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ABSTRACT. In this paper we study parabolically semihyperbolic generalized polynomial-like
maps and give a finer fractal analysis of their Julia sets. We discuss various generalizations
of the classical notion of topological pressure to situations in which the underlying potentials
are not necessarily continuous or bounded. Subsequently, we investigate various types of
conformal measures and invariant Gibbs states, which then enables us to deduce analytic
properties for the generalized pressure functions. On the basis of these results, we finally
derive our multifractal analysis, and then show that for the special case in which the Julia
set does not contain critical points, this general multifractal analysis has a more transparent
geometric interpretation in terms of the local scaling behaviour of the canonically associated
equilibrium state.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this paper we give a finer multifractal analysis of Julia sets J(f) for parabolically semihy-
perbolic generalized polynomial-like maps f (see section 2 for the definition of these maps).
First, we give a detailed discussion of various extensions of the classical notion of topological
pressure P(f, ¢). Different from the classical situation, which requires the potential ¢ to be
continuous, these extensions P(t,¢) are associated to potentials of the form —tlog|f’| + ¢,
which are in general (that is, if the critical points are of dynamical significance) neither
continuous nor bounded (section 2.3 and section 4). This discussion is then followed by in-
vestigations of various types of conformal measures and invariant Gibbs states (section 3).
Subsequently, on the basis of these considerations, we then derive our multifractal analysis for
parabolically semihyperbolic generalized polynomial-like maps. We remark that the results
in this paper are significant extensions of our results obtained in [15], and furthermore they
provide further generalizations of the results in [7] and [14] where totally different methods
have been employed.

In order to state the main results, we need to introduce the following. For a Holder continuous
function ¢ : J(f) — IR, the lower and upper rate of ¢ at x € J(f) are defined by

 Su(P(f,9) - 8(a)) o Su(P(fi0) — 6(x))
2y(@) = oo Ty M P = M Y@
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If these two rates coincide, then we write p,(z) to denote their common value.
In order to study the fine-scale geometry of J(f), we then follow the foot steps of the classical
multifractal formalism and consider the (¢, «)-level sets Ky(a), which are defined by, for
a € IR,

Ks(a) =={z € J(f) : ps(x) = a}.
Let pyae refer to the maximal number of petals a parabolic fixed point of f can possibly have.
The following theorem gives the first main result of this paper.

Theorem 1. Let f be a parabolically semi-hyperbolic generalized polynomial-like map, and
let ¢ : J(f) — IR be a Hélder continuous potential such that P(f,¢) > sup(¢). In case f has
parabolic elements we additionally assume that the Hélder exponent of ¢ exceeds pmaz | (Pmaz +
1). Then the following holds, where g refers to the equilibrium state of ¢.

(i) For pg-a.e. x € J(f), we have that py(z) exists and

P(f,¢) — [ ¢pdu
Jlog | f'|dpg
(ii) There ezists a function T : (0,1] — IR, uniquely determined by P(T(q),q¢) =0, such
that
— T is real-analytic and T is strictly negative,

— HD(Ky(=T"(9))) = T(q) — ¢T"(q), for every q € (0, 1].

We then continue by investigating analytic properties of the multifractal ¢-spectrum £, which
is defined for o € IR by

ko) = HD(Ky(0)).
The following theorem gives the second main result of this paper. Note, throughout we let h
refer to the Hausdorff dimension HD(.J(f)) of J(f).

Theorem 2. Let f be a parabolically semi-hyperbolic generalized polynomial-like map, and
let ¢ : J(f) — IR be a Hélder continuous potential such that P(f, ) > sup(¢). In case f has
parabolic elements we additionally assume that the Holder exponent of ¢ exceeds pmaz | (Pmaz +
1). If the equilibrium state piy is not equivalent to the h-conformal measures vy, of f, hence
wn particular if f has a parabolic point or a non-exceptional critical point, then the domain of
the function kg contains a non-degenerate interval on which kg is real-analytic.

Finally, we consider the special class of parabolically semi-hyperbolic generalized polynomial-
like maps f for which J(f) does not contain critical points of f. Maps of this type will be
referred to as parabolic generalized polynomial-like maps, and we show that for these maps
the results of the multifractal analysis in Theorem 1 and Theorem 2 have a more transparent
geometric interpretation. More precisely, we obtain the following theorem which states the
third main result of this paper.



Theorem 3. Let f be a parabolic generalized polynomial-like map, and ¢ : J(f) — IR a
Hélder continuous potential such that P(f, ) > sup(¢). In case f has parabolic elements we
additionally assume that the Hélder exponent of ¢ exceeds pmar/(Pmaz +1). Then we have for
the equilibrium state p, associated with ¢, and for any q € (0, 1],

HD ({Z € J(f):lim log g Bz, 1) _ —T’(q)}> =T(q) — qT"(q)-

r—0 log r

(Here, T refers to the function which we already considered in Theorem 1).

The paper is organized as follows.

1. Introduction and statement of main results

2. Preliminaries
2.1. Parabolically semihyperbolic generalized polynomial-like maps
2.2. Conformal graph directed Markov systems and GPL-maps
2.3. Topological pressure functions

3. Invariant Gibbs states

4. Real analyticity of the topological pressure

5. Multifractal analysis
5.1. The general case of a parabolically semi-hyperbolic GPL-map
5.2. The parabolic case without critical points in the Julia set

Throughout, we use the following conventions to describe the relationship between two positive
numbers a and b. We write a < b if the ratio of a and b is uniformly bounded away from
zero and infinity. Similarly, we write a < b, or a > b respectively, if a/b is uniformy bounded
away from infinity, or zero respectively.
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2. PRELIMINARIES

2.1. Parabolically semihyperbolic generalized polynomial-like maps.

In this section we give a brief introduction into parabolically semihyperbolic generalized poly-
nomial-like maps. Let n = {1,2,...} be the set of all positive integers. We begin with recalling
the definition of a generalized polynomial-like mapping, which will be abbreviated throughout
as a GPL-map. Note that we have adopted the notation of [15].

For U C €' an open Jordan domain with smooth boundary, let ¢ := U,;c; U; be a finite union
of Jordan domains U; which are fully contained in U and which have pairwise disjoint closures.
A GPL-map f is a map

fuU—-U
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which has a holomorphic extension to an open neighbourhood of U such that for each ¢ € T
the restriction of this extension to U; is a surjective branched covering map. We let J(f) refer
to the Julia set of f.

Let €2 denote the set of parabolic periodic points of f given by

Q:={welU: flw)=w and (f7)(w)=1 for some ¢q € IN}.

Without loss of generality, we may assume that the parabolic periodic points of f are in fact
fixed points of f, and that f'(w) = 1 for each w € Q (this is achieved as usual, by taking a
suitable iterate of f; note that this does not affect our analysis here since P(f, —tlog|f’|) =
LP(f,—tlog|(f")']), for each n € N).

Also, we define

Crit(f) :={c: f'(¢) =0} and Crit(J(f)) := J(f) N Crit(f).
It will be convenient to split up the index set I in the following way.
I, :={i € I:U;NUys f*(Crit(f)) =0} (‘post-critical free indices’),
L={iel:QNU;#0} (‘parabolic indices’),
I.:={i eI :U;NCrit(f) # 0} (‘critical indices’),
I, =TI\ (I,UI,) (‘regular indices’).
With this decomposition of the finite index set I, we define

Llo = U Ui, Llp = U Ui, Z/{C = U Ui, Z/{r = U Uz

icl, i€l i€l, i€,

Definition 2.1. A GPL-map f is called parabolically semihyperbolic if and only if the follow-
ing conditions are satisfied.

(a) I.c 1, (b) U,UlU, CU, (c) U fH(Crit(f)) cU,, (d) I, # 1.
nelN

Throughout the paper we assume, if not stated otherwise, that f is a parabolically semihy-
perbolic GPL-map. Note that in its definition we do not rule out the possibility that Q = (.
That is, we let the class of semihyperbolic GPL-maps be contained in the class of parabolically
semihyperbolic GPL-maps. Also, recall that a GPL-map f is called critically non-recurrent
if for each ¢ € Crit(J(f)) we have that U; N {f"(c) : n € IN} = 0, where i € I is uniquely
determined by the fact that ¢ € U;. Hence, by (a) in the definition above, a parabolically
semihyperbolic GPL-map is always critically non-recurrent, and consequently, critically tame
(see [18] for its definition). Also, note that for a parabolically semihyperbolic GPL-map the
sets I,, I, and I, are always pairwise disjoint.

The following lemma is an immediate consequence of the fact that a GPL-map is critical
non-recurrent in combination with the topological exactness of its Julia set.

Lemma 2.2. For a critically non-recurrent GPL-map f we have that the closure of the

forward orbit of Crit(f) is a nowhere dense in J(f).
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Throughout, we shall assume that for : € I, the map f : U; — U is a conformal homeo-
morphism. By Schwarz’s lemma, we then have that Q N U; is a singleton, denoted by w;, so
that we have in particular that w; = OU; N OU. Also, with f7' : U — Uj referring to the
inverse branch of f for which f7'(w;) = w;, the Denjoy-Wolf theorem implies that f;"(z)
converges to w; uniformly, for each z € U. Since f;' has an analytic extension to an open
neighbourhood of w; and since (f;!)'(w;) = 1, the Taylor expansion of this extension for z
close to w; is of the form, for some fixed a; # 0 and p(w;) € N,

fil(2) = 24 ai(z — w)P@dtt 4

Using this, it follows (see e.g [1]) that for each compact set F' C U there exists a constant
Cr > 1 such that, for every n € IN and for all z € F,
et . et
Cpin "R < |(f77)(2)] < Cpn S5 (2.1)
Clearly, the geometric meaning of p(w;) is that it is the number of petals at w;. Throughout
we let Prg, = max{p(w;) : i € I,} denote the maximal number of petals which can possibly
occur at parabolic points of f.

2.2. Conformal graph directed Markov systems and GPL-maps.

The analysis in section 4 of analytic properties of the pressure function will make use of
the fact that a parabolically semihyperbolic GPL-map is closely related to the concept of
a conformal graph directed Markov system (abbreviated as a CGDM-system). In order to
explain this relationship in greater detail, we now first recall from [10] the definition of a
CGDM-system.

The combinatorical spine of a graph directed Markov system is represented by a directed
multigraph (V, E,i,t, A), consisting of a finite set V' of vertices, a countable set E of directed
edges, two functions i,t : £ — V, and a transition matrix A : F x E — {0,1}. Here, i(e)
refers to the initial vertex and ¢(e) to the terminal vertex of an edge e € E. In our special
context here, the matrix A = (A,,) has the property that A,, =1 if and only if ¢(u) = i(v).
The associated symbolic space is then defined as follows.

E:={(e1,e9,...) EE*: A =1 foralli € IN}.

€i€i+1

Furthermore, there is a set {X, : v € V'} of non-empty compact connected subsets X, of C,
and a set ® = {¢. : Xye) = Xj()}ecr of univalent contractions, all with some fixed Lipschitz
constant 0 < s < 1. Each of these maps ¢, is assumed to have a conformal extension from
some connected open neighbourhood Wy of X;) to some connected open neighbourhood
Wiey of Xyey. If additionally @ satisfies the ‘open set condition’ as well as the ‘cone condition’
(see [10], Section 4.2), then we say that ® is a CGDM-system.

Note, in this situation the limit set Jg of ® is given as follows. For 7 = (79, 7,...) € £ and
5



n > 1, let
¢T\n = (]571 ©...0 ¢Tn : Xt(Tn) — Xi(n)-

Since ® consists of s-Lipschitz contractions, it follows that m(7) = N,cpn ¢, (Xt(m)) is a
singleton. This procedure gives a map 7 : & = U,ey Xy, and we let

Jp :=m(E).

The following proposition states the main result of this section. The proof introduces some
notation which will be relevant also in section 4. Furthermore, recall from [10] that ‘finitely
primitive of order 2’ means that for each pair u,v € V there exists a,b € E such that A,;, =1
and i(a) = u,t(b) = v.

Proposition 2.3. Let f be a parabolically semihyperbolic GPL-map. Then there exists a
finitely primitive order 2 CGDM-system ®; with Jg, C J(f) such that

Jo, NU, = J(/)NU\ J fTHQU N F77 (W)
n>0 k>0

Proof. For the proof it suffices to show how to associate to f a CGDM-system. For this we
define Uy, 5y == f; (U;), for each (i, j) € (I, x I,) U (I, x I, \ {diag.}). Here {diag.} denotes
the diagonal in I, x I,,, and fj’l : U — Uj refers the inverse of the map f|y;. Using condition

(c) in the definition of a parabolically semihyperbolic GPL-map, it follows that
U(Z-,j) N U f”(Crlt(f)) = 0. (2.2)

neilN

Let Vy :=1,U (I, x I,) U (I, x I, \ {diag.}) be the set of vertices. The conformal univalent
contractions of our system are given as follows. By (2.2) and the definition of the set I,,
we have that for each v € V; the holomorphic inverse branches of any iterate of f are
well-defined on U,. Hence, for v € Vy and n € IN we consider all holomorphic inverse
branches f,™ : U, — U of f" for which f, ™(U,) C U, for some w € V, and for which
FEF™U,) N (Ugey Us) = 0 for all 1 < k < n. In this situation we write ¢, : Uey = Ui(e)
instead of f": U, — U,, where t(e) = v and i(e) = w. Also, we define N(e) := n. Now, let

(I)f = {¢e : Ut(e) — Ui(e)}eEE‘fa

where E; is some countable auxiliary set parametrizing the family ®;. Note that the set
V; of vertices is finite, whereas in general the set E; of edges is infinite. Let &£ refer to
the corresponding symbolic space. Since U, N U,en f™(Crit(f)) = 0, it follows that for each
v € V} there exists an open connected simply connected set U, C W, C U such that if e € E/
and t(e) = v, then ¢, has a univalent holomorphic extension to W, and ¢.(W,) C Uy (for
later use, we also introduce accordingly W and W, := U;c;, W;). Since for each ¢ € I, we
have that N,>o f~"(J(f) NU;) = {w;}, we immediately obtain from the construction of ®;
that

Jo, NU, =J(f)NU,\ U FQUNF*U)).
2 >



We remark that the cone condition is satisfied, since for each v € V the boundaries of the
disc U, is smooth. Also, the open set condition follows immediately from the construction
of @, noting that the elements of ®; are inverse branches of forward iterates of f. Finally,
since for each pair u,v € V there exist a,b € E such that i(b) € I, and such that i(a) = u,
t(b) = v and A, =1, it follows that the system ®; is finitely primitive of order 2. u

2.3. Topological pressure functions.

In this section we give a discussion of various definitions of the concept of a ‘pressure function’
associated with a dynamical system. We shall see that in the context of a parabolically
semihyperbolic GPL-map all these different notions of pressure coincide.

Let us begin with recalling the classical definition in ergodic theory of the notion pressure. We
refer to [2] for further details. Let T': X — X be a continuous automorphism of a compact
metric space (X, d). Also, let d, refer to the metric on X which is given, for z,y € X and
n > 0, by

dp(7,y) = max{d(T"(x), T"(y)) : 0 < i < n}.

Then a set F' C X is called (n, €)-separated, for n > 0 and € > 0, if it is separated with respect
to the metric d,, (that is d,(x,y) > € for all distinct z,y € X). With (F),(€))nen denoting a
sequence of maximal (in the sense of inclusion) (n, €)-separated sets, the topological pressure
P of a continuous potential function ¢ : X — IR is then defined by

1 n—1 )
P(T, ¢) := limlim sup — log ( Y exp) o Tj(x)> :
=0 pnsoco N -7
TEFy(€) j=0
Note that the concept of topological pressure has its origin in topological dynamics. Closely
related to it is the measure theoretical entropy h,(7), which is central in ergodic theory. It
is well-known that the link between these two important notions is given by the following so
called variational principle

P(T, ¢) = sup{h,(T) + / e

In here, the supremum is taken with respect to all T-invariant (ergodic) Borel probability
measures /. supported on X.

For more general situations in which the potentials are no longer continuous or bounded, this
classical definition of pressure fails. More precisely, for a GPL-map f such that J(f) has non-
trivial intersection with Crit(f), we are led to consider potentials of the form —tlog | f'|+ ¢, for
t > 0and ¢ : X — IR continuous. One easily verifies that potentials of this type are in general
neither continuous nor bounded. A priori it is not clear how to adapt the above definition of
pressure to this more general situation. However, in [11] Przytycki suggested, in the context
of rational maps, several ways to generalize the concept of topological pressure associated

with the potential —tlog|f'|. For a GPL-map f and for potentials of the type —tlog|f’| + ¢,
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we now start our discussion of how to amend the classical definition of topological pressure,
by giving the following generalization of one of Przytycki’s suggestions.
(P1) Point pressure.
For each z € J(f), t > 0 and ¢ : J(f) — IR a continuous potential, we let

: 1 n _
P.(t, ¢) = limsup—log >~ [(f")'(z)| " exp(Sad(x)).
n—oo T _
zef~m(2)
The point pressure Pp(t, ¢) is then defined by
Pp(t,¢) := inf P,(t,0).
Plt.6) = inf P.(t0)
For every connected set G C U, every n € IN, and every z € U we denote by C,(z, G) the
connected component of f~"(G) containing z.
Before stating further possible generalizations of the notion pressure, we first give a brief

discussion of the point pressure just defined. For this the following technical observations will
turn out to be useful.

Lemma 2.4. Let 0 > 0 be given. Then there exist constants By > 1 and o > 0, depending
on 0, such that for each € > 0 sufficiently small, and for every n € IN, z € J(f) and
f"(z) ¢ B(Q,0), the following holds.

_ Pmazx+!

If Q # O then diam(C’n(z,B(f"(z),e))) < Byn  pma .

If Q=0 then diam(C’n(z,B(f”(z),ﬁ))) < Bpe ",

Proof. The proof of the first part is an immediate adaptation of the proof of Lemma 4.3
in [18] if one observes that by property (c) in the definition of parabolically semi-hyperbolic
GPL maps in Section 2.1, the factor ¢ in formula (4.7) of [18] can be neglected. The second
part has been proven in [17]. [

The lemma has the following immediate consequence.

Lemma 2.5. Let 0 > 0 and ¢ : J(f) — IR be a Hélder continuous function with Hélder
exponent exceeding Pmaz/(Pmaz + 1). Then there exists a constant Cy > 0, depending on 0,
such that for each € > 0 sufficiently small, and for every n € IN, z € J(f), f™(z) ¢ B(Q,0)
and for all z,y € Cy(z, B(f"(2),€)), we have

|Snd(x) — Snop(y)| < Co.

For a given continuous potential function ¢ : J(f) — IR, let ¢ and ¢ be defined by
_ 1 R
¢ := inf {ﬁ sup anﬁ} and ¢ := max{/ pdp : po f1 = p}

nelN
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Clearly, for every n € IN and every f-invariant Borel probability measure p, we have

1 1
[ b= [ Sudpu < —sup S,0.
n n
This implies [ ¢dpu < ¢, from which we deduce that
¢ <. (2.3)

In order to proceed, we require the following simple observation.

Lemma 2.6. For every ¢ > 0 there exists ¢ € IN such that sup{S,¢} < (¢ + €)n, for all
n>q.

Proof. By definition of ¢, for every € > 0 there exists m € IN such that % sup{Sno¢} < 5—1—%
Now, if n > m such that n = sm +r, for 0 <r <m —1 and s € IN, then it follows

— €
sup{Su} < sup{S,0}+5up{ S} < (m=1)|[6luc 5 sup{Sm} < (m—1)|¢lloosm (3+ 5 )
This implies, for n sufficiently large,

1 -1 ~ _ 1 N
Esup{anﬁ}S%Jr%(qﬁjL%)g% %

By the previous lemma, we can now define the following critical exponents, for s € IR and
¢ : J(f) — IR a continuous potential,

§(p,s,2) :=inf{t > 0:P,(t,¢) < s}, 6(¢,2) :=6(h,0,2) and §(¢) := (0, 2).

For the rest of this paper we shall assume from now on, if not stated otherwise, that in case
Q # () the potential ¢ : J(f) — IR is a Holder continuous function with Holder exponent «
which exceeds praz/(Pmaz + 1). The following lemma is given for reasons of completeness. It
gives a generalization of a result of Przytycki (c¢f. Lemma 3.3 in [11]), but nevertheless it is
not essential for the purposes of this paper.

inf ¢
z€J(f)

Lemma 2.7. There exists a set E C J(f) of Hausdorff dimension equal to zero such that,
forall ze€ J(f)\ E and t > 0,

P.(t,¢) =Pp(t,¢) and (¢, 2) =d(¢).
Proof. For n € IN, we define
P(z,t,p,n) = Y |(f")(2)] "exp(Snd ().
zef~"(2)

The proof is an immediate adaptation of the first part of the proof of Theorem 3.3 in [11].

The reader is referred to this proof in [11], where one should insert the following changes.
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Everywhere in this proof replace Crit(f) by Crit(f)UQ. Also, in the notation of [11], choose
the parameter 0 of Lemma 2.4 such that § = min{diam(B;) : j = 1,2,...,k}. It then
follows that dist(€2, By U By U...U By) > 0, and hence, by Koebe’s Distortion Theorem and
Lemma 2.5, we have

P(227 ta ¢7 n)

P(Zla ta ¢7 n)
for some suitable constant A > 1. With these modifications one can now follow word by word
the proof of Theorem 3.3 in [11]. u

< Aak

For the following lemma, recall that for ¢ > 0 and s € IR, a Borel probability measure
my,4 supported on J(f) is by definition a (e, ¢, ¢)-conformal Gibbs state if and only if f is
non-singular with respect to m, 4 and

d(myg o f)
dmt7¢

= ¢'| f'|' exp(—9).

Note that in Section 3 we will discuss this type of measure in greater detail.

Lemma 2.8. Let m be a (€°,t, p)-conformal Gibbs state m. Then there exists a non-empty
Borel set S C J(f) of positive m-measure such that P,(t,¢) < s and 6(¢,s,z) < t, for all
z€S.

Proof. If t > 0 then we have (f*)'(¢) = 0, for all ¢ € Crit(f) and k£ > 1. This implies that
m (UkelN fk(Crit(f))) = 0. Now, allowing also the case when ¢t = 0, we shall prove first by
way of conradiction that, for every ¢ € Crit(f) N J(f),

U £ ¢ U Ficrin(). 2.4

jz1

Hence, suppose that for some ¢ € Crit(f) N J(f),

U £ c U F(crit(f).

n=1 j>1
Fix a sequence {c,}%, such that f(c¢,+1) = ¢, for all n > 0. Then for every n > 0 there
exists w, € Crit(f) and 5, > 1 such that ¢, = f/"(w,). Hence, ¢ = f"(c,) = [ (w,).
Since lim,, o (n + j,) = 400 and since the set Crit(f) is finite, there exists a point a €
Crit(f) and two integers 0 < k < [ such that f*(a) = ¢ and f!(a) = c. It follows that
fFke) = fUk(f*(a)) = fYa) = ¢, which is a contradiction since no critical point in the
Julia set can be periodic. Now suppose that m (Ukeﬂv fk(Crit(f))) > 0. Then m(f*(c)) > 0
for some ¢ € Crit(f) N J(f) and some k£ > 1, and conformality of the measure m implies
that m(y) > 0 for all y € 72, f"(c¢). Thus, applying (2.4), we conclude that in any case

m(G) > 0, for G := J(f) \ U;s; f7(Crit(f)). Now, by a straighforward geometric measure
10



theory argument, we can construct for every integer n > 1, finitely many mutually dis-
joint open topological disks V™, V™, ... , V™ such that vimuv™ . uviM 5 J(f) and
m (61/1(") uava™ ... u VN Upenw fk(Crit(f))) =0. Let f;": V™ — @ refer to the holo-

morphic inverse branches of " defined on Vi(n), fori=1,2,... ,gpand j =1,2,... deg"(f).
We then have

an_deg”(f) qn deg”(
1>2; Z: ( |% z; Z: /(n) exp(S ¢o s)dm

q

=e " Z /V_(n) P(Za t7 ¢7 n)dm =e ™ /G P(Z, t, ¢, n)dm

Therefore [, P(z,t,$,n)dm < e*", and for arbitrary € > 0, we have that
m({z € G:P(z,t,¢,n) > e”m}) <e

Applying the Borel-Cantelli Lemma, it now follows that for m-a.e. 2 € G we have P, (¢, ¢) <
s + €. Since € was arbitrary, this implies that for m-a.e. z € G we have P,(t,¢) < s as well
as 0(¢p,s,2) <t [ |

The following gives a list of other possible generalizations of suggestions of Przytycki in [11]
of how to ammend the notion of topological pressure in situations in which Crit(f) plays a
crucial role.

(P2) Variational pressure.

Py(t,6) i= sup{hu(f) + [ (~tlog|f'| + @)du},

where the supremum is taken with respect to all ergodic f-invariant measures sup-
ported on J(f).

(P3) Hyperbolic variational pressure.

P (t,¢) = sup{h, () + [ (~tlog|f'| + d)du},

where the supremum is taken with respect to all ergodic f-invariant measures sup-
ported on J(f) such that the Lyapunov exponent is positive, i.e. such that [log |f'|du >
0.

(P4) Hyperbolic pressure.

Pu(t,0) := sup{P(f|x, ~t [ log|f'| + )},

where the supremum is taken with respect to all f-invariant hyperbolic subsets X of
J(f) such that some iterate of f|y is topologically conjugate to a subshift of finite
type. (Recall that a forward invariant compact set X C J(f) is called hyperbolic if

there exists n € IN such that |(f")(x)| > 1, for each z € X).
11



(P5) DU-pressure.

Pou(t, 6) = sup{P(flxqv, —t [log |+ 6)},

where the supremum is taken with respect to all open subsets V' of J(f) for which
J(f) N Crit(f) C V, and where we have set K(V) := J(f) \ Up>o f (V). (Note that
K (V') is compact, f-invariant and disjoint from Crit(f)). -

(P6) Conformal pressure.

PC (tv ¢) = IOg A(tv ¢)7

where A(t, ¢) is defined as the infimum of the set of all positive A for which there exists
a Borel probability measure m such that d(m o f)/dm = \|f'|'e=?.

The following theorem gives the main result of this section. We show that for a parabolically
semihyperbolic GPL-map f all notions of pressure introduced in (P1) up to (P6) coincide.
For the remainder of this paper we shall then refer to the common value established in this
theorem as to the topological pressure P(¢, ¢) of the potential —tlog |f’| + ¢.

Theorem 2.9. Let f be a parabolically semihyperbolic GPL-map, and ¢ : X — IR o Hélder
continuous potential with Hélder exponent o exceeding pmaz/(Pmaz + 1). We then have, for
every t € [0,0(¢p)),

PP (tv ¢) = PV(tv ¢) = PHV(ta d)) = PH(tv ¢) = PDU(ta d)) = PC (tv ¢)

Proof. Without loss of generality, we can assume that §(¢) > 0. Clearly, we have that
Pp(t,¢) > Pu(t,¢). Also, we have Py(t,¢) > Puv(t,¢) (c.f. [13]), as well as Pyuy(t,¢) >
Pu(t,¢). The latter inequality is an immediate consequence of the variational principle.
Summarizing, we now have

PP(ta d)) 2 PH(tv ¢) = PHV(ta d)) (25)
Next we show that Ppy(t, ¢) > ¢ implies
PHV(ta d)) Z PDU (tv ¢) (26)

For this let € > 0 be chosen sufficiently small such that Ppy(t, ¢) — € > ¢. The variational
principle gives the existence of a f-invariant Borel probability measure y supported on some
set K (V) such that h,(f) —tx,+ [ ¢du > Ppy(t, ¢) —e > ¢ (where x, refers to the Lyapunov
exponent). Hence, we are left to show that y, > 0. In order to see this, we use (2.3) which
gives

b(f) =t > @~ [ 6dp> 6~ [ gdp>o0.

Hence, we have h,(f) > tx, > 0, and therefore we can apply Ruelle’s inequality (that is

h,(f) < 2max{0, x,}) to deduce x, > 0.
12



Next we show that Py (t,¢) > ¢ implies

PHV(ta d)) = PV(ta d)) (27)

Clearly, we have Pyv(t,¢) < Py(t, ¢). Similar as above, let € > 0 be chosen sufficiently small
such that Py (t ¢) —e > . It follows that there exists a f-invariant Borel probability measure
p such that h,(f) — tx, + [ ¢dp > Py (t,¢) — e > ¢. Hence, we are left to show that x,, > 0,
which follows in exactly the same way as in the previous step.

Next we show that for 0 < ¢ < 6(¢) we have
Ppu(t,¢) > ¢ and Ppu(t,¢) > log A(t, @). (2.8)

For this we remark that, by a result in [12], for each ¢ € Crit(f) there exists z. € w(c) such
that

lim sup |(f™)'(z.)| > 0. (2.9)
n—o0
For every n € IN, we define

V, = U B(xe, 1/n).
ceJ(f)NCrit(f)

We shall now prove formula (2.8) in two step. First, we show that Ppy(t,¢) > ¢ implies
Ppy(t, ¢) > log A(t, ¢), and secondly, using the construction of the first step, we show how to
deduce Ppy(t, ¢) > ¢. This will then complete the proof of the theorem.

Step 1. Assume that Ppy(t, @) > ¢, and let k € IN be fixed. Let E be defined as in the proof
of Lemma 5.1 in [3], and consider the sets B, := f|x{y,). We then let

cp(t) == limsupllog S (@) " exp(anﬁ(x)).
n—oo T €,

Since the map f|xq,) : K(Vi) — K (Vi) has no critical points, it follows that K(V}) is an
(n, p)-separated set, for

p:= inf {min{|z —zx|:x,z € (f|K(Vk))_1 (y) and x # z}} > 0.

yeK (Vi)

Hence, we have that

c(t) <P (f|K(Vk)a —tlog|f'| + ¢)) : (2.10)
We remark the set E can be chosen such that (c.f. the proof of Lemma 5.1 in [3])

1
cr(t) > P (f|K(Vk)a —tlog|f'| + ¢) 5
Next, recall from [3] that a Borel set A C €'is called special if f|4 is injective. The following
lemma has been obtained in [3] (c.f. Lemma 3.1, Lemma 3.2 and the proof of Lemma 5.3; c.f.

also [4]).

(2.11)
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Lemma 2.10. For everyt > 0, there exists a Borel probability measure my, suported on K (V})
such that

(a) mi(f(A) > [, e*D|f''e=dmy, for every special set A C J(f) and
(b) me(f(A)) = [, e*O|f'|te=?dmy, for every special set A C J(f)\ Vi.

Now first observe that by combining (2.10) and (2.11), we have that
lim ¢, (t) = Ppy(t, ¢). (2.12)
k—o0

Hence, with m referring to some weak limit of the sequence of measures m; of the previous
lemma, we have

m(f(4) = [ Pt fltebdm
for each special set A C J(f), and also

m(f(4) = [ Pt pltebdm (2.13)
for every special set A C J(f) \ {z.:ce€ J(f)NCrit(f)}.

Now note that our assumption Ppy(t,¢) > ¢ implies that there exists kK > 0 and ¢ € IN
such that Ppy(t,¢) > K + %sup Sy(¢). Fix ¢ € J(f) N Crit(f). By (2.9) we have that
limsup,_, o |(f™)'(z.)| > 0. Now, if we would have that m(z.) > 0, then it would follow that

limsupm(f"(x.)) > limsupm(f"(z.))

> m(x. lim sup exp (anDU(t, d))) |(f1) ()] exp(— sup(S’qnd)))

() lim sup exp (gnPou(t, 6) — nsup(S,0) ) )|(F7) ()

m
> m(x.) lim sup ™" |(f") (z.) = oo,
n—oo

which is contradiction. Hence, we have m(f?(z.)) = 0, for every j > 0, and therefore (2.13)
holds for every special set A C J(f). This clearly gives that Ppy(¢, ¢) > log A(t, ¢).

Step 2. We now assume that Ppy(t, ¢) < ¢. By [13] we have that Ppy(0,¢) > Pu(0,¢) =
P(¢), and consequently Ppy (0, ¢) = P(¢4). Since P(¢) > ¢, it follows that there exists u € IV
such that P (f|K(Vu), gb) > ¢. Let € > 0 be fixed such that P (f|K(vu), d)) > ¢ + . Then there
exist two sequences {t,}22, and {k,} 2, such that ¢, < ¢ for all n and lim,_,t, = s < t,
and )

G+ € <P (fliti,) —talog|f'| +6) < ¢+ e+ .

By replacing cx(t) by ¢, (t,), and noting that similarly as in Step 1 we have that lim,,_, ¢, (¢,)
¢ + €. Hence we can repeat the construction in Step 1, and in this way we obtain a Borel
probability measure m on J(f) for which

m(f(4)) > [ FH|pdm
14



for every special set A C J(f) and
m(f(4) = [ #H0|fedm (2.14)
A

for every special set A C J(f)\ {z.:c € J(f)NCrit(f)}. Since n(¢+€) — Sp¢ > 0, for some
n € IN, we obtain as in the previous step that (2.14) holds for every special set A C J(f).

This means that a (e$+€,t, ¢)-conformal measure exists. Therefore, if ¢ > 0 and «, is such
that lim a;, = «, then every accumulation point of a sequence of («,, t, ¢)-conformal measures

is necessarily a (a,t, ¢)-conformal measure. This implies that there must exist a (65, t, ¢)-
conformal measure on J(f). By lemma 2.8, it therefore follows that §(¢) < ¢, and as t < §(¢),
we get a contradiction, which finishes the proof of (2.8).

For the remainder, observe that if ¢ < §(f) then by lemma 2.8

Pp(t, ¢) < log A(t, ¢). (2.15)
Combining (2.5), (2.6), (2.8) and (2.15), we obtain that if ¢ < 6(f) then
PP(ta d)) Z PH(tv ¢) = PHV(ta d)) 2 PDU(ta d)) 2 log)\(t, ¢) Z PP(ta ¢) (216)

In here, the second inequality uses the fact that Ppy (¢, ¢) > ¢ (which follows, since by the first
part of (2.8), we have that t < §(¢) implies that Ppy(t,¢) > ¢). Clearly, all the inequality
signs in (2.16) are now in fact equality signs. Hence the proof follows from (2.16) and (2.8),
noting that if t < d(f) then Py (¢,¢) > Ppy(t, ¢) and Ppy(t, ¢) > ¢. |

3. INVARIANT (GIBBS STATES

In this section we give a detailed discussion of conformal measures m;, 4, which we introduced
in the previous section, and apply the results obtained to construct f-ivariant measures equiv-
alent to these conformal measures. Note that the analysis in this section extends the results
obtained in [15] (section 4).

Lemma 3.1. For a parabolically semihyperbolic GPL-map f we have, for each t € [0,5(9)),

My (U f(Crit(f)) U Q) =0.

n>1

Proof. Put PC(f) := Upemn f™(Crit(f)). Combining (b) and (c¢) in Definition 2.1 and the
fact that the sets U; have pairwise disjoint closures, we obtain that there exists § > 0 such

that if 2 € PC(f), then for every n > 0 there exists a well-defined holomorphic inverse branch
f7M(B(f"(2),16K6) — U, of f* sending f"(2) to 2. Choose a sequence {n;}22, such that

lim; o f™(2) = y for some y € PC(f). By passing to a subsequence, if necessary, we may
15




assume that | f™ (2) —y| < 4, for all j € IN. By Lemma 2.2, we have that PC(f) is a compact
nowhere dense subset of J(f), which gives

mig(B(f"(2),20) \PC(f)) = mu4(B(y,6) \ PC(f)) > 0

Using Koebe’s Distortion Theorem and the forward invariance of the set PC(f), it now follows
that

B(z, K25|(f")' ()] ™) \ PC(f) D £ (B(f™(2),20) \ PC(f)).

Applying Koebe’s Distortion Theorem once more, along with Lemma 2.5, we obtain

mg (£ (B(f"(2),20) \ PC(f)))

mug(f: " (B(f"(2),8K5))
, it oxp(Sn 6K e Ty (B (2),20) \ POTT)
T Coexp(S,6(2)) KU(F ) ()| e PO my o (B (2), 8K ) )
mg (B(f™ (2 > 26>\P ()

mw( 8K5 )

— 052K72t

oo (B <,>\Pc< )
2GR s (Bly, BE T 1)5))

By the ;-Koebe’s Distortion Theorem, we have f, (B(f”j (2), 8K6) D B(z, K20|(f™)'(2)|71).
Hence, we have
mug(B(z, K26|(f%)'(2)]~1) \ PC(f))
mg (B2, K20|(f)(2)]7))

y mis (f" (B(f™(2),28) \PC(/)))  mu (S (B(f™(2),8K0))

T mue(F (B (2),8K0))  mug(B(z, K20[(fr) (2)| )
-
)|

s o Mus(B(y,0) \ PC())  mus (B2 K201(f")'(2)| 1))

> Gy K- mys(B(y, (8K + 1)9)) mt,¢( (2, K25|(f™)(2) 1))
_ miy(Bly,5) \ PO
mio(B(y, (8K +1)0))

Therefore the Lebesgue’s Density Theorem gives that m, 4,(PC(f)) = 0. Finally, let w € Q
be arbitrary. We then have that my4(w) = my(f"(w)) = exp(nP(t, ¢) — Spp(w)), for each
n € IN, and since limsup,_, . (nP(t, ¢) — Sp¢(w)) = oo, it follows that my 4(w) = 0. [

> 0.

For the next lemma we remark that by a standard normal family argument we have that

there exist u € IN and k* > 1 such that |(f*)'(2)| > &* for all z € w(Crit(J(f))). Therefore,
16



there exist k > 1 such that, for all j > 0, n € IV and every ¢ € Crit(f),

() ()] > w. (3.1)

Lemma 3.2. For each § > 0 sufficiently small, and for all s € IN and ¢ € Crit(f)), we have,
where q(c) > 2 refers to the order of the critical point c,

e (B (e (G107 (F() 7)) < (72 ((e)) 0600 exp(8,6(0).
Therefore, we in particular have that my4(c) = 0.

Proof. Let {my}2, and {ck(t)}32, respectively be the sequence of measures and numbers
obtained in Lemma 2.10. Fix 0 € (0, dist(i4,,0U)/2) and ¢ € Crit(f)). Also, define \,(c) :=
|(f™)(f(e))|, for each n € IN, as well as the annulus A(w,r,R) :=={2 € C:r < |z —w| < R}
with centre at w € €, inner radius r and outer radius R. By Koebe’s distortion theorem and
by Lemma 2.5, it follows that, for all [,n € IN,

mu(B(f(c), 0An(c) 1) = An(e) e " exp (S, ¢(f(0)))-

Using this observation and the fact that |(f,1)'(2)| < |z — f(e)|" (=14 for z # f(c) such
that 2 is close to f(c) (here, f, ! refers to an inverse branch of f which maps 2z close to ¢ and
which is defined in some neighbourhood of z), it follows, for each s € IV,

ma(B(e, (0X(c)"1) /4@ Zmz (A1) ()7L (6Ay5(c) 1) 1))

< i m (f;l(A(f(C), (@ 5h (0 7)))
_ Z A ()7 e a0, (A(F(e), 6As41)(0) 1, 0Agi(0) )
< et i Ay ()T Oy (B((c), 6Ag5(0) ™))

;ilxsj &) Um0 () e exp (S, (¢)) ) eV

f;lAsJ e 0% exp (S,;6(c))

= ()10 exp(S,6(c))
. (1 +§ (AA_((D _t/qéip(s(jl)@(f%c)) ~alt)s(j - 1>)) -

Now, we have that

()\sj(c)> = |(fUDY(f5(e))]

17



and by (3.1), these numbers are uniformly bounded away from zero. Therefore, we have
(Asj(c)/As(e)) 79 < 1, for all 5,57 € IN. Since lim;_,q¢;(t) = P(t, ¢), it follows that ¢;(t) >
¢ + ¢, for some € > 0 and for all [ € IV large enough. Consequently, using lemma 2.6, we
deduce, for all [ € IN sufficiently large,

my(B(c, (5Aak(0) ™) 1)) < Ay(e) 71 e P00 exp (8,6(c) ),
and hence,
Mg (B(e, (OAsk(e)™)79)) < Xy(0) 71?0 exp (S,6(c)).

Lemma 3.3. Fort €[0,0(¢)), the measure my, has no atoms.

Proof. Suppose that my4(z) > 0, for some z € J(f). Using Lemma 3.1 and Lemma 3.2,
it then follows that z ¢ U,~o f "(Q2 U Crit(f)). We shall prove that there exists 6 > 0
and a sequence {n;}32, depending on z such that there are well-defined holomorphic inverse
branches f: " : B(f"%(2),46) — U of f™ which map f™(z) to z. Clearly, such branches
exist if f"(z) € U, UU,, for infinitely many n. For the remaining cases note that there
then exists ¢ > 0 such that f"(z) € U,, for all n > q. Therefore, there exists ¢ > 0 such
that the holomorphic inverse branches f, "9 : B(f"(2),26) = U of "9, which map f"(z)
to f4(z), are well defined, for all n > ¢. Since z ¢ U, Crit(f7), there exists v > 0 such
that the holomorphic inverse branch f,9: B(f9(z),v) — U of f? which maps f9(z) to z, is
well defined. Since lim,, diam(fq_("_q)(B(f”(z), 25)) =0 (as z € J(f)), the compositions
%0 fq_(”_q) : B(f"(2),2) — U are well defined, for all n > ¢. This shows that in any case
we have the claimed existence of inverse branches. Let us emphasize that we just saw that
lim;_, o diam(fz_nj(B(f”j (2), 25)) = 0. This immediately implies that lim;_,. [(f")'(2)] =
0. Since P(t,¢) > ¢, it follows that lim; ., m(f™ (z)) = oo, which is a contradiction and
hence finishes the proof. [ ]

For f-invariant Gibbs states we now observe the following.

Theorem 3.4. Let myy be an (exp(P(t, ¢),t, ¢)-conformal Gibbs state for a non-recurrent
GPL-map f such that my (UnZI f(Crit(f)) U Q) = 0. Then up to a multiplicative constant
there exists a unique f-invariant, o-finite measure p, 4 which is conservative and ergodic, and

which is equivalent to my 4. The measure p 4 will be referred to as the invariant Gibbs state
of the potential —tlog |f'| + ¢.

The idea of the proof of Theorem 3.4 is to apply a general method of [8], which gives a sufficient
condition from which the existence of o-finite absolutely continuous invariant measure can be

deduced. We now recall this result, and we shall also give a brief outline of how this result is
18



obtained.

Let X be a o-compact metric space, m a Borel probability measure on X which is positive
on open sets, and let 7" : X — X be a measurable map such that m is quasi-invariant with
respect to T (that is, the measure m o T~ ! is absolutely continuous with respect to m).
Moreover, let A = {A, : n > 0} be a countable partition consisting of o-compact subsets of
X of positive m-measure, such that m(X \ U,> 4,) = 0. Recall that in this situation A is
called irreducible, if we have that for all m,n € IN there exists £ > 0 such that

m(T*(A,,) NA,) > 0. (3.2)
The following gives the result of Martens (c.f. Proposition 2.6 and Theorem 2.9 of [8]).

Theorem 3.5. Let X,T,m be as above. Suppose that T is conservative and ergodic with
respect to m, and let A = {A, : n > 0} be an irreducible partition. If we have that for every
n € IN there exists K, > 1 such that, for all k > 0 and all Borel sets A C A,,

—k
m) @A) o mld)
m(An) = m(T~*(An)) m(An)
then there exists a o-finite T-ivariant measure p which is equivalent to m. Moreover, u is
conservative and ergodic, as well as unique up to a multiplicative constant.

Kt (3.3)

Since in our application of this result we will not only require the statement of Theorem 3.5
but also the method with which the invariant measure in there is derived, we now give the
sketch of the proof of this result of Martens.

Proof of Theorem 3.5 (sketch). Following Martens, one considers the following sequences
of measures

Sm'—ki:lmoT_i and @ m'—Skim
k = 2 k = Skm(AO)

It is shown in [8] that each weak limit p of the sequence Qy(m) fulfills the preliminaries of
Theorem 3.5 (where a sequence {v; : k € IN} of measures on X is said to converge weakly if
the measures v, converge weakly on A, for all n € IN). Moreover, it is shown in [8] that the
sequence QQpm converges and that we have, for every Borel set F' C X,

p(F) = lim Qgm(F).

Clearly, we have that p(A) < 1 < co. Using (3.2) and (3.3), one then obtains the following
two lemmata (c.f. Lemma 2.4 in [8]).

Lemma 3.6. For each n > 0 we have that 0 < u(A,) < oo and that the Radon-Nikodym

derivative 3—7’7‘1 is bounded on A,,.
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Lemma 3.7. For all i,7 > 0 there exists a constant k > 0 such that, for all n € IN and for
all Borel sets D C A; and E C Aj,

Spm(D) < Km(D)
Sam(E) —  m(E)

We now return to the situation of a generalized polynomial-like map f. For the proof of the
ergodicity and conservativity of the measure m, , we refer to [17] (Theorem 4.1). Therefore,
in order to be able to apply Theorem 3.5, we only need to construct an irreducible partition
A which has the property (3.3). For this, let Y := J(f) \ (Upew f*(Crit(f)) U ©2), and
consider, for each y € Y, a ball B(y,r(y)) such that m(0B(y,r(y))) = 0 and 0 < r(y) <
(1/2)dist(y, Upew f™(Crit(f)) U 2). Clearly, by associating to each y € Y a fixed ball of this
type, this gives a cover of Y. Since Y is a separable metric space, one can reduce this cover
to a countable, locally finite cover of Y, denoted by {A, : n > 0} (here, locally finite means
that each point x € Y has an open neighborhood intersecting at most finitely many elements
of the cover). The partition A = {A, : n > 0} is then defined by induction as follows.

n-1___
Ag:= Ay and forn € IN, let A, := A, \ U Ay
k=0

Clearly, by construction we have that the elements of A are pairwise disjoint, and

U A2 IO\ (U Gt u)\ U 4.

nelN nelN n>0

Using the assumption of Theorem 3.4, it follows that m 4 (UnZO An) = 1. Now, the fact that

(3.3) holds in the situation here is an immediate consequence of combining Koebe’s Distortion
Theorem and the observation that by Lemma 2.5 we have exp(S,¢(y))/ exp(Sn¢(z)) < 1, for
all n € IV and all z,y € f,"(Ag) (here Ay refers to some arbitrary element of the partition
A, and f_™ to some arbitrary holomorphic inverse branch of f" defined on Ay). Finally, the
fact that A is irreducible follows, since the A, are open sets and the map f : J(f) — J(f)
is topologically exact. [ |

The aim now is to provide a sufficient condition which guarantees that the o-finite measure
tit,g is in fact a finite measure.

For the following recall that the T-invariant measure 1, (see Theorem 3.4) is called of finite
condensation at x € J(f) if and only if there exists an open neighborhood V' of x such that
pp(V) < 0o. Otherwise i 4 is said to be of infinite condensation at .

We shall now see that the points of infinite condensation of ji; 4 are necessarily parabolic fixed
points.

Theorem 3.8. Let f be a parabolically semi-hyperbolic GPL- map. Fort € [0,0(¢)), we have

that Q(f) contains the set of points of infinite condensation of ju 4.
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Proof. Put m := m, 4. Since the conformal measure m is positive on non-empty open sets,
it follows that inf{m(B(x,r)) : x € J(f)} > 0, for every r > 0. Even more, there exists
6o(r) € (0,7) such that

M(r) = inf{m(B(x,r) \ B(z,0¢(r)) : x € J(f)} > 0. (3.4)
Recall from the beginning of the proof of Lemma 3.1 that there exists
5 € (0, dist(Q(f), J fr(Crit(f)))

n>0

such that for every ¢ € Crit(J(f)), k € IN and n > 0 we have that the holomorphic inverse
branch ff’nk(c) : B(f"*k(¢),48) — @ which maps f"*(c) to f™(c) is well-defined. It follows
from (3.1) that we have, for all u sufficiently large, ¢ € Crit(J(f)), k¥ > 0and 0 <i <wu—1,

Frten(BUFEHDY(c),20)) € B(f**(c), 60(9)). (3:5)
We define, for ¢ € Crit(J(f)),0<j<wu—1andi>0,
Rij(0) = f (BUFH(),0)) \ Fr " (B(f0D(c), 6))
= [0 (BUFH(0), ) \ f7tsui (B(FEHUHD (), ).

By (3.1) and Koebe’s distortion theorem, we have that |S;,¢(z) — Sju¢(y)| < 1, for all
z,y € R;;(c). Thus, applying (3.4), (3.5) and once more Koebe’s distortion theorem, we
conclude

(3.6)

m(R; ( ) =
PUATL|(FIY (f4(e))]| " exp (Sjud(f1(e)))
m(B(f”“(c), 20)\ f ks (BUFHTH(c), 26))
< P (FIy(f5(e))| " exp (Sjud ().

Now let x € U,>o fM(Crit(J(f))) be fixed. Clearly, since f is parabolically semi-hyperbolic,
the latter set is disjoint from Q U Crit(f). Since Crit(J(f)) Nw(Crit(J(f))) = 0, we deduce
from [16] (Lemma 2.13) that there exists 0 < v < 0/2 such that if n € IN and y € f"(z),
then there exists at most one 0 < k < n — 1 such that f*(C,(y, B(x,4v))) N Crit(f) # 0
consists of at exactly one point, which will be denoted by ¢. Without loss of generality we
may assume that the element A, of the partition A is contained in B(z, ). If we now assume
that C,(y, B(x,27)) N Crit(f™) = 0, then Koebe’s distortion theorem and Lemma 2.5 gives
that

(3.7)

m(Caly, Br,7))  _ mu(B(,))

me(Co(y, B(z,7)) N f(Ao)) m(Ap)
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On the other hand, if C,(y, B(x,27v)) N Crit(f™) # (), then there exists 0 < k < n — 1 such
that ¢ € f*(C,(y, B(x,2v))) and

(F5(Culy, B(x,47)) \ F*(Culy, B(x,27)))) N Crit(f"7*) = 0. (3.9)
We have that
(FY (2)] =< [z = |7, (3.10)

for all 0 <4 < wu—1 and all z € C;(c, B(f'(c),2d)) (note that ¢(c) is the order of ¢ also for
the function f*). Let us write n —k = su+r, for s > 0 and 0 < r < u—1. Using (3.7), (3.10)
and the fact

FH(Culy, B(2,7))) C Crysule, B(f 7 (c),0)),

it follows that
m(f*(Culy, B(z,7))))
< TP e 0 exp (S, 500) (1 @) 1) T

j>s

t (3.11)
=< 3 e PO (£ (£7(0)| T exp (S5 (c)-

j>s

Since Ay C B(z,7v) C B(f"*"(c), ), using Koebe’s distortion theorem and Lemma 2.5, we
obtain

m (74 (Culy, Bla, 1)) N " 9(A0)) =

Sl e x5, () ) (@) ) TN

| (3.12)
= & POy (£7()| 7T exp(Sysud(c).

Therefore, using (3.11), (3.12), (3.1) and Lemma 2.6, we conclude, with S(¢) referring to some
finite number which only depends on ¢,

m(f*(Culy, B(x,7))))
m(f*(Culy, B(x,7))) N f~P(A))

(3.13)

€ 3 e AT (Y (1) 7T exp (S (e)) < S(0)

7>0
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By (3.9) we have that Mod ( f*(Cy(y, B(x,47))) \ f*(Cu(y, B(,27)))) > (log2)/q(c). Hence,
applying Koebe’s distortion theorem and (3.13), we obtain
m(Cu(y, B(z,7)))
m(Ca(y, B(x,7))) N f~(Ao))

(Y ()| e PO exp(Spdly)) m(f*(Culy, B(z,7)))
(R ()|t PEOk exp(Sia(y)) - m(FH(Culy, Blx,7))) N f=R (4)))
< S(c).

Therefore, we have
m(f™(B(z,7))
m(f"(Ao)

which implies Q,(B(z,7)) < max{S(c) : ¢ € Crit(J(f))}, for all n € IN. It now follows that
fi6(B(z, 7)) < 00. m

) < max{S(c) : c € Crit(J(f))},

The main result in this section is the following.

Theorem 3.9. Let [ be a parabolically semi-hyperbolic GPL-map. If t € [0,0(¢)), then the
invariant Gibbs state i, ts finite. Furthermore, by normalizing pu.e such that it becomes a
probability measure, we obtain an equilibrium state for the potential —tlog |f'|+¢, in the sense
that it mazimizes the supremum appearing in the definition (P2) of variational pressure.

Proof. Since t € [0,6(¢)), we have that Theorem 3.8 is applicable. Hence, the invariant
measure /i 4 exists and it is finite on compact subsets of J(f)\€2. Let w € Q be fixed. Without
loss of generality we may assume that the element A, of the partition A is a fundamental
domain of some repelling sector with respect to the relation ‘~’ (where we let x ~ y, for x
and y in this sector such that = and y are sufficiently close to w, if and only if f " (y) = x or
fo"(x) =y). Fix z € Ay and put zy, := f,*(z), for k > 0. Also let B; := f_7(Ay), for j > 0.
We then have

p(w)+1t

muo(By) = e P exp(80(x,)) (G +1) 5o . (3.14)

Since w € Q\ Upew f™(Crit(f) N J(f)), Lemma 3.8 implies that for every y € f~1(w) \ {w}
there exists an open neighborhood U, of y such that s, 4(U,) < oo and U, C Aj, for some
j > 0. Take B to be a ball in J(f) (either closed or open) centered at w and with radius so
small that f,'(B) C U, for all y € f~'(w)\ {w}, where f, "' : B — ('is the local holomorphic
inverse branch of f sending w to y. Without loss of generality we may assume that Ay C B.
Now, fixy € f}(w)\{w} and z; € f(y), for j > 0. Let 2U, be the ball centered at y of radius
twice the radius of U,. Using (c¢) in Definition 2.1, it follows that 2U, NU,>; f™(Crit(f)) = 0,

for U, sufficiently small. Letting m := m, 4, by Lemma 2.5 and Koebe’s Distortion Theorem,
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we then have, for every Borel set A C U,,

m(f57(A)) = e CM|(f), (z)| ™ exp(S6(z) )m(A).

Hence it follows, for £ > 0,

m(F7 (57 (BY)) = e (f), (2,

Summing over all z; € f77(y), we get

m(f7(f;7 (Br))) = m(f 7 (By))m(B).

Hence, for i € IN fixed, we can sum up over all 0 < 7 < — 1, which gives for the measure S;,
introduced in the proof of Theorem 3.5,

Sim(f, (Br)) < Sim(By)m(By,). (3.15)
Since we have, for arbitrary j > 0 and n € IV,

Sam(B) =m(f;00(B)) + % 55, wam (17 (FF(By))),
yef~ (w)\{w} k=0

we can apply (3.15), Lemma 3.7 and (3.14), which then gives, that for all j > 0 and n € IN,
Spm(By)
n B;) = . !
Q m( J) Snm(Ao)
m (57 (By)
Snm(AO)

> ZS kr1m(Uy)m(Bjy)

yef M (w)\{w} k=0

! S Sn—(e+1m(Uy)  Sn—r+1m(Ao)
et : m(B,;
: (3.16)
Ko a3+ Z Z k)
Sum(Ao) e A0\ ) k=0 bi
! (S . . ~ plw)+1
< Gy 4680 2 e (a0 i) = P0G+ R) G+ k+ 1)
1 .
< Gom(ag) T eV Z exp (Sj10(w540) = P(1,6) (7 + F))-

Now let € > 0 be fixed such that that P(¢,¢) > ¢ + 2¢. By Lemma 2.6, there exists ¢ € IV

such that sup{S,¢} < (¢ + €)q < qP(t, ) — ge. For ease of exposition we assume that ¢ = 1.
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We can then continue the estimate in (3.16) as follows.

n—2 ) 1 )
tdeg(f) Y e Ut « —— 79,

@nm(B;) < S, m(Ag)

1
Snm(AO)

By letting n tend to infinity, we obtain that py 4(B;) < e . If we sum this up over all j > 0,
then it follows that fu 4 (U]>0 ) < X7 e % < oo. Finally, summing up over all repelling

sectors of w (note, there are only finitely many such sectors), we derive ju, 4(V,,) < 0o, for every
sufficiently small neighbourhood V,, of w. Therefore, w has to be a point of finite condensation
of 4, and using Theorem 3.8, it follows that the f-invariant measure p 4 is finite.

It remains to show that p, 4 is an equilibrium state for the potential —tlog|f’| + ¢. Without
loss of generality we may assume that 4 is a probability measure. Let p := pu;4 and
p :=dpu/dm, and let J be the Jacobian given by

duof pof '
J = i = ; exp(tlog|f|—¢+P(t,¢)).

Since u(f(A)) > p(A) for any Borel set A C J(f), we always have that J > 1. Also, since
J pdm =1 and p is non-negative, we see that [ pdy > 0. Hence, in view of Birkhoff’s Ergodic
Theorem and Theorem 3.4, there exists z € J(f) such that (note that logJ > 0, and that
log|f’| is bounded from above)

1
p(f"(2)) > 5 /pdm > 0 for infinitely many n > 0, (3.17)

lim — Zlog (2))) = /longu, (3.18)

n— 00 n

n—1

lim L5 (10817~ 6) 0 () = [(t10817 ~ o). (3.19)

j=0

Since [log|f'|dp > 0 (c.f. [12]) and since [logJdp = h,(f) < hyp(f) < oo, we have
that log J and log |f’| are integrable. By (3.17) we have that limsup,_, = log p(f™(z)) > 0
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Combining this with (3.18) and (3.19), we get

h(f) + [(~tlog|f| + ) = [log Jd+ [(~tlog|f'| + @)

— lim Y log((F () + [ (~tlog 7' + 8)du

= lim (32 (log (%) +tlog|f| - ¢+ Pt ¢>> (fj(z'))) + [ (~t10g17 + 6)dp

n—o0
n i

Jj=0

=P(t,¢) + lim (%(logp o f*(2) —logp(2)) + %ni: (tlog|f'| - ¢+ P(t, qﬁ))(fj(Z)))

+ [(~t10g | + 6)d

n n—1
> (t,9) + limsup L2 4t 25 (110g |7 - 0) (7() + [ (~logl -+ )
> P(t,0)+ 0+ [(tlog|f'| — d)du+ [ (~tlog|f'| + 6)dn
= P(t,9).

4. REAL ANALYTICITY OF THE TOPOLOGICAL PRESSURE

In this section we consider analytic properties of the pressure P(t, ¢) seen as a function in ¢,
and of the pressure P(t,q¢) seen as a function in ¢ (for certain fixed t). We remark that our
analysis here is based on and generalizes the work in [15].

As always, let f be a parabolically semi-hyperbolic GPL-map. In order to introduce some
auxiliary ‘critical parameters’, recall that for ¢ € Crit(.J(f)), the order ¢(c) of ¢ is determined
by the local behaviour of f around c¢. That is, for z sufficiently close to ¢ we have for the
Taylor expansion of f that

f(2) = fle) +bo(z — )79 + ... (LBC)

Then the critical parameters xo, x(c), x, and x are defined as follows.
1
Xo := inf{limsup —log |(f")'(2)| : z € QUw(Crit(f))},
n—oo T

X(e) = limin - log inf {I(£4) (" ()]}
Xq := min {? iC € Crit(f)} and x := min{x,, xo}-

(c)
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We begin with showing that for ¢ in a certain range, the measure m; , vanishes on the limsup-
set of the inverse images of the regular part. For this it is sufficient to have the following.

Lemma 4.1. Ift € [0,6(¢)), then there exists 0 < p < 1 such that for all n € IN we have

Mt (ﬂ f_j(ur)> <L p".
§=0
Proof. Put m = m; 4. Fix ¢ € IN, and consider the set

UD =U N fHU)N.o0fUU,).

Since the map f : U; — U is univalent for each j € I,, it follows by induction that there exist
finitely many, say k,, holomorphic inverse branches of f7, denoted by fi?: U — U,, ... ,fk_qq :
U — U,, such that

kq
U = J £1U,). (4.1)
7=1
Hence, for any arbitrary set A C U, it follows that
kq
UD N () = £ (A), (4:2)
j=1

and by conformality of m we have for each j € {1,2,...,k,} that
m(f;"(A)) < m(A)e "0 SlEIIA}H(ffq)'(Z)l}t sup{exp S,0(2) : z € f;(4)}

< m(A)e T sup{|(f; 1) (2)[} sup{exp Sy(2) s 2 € f; 'U)}, (4.3

ZGZ/IT

as well as

X
5
S
vV

m(U)e " nf {177 ()]} inf{exp S,6(2) - = € F;U)}-

(4.4)
Now, applying Koebe’s distortion theorem on U,., we see that there exists a constant K > 1

such that
sup{[(f; *)'(2)[} < K inf {|(f; ) (2)]}-

2€U, 2EU,
Also, Lemma 2.5 implies that

sup{exp Sy(2) : z € f;(Uy)} < Cyinflexp Syo(2) : z € f;7*(U,)}.
Therefore, (4.3) and (4.4) imply that
K'Cy

m(U,)
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Combining this estimate with (4.1) and (4.2), it follows that

K'C
() —q 0
mUY N fI(A)) < )

Let U = Ny [T (U) = nqewu , and observe that f~'(U(>)) D U(*®). By ergodicity of
f1:, we hence have that pu,(U>) € {0,1}. Now, since py4(U,) > 0, and since U, C U \ U,,
we have 1 4(U;) < 1, which then implies that p, 4(U>°) = 0. Since {Z/{ )} is a descending

sequence of sets, we conclude that lim, . f1r.6(U?) = 0, and hence that lim, ., m(U?) = 0.
Therefore, we can choose ¢ € IN sufficiently large such that K!Cym(U9)/m(U,) < 1/2.
Inserting this observation into (4.5), we obtain that for any arbitrary A C U, we have that

1
mUD 0 fTI(A)) < 5 m(A). (4.6)
In order to finish the proof, we use (4.6) and observe that for every k£ € IN we have that

qk ) q(k—1)
§=0
By way of induction, this gives that
qk ) 1 k
m ﬂ fﬁj(ur) S <_> )
L 2
j
which also holds for £k = 0. Now let n € IN be given, and write n = gk +r, for 0 < r < ¢ and
k > 0. It follows that

(A ) <m (A rw) < (3) < (6)7 =2 (6)) -

As an immediate consequence we derive the following corollary, which shows that the sets
J(f) and Jg, coincide m; g4-almost everywhere on U,

m(UDYm,(A). (4.5)

r

wl»—*

Corollary 4.2. Ift € [0,0(¢)), then my4(Jo, NU,) = my4(U,) > 0.

Proof. Recall that by Proposition 2.3 we have Jo, NU, = J(f) N Uy \ Upso [7(D
Niso f 7 (U,)). Also, Proposmon 3.1 implies that m; 4 has no atoms. Finally, by Lemma 4. 1
we have that mt,¢(ﬂk>0 f7%(U,)) = 0. Combining these three observations, the statement of
the corollary follows. [ |

Lemma 4.3. Ift € [0,(¢)), then there exists | € IN such that, for each Borel set A C U,

mip(f 1 (A)) < (myg(A)Y".
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Proof. Put m = m, 4. Using the conformality of m, it follows that the assertion holds for all
Borel sets A C U such that AN U.ecrirrry B(f(c),0) = 0, for some fixed positive d. Hence,
from now on let a Borel set A C B(f(c),d) be fixed, for some ¢ € Crit(J(f)), with m(A) > 0
and where 0 < dist(U,,0U)/2 is chosen sufficiently small (which will be specified during the
proof). Let f.1(A) be the intersection of f~1(A) with the component of f~'(B(f(c),d)) which
contains c. Also, for n € IN we define

An(c) = [(f*) (F(O)],

and let A(w,r,R) :={z € €:r <|z—w| < R} denote the annulus centred at w € € of inner
radius r and outer radius R.

The structure of the proof is as follows. We shall show that u is a finite number, and by
combining this with Lemma 3.2, we obtain

() m(fH(A) < Agulo) 1e PEDm exp(S,,6(c)).

Finally, we prove the following two facts, which then finishes the proof of the proposition.

(i)  Agu(c) el e=Pt)su exp(Ssu(/)(c)) < ()\su(c)*tefp(t"z’)su exp(Ssuqﬁ(c))))l/l for some
[ € IN and for all s sufficiently large.

(i) Aw(c) fe PO exp(S,up(c)) < m(ANA(f(c), Ohsqusn () 1,0)) (< m(A)).

For (i), we combine Lemma 3.2 and the finiteness of u to obtain

m(f. (A)) = m( £ (AN B(F(e), hu(0) ™)) + m(f. (AN A(f(c), 0Maulc) 1), 6)))
< m(fc‘l(B(f(C) Mau(@) D)) +m(£7 (AN A(F(0),0Naul) ), 5)))
<«<m ( (¢, (0 Asu(c) 1)1/ ale )
1 (BAsu(0) ) TT VP (A 1 A(f(0), 6Asu(c) T, )
< Xau(©) 719 exp (Saui(c) — Pt ¢>>su) +

+ (5)\%(0)*1)(q(cfl)t)\su(c)’t exp (Ssuqﬁ(c) — P(t, ¢)su)
= Xau(0) 7749 exp(Sup(c) — P(t, §)su).

Y
?)

For (ii), recall that +log |(f*)'(f(c))| > —q(c)(P(t,¢) — ¢)/t + k for all for all v > s. Hence,
by choosing [(c) sufficiently large so that

(P(t,¢) — ¢)a(c)(1 — q(c)) LB g —1
t(l(c) —q(c)) 21(c) = g(c)
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it follows that

- % (P(t’ 9)-¢- 2Q(0)> S
> 1 (pr.o) - 200 (1 - (o)

An elementary rearrangement then gives

Asu (€)1 exp (Ssuqﬁ(c) — P(t, ¢)su) < ()\su(c)’t exp (Ssuqﬁ(c) — P(t, qﬁ)su))

By defining [ := max{l(c) : ¢ € Crit(J(f))}, the statement in (iii) follows.
Finally for (iii), the finiteness of u gives

m(ANA(f(c), S As@r1y (€)1, 8) > Asuiny(c) "exp (Ss(u+1)¢(c) —P(t,)s(u+ 1))
> exp(=(P(t, 9)5 + [[ll) 1 11" Aeu(0) " exp(Seudc) — P(t, d)su),

which completes the proof of the lemma. [ |

1/1(c)

We now pass to the CGDM-system ®; associated with the GPL-map f. For this the reader
is asked to recall the construction and notation given in Section 2. For each t > 0,s € IR and

e € Ey we define the potential g,g? : Wyey — IR by, for x € Wy,

9 (x) := tlog |gL(x)| — sN(€) + Su(e)(de ().

We shall see that for suitably chosen s and ¢ the family G, ; := {ggz) e € Ef} is a summable
Holder family of functions, where Holder refers to the fact that for some v > 0 we have (cf.

[5], [10])

sup - sup  sup |90 (Dr,, 7 (2)) = 908 (6 ()]0 < 00

n>1 (Tl,Tz,...)ng Z,’LUEUt(Tn)
Lemma 4.4. For each u > 0 such that P(u,$) > —xu + ¢, there exists § > 0 such that Gy
is a summable Hélder family of functions, for each t € (u — 6,u+0) and s > P(u, ¢) — 0.

Proof. In [18] (Lemma 5.4) we obtained that the family { S, )0 ¢ }ecr, is Holder continu-
ous (in fact, in [18] we only considered iterated function systems rather than CGDM-systems;
nevertheless after minor modifications the proof in [18] goes through also for CGDM-systems).
Furthermore, in [15] (Lemma 4.5) we have shown that the family {tlog|¢;(7)] — sN(e)}ecr,

is Holder continuous. Therefore, by combining these two results, it follows that {gﬁ?}ee By 18
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a Holder family. In order to prove that Gy, is summable, we let Z( := {e € E; : N(e) = n}
and define, for n € IV,

U ¢e(Uie)
eeZ(")
If there are no parabolic elements, then we have for each n > 1 that R, C f~ ( J no2 f (Z/{r))
(for n =1, we have R; C U,), and hence Lemma 4.1 and Lemma 4.3 imply that

n—2 n—2 l/l
mu(Ry) < my, (f1 (_ﬂ fj(ur)>> < (m (ﬂ fﬂ(%))) < p"". (4.7)

If there are parabolic points then y, = 0, and consequently the condition P(u,¢) > —xu + ¢
implies that P(u,¢) > é. Then note that for every e € Z(™ there exists 1 < k < n such
that f7/(Uie)) C U,, for all k < j < n, and such that f7(Uy,)) C U, for all 1 < j < k and
for some i € I,. Let ¢ > 0 be chosen sufficiently small such that ¢ — P(u,¢) < —2¢. By
Lemma 2.6, there exists k. € IN such that sup{Si¢} < (¢ + €)k, for all k£ > k.. Combining
these observations, it follows that sup{Sx¢} — P(u, ¢)k < —ke. Using Lemma 4.1, Lemma 4.3
and (2.1), we then obtain, for some fixed 3 € (max{e™, p}, 1) and for every x € f(Use)),

M (Rn) < (mug(f(Ra)))"

. o B 1/1
< (Z exp(Sip(x) — kP(u, ¢)) > k™ P 1y (ﬂ ))
k=1

1€y Jj=1

~ 1
< (Z exp(sup{Sxp} — kP (u, ) ) g (ﬂ ))

< (e_Ekp"_k card(Ip)) < B/t

Combining this estimate and (4.7), we conclude, no matter if there are parabolic points or
not, that there exists a > 0 such that, for all n € IV,

my(R,) < e “". (4.8)

Using the definition of the measure m,, 4 along with Koebe’s distortion theorem and Lemma 2.5,
we now have, for all n € IV,

> sup {[(f") ()] ) exp(Sud(z) — Pu, ¢)n)} < e ™.

ecz(n) z€U;(¢)

Observe that {¢. : Wie) — Uj(e) }ecr, is a normal family of functions, and hence all its limit
functions are constant functions. This implies that

Aj:=sup sup |¢L(2)] < oo.
eEEf ZGUt(e)
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Therefore, for fixed u > 0 there exists 0 < § < min{u, §, $|log A;|™", $|log Ay}, where
we have put Ay := sup,cp, SUD, e, |f'(z)]. With this choice of § we obtain for each t €

(u—6,u+9) and s > P(u) — § that
S sup (7)) exp(Sud(2)e ™

ecz(n) z€U;()

< 3 s (J(f") ()] ) exp(Sud(2) — Plu, §)n)e’™ max{Af], A’}

ecz(n) z€Uje)

o3

L eTMeMe T = 1",

For the following lemma recall that the topological pressure P associated with the family G
is given by (cf. [5], [10], [15])

1
P(ta S) = hm —lOg Z Sllp eXp (gts + Z gt ¢T1+1,...,Tn (Z))> )

n—=oon 2€U,
(rave yet) €U

where we have set E ={(r,...,7) EE}: Apyry, =1 forall j=1,2,...,n—1}
Also, associated Wlth Gt,s there exists a unique G s-conformal probability measure m; ; sup-

ported on Jg,. That is, for each n > 1 and 7 = (T1,...,7T) € Ej(cn) we have for every Borel
set A C Uys,) that

mys(9r(A)) = /AeXp <gts + Z I (Drivr i (2)) = WP, S)> dmy s (2).

Lemma 4.5. Fort > 0 such that P(t,¢) > —xt+ ¢, we have P(t,P(t, $)) = 0. Furthermore,
we have that, for eachn € IN and 7 = (11,... ,Ty) € E](cn),
Mup(1,6)(Pr(Usrn))) = Mg (97 (Usra))),

with comparability constants not depending on n and 7. Furthermore, we in particular have
that myp(1g) and myg coincide on J ., up to a positive multiplicative constant.

Proof. Put N(1) := N(7;). By conformality of m,; and m, 4, we have for each n € IV,

n
J=1

mt¢(¢T(Ut(Tn))) = /Ut(r) |¢;(2)|texp(5N(7)¢ o ¢T - P(t, ¢)N(7—))dmt(z)

= ||, ]|" exp(sup{Sn(né 0 6.} — P(t, §)N () Jmu(Uir)
= PO |60 || exp (sup{Swryé 0 dr} — P(£, )N (7)) = P(t, P(t, 8))n)
= PRy M p(t,0) (Dr (Usir)))-

Therefore, if P(t,P(t,$)) > 0 then m;p4)(Js,) = 0, which contradicts myp)(Js,) =
1. On the other hand, if P(¢,P(¢,¢)) < 0 then we obtain m(Js,) = 0, which is also a
32



contradiction. Thus, it follows that P(¢,P(¢,¢)) = 0. The remainder of the lemma is an
immediate consequence of Theorem 3.2.3 in [10]. u

We now obtain the following two theorems which are the main results of this section.

Theorem 4.6. Let f be a parabolically semihyperbolic GPL-map. For valuest > 0 for which
P(t,¢) > —xt + ¢, we have that P(t, ¢) is real-analytic as a function in t.

Proof. Using Lemma 4.4 and applying Theorem 2.6.12 of [10] (or alternatively [5] Theo-
rem 6.4), we have for each positive u with P(u, ) > —xu + ¢ that there exists § > 0 such
that P is real-analytic on (u — d,u + ) X (P(u,¢) — 6,P(u, ¢) + ¢) in both variables ¢ and
s. In order to prove that P is real-analytic on (u — d,u + §), we employ the implicit function
theorem, showing that P is the unique real-analytic function which satisfies P(¢, P(¢)) = 0 for
all t € (u— 6,u + ¢). For this it is now sufficient to verify that for all ¢ € (u — 6, u + §) we
have

JP(t, s)
ds  ltpte)

exists and is strictly negative. (4.9)

Denote the measure m;p( ) by 4. Proposition 2.3, Lemma 4.4 and Lemma 4.5 guarantee
that Theorem 3.7 of [10] is applicable. This gives that the measure v, has a lift 7 to the
symbolic space &f, and that there exists a measure ji; in the measure class of 7, which is
invariant under the shift map on the space £, and whose Radon-Nikodym derivative with
respect to 7 is bounded away from zero and infinity. We can now apply Proposition 2.6.13
of [10] (or alternatively [5], Proposition 6.5), which gives

OP(t,s) /
—_— = — [ Ndj 4.10
D5 LP) Ht- ( )
Using the estimate in (4.8) and the second part of Lemma 4.5 we then compute
[ N = [ Ndin = [ Ndvi= 3= nviRy) < 3 nmi(Ry) < - ne™ < o0,
nelN nelN neiN (4.11)

where after the first equality sign we treated the function NV slightly informally as being defined
on the limit set Jp,. Combining (4.10) and (4.11), and using the fact that the function N is
strictly positive, we derive (4.9), which then completes the proof. [ |

Finally, let us consider the family Gq,s = {ggeg : e € Ef}, which is given by, for fixed ¢ > 0,
93 () = tlog |, (x)| — sN(€) + ¢Sue)d (e (x))-

If in the construction above we use this family instead of the family G, then the proof of
Theorem 4.6 is in fact easier. Using this modified family of functions g,gfg, we then obtain the
following result (c.f. [18], Sect. 5).
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Theorem 4.7. Let f be a parabolically semi-hyperbolic GPL-map. If t € [0,0(¢)), then the
function q — P(t,q¢) is real-analytic in a small neighbourhood of ¢ = 1.

5. MULTIFRACTAL ANALYSIS

5.1. The general case of a parabolically semi-hyperbolic GPL-map.

In this section we derive the main results of this paper, namely we give a multifractal analysis
for parabolically semi-hyperbolic GPL-maps f. Throughout let ¢ : J(f) — IR be a Holder
continuous function such that P(f, ¢) > sup(¢). Recall from the introduction that we define,
for every x € J(f),

S (P(f.6) - () Su(P(f, ) — é(x))
Polt) = 1% log |(f™)(x) log [(f")'(z)

Ifpy(z) = £¢(x), then we let py(x) refer to their common value. We are interested in studying

and p, (r) = lim, o

the (¢, a)-level sets KCy(c), given by
Ko(a) :={z € J(f) : ps(x) = a},
and in particular in the associated ¢-spectrum kg, which is given by
o) i= HD(K,(a)).

Also, recall that by using ¢ — P(f, ¢) instead of ¢, we can assume without loss of generality
that

P(f,#) =0 and sup(¢) < 0. (5.1)

Lemma 5.1. For every q € (0,1] there exists a unique T(q) > 0 such that P(T(q),q¢) = 0.

Proof. We have that P(f,¢) = 0, and that the graph of the function t — P(t, q¢) lies
below the graph of the function ¢ — P(¢,0) (this follows, since by assumption ¢ > 0 and
sup(¢) < 0). Also, by definition (P2) of variational pressure, the function t +— P(¢,q¢)
is continuous. Combining these observations, it follows that if P(0,g¢) > 0, then there
exists ¢ > 0 such that P(t,q¢) = 0. On the other hand, since sup(¢) < 0, we have that
P(0,q¢) > P(0,¢) = 0, for each ¢ € (0,1]. Therefore, it follows that P(t,q¢) = 0, for every
q € [0,1] and for some ¢t > 0 (which depends on ¢). Hence, in order to finish the proof it is
now sufficient to show that if for some ¢ > 0 and ¢ > 0 we have that P(¢,¢¢) = 0, then this
implies that, for all u > 0,

P(t+u,qp) <0 and P(t —u,qp) > 0. (5.2)
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In order to derive this implication, we remark that if ;s is an f-invariant Borel probability
measure such that, for € € ( , =2 sup(¢)),

— e <hy(f) ~ txut+a [ ddn, (53)
then it follows that
q
X =~ Lsup(o). (54

This can be seen by using (5.3) and the fact that x, > 0, which gives

h,(f) > tx, —q | ¢pdp — e > —gqsup(¢p) — e > 1 sup(¢).
2

Hence, by Ruelle’s inequality we have x, > %h”(f) > —%sup(¢), which gives the inequality
in (5.4). We now prove the first inequality in (5.2) by contradiction as follows. Suppose
that P(t + u,q¢) > 0, and let 0 < € < min{—% sup(¢), — % sup(¢)} be given. By definition
of the pressure function, there exists an f-invariant Borel probability measure v such that
P(t 4+ u,qp) —e < h,(f) — (t +u)x, + q [ ¢dv. Since P(t + u,qp) > 0 and P(t, q¢p) = 0, this
implies that

0Zh,,(f)—txl/—l—q/d)duzuxnu—ez —€. (5.5)

Hence, (5.3) is satisfied, and consequently (5.4) holds. Now, combining (5.4) and (5.5), we
obtain 0 > —% sup(¢) — € > 0, which is a contradiction and hence gives the first inequality
in (5.2).

In order to prove the second inequality in (5.2), note that again by definition of pressure and
since P(t,q¢p) = 0, there exists an f-invariant Borel probability measure yu satisfying (5.3) for

every 0 < € < min {—% sup(¢), — 4 sup(¢)}. Hence, applying (5.4), we get

P(t —u,q¢) > h,(f) — (t_U)Xu+(I/¢d/~L: (hy,(f) — txu +Q/¢>du) + UXy

u
>—ﬁ—i—UX”Z—E—FUXuZ—6_%SUP(¢)>O'

This latter estimate gives the second inequality in (5.2), and hence completes the proof of the
lemma. |

Lemma 5.2. For g € (0,1] we have that

oP

5,0 T(@) = /qﬁduq and %—E(q,T(q)) = —/loglf’lduq-
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Proof. Let u € IR be fixed, and consider the equilibrium state p, for the potential
—T(q)log|f'| + q¢. By definition of the variational pressure P(7(q), (¢ + u)¢), we have

P(T(q), (¢ +u)p) —P(T(q),q) >
Z—T@MM+%m+w/@mw+hwUﬁ—(4U®XM+Q/¢WM+hMUD

= U/¢d,uq-

Also, by Lemma 5.1 we have that 0 = P(T'(q),q¢) > sup(g¢) and that T'(¢) > 0, which
together with the definition of d(¢) implies that T'(q) € [0,0(g¢)). Hence, we are now in the
position to apply Theorem 4.7, which gives that the function s — P(7T'(q), s¢) is real-analytic
on a neighbourhood of s = ¢. Since this latter function is convex (by definition (P2) of
variational pressure), (5.6) gives that that ?3_5((]’ T(q)) = [ ¢du,, and hence the first assertion
of the lemma follows. The proof of the second formula of the lemma is analogous and will be
omitted. [ ]

(5.6)

We now come to the first main result of this paper.

Theorem 5.3. Let f be a parabolically semi-hyperbolic GPL-map and let ¢ : J(f) — IR be a
Hélder continuous potential such that sup(¢) < P(f,¢) = 0. In case f has parabolic elements

we additionally assume that the Hélder exponent of ¢ exceeds pmar/(Pmax + 1). Then the
following holds.

(a) For pg-a.e. v € J(f), we have that p,(x) exists and

ps(z) = [ éduy
Jlog | f'dpg
(b) For q € (0,1], the function q — T(q) is real-analytic and T'(q) < 0.
(c) For each q € (0,1], we have that ky(—=T"(q)) = T(q) — ¢T"(q).

Proof. The statement in (a) is an immediate consequence of Birkhoft’s Ergodic Theorem.
For (b), note that by Lemma 5.2, %—i(q,T(q)) = — [log|f'|du, < 0, and therefore, applying
Theorem 4.6 and Theorem 4.7, it follows from the Implicite Function Theorem that the
function ¢ — T'(q), q € (0, 1], is real-analytic. By differentiating the equation P(7'(¢), g¢) =0

and using Lemma 5.2 again, we obtain

0= ST+ 5 = ~T"0) (~ [10g]"Vdu) + [ oy

and therefore

] ¢dp
T'(q) = 2 2% 5.7
= Flog Fldr, o0
In order to prove (c), we first give the estimate of the function ks(—1"(q)) from below. By

Birkhofft’s Ergodic Theorem there exists a Borel set X C J(f) such that yu,(X) =1 and such
36



that, for every z € X,

lim ~ log | (f")'( |—/log|f|d,uq and  lim qu /qﬁduq

n—oon

Hence, using (5.7) we obtain

 _su) [ b, |
1 —_ —_T
A Y@~ Tlog Py~ L @)

which implies that X C ICy(—T"(¢)). Thus, using (5.7) and the fact that P(T'(¢), g¢) = 0, we

get
h,, (f
1o T"(@) = HD(K,(~T(¢)) > HD(X) > HD () — 227
Hq
T(q)Xu, — a4 odp d
_ Tlax, ¢ = 7(q) - ¢I2M _ 7(g) - gT(g)
X/—Lq Xﬂq
This gives the required lower bound for k4. For the upper bound, let us fix an element
r € Ky(—=T'(q)) \ U (2 f) U Crit(f)).

Using [16] (Proposition 6.1), there exists p(x) > 0 and an unbounded increasing sequence
{kn}22, such that, for each n € IV,

Comp (z, f* (x), f*, 2p(x)) N Crit(f*) =0 and f*(z) ¢ B(Q, p()).
In here, Comp(z, f/(x), f7,r) refers to the connected component of f~9(B(f’(z),r)) which
contains z. By Koebe’s Distortion Theorem, we have that
B(x, K|(f*) (@) 'p(x)) > £, (B(f* (), p(x))), (5.8)

where K > 1 denotes the ‘Koebe constant’ for the scale 1/2, and f,*» : B(f* (x), p(z)) = @
refers to the holomorphic inverse branch of f*» which maps f*=(x) to 2. For ease of notation,
we put mgy 1= mrp(q) - Using Lemma 2.5, (5.8) and once more Koebe’s Distortion Theorem,
it follows that

ma(B(r K@ o) = [ O exp (oS, 6754 (2))) dg 2

> ¢ “rem(B(f* (@), p(a))) [(f*) (@) T exp(aS, ¢(x)).
Hence, if we let r, := K|(fk")l(x)|flp(x), it follows that, for every x € IC¢(—T’(q)),

o logmy(B(er)) . —T(q) o |(f*)'(x)] + Sk, 6(x)
lim inf ilog Tn < —log [(f¥n) ()|

=T(q) — qT'(q).

Note that (b) and (c) in Theorem 5.3 show that if the function 77(¢) is locally invertible at

at least one point in (0, 1], then we have that the multifractal ¢-spectrum £k, is real-analytic
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on a proper interval. Hence, our target now is to show that 7"(¢q) is in fact locally invertible
at at least one point in (0, 1). For this we require the following lemma.

Lemma 5.4. If the set {q € (0,1] : T"(q) = 0} has an accumulation point in (0, 1], then
we have that for all ¢ € (0, 1] the measures i, coincide, and that they are equivalent to the
h-conformal measure vy,.

Proof. By Theorem 5.3 (b) we have that the function 7" : (0,1] — [0, 00) is real-analytic.
Hence, since the set (7”)7'(0) has an accumulation point in (0,1], we conclude that T is
affine, that is there exist «, f € IR such that

T(q) = aq+ 5.

Since for each ¢ € (0, 1] we have P(T'(¢q), ¢¢) = 0, and since i, is an equilibrium state for the
potential —7'(¢) log |f'| + ¢q¢, (5.7) implies that
hy, — T(@)xu, —aJ ddp

h > HD(pg) = —+ = (@)X T=T(q) —qT"(q) = ag+f —ag=p.
Xuq Xﬂq (59)

Since x,, <log||f'|| < oo and since x,, > 0 (the latter follows by a result of Przytycki result
in [12], where it was shown that x, > 0 for every ergodic f-invariant measure 1), it follows
that the function (¢,¢q) — Py (¢, q¢) is continuous in both variables, for ¢ > 0 and ¢ € IR.
Therefore, we conclude

Py(5,0) = lim P(T(g),q9) = 0.

Combining this with a result in [15] (Theorem 2.1), it follows that § > h, which then gives,
by using (5.9), that HD(u,) = h for all ¢ € (0,1]. Now note that we have h, — T(q)x,, +
q [ ¢dpg =P(T(q),q9) = 0, for every q € (0,1]. Hence, we obtain h, = T(q)x,, —q J ¢dpg >
—q | ¢dpg > 0, which implies, using Ruelle’s inequality, that x,, > 0. It therefore follows by
a result in [6] (Theorem B; the theorem is stated in the context of rational maps, nevertheless
the proof can be adapted to GPL-maps) that for each ¢ € (0, 1] the measure p, is equivalent
to the h-conformal measure v5,. In particular, all the measures j, are mutually equivalent,
and since they are ergodic, they must coincide. [ |

For the following, we recall a notation of [10]. We let ¢g; : £ — IR denote the amalgamated
function of the family G, which is given by

91(w) = Sn() (T (W))-

Similarly, we let g, : £ — IR denote the amalgamated function, which is given by

g2(w) = ~hlog|(f* V) (m(w)].

Also, recall that one says that ¢; and g, are cohomologous up to constant in the class of

bounded Hélder continuous functions on &y, if and only if there are a € IR and a bounded
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Hoélder continuous function u : £ — IR such that
go— g1 =a+u—uoo. (5.10)

We require the following lemma.

Lemma 5.5. If the measure jip 4 is equivalent to the h-conformal measure vy, then the func-
tions g1 and gy are cohomologous up to a constant in the class of bounded Holder continuous
functions on &;.

Proof. Recall that P(f,¢) = 0. Let u¢,, be the @ -invariant version of the measure mg
(c.f. formula (3.10) in [10]). Note that these two measures are both supported on Js .. We
now show that pq,, is equivalent to myg . For this observe that Lemma 4.5 implies that mq
coincides with m0,¢|J¢f. Also, by Theorem 3.4, we have that m0,¢|J¢f is equivalent to the
h-conformal measure 1y, on Jg, for the system ®;. Finally, 7, is equivalent to fi,, which
is the ®¢-invariant version of the measure 1. Therefore, pi,, and fi, are equivalent. By
the result in [10] (formula (3.10)), we have that the Gibbs states fi,, and fi,,, which are both
supported on &y, are equivalent. Again by a result in [10] (Theorem 2.2.4), these measures are
ergodic with respect to the shift map o : £ — &, and hence they must coincide. Therefore,
by applying Theorem 2.2.7 in [10], the lemma follows. [ |

For the following lemma, recall that a critical point ¢ of a GPL-map f is called exceptional
if f~™(c) C Crit(f"), for every n € IN. Clearly, since there are only finitely many critical
points and since these cannot form periodic cycles, each exceptional critical point must be
eventually periodic.

Lemma 5.6. If f has a parabolic point or if J(f) contains a non-exceptional critical point,
then g1 and go are not cohomologous up to any constant in the class of bounded Hélder
continuous functions on ;.

Proof. Suppose that that g; and g, are cohomologous up to a constant in the class of
bounded Holder continuous functions on &;. Then there exist a € IR and a bounded Holder
continuous function u : £ — IR such that

g2— g1 =a+u—uoo. (5.11)

Let us assume that © # (), and let i € I, be fixed. Note that both sets I, and I, are non-
empty, and hence we can fix some j € I, and k € I,. Then, for every n € IN, there exists
en € Ep such that f;7'o f7™" = ¢,, . For w™ € & such that w™ = ¢,, we have by (5.11) that

Spi10(m (™)) + hlog | (/") (m(w™))| = a + u(r(w™)) = u(o(r(w™))),
or equivalently,

Sni10(m(w™)) = h(—log|(f'(w(w))| + log | (£ (f"* (x(w)))]).
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Applying (2.1), we hence have

0+ 2|[ul oo < sup(Sui10) + hlog||f'|| — hlog(inf (|(f;™)' |, )

 +1
< (n+1)sup(f)+hlog||f'||+h (log(C’ﬁj) +p; logn) :

)

Since sup(¢) < 0, we see that the right-hand side of the latter inequality gets arbitrarily
small, and hence we have a contradiction.
We now consider the case in which J(f) contains a non-exceptional point critical point c.
Assume that ¢ is chosen such that {f"(¢) : n € IN} N Crit(f) = (. Note that for each n > 0
there exists a unique index i, € I such that f™(c) € U;,, and by Definition 2.1 (c), we have
that i,, € I, for all n € IN. Consider the inverse branches, for n > 1,
.= izlo iglo... Z:Z" U= U,

Since U, C U (by Definition 2.1 (b)) and since f(c) € J(f), it follows by a standard normal
families argument that

lim diam (f,"(U)) = 0. (5.12)
Now, let B(c,r1) be a sufficiently small ball centered at the critical point ¢. Since f(c) €
fM(U), it follows from (5.12) that f™(U) C f(B(c¢,r1)), for all n > ky, with k; € IN

*

sufficiently large. For j € I,, let w € U; be fixed, and choose w, € B(c,r;) such that
f(wy) = f.™(w). Since j € I, there exists a holomorphic inverse branch frn U —=U
of f**! which maps w to w,, and for which f o f;("ﬂ) = f.". Since B(c,r) C U;, for some

i € I, C I, and every n > ky, there exists a, € Ey such that ¢,, = f,f(nﬂ). Then (5.11)

gives, for 7™ € &; such that ™ =q,,

S d(m(r™)) + hlog[(f"*1) (w(r™))] = a+ u(x(r™)) = u(o(x(r™))).
(5.13)

Since ¢ is not exceptional, there exist ¢ > 0, s € IN, and y € f~*(f9(c)) N U; \ Crit(f*). Let
us now consider the inverse branches

qu(nqurl) =flofl o, .. f;l U — Uzn

iq Gq+1
As above, we have that

f*(nqurl)(U)) = 0. (5.14)

lim diam v

n—oo (
Choose B(y,r2) C Uj sufficiently small such that f°|p(2r,) is 1-1, and let f* refer to the
inverse of f*|p(y2r,)- By (5.14) we have, for all n > ky, with ky > k; sufficiently large,

f, T (U)  fP(Bly, ). (5.15)
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Clearly, there now exists b, € E; such that the map qus(”*q“*s) = flof; (n—g+1) U — U
if restricted to Uj is equal to ¢,. By (5.11) we then have, for o\ e & such that pl = by,

Sn-qr14s0(m(p™)) + Rlog | (f*=H) (w(p™))| = a + u(x (p™)) = u(o(x(p™))).
(5.16)

Applying Koebe’s distortion theorem along with Definition 2.1(b), we see that there exists a
constant K > 1 such that for all n > max{q, k.} and z,y € U,

U@

Gy .
Therefore, using (3.1) and Definition 2.1 (c), it follows, for all n > max{q, k2},
diam( fq—<"—q+1>(U)) < k== diam (U). (5.18)
Applying (5.17), we conclude that
[hlog|(F" ) (£2(r(r™)| = hlog |(f"~ ") (F (x(p™)))] < hlog K. 519

Recall that o > 0 denotes the Holder exponent of ¢, and let L > 0 be the Holder constant of
the function ¢. Using (5.18), it now follows that

Sng16(f1(r (7)) — sn,q+1¢((f5(7r(p<">>>)|
< S B(PU ) = (P )

n—q

| N

LI (fU(m(r ™)) = (£ (@ (o))

O

i (dia (73 ©))” .
=0

nq %
< Y Kdiam(U)*k "7t < diam(U)* Y k™

=0 i=1
= diam(U)*k *(1 —k *) ' < c0.

Furthermore, note that we have

| /\

[Seo(m(r)] < allllso and [Ssp(m(p™))] < 51|, (5.21)
and also that, using (5.15) and Koebe’s distortion theorem, with K > 1 the Koebe constant,
[hlog |(f°)'(w(p™))| < hlog K + hlog |(f*)'(y)I- (5.22)

Finally, if we combine (5.13), (5.16), (5.19), (5.20), (5.21), (5.22) and and the fact that the

function u is uniformly bounded, we conclude that hlog |(f'(w(7(™))| < C, for all n sufficiently
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large and with some constant C' > 0 which does not depend on n. Since lim,, m(r™) = ¢,
this gives a contradiction and hence finishes the proof. [ ]

Finally, we can now combine Theorem 5.3, Lemma 5.4 and Lemma 5.5 which then gives the
following second main result of this paper.

Theorem 5.7. Let [ be a parabolically semi-hyperbolic GPL-map and let ¢ : J(f) — IR be a
Hélder continuous potential such that sup(¢) < P(f,¢) = 0. In case f has parabolic elements
we additionally assume that the Hélder exponent of ¢ exceeds pmaz [ (Pmaz+1). In this situation
we have that if o g is not equivalent to the h-conformal measures vy, and hence in particular if
f has a parabolic point or a non-exceptional critical point, then the domain of the multifractal
¢-spectrum kg contains a non-degenerated interval on which ky is real-analytic.

5.2. The parabolic case without critical points in the Julia set.

In this section we consider the special class of parabolically semi-hyperbolic GPL-maps for
which J(f) does not contain critical points of f. Maps of this type are called parabolic GPL-
maps, and we show that for them the results of the previous section have a more transparent
geometric interpretation, namely in terms of the local scaling behavior of the equilibrium
state 4. Here ¢ refers to a Holder continuous potential such that 0 = P(f, ¢) > ¢, and such
that if f has parabolic elements then the Holder exponent of ¢ exceeds pmaz/(Pmaz + 1)-
For a measure y supported on J(f) and for a € [0,00), the (4, @)-level sets £, («) and the
multifractal py-spectrum ¢, are defined by

L,(a) = {z e J(f): 1imw

lim log = a} and (,(o) := HD(L,()).

For the equilibrium state j, and its f-invariant version mg, we have by a result in [17] (Lemma
2.4.4) that the symmetric difference of £, () and L, («) is contained in €2. This implies
that

Cuy (@) = b (). (5.23)

The main result of this section, that is Theorem 5.10, will be an immediate consequence of
Theorem 5.3 in combination with the following two lemmata.

Lemma 5.8. For each a € (0,00), we have that Ky(a) C Lo, ().

Proof. Let x € J(f) \ Un>o [ "(£2) be fixed. Since f is a parabolic GPL-map, there exists
an infinite sequence (n;) of positive integers (depending on x) and § > 0 (independent of x)
such that

B (x), AKS) C U\ B(Q,0) and B(f™ (x),4K3) 1 |) F*(Crit(f)) = 0.
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In particular, for each 7 we hence have a well-defined holomorphic inverse branch f~"% :
B(fm(x),4K¢) — @ which maps f" (z) to x. If r > 0 is given, then we let n := max{n, :
r < 0|(f™)(x)|~'} and define r,, := &|(f™)'(2)|~'. Now we have for some j that n = n;, and
also that n;y; = n+k, for some k. Clearly, we have that r > 7, 40| (f"**)'(z)| 7!, and hence
it follows that

log (my(B(x,7))) g log(my(B(z,7))) g log (my(B(,mn4r)))
log 74k - logr - logr, '

Using Koebe’s distortion theorem, we see that B(z,7,4x) D f; " (B(f"**(x), K6), which
if combined with Lemma 2.5, gives my(B(x,rp4x)) > €7 exp (Sn+k¢(x)). Therefore,

(5.24)

log(my(B(, Tnst))) B log (my(B(,Tn1x))) log s Snikd(x) — Co log T+
o1 =T logran logr, — —log (/") (@) +1ogd  log g o)

Similarly, using Koebe’s {-distortion theorem, it follows that B(z,r,) C f, "(B(f"(z),46)),
and by combining this and Lemma 2.5, we obtain

my(B(z,m,)) < e exp(5n+k¢(x)). (5.26)

Hence, we have

log(my(B(z, 7)) _ log(me(B@,ma)) logra _  Sud(e) —Co  logr,
log rpik log 7, logrp,x — —log|(f™) (x) +log610grn+k('5.27)

Now, the aim is to show that if x € K4(a) then it follows that

log ry,

lim = 1. (5.28)

w55 T0g i,
In order to prove this, we proceed as follows
- logr, o log|(f7)'(=)] log |(f*)'(f"(z))]
U Tog e b Dog [(FrRY ()] (1 ~ log (77 (@) >
. Surn(=¢)(2)] log |(f*)'(f"(2))] . log |(fF)'(f*(2))]
= 1 = 1 .
PR o (Y@ Seno@ R T 5, 00)

Now note that we have, for some universal constant C' > 1,

max ]‘
“1og C < log |(F*)(f*(x))] < log C + 2m= T L 100(k 4-1).

pma:v

Since sup(¢) < 0 we have sup(S,1x¢) < (n + k) sup(¢), and we conclude that

gl (@) _
T S




which proves (5.28). For z € K4(a), we can now combine (5.28), (5.24), (5.25) and (5.27),
which implies

. log(m¢(B(x, 7“))) B

r—0 logr ’

and which therefore gives that = € £,,, (c). u

Lemma 5.9. For each q € (0,1], we have that {,,,(=T"(¢q)) < —qT"(q) +T(q).

Proof. Let x € L,,,(=T"(q)) \ Un>o f"(22) be fixed. For r > 0, let n = n; be deter-
mined as in the proof of the previous lemma. Using Koebe’s distortion theorem, we have
that B(z,7,) D f,"(B(f™(x), K¢). Therefore, applying Lemma 2.5 and once more Koebe’s
distortion theorem, we obtain for the equilibrium state m, of the potential —7'(¢) log|f'|+¢q¢,

mKI(B($, ) > eXp(Sn(q¢)(x)) |(fn),(x)|_T(q)mq(B(fn(x), K6))
> exp? (S (2))[(f™) (@) 779D > m (B(x, )| (f*) ()| 7",

In here the second inequality sign follows since inf{m,(B(z, Kd) : z € J(f)} > 0. Hence, we
now have that

log (my(Be.r))) _ log(m,(B(x,r)))
-0 logr = Hfin—roo log r,
log(mgy(B(xz,r,))) — T(q)lo ")(x
i ! 8(ms(B( >1>O)gr @YY@ __ s v

Theorem 5.10. Let f be a parabolic GPL-map, and ¢ : J(f) — IR a Hélder continuous
potential such that P(f, @) > ¢. In case [ has parabolic elements we additionally assume that
the Hélder exponent of ¢ exceeds pmas/(Pmax + 1). Then the following holds.

(a) For q € (0,1], the function q — T(q) is real analytic and T'(q) < 0.
(b) For every q € (0, 1], we have that £,,(=T"(q)) =T (q) — ¢T"(q)-
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