(F)) = 0.
Notice that for all A € (0, 1] J(F)) C Ujezf{z : Im(fi(2)) — 27| < Z. (i.e. J(F)) is contained
in a union of disjoint strips L;(\) = fy'([{Imz —2I7} < I C Le(N) = f7H({Imz — 210} < i,
Each F) is continuous and one-to-one on Zl()\). We shall check now the conformality of m.
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First, notice that it is enough to assume in the formula (3.2) that the set A is bounded. So,
let A be a bounded Borel set on which F' is one-to-one. Then AN J(F) = U, Ly N A and it is
clear that it is enough to prove conformality of the measure for each set Ly N A, i.e. one can
assume that A is bounded and contained in some strip L;. First, we assume additionally that
A is a Jordan domain A C L; with a smooth boundary such that m(0A) = m(0F(A)) = 0
and we shall check the conformality formula

A)) = /A |F'[tdm.

By continuity, for Ay close to %, A is contained in El(A), so F), is continuous and one-to-one

on A. Moreover, F, |4 converges to F|, uniformly as A, — 1.
We shall prove first that

Jim [ B e, = /A |F''dm. (4.2)
Indeed,
/ |F§k|hkdmk—/ |F’|tdm < ‘/ |F§k|h’“dmk—/ |F’|tdm ‘/ |F’| dmy, —/ |F’| dm].
The second summand converges to zero since my, — m weakly and m(0A) = 0. The first

summand tends to zero since |F |" converges to |F'|" uniformly on A. Using (4.2) and

hi-conformality for F},, we get that
— h
mi (B () = [ B [P = [ |F''am

when n — oo. Therefore, in order to prove t-conformality of m, it is enough to check that

Tim i (Fy, (A)) = m(F(A)).
Indeed,

i (P (4)) = m(F(A)] < i (P, (4)) = g (F(A)) [ + [ (F(A4)) = m(F(4))].

The second summand converges to 0 since m(0F(A)) = 0 and my — m weakly. The first
summand can be estimated from above by my (FA,c (A) A F(A)) Let us show that

lim my.(Fy, (4) A F(A)) =0.

Indeed, F), (A) is a Jordan domain enclosed by some smooth curve 7, F(A) is also a Jordan
domain enclosed by some smooth curve v. Therefore, since F), converges to F' uniformly on
A, the symmetric difference F), (A)AF(A) is Contalned in some “collar” Yy, = {2 : dist(z,7) <
Ok}, where 0, — 0 as n — oo. Now, it is enough to observe that

dim my,(Yy) = 0.
Indeed, suppose on the contrary that mg, (Y;,) > e for some £ > 0 and infinitely many £;’s.

Fix one such ;. Since Yy, D Y;,, . for all j large enough, we get my,,  (Y:,) > € which in turn,
letting j — oo gives that m(Y},) > € for all i > 1. Since v = N2, Y%,, this would imply that
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m(90F(A)) = m(y) > € > 0 which contradicts our assumption that m(0F(A)) = 0. Thus, we
have proved the equality m(F(A)) = [, |F'|'*dm for every A with a smooth boundary, A C L;,
m(0A) = m(0OF(A)) = 0. By the standard limit procedure, the same holds for any Jordan
domain A with a smooth boundary and for any (open or closed) rectangle P contained in L;.
Now, we have to compare two Borel measures on L;: mi(A) = [, |F'|" and my(A) = m(F(A))
(the latter is well-defined since F|L; is a homeomorphism). Since these two measures coincide
for any rectangle A C L;, it is standard to conclude that m; = m,. B

Lemma 4.3. With the same assumptions as in Lemma 4.2, the limit measure m has no
atoms.

Proof. We change the variables. Put Z = z — ¢,. In these coordinates f, takes on the form
A(z) = X — gy = e’ — gy = qa(e” — 1).
So, . .
£2(0) =0 and f5(0) = gx.
In particular we gained that 0 is a common fixed point of all maps . Developing the Taylor

series expansion of fA about 0, we conclude the existence of a constant B > 0 such that for
every A € (0,1/e) sufficiently close to 1/e and all z € B(0,1/2), we have that

fnz) — (q,\z + %)‘22>

We change now the variables again sending the fixed point 0 to co via the conjugacy z — 1/z.
In these coordinates f) takes on the form
1 1

g/\(w):f?/\(i):qA(l—F% wL

< Bz, (4.3)

0 (r)

|w|?) independent of X\. There thus
00),

Iw\2

for all w with |w| > 2 and the constant involved in O
exists ) > 0 (independent of \) such that for all w €

g(w) = gr(w) < g(w) :== ¢, * (w - i) < w.

Suppose now that Z,z € [, o0) and g(&) < g(z). Since g(x) < g(x) and since the function g
is increasing, we conclude that & < z. So, if w, > w, 1 > w, 2> ... > wy = & is a sequence
of consecutive preimages of £ under g (i.e. g(w;) = w;_1) and if W, > W, > Wy > ... >
wy = & is a corresponding sequence of preimages of £ under ¢, then w, > w,. The value of
w, can be easily calculated. Indeed,

one can write

- (1+ +O <
(1/
@,

lgh —1 1= n
w €qA+4qA_1 §QA+4]§:0:QA_4
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Hence

Wy > 1y > %. (4.4)

Let Log: {z € @': Rez > 0} —  be the branch of logarithm sending 1 to 0. Then
f;&(w) = Log(¢y'w+1), we {z€ C:Rez> -1},

is the unique holomorphic inverse branch of f, sending 0 to 0. Fix now w € {z € T':Rez > 0}.
Then

Re(f/\’,é(w)) = log|qy 'w + 1| > log(Re(q{lw) + 1) >logl =0.
Hence
f;é({z €C:Rez>0}) C {z€l:Rez >0}
and we can therefore speak about iterates
f;g({z € C:Rez>0}) C {z € @:Rez>0}.
Fix now z, € (0,1/Q) and for every n > 0 put z, = f;&(zo) € (0,00). Since the maps fy and
g» are conjugate via the map z — 1/z, it follows from (4.4) that

4

Let
3
S:{ZE@:1§|Z|g%}ﬂ{ze@:Rezz()}.

We shall prove now that for every A € (0,1/e) sufficiently close to 1/e and for every r € (0, 1),
we have

BONNIEC U FEE©), (4:6)

where n,(r) = [Tog)(%g)] and [z] is the integer part of x. In particular

lim n.(r) = oo. (4.7)
Indeed, notice first that if Rez > 0, then
o) = 1F50(2) = [ (0)] < [zl sup{|(frp) (w)] : w € [0, 2]}

’

1
< |z| sup {—_ Tw € [O,Z]} < |zlgyt.
a1+ gy wl A
35

Since J(fa) = J(fr) —arn C {z € €': Rez > 0}, since (J(f2)) = J(/)) = /i (J(f))) and
since f50(fa(z)) = z for all z € {z € €': Rez > 0} N B(0,1), we therefore conclude that
1/2(2)] = |2 for all z € J(f)) N B(0,1). Since for every A € (0,1/€), ¢» > 1, we thus see
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that for every z € B(0,1) N J(fy) \ {0} there exists a least n > 1 such that f(z) ¢ B(0,1).
It then follows from the Mean Value Inequality that

FE = AR ) = HO) < 0l 37) - 0] < gl B ()] < e < 5,

where the last inequality was written assuming that A € (0,1/e) is sufficiently close to 1/e.

Hence, the formula (4.6) has been established with an appropriate n = n.(z,r) and we need

to prove the required lower bound on n.(z,r) independent of z. So, suppose that z € B(0,r),
€ (0,1), and let n > 1 be the least integer such that f(z) ¢ B(0,1). Then

L< [fX()] =13 (z) = [RO)] < 2l sup{|(f3) (w)] : w € [0, 2]} < |z[(gre)"™ < 7(2€)",
where the last inequality was written assuming that A € (0,1/e) is sufficiently close to 1/e.
Hence, n > g)(g;e) and the proof of (4.6) is complete.

Fix now r € (0,1) and A € (0,1/e) so close to 1/e as required in formula (4.6). Let m, be
the image of m) under the translation z — z — ¢,. Notice that

mA(on /|on ) |">diy

and that m, is atomless. Therefore, using (4.6), we get

mA(B(0,r)) < > m/\(f)\o = Y /| ) "> diny

n>n«(r) n>n«(r)

<ma(S) X SUP{|(fA,0)(Z)|:Z€S}_ > sup{|(/x8)(2)] : 2 € S.8)

n>n.(r) n>n.(r)

Fix now zy = 3r/4. Since —g, is the only singular point of f, and since {f7'(—gqx)}2%, C
IRN{z € €': Rez < 0}, we conclude that there exists an open connected simply connected set
V' D S such that each holomorphic inverse branch of ff defined on S extends holomorphically
to V. It therefore follows from Koebe’s Distortion Theorem that for every n > 0

int {|(72) ()] : w € 8} = sup {|(Fg)(w)| w € 5}

Since [z1, 29] = [log(gy '37/4 + 1),37/4] C [1,7] for all A € (0,1/e) sufficiently close to 1/e,
we obtain the following

|20 = 21| < sup{|(£Y)' ()] : w € [zn, 20-1]} 20 — 201

= (inf {|(fia) ()] w € [1,20]}) " J20 = 20l (4.9)

< (sup {|(Fx) ()] s w € S} [zn = 20 .

Now, in view of (4.3)

n = (20— 222 400
< (gx = Dzal + Cl2nf?

120 — Zn1| = |20 — fr(zn)] =
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for some constant C' > 0 independent of A and n. Combining this along with (4.8), (4.9) and
(4.5), we get

ma(B(0,7)) < Z |2n, — zn,1|’”|zo — z1|"” = Z |2n — zn,1|hA

n>n.(r) n>n.(r)
h 1
< Y (—Dal+CzP)" 2 Y o
n>n.(r) n>n.(r) n

Since, in view of (4.1), hy > s > 1 for all A € (0,1/e) sufficiently close to 1/e, the last series

can be estimated from above by

Z 1
n>n.(r) n

which converges to 0 when 7\ 0 since lim, o n,(r) = oo. Since limy_,o, M), = M, where m

is the image of the limit measure m under the translation z — z — 1, we therefore conclude

that m(0) = 0 and consequently m(1) = 0. Hence by conformality of m, m (UnZO f‘"(l)) =0

and, as m cannot have other atoms, we are done. B

We are now ready to finish the proof of Theorem 1.1. Indeed, fix a sequence A\, * 1/e.
Since 1 < s < hy, < 2, each accumulation point ¢ of the sequence {hy, }72, is in the interval
[5,2]. Our aim is to show that ¢t = h(= HD(J.(fi/.)). Passing to a subsequence, we may
assume that limy_,o hy, = ¢ and, in view of Lemma 4.1, we may assume that the sequence
{m,, }22, converges weakly to a Borel probability measure m. In view of Lemma 4.2, (4.1)
and Lemma 4.3, m is a t-conformal measure for Fy /. supported on J(Fj.) with ¢t > s > 1.
Since by Lemma 4.3, the measure m is atomless, it therefore follows from Theorem 3.9(1)
that ¢ = h and we are done. B
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