REAL ANALYTICITY OF HAUSDORFF DIMENSION
OF FINER JULIA SETS OF EXPONENTIAL FAMILY

MARIUSZ URBANSKI AND ANNA ZDUNIK

ABSTRACT. We deal with all the mappings f\(z) = Ae* that have an attracting periodic
orbit. We consider the set J.(f\) consisting of those points of the Julia set of f\ that do
not escape to infinity under positive iterates of fy. Our ultimate result is that the function
A = HD(J,:(f))) is real analytic. In order to prove it we develop the thermodynamic for-
malism of potentials of the form —tlog|F}|, where Fy is the natural map associated with
f closely related to the corresponding map introduced in [UZd]. It includes appropriately
defined topological pressure, Perron-Frobenius operators, geometric and invariant general-
ized conformal measures (Gibbs states). We show that our Perron-Frobenius operators are
quasicompact, that they embed into a family of operators depending holomorphically on an
appropriate parameter and we obtain several other properties of these operators. We also
study in detail the properties of quasiconformal conjugacies between the maps fy. As a
byproduct of our main course of reasoning we prove stochastic properties of the dynamical
system generated by F and the invariant Gibbs states u; such as the Central Limit Theorem
and the exponential decay of correlations.

1. Introduction

In this section we continue our investigations of the subsets .J,.(f)) of the Julia sets of maps
fa(z) = Ae? that have an attracting periodic orbit. We call the family of corresponding pa-
rameters A by Hyp. Our main result is that the function A — HD(J,.(f\)), A € Hyp, is real
analytic. In Section 2 we prove that the maps from the family Hyp are uniformly expanding
on their Julia sets and we define the maps F) mapping an appropriate infinite cylinder into
itself. In Section 3 we define appropriate in this context topological pressure of the potentials
—tlog|Fy|, t > 0, Perron-Frobenius operators with some more general potentials and gen-
eralized conformal (Gibbs) measures. Using the existence of these measures we prove three
basic properties of the Perron-Frobenius operators in Lemmas 3.4, 3.5 and 3.6. We end this
section with the proof of the uniqueness and ergodicity of conformal measures. In Section 4
we show that our Perron-Frobenius operators satisfy the assumptions of the Ionescu-Tulcea
and Marinescu theorem. In particular the Perron-Frobenius operator acting on the space of
Hoélder continuous functions (with a fixed exponent) is quasicompact and the full description
of its spectral properties is provided in Theorem 4.4. This permits us to prove in Section 5
the existence and uniqueness of invariant measures equivalent to conformal measures. We
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also obtain here finer stochastic properties of the dynamical system generated by the map
F\ and these invariant measures such as the Central Limit Theorem and the exponential
decay of correlations. The short 6th section is devoted to the presentation of a proof of an
appropriated Bowen’s formula (Hausdorff dimension of the set J.(f)) is equal to the unique
zero of the pressure function) which also follows from the results proven in [UZd]. Section 7
, closely related to the last section of the paper [UZi], provides a sufficient condition for our
Perron-Frobenius to depend holomorphically on the appropriate parameter. Section 8 estab-
lishes uniform Hoélder continuity of quasiconformal conjugacies in connected components of
Hyp and some other interesting itself properties. In Section 9, perhaps most technical part of
our paper, we first prove continuity of the topological pressure with respect to the parameter
A € Hyp, then we check that the conditions presented in Section 7 are satisfied, and we
relatively easy conclude the proof of our main result by applying the perturbation theory for
linear operators and the implicit function theorem for the topological pressure.

2. HYPERBOLIC MAPS - PRELIMINARIES

We denote by Hyp the set of all parameters A such that f, has a periodic attracting orbit.
Fix A € Hyp. We shall check that f, is expanding on its Julia set.

Proposition 2.1. For every A € Hyp then there exist ¢ > 0 and vy > 1 such that for z € J(f))
(F2)(2)] > er™.

Proof. Let A € Hyp and denote f) by f. Using Proposition 6.1 in [McM], we conclude that

for every z € J(f), lim,_ |(f™)'(2)] = co. For every m > 1 let
Am(A) ={z € J(f) - |(fI)'(=)| > 3}.
Since each set A, is open and since there exists M > 0 such that {z : Rez > M} C A;()),
the open sets As(\), A3(N), A4(N), ... cover
Y(A) ={z€ J(f):0<Im(z) <27} \{z:Rez > M},

a compact subset of J(f)). Thus, we can chose from the cover {A4,,(A)}3_; a finite subcover
of Y(A) say, A1(N), A2(N), ..., Ag(\) for some ky > 1. Since all the sets A,, are invariant
under the shift map z — z + 27i, this shows that J(f) C A;(A) U Ay(A) U...U Ak(A). Let

I= inf {|f'(2)|} = inf
Af PG} = inf {la]}

The number [ is positive since a neighbourhood of 0 is attracted by the attracting periodic
orbit. Take z € J(f) and n > 1. Then, using the above finite cover A;(\), A2(A), ..., Ag(N)
one can divide the trajectory of z of length n (i.e. the sequence z, f(z),..., f"(2)) into pieces
of length < k) such that the derivative of the composition along each (except for the last one)
piece of the trajectory is larger than 2. This gives us the following estimate

|(F7)'(2)] = 35T
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which is the required property. B

Since the map f) is periodic, we consider it rather on the cylinder than on . So, let P be
the quotient space (the cylinder),

P=a/~,

where z; ~ 2o if and only if 2; — 2o = 2kmi for some k € Z. Let 7 : @ — P be the natural
projection. Since the map 7o fy : @ — P is constant on equivalence classes of relation ~, it
canonically induces a conformal map

F\:P— P

The map F) : P — P will be the main object of our technical considerations. The Julia set
of F'is defined to be

J(Fy) = m(J(f2))- (2.1)
and
Ex(J(Fy) = J(Fx) = F'(J(Fy)).

The cylinder P is canonically endowed with a Euclidean metric which without confusion will
be denoted by the same symbol |w — z| for all z,w € P.

3. PRESSURE, PERRON-FROBENIUS OPERATORS AND GENERALIZED CONFORMAL
MEASURES

We fix now A € Hyp until Section 8, we put
f = f)\ and F' = F/\

and we start to deal with topological pressure. For every ¢ > 0 and every z € J(F') define the
lower and upper topological pressure respectively by

P,(t) = lim infl log > [(F")(z)| " and P,(t) = lim sup%log S I(FY ()]

n—00
n zEF~"(z) noo rEF~"(2)

Since any two points in .J(F') belong to an open simply connected set disjoint from W({f”(O) :

n > 0}), the forward trajectory of 7(0) under F, it follows from Koebe’s distortion theorem
that P,(t) and P,(t) are independent of z and we denote their respective values by P(¢) and
P(t). Let

+00

P.(1,t):= Y  |F'(x) "= > |z+2mik| ", (3.1)

zeF~1(z) k=—o00
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where Z is an arbitrary point in 77'(2). Notice that for every ¢ > 1 the series P,(1,?)
converges and |[P(1,%)||oc = sup,¢ ;= {P.(1,¢)} < oco. Observe now that for every n > 1 and
every z € J(F)

> IFEY @)= X > F (@) (@)

rEF~(2) weF~(=1)(z) zeF~1(w)
= > @YWt X |F@
weF~(n=1)(z) zEF~1(w)

<IP@LONe > E ) ()™

weF~(=1)(z)

Therefore, we obtain by induction that 3= ,cp—n(, [(F™)' (x)| " < [[P(1,1)]|2, and consequently

P(t) = P.(t) < log |[P(1, )| (3.2)

for all t > 1. It follows from Hélder’s inequality that both functions P(¢) and P(¢) are convex.
Since in addition (see Proposition 2.1), F': J(F') — J(F') is expanding, we get the following.

Proposition 3.1. Both functions t — P(t),P(t), t € (1,00), are continuous, strictly decreas-

ing and limy_, | o P(t) = —o0.

In this section we establish the existence of conformal measures for the map F': J(F) — J(F).
The details are presented in the appendix for the sake of completeness and the convenience
of the reader. A Borel measure m, is called (¢, a;)-conformal (with ¢ > 1 and a; > 0) if for
any Borel set A C P on which F' is injective, we have

ma(F(A)) = /Aat|F’|tdmt

Since the proof of the existence of conformal measures was technically and conceptually
considerably easier to carry out working with a strip S rather then the cylinder P and since
the strip S C @' was needed exclusively for the proof of the existence of conformal measures, we
placed it in the appendix. As an immediate consequence of Theorem 10.3 from this appendix,
we get the following.

Theorem 3.2. There exist oy > 0 and a (t,0q)-conformal measure my for the map F :
J(F) — J(F) determined by the condition that my(m(A)) = m(A) for every Borel set A
such that w|4 is 1-to-1, where m is the measure produced in Theorem 10.3. In addition

my(J(F)) = 1.
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Let C, = Cy(J(F')) be the Banach space of all bounded continuous complex-valued functions
on J(F). Notice that for each z € J(F) and each Z € 77'(z), the series

+o0
> |2+ 2mik|™
k=—00
is independent of the choice of Z and it converges if and only if Re(#) > 1. This enables us to
define for these t’s the Perron-Frobenius operator £ = L; : C;, — C,, by the formula

+00

Ly)= X |F@] gle)= 3 |5+ 2wkl gz, (33)

zeF~1(2) k=—o00

where Z is an arbitrary point from 7 !(z) and z; is the only point of the the singleton
W(f_l(é + 27rik)). It immediately follows from (3.3) that

L1g(2) < ||Li1]]oo]]g]]oo and Reliir}rw L:1(z) =0. (3.4)
Notice also that £; : C,, — C}, is a bounded operator and its norm is equal to ||P(1,?)]]-
Assume from now on throughout this section that ¢ € (1,00) and consider the dual operator
L; : Cf — Cy given by the formula £;u(g) = p(Lig). A straighforward calculation (see
Proposition 2.2 in [DU1] for example, where the finiteness of the partition can be replaced by
its countability) shows the following.

Proposition 3.3. For every t > 1, Limy = aymy.

Let

1

6 = 5 min {% dist (J(F), 7 ({f"(0) : n. > 0})} (3.5)

Observe that for every v € J(F) and every n > 1 there exists a unique holomorphic inverse
branch F," : B(F"(v),20) — P of F~™ sending F"(v) to v. In particular F,™(J(F) N

v

B(F™(v),260)) C J(F). Fix now ¢t > 1 and define
ﬁt = Oé;lﬁ
For every x € IR let
P, ={z € J(F):Re(z) < z}.
Fix any two points w and z in P,. There then exists the shortest smooth arc v, . joining w
and z in P\B({f"(O) :n >0}, 25). The supremum of (Euclidean) lengths of arcs v, , taken
over all pairs w, z € P, is finite and consequently there exists a number [, > 1 such that each

such arc 7, , can be covered by a chain of at most balls [, balls of radius ¢ centered at points
of vy,.. We may assume in addition that U, ., the union of these balls is a simply connected
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set. It then follows from Koebe’s distortion theorem that there exists K, > 1 such that if
F":U,, — T is a holomorphic branch of F'~", then

(F) (w)]
Ey()] =

and consequently
K'< L(1)(w) < K. (3.6)

We shall prove the following.

Lemma 3.4. Q = sup, {||£7(1)|o} < o0.

Proof. Fix x > 0 so large that for every w € Pf

+o0
ot > |+ 2mik| Tt < 1, (3.7)

k=—00
where 1 is an arbitrary element of 7! (w). We shall prove by induction that for every n > 0,
X~ Kt
L7 (1 < L.
122l < s
And indeed, for n = 0 this estimate is immediate. So, suppose that it holds for some n > 0

and let 2,,, € P be such a point that £7(1)(2,41) = ||[£2(1)]]so (such a point exists due
0 (3.4)). If 2,41 € P,, then using (3.6) we obtain

= [ Lt Wdm = [ £ Wdm = KL W) laom(P)

and consequently ||£F(1)| < K (m(Px))_l. If Z,41 ¢ Py, then it follows from (3.7) and
the inductive assumption that

L ()] |oo = L7 (1) (2041) Z L£r (1 ( Zni1)k )&;1|§n+1 + 2mik| ™t

k=—00

-1 e 2 i
< Z L)oo Znr + 2mik | < KE(m(Pe)) ot Y [Znas + 2mik] !

k=—00 k=—00
< K (m(Py) .

We are done. ®

Lemma 3.5. There exists xo > 0 such that for every x > x
1

lnfzsglg{ﬁn( )(2)} = 7
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Proof. Let @ come from Lemma 3.4. Let z be so large that m(Pg ) < 1/(4Q). Suppose
for the contrary that £§(1)(z) < 1/4 for some n > 0 and all z € P,,. Then

lz/ﬁ?(ﬂ)dm:/&

This contradiction finishes the proof. ®

A A 1 1 1 1
Lrydm+ [, L (W)dm < Gm(Pa) +Qm(PE) < 7+ Q55 = 5

0

As an immediate consequence of this lemma and (3.6) we get the following.

Lemma 3.6. For every x > xy we have
inf inf {£7(1)(2)} > -

n>02€P;

(max{Kx, Kxo})

A~ =

We shall prove the following.

Proposition 3.7. For every t > 1 we have P(t) = P(t) = log ay.

t)
Proof. Tt follows from Lemma 3.4 that £} (1)(z) < Qa} for every z € P. Hence

P(t) = P,(t) = lim sup lE”(]l)(z) < log .

n—oo N

In view of Lemma 3.6, £}'(1)(xo) > ;K o} and therefore

1

1
1

P(t) = P,(t) = lim inf ﬁﬁg(]l)(z) > log ay.

We are done. B

Denote the common value of P(¢) and P(t) by P(t).

Let {z,}22, be a sequence of points in the cylinder P. We say that lim,_, 2, = oo if and
only if lim,,_,» Re(z,) = +00.

Let
Io(F) ={z € J(F) : lim F"(z) = oo},

i.e. Io(F) is the set of points escaping to infinity under forward iterates of F'. Analogously
define

Lo(f) = {z € J(f) : lim f(z) = oo},

n—00

Denote
Jo(F) = J(F)\ Io(F) and J.(f) = J(f) \ L (f)
and notice that
IOO(f) = 7T_1([00(]4—1))-
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Put
Yy ={z€ P:Rez> M}.

Let m; be the (¢, e"®)-conformal measure constructed in Theorem 3.2 (due to Proposition 3.7
o, = e"®). We shall prove the following.

Proposition 3.8. There exists M > 0 such that for my-a.e. x
lim inf Re(F"(z)) < M.
In particular, my(I(F)) = 0 or equivalently m;(J,.(F)) = 1.

Proof. Fix M > 0. Let B C Y); be an arbitrary Borel set. We shall estimate from above
the measure m;(B N F~'(B)). We have

mi(BNFH(B)) <my(F*(B)) =>_mi({z : f(z) € B+ 2kmi}).

keZ
If f(x) € B+ 2kmi, then

F'(@)] = | (@)] = | (@)] > (M + k).

Thus "
00 e—Pt
me({z: F(x) € B}) <2y my(B) - ———— < const my(B)M* .
(e P e BY) <23 mB) - i < (B)
Therefore, in particular, one gets
_ C

for every Borel set B C Y, and for some constant C' independent of M and B. Since
BN F'(B) C Yy, one can now use the estimate (3.8) to get inductively

mi(BNF~Y(B)N---NF™(B)) < (CM'™")"my(B)
This implies that for all M large enough

() F7(00) =0
and consequently !
mi(U F™H() F7(Var))) = 0.
The proof is finished. & - "

Let us show now that the estimates used in Proposition 3.8 and Proposition 10.2 lead to the
following.
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Corollary 3.9.
my(Yar) < Cell-M

for some constant C' and all M > 0 large enough.
Proof. Tt follows from the proof of Proposition 3.8 that
mi({z € Yar : F(z) € Yar}) < my(Ya)CM*!
and from the proof of Proposition 10.2 (formula (10.5) with my replaced by m; that
mt({x € Yy : ReF(z) < M}) < Cell=OM,

These two sets cover the whole set Yj,. The first inequality says that (for all M sufficiently
large) the first set covers less than, say, one half of the measure of Yj;. Thus,

my(Yar) < Qm({x € Yy :ReF(z) < M}) < 20e1-OM

and the proof is complete. B

Theorem 3.10. The (t,e"®)-conformal measure m = my, is a unique (t, 3)-conformal mea-
sure for F' with t > 1. In addition it is ergodic with respect to each iterate of F.

Proof. Fix j > 1. Suppose that v is a (¢, 37)-conformal measure for F? with some ¢t > 1
and > 0. The same proof as in the case of the measure m shows that v(I(F)) = 0. Let
Jr n(F) be the subset of J,(F) defined as follows: z € J, y(F) if the trajectory of z under
F7 has an accumulation point in {z € J(F) : Rez < N}. Obviously, Uy Jyn(F) = J.(F)
and by Proposition 3.8 there exists M’ > 0 such that v(J, »(F)) = m(J,m(F)) = 1. Fix
z € Jpn(F) and let recall that § < dist ({J(F), W({f”(O)}nZO))/Q. Then there exist y € J(F')

such that Re(y) < N and an increasing sequence {n;}, such that y = limy_, F/™(2).
Considering for k large enough the sets F, 7" (B(y,d)) and F, 7™ (B(y,d/K)), where F, 7™
is the holomorphic inverse branch of F™ defined on B(y,2d) and sending F’/™(z) to z, using
conformality of measures m and v along with Koebe’s distortion theorem we easily deduce
that

B 5 < V(B el P () £ BeI E O

for all £ > 1 large enough, where ¢ < 1, K > 1 is the constant appearing in the Koebe’s
distortion theorem and ascribed to the scale 1/2, By (v) is some constant depending on v and
N. Let M be fixed as above. Fix now E, an arbitrary bounded Borel set contained in .J,(F)
and let E' = ENJ, pp(F). Since m is regular, for every x € E’ there exists a radius r(x) > 0
of the form from (3.9) (and the corresponding number n(x) = ny(z) for an appropriate k)
such that

m( |J B(z,r(z))\ E') <e. (3.10)

Tz€E'
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Now by the Besicovic theorem (see [G]) we can choose a countable subcover { B(x;, r(x;))}2,
with r(z;) < € and jn(z;) > 7', from the cover {B(z,r(z))}zer of E’, of multiplicity
bounded by some constant C' > 1, independent of the cover. Therefore, assuming e’ < S
and using (3.9) along with (3.10), we obtain

l/(E' Z x“ ))B Jjn(z;) < BM ir -'L'z tﬁ Jjn(z;)
i=1 =1
< By, f:m iy (2:))) B P O
< BM(u)BM(m)Om(i[le(xi, r(xi)))(eP(t)ﬁfl)jn(wi) (3.11)

< Bag(v) Bar(m)Cm(|J Bl r(2:))) (PO 57)

< OBy (v)Bar(m) ("0571)" e+ m(E))

(
— CBu(v)Bu(m) (P98 (e +m(E)).
Hence letting € N\, 0 we obtain ¥(E) = 0 and consequently v(J(F')) = 0 which is a contra-
diction. We obtain a similar contradiction assuming that 8 < e’® and replacing in (3.11)
the roles of m and v. Thus B = e"® and letting ¢ N\, 0 again, we obtain from (3.11) that
v(E) < OBy (v) By (m)m(FE). Exchanging m and v, we obtain m(E) < CBy(v) By (m)v(E).
These two conclusions along with the already mentioned fact that m(J,(F)) = v(J.(F)) = 1,
imply that the measures m and v are equivalent with Radon-Nikodym derivatives bounded
away from zero and infinity.

Let us now prove that any (¢, e”®)-conformal measure v is ergodic with respect to FV.
Indeed, suppose to the contrary that F7(G) = G for some Borel set G C J(F) with 0 <
m(G) < 1. But then the two conditional measures v and vjp)\a

vl ):M vrmal ):u(BmJ(F)\G)
v(G) T v(J(F)\G)

would be (t,e/"®)-conformal for F7 and mutually singular. This contradiction finishes the
proof. ®

4. OLD AND NEW PERRON-FROBENIUS OPERATORS AND THEIR FINER PROPERTIES

As in the previous section we fix the map f = f\ and F' = F) and we assume that f : ¢'— T
has an attracting periodic orbit, i.e. that A € Hyp. Recall that C, = C,(J(F')) is the space
of all bounded continuous complex valued functions defined on J(F'). Fix a € (0,1]. Given
g < Ob let

vo =inf{L > 0:[g(y) — g(z)| < Lly — z[* forall z,y € J(F) with |y —z| < d},
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be the a-variation of the function g, where § > 0 was defined in formula (3.5) and let

l9lla = va(g) + [1gll-
Clearly the space
Ho = Ha(J(F)) ={g € J(F) : [|gla < oo}
endowed with the norm || - ||, is a Banach space densly contained in C}, with respect to the
|| - ||oo nOTmM.

Recall that for every n > 1 and every v € J(F),
F, " :B(F"(v),20) - P

was defined to be the holomorphic inverse branches of F defined on B(F™(v),2J) and sending
F™(v) to v. It follows from Proposition 2.1 and Koebe’s distortion theorem that there exist
constants L > 0 and 0 < < 1 such that for every n > 0, every v € J(F) and every
z € B(F™(v),0), we have

[(F,") ()] < LB" (4.1)

We say that a continuous function ¢ : J(F) — €'is dynamically Holder with an exponent
a > 0 if there exists ¢4 > 0 such that

|00 (F, " (y)) — 0n(F, " (2))] < colon(F, " (2))[ly — [ (4.2)
foralln > 1, all z,y € J(F) with |z — y| < § and all v € F~"(z), where
on(2) = B(2)B(F(2)) ... o(F" *(2)).

We say that a continuous function ¢ : J(F') — €'is summable if

sup{ > ||¢om,1||oo}<oo.

z€J(F) vEF—1(2)
If the continuous function ¢ is summable then the formula
Log(z)= 3 olx)g(z)
zeF~1(2)

defines a bounded operator £, : C, — C} called the Perron-Frobenius operator associated
with the potential ¢. We shall prove the following.

Lemma 4.1. If ¢ : J(F) — @ is a summable dynamically Hélder potential with an exponent
a > 0 then Ly(Ho) C Hy. If, in addition, ¢(J(F)) C [0,00) and sup,s, {||LF(1)||} < oo,
then there exists a constant ¢y > 0 such that -

1
1£591la < Sllglla + eillgllo

for all n > 1 large enough and every g € H,.
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Proof. Fix n > 1, g € H, and z,y € J(F) with |y — z| < 6. Put V,, = F~'(z). Then we
have

1L39(y) — Log(z)| =

Y Gu(EMW)g(F (W) = Y du(F " (2)g(F, " ()

= | 3 0u(F @0, "W) = 9(F @) + 3 9(F"w)@nl(F, (1) - bu(F, "(2)))

= g(F;“<y>>\ Sul((F, ™)) — %((FJ“)(@)\ +

+ 3 |6u((F, ™) (@) ]|9(F, "(y) — 9(E, ™(x)))|

veTy
; IIQIIOOE; |0 (F, va—y|“+1§ |6n(F, ") (@) a9 F, " (y) = F, " ()|
= C¢|rgllwﬁ?¢|(ﬂn)(x)ly—fvla+va( )(LB™)* n — x| ; |6 (F,
< [1L75 (WI(esll9]lo0 + L*B " valg)))]y — | -
This shows that
va(L£3g) < LI (1) (collglloo + L* B [|glla) < 00 (4.3)

and, in particular, £{(g) € H,. The inclusion L4(H,) C H, is proved. Suppose now that
¢(J(F)) C[0,00) and Qg = sup,,»1{[|LF(1)]|oc} is finite. It then follows from (4.3) that

1£890la < Qs LB [|glla + csQoll9lleo + [1£80]l00 < Qs LB [Iglla + Qo (cs + 1]g]]oo-

The proof is thus finished by taking n > 1 so large that Q,L“3" < % [ |

We say that a summable dynamically Holder potential ¢ : J(F) — (0, 00) satisfies condition
(*) if
Qo = sup{lIE M|} < o0

and we say that ¢ is rapidly decreasing if
lim L£,(1)(z) = 0.

Rez—o0

In order to apply the theorem of Ionescu-Tulcea and Marinescu we also need the following.

Lemma 4.2. Suppose that ¢ : J(F) — (0,00) is a rapidly decreasing summable dynamically
Hélder potential satisfying condition (*). If B is a bounded subset of H, (with the || - ||
norm), then L4(B) is a pre-compact subset of Cy, (with the || - ||o norm).
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Proof. Fix an arbitrary sequence {g,}5>, C B. Since, by Lemma 4.1, the family £,(B) is
equicontinuous and, since the operator L4 is bounded, this family is bounded, it follows from
Ascoli’s theorem that we can choose from {L4(g,)}72, an infinite subsequence {Lg(gn,)}52,
converging uniformly on compact subsets of J(F') to a function ¢ € Cy. Fix now ¢ > 0.
Since B is a bounded subset of Cj, it follows from (3.4) that there exists 7" > 0 such that
|L459(2)] <e/2forall g € B and all z € J(F) with Rez > T Hence

[¥(2)] <e/2 (4.4)
for all z € J(F) with Rez > T'. Thus [L4(gn;)(2) —¢(2)] < e forall j > 1 and all z € J(F)
with Rez > T'. In addition, there exists p > 1 such that |L4(gn;)(2) — (2)| < € for every
j > p and every z € Pp. Therefore |L4(g,;)(2) — ¢(2)] < e for all j > p and all z € J(F).
This means that |[L£4(gn;) — ¥l < € for all j > p. Letting € \, 0 we conclude from this and
from (4.4) that L4(gy;) converges uniformly on .J(F) to ¢ € C,. We are done. W

Combining now Lemma 4.1 and Lemma 4.2, we see that the assumptions of Theorem 1.5
in [IM] are satisfied with Banach spaces H, C C) and the bounded operator Ly : C;, — C),
preserves H,. It gives us the following.

Theorem 4.3. If the assumptions of Lemma 4.2 are satisfied then there exist finite numbers
Yooy € St ={z € C: |z| = 1}, finitely many bounded finitely dimensional operators
Q1,...,Q, : Hy = H, and an operator S : H, — H, such that

p
6= Y Qi+ 85"
i=1

foralln > 1,
Q?=Qi, QioQ;=0,(i#7j),QioS=8S0Q;=0

and

15"l < CE€"
for some constant C > 0, some constant & € (0,1) and all n > 1. In particular all numbers
Yis---,Yp are isolated eigenvalues of the operator L4 : Hy, — H, and this operator is quasi-
compact.

Since for all ¢+ € @ with Ret > 0, all n > 1, all 2,y € J(F) with |y — 2| < §, all v € F~'(z)
and some constant M; > 0,

[EY W) = 1(FmY (@) < My (57 @)y — =],

it follows from (3.1), (3.4) and Lemma 3.4 that if ¢ is real and Ret > 1, then ¢;(2) =
e PW|F'(2)|* is a rapidly decreasing summable dynamically Holder potential satisfying con-
dition (*) which means that all the assumptions of Theorem 4.3 are satisfied. Note that

A

Ly, = L. Using heavily Theorem 4.3 we shall prove the following
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Theorem 4.4. Ift > 1 then we have the following.

(a) The number 1 is a simple isolated eigenvalue of the operator ﬁt :H, — H,.

(b) The eigenspace of the eigenvalue 1 is generated by nowhere vanishing function 1, € H,
such that [ 1pydmy; =1 and limge,—s 100 ¥i(2) = 0.

(c) The number 1 is the only eigenvalue of modulus 1.

(d) With S : H, — H, as in Theorem 4.3, we have

ﬁt - Ql + 57

where Q1 : Hy, — @)y is a projector on the eigenspace Tihy, Q105 = S o Q1 =0 and
15™]lo < C€"

for some constant C > 0, some constant £ € (0,1) and all n > 1.

Proof. Let us show that 1 is an eigenvalue of £, and let us identify the eigenfunction
claimed in part (b). And indeed, in view of Lemma 4.1, ||[£}(11)||, < C) for some constant
Ci > 0 and all n > 0. Thus,

S

£i(n)

j=1

<

S

n—1
L, (1 e (n))
n i
for every n > 1. Therefore, it follows from Lemma 4.2 that there exists a strictly increasing
sequence of positive integers {ny }x>1 such that the sequence {nik ik LE{(]I)}]C>1 converges in
the Banach space Cj, to a function v : J(F) — IR. Obviously, ||¢||o < C; and, in particular
Yy € H,. Since m is a fixed point of the operator conjugate to L., fﬁ{(]l)dmt = 1 for every
j > 0. Consequently, f%Z?;& ﬁ{(]l)dmt = 1 for every n > 1. So, applying Lebesgue’s
dominated convegence theorem along with Lemma 3.4, we conclude that [¢,dm; = 1. It
immediately follows from Lemma 3.6 that ¢, > 0 throughout J(F). Since ¢, = Ly, it
follows from (3.4) that limge, y100 ¢4(2) = 0. Thus, in order to complete the proof of the
items (a), (b), (c) (that 1 is an isolated eigenvalue of £, : H, — H,, follows from Theorem 4.3)
it suffices to show that if 8 € S! is an eigenvalue of £, : H, — H, and p is its eigenfunction,
then f =1 and p € @%;. But this can be done in exactly the same way as in the proof of
Theorem 35(ii) in [DU2]. The item (d) is now an immediate consequence of Theorem 4.3 and
items (a), (b) and (c). ®

« «

5. INVARIANT MEASURES

The following theorem immediately follows from Theorem 4.4, Proposition 3.8 and Theo-
rem 3.10.

Theorem 5.1. Ift > 1, then the measure p = py = Yymy is F-invariant, ergodic with respect
to each iterate of F and equivalent with the measure my. In particular p(J,(F)) = 1.
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Due to Theorem 4.4 the F-invariant measure p has much finer stochastic properties than
ergodicity of all iterates of F'. Here these follow.

Theorem 5.2. The dynamical system (F,p;) is metrically exact i.e., its Rokhlin natural
extension is a K-system.

The proof of this fact is the same as the proof of Corollary 37 in [DU2]. The next two
theorems are standard consequences of Theorem 4.4 (see [DPU] and [PU] for example). Let
g1 and gy be real square-u integrable functions on J,(F'). For every positive integer n the
n-th correlation of the pair ¢, g9, is the number

CM%W%Z/m%mopmm—/m@/mmL

provided the above integrals exist. Notice that due to the F-invariance of ;1 we can also write

Cn(g1,92) = /(91 - E91)((92 — Egy) 0 Fn) dp,

where we write Fg = [ gdpu. We have the following.

Theorem 5.3. There exists C > 1 and p < 1 such that for all g, € Hy(P), g2 € L' (1)

Cnl91,92) < Cp"l|lg1 — Eqil|allg2 — Ega]|L:-

Let g : J.(F) — R be a square-integrable function. The limit

1 n—1 . 2
o?(g) = lim — (ZgoFJ — nEg) dpy
n—»00 n, ;
7=0

is called asymptotic variance or dispersion, provided it exists.

Theorem 5.4. If g € Hy(P), a € (0,1), then o*(g) ewists and, if a*(g) > 0, then the sequence
of random variables {go F™}>°, with respect to the probability measure p, satisfies the Central
Limit Theorem, i.e.

"l goFl —nE 1 r 2 02
plsx e J.(F): j=0 9 I<rl) o / e /%7 dt.
Vn oV2m J-o0
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6. BOwEN’S FORMULA

For every n > 1 let
A, ={z€ J(F):n—1<Rez<n}
We shall prove the following

Lemma 6.1. Ift > 1 then, [log|F'|du; < +o0.
Proof. Since ¢, : J(F) — (0,400) is bounded (even more limge, s 1o ¥:(2) = 0), applying
Corollary 3.9, we obtain
/log|F'|dut < /log|F’|dmt = Z/ log |F'|dm,
n=1"4n
< 3= mu((Yar) log(|A] exp(n))
n=1

< io: C’exp((l —t)(n — 1)) (log|)\| + n) < +o00.

It is well-known (see [PU] for example) that hy, = HD(Jy,) (see the appendix or [UZd|
for the definition Of Jy/)) is the unique zero of the pressure function ¢ — Pp(¢). Since
HD(J,(F)) = lim,,_,oo HD(J)s) (see [UZd]) and since HD(J,(F)) > 1 (also see [UZd]), there
exists M so large that hy, = HD(Jy) > 1. Then P(hy) > Pasr(has) > 0. Since, in addition
P(hyr) < 0o, we conclude from Proposition 3.1 and Proposition 3.7 that there exists a unique
h > 1 such that P(h) = 0. So, the measure my, is actually h-conformal in a sense of [UZd].
It therefore follows from Theorem 4.5 of this paper that h = HD(.J,(F')). Below we provide a
direct independent proof of this result.

Theorem 6.2. HD(J,.(F)) = h, the unique zero of the pressure function t — P(t).
Proof. Given k > 1 let
Xi ={z € J;(F) : liminfRe(F"(z)) < k}.

Choose an arbitrary point z € J(F'). Fix t > h. Take n > 1 so large that

%g2|wmwx

TEF~Ii(2)

1
§P(t) (notice that P(t) < 0).

for all j > n. Cover Py by finitely many open balls B(z1,0), B(22,0), ... ,B(z,0). Since

velUU U FEir,



REAL ANALYTICITY OF HAUSDORFF DIMENSION OF FINER JULIA SETS OF EXPONENTIAL FAMILN

we conclude that
oo I 00
) ; _ ) 1 .
HG) < Jim 330 5 KIPY ()] (20) < 10K)" fim 3 exp(GP()7) =0
j=ni=1 gcF-i(z =n

since P(t)/2 < 0. Hence HD(X}) < ¢. Since J,(F) = Uy Xk, this implies that HD(J,.(F)) <
t. Letting now ¢ N\ h, we conclude that HD(J,.(F)) < h.

In order to prove the opposite inequality fix € > 0. Since p,(J.(F)) = 1 and since gy, is
ergodic F-invariant, it follows from Birkhoff’s ergodic theorem and Jegorov’s theorem that
there exist a Borel set Y C J,(F) and the integer £ > 1 such that p(Y) > £ and for every
r €Y and every n > k

1
—log [(F7)'(2)] = x| <e, (6.1)
where x = [log|F'|duy is finite due to Lemma 6.1. Put v = myy. Given z € Y and
0 <r <9 let n >0 be the largest integer such that
B(z,r) C F"(B(F"(x),0)). (6.2)

Then B(z,r) is not contained in F;y "t (B(F"*'(z),§)) and applying Koebe’s distortion
theorem we get

r > K18|(FrHY (2)] L, (6.3)

Taking r > 0 sufficiently small, we may assume that n > k. Combining now (6.2) along with
P(h) = 0, Koebe’s Distortion Theorem and (6.3), we obtain

mi(B(@, 7)) < my(F, " (B(F"(2),0))) =< |(F, ") (F" (2))["ma(B(F" (x), 6))

- () ()
S E) (E (@) 2t e S
|(Em) ()|
Employing now (6.1), we thus get
mp(B(x,7)) < rhelFomtle-(ean — php2en (6.4)
Now, it follows from (6.2), Koebe’s distortion theorem and (6.1) that r < K§|(F")'(x)|™" <
2¢e
Kse==  Thus eX==)" < r~! and consequently e*" < r~x-. This and (6.4) imply that
v(B(z,r)) < my(z,7)) < R Consequently HD(.J,(F)) > HD(v) > h — XQ_EE and letting
¢ — 0 we finally obtain HD(.J,.(F)) > h. We are done.

7. ANALYTICITY OF PERRON-FROBENIUS OPERATORS

We start with the following.
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Lemma 7.1. Supppose that {¢, : J(F) — C},cq is a family of continuous summable po-
tentials , where G is an open connected subset of C. If for every z € J(F) the function
o — ¢,(2),0 € G, is holomorphic and the map o — Ly, € L(H,) is continuous on G, then
the map o — Ly, € L(H,) is holomorphic on G.

Proof. Let v C G be a simple closed curve. Fix g € H, and z € J(F). Let W C G be
a bounded open set such that v C W C W C G. Since for each z € F~'(z) the function
o +— g(x)p,(z) is holomorphic on G and since for each 0 € W

< I1£6, 9110 < 1£4,9lla < llgllasup{[|Ls, o : 0 € W} < 00

> 9(@)d(2)

zeF—1(2)

by compactness of W and continuity of the mapping o — L,_, we conclude that the function

o Logz)= Y de)gle) €T o €W,
)

zeF~1(z

is holomorphic. Hence, by Cauchy’s theorem [ L4 g(2)do = 0. Since the function o
Ly,9 € H, is continuous, the integral [ Ly, gdo exists and for every z € J(F), we have
[, Ly 9do(z) = [ Ly,g(2)do = 0. Hence, [ Ly, gdo = 0. Now, since the function o —
Ly, € L(H,) is continuous, the integral [ Ly do exists and for every g € Hy, [, Ly, do(g) =
[y Ls,g9do = 0. Thus, [, L4 do =0 and in view of Morera’s theorem, the function o +— Ly, €
L(H,) is holomorphic in G. The proof is complete. B

In order to prove the main result of this section we need the following auxiliary definitions
and few elementary lemmas. Given w € J(F') we define H,,, to be the set of all bounded
functions g : B(w,d) — @ such that there exists a constant C' > 0 such that if x,y € B(w, 9)
and |y — x| < 4, then |g(y) — g(x)] < Cly — z|*. The a-variation v,(g) is defined to be the
least C' with this property. H,, endowed with the norm ||g||o = va(g) + ||9|| is a Banach
space.

Lemma 7.2. If v € J(F) and ¢ € H, then the operator A, 4 : Hy — Ha pw) given by the
formula

Ay p9(2) = o(F, 1 (2))9(F, ' (2)), 2 € B(F(v),9)
18 continuous, and
[ 4vslla < 2+ (L))l 0 Fy o

Proof. For every g € H, and z € B(F(v),d) we have

[Avsg(2)| = 16(F, () - 1g(F, ()] < [l¢o F, Mo llglla (7.1)
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If, in addition, w € B(F(v),0) and |w — z| <, then similarly as in the proof of Lemma 4.1,
we get
|Aysg(w) — Ay pg(2)] <
lg(F (w)[|d o FH (w) = g o F7"(2)] + |¢ o " (2)]|g(Fy () — g(F, ()]
< lglloolld 0 F M lafw = 2|* + |6 0 F oo LB |w — 2|°
< lglla(t + (LBAY)p o Fy Hla|w — 2|

Hence, va(A,459) < (1 + (LB)*)||¢ © F, Y]allg||la and combining this with (7.1), we obtain
Ay eglla < (24 (LB))||¢ o F, M ]allglla. Consequently, A, s(H,) C Hq g, the operator
Ayg - Hy — Hop() is continuous, and |[Ay4lle < (2 + (LB)Y)||¢ o F, |- The proof is
complete. B

Lemma 7.3. If ¢ : J(F) — @ is dynamically Holder then for every v € J(F),
160 F, Hla < (es+ 1)l|d 0 Fy s

Proof. Tt follows from (4.2) that for all z,y € B(F(v),d) with |z — y| < § we have

(o F M (y) — po Fy ()] < eold(Fy ()] - |y — o] < eylld o B looly — 2]
and, therefore, v, (¢ o F, ') < cyllpo F; |- Thus, |[¢po Ey e < (cs+1) - [|po F oo We
are done. W

A straightforward calculation proves the following.

Lemma 7.4. If ¢ € H,, then for every n > 1 and every v € J(F)

|0 7" lo < (14 LES)[|0]|a
where g — go Fy ™ : B(F™(v),8) = @'is an operator from Hy to Ho pn(y)-

Lemma 7.5. If p: X — H, is a continuous mapping defined on a metric space X , then for
every v € J(F) the function x +— Ay pz) € L(Ha, Ho i), © € X, is continuous.

Proof. Fix xy € X, ¢ > 0 and take 6 > 0 so small that for every x € B(x,6) and every
v e J(F), ||p(x) — p(xo)||la < (24 (LB)*) 2e. Then applying Lemma 4.1 and Lemma 7.4 we
see that for every = € B(zo, ) and every v € V;, we have
1 4vp(2) = Avyptao)lla = 11 Av,p@)-pao) o < 2+ (LB)M)]] - [[(p(x) — p(0)) 0 F, ]«
< (24 (LAY A+ (LB))p(x) = plwo)lla < &

The proof is complete. B
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Denote the class of Hélder continuous summable functions on J(F') by Hf. We are now in a
position to prove the main result of this section.

Theorem 7.6. Suppose that G is an open connected subset of the complex plane @ and that
b, : J(F) = @, 0 € G, is a family of mappings such that the following assumptions are
satisfied.

(a) For every o € G, ¢, is in H,.

(b) For every o € G the functwn O, 1s dynamically Holder.

(¢c) The function o — ¢, € H, (0 € G) is continuous.

(d) The family {cy, }oec is bounded.

(e) The function 0 — ¢,(2) € T, o € G, is holomorphic for every z € J(F).

( ) (0'2 GG) E'(T>0) 3(0’1 GG)

{ ¢
sup

Py
Then the function o — Ly, € L(H,), 0 € G, is holomorphic.

1o € B(ag,r)} < 00.

Proof. In view of Lemma 7.1 it suffices to demonstrate that the function o — L, € L(H,),
o € (G, is continuous. First notice that in view of Lemma 7.2, Lema 7.3 and the assumption
(d), we have for every v € J(F) and every o € B(o,,r) that

14v6,1la < 2+ (LA)¢o 0 Fy M la < Ml|s 0 Fy oo

where M = (2+(LF)*) sup{cy,,0 € G} < co. We can continue the above estimate as follows.

B 1 O on_l
A llo < M6y 0 F oo = M‘ Sy =1
- ¢o 0 F, !
< Ml o, [ 22205 (72)
< 01| 22| om0 P o < Ml o B
o1 |loo

where T is the supremum taken from the assumption (f). For every z € J(F) define the
operator Ly, . : Hy — H, . by the formula

Ly, .= Z d)oF—U gon_l— Z A,% (7.3)

vEF~1(z) vEF—

Notice that

£¢a’72 (g) = £¢sg(g)|B(z,5) (7-4)
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for every ¢ € H,. Fix now ¢ > 0 and two elements 0,7 € B(o2,7). Then there exist
ge € By, (0,1) and two points x,y € J(F') such that

1£6, = Lo, llo = sup {[|L,(9) = L4, (9)lla = g € Bu, (0,1)}

g
S ||£¢a(gf) - ‘C¢r(ga)||a + 5

= va (L, (9:) = Lo,(9:)) + £ 110, (9:) = Lo, (92 |

€ £ 9
< Vg (£¢a,x(ga) - Ed)r,x(ga)) + 5 + ||£¢a,y(ga) — £¢r,y(ga)||oo + g + 5

3¢ 7.5
< 11£0,0(9) = Lorir(92)la + 1L,(02) = Lova(9lla+ 5 (79)
3e

< 2/[Looiw(9:) = Lorw(ge)lla + —
3e

5 Y

where w is either x or y depending upon which number ||Ly, .(9:) =Ly, +(gc)||a oF |[|L4, 4(9:)—
Ly, 4(9:)||a is larger. Since ¢,, is a summable function (see (a)), there exists a finite set
V C F'(w) such that

S 2||£¢0'7w - L¢T7w||a +

€
10MT"

> e o F s <

veEF~1(w)\V

(7.6)

Since, by (c), the function & — ¢, € H, is continuous, it follows from Lemma 7.5 that the
function § — A, 4, € L(Ha, Ha,r)) is continuous. Consequently there exists 1 € (0,7) such
that

||A’U,¢0' - (77)

9
Apolla < ——

for all 0,7 € B(0y,7n) and all v € V. Combining now (7.5), (7.4), (7.3), (7.7) and (7.6), we
get

3e 3¢ ¢ ¢
||‘C¢a_£¢r||a < E+2 Z ||Av,¢a_Av,¢r||a+2 Z (||Av,¢a||a+||Av,¢r||a) S —toto=e

veV veF—1(w)\V 5 5 9
We are done. B

Due to Hartogs’ theorem, as an immediate consequence of Theorem 7.6 we obtain the follow-
ing.

Corollary 7.7. Suppose that G is an open connected subset of @™, n > 1, and that ¢, :
J(F) — @, 0 € G, is a family of mappings such that the following assumptions are satisfied.
(a) For every o € G, ¢, is in H,.
(b) For every o € G the function ¢, is dynamically Hélder.
(¢c) The function o — ¢, € H, (0 € G) is continuous.
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(d) The family {cy, }oe is bounded.
(e) The function o — ¢,(2) € T, 0 € G, is holomorphic for every z € J(F).
(f) V(O’Q € G) E'(T > 0) 3(0’1 € G)

{2
Do

Then the function o — Ly, € L(H,), 0 € G, is holomorphic.

1o € B(O’Q,T‘)} < 0.

8. QUASICONFORMAL CONJUGACIES IN THE FAMILY {)\e”}

Fix A\g € Hyp. It is known that f,, : € — (C is structurally stable, i.e. if A is sufficiently
close to Ay, then there exists a conjugating homeomorphism hy : €' — @, hy o f, = fx o hj.
Moreover, hy can be chosen to be quasiconformal, for every x € @, the function A — hy(x)
is holomorphic and the quasiconformal constant converges to 1 when A approaches \;. In

the following proposition we use the construction of hy given in [EL] (which, in turn, follows
[MSS]).

dha(2)
d\

Proposition 8.1. If \y € Hyp, then hy can be chosen so that supze(p{‘
some neighbourhood of \g.

} 18 bounded in

Proof. We follow now the way in which h, is constructed. Let ay, ..., o, 1 be the attracting
periodic orbit of period p for fy,. There exist an open set {2, containing the attracting periodic
orbit ayg, ..., a,_1 and the sets Qf, £k =0,1,...,p — 1, such that

O= U QF,

0<k<p—1
A =5 k=0,...,p -2,

and

A 0.
For every A sufficiently close to Aq there also exists an analytic map (linearization) z — H)(2)
mapping the set Q) onto the unit disk ID such that Hy maps each set Q5 conformally onto ID
, Hyo f(2) = Hy(2) forall 2 € Q§ and all k =0,1,...,p — 2, and Hy o f} = A(\)H,, where
A(A) = (fR,) (ao) is the multiplier of the periodic orbit ay, ..., a, 1. Since there is only one
singular value 0, this last (conjugacy) equation can be extended to a domain containing 0,
i.e. we may assume that 0 € ). Moreover, H) can be chosen so that H,(0) = const. not
intersect Next, one constructs a conjugacy h¥¢ : ,, — €, such that h{¢ is quasiconformal
for every A sufficiently close to Ao, A€o fr, = fr o h¥¢, hy, = id, and h{°(0) = 0 Notice, that
in the construction of hy we have to modify Hy'o Hy,, on the annulus Qy, \ f7(2,) C 2,
which forms a fundamental domain for the map f§0|Q>\O. In addition, it can be arranged so

that hlic = H)\_1 o H), in some sufficiently small neighbourhood of 0 and, in particular, it is
holomorphic with respect to z in this neighbourhood of 0. Now, the global quasiconformal
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conjugacy hy is given by pulling h%¢ back using the dynamics of both f\ and f,,. More
precisely, for every £ in the Fatou set which is the basin of attraction to the periodic orbit
g, . .., ap_1, the value hy(€) is determined by the equation f} o hy(€) = hy o f (€), where
k > 0 is the minimal integer n such that f{ (£) € Q. So, if z = f§ (£) is in the fundamental
domain Qy, \ fP(Q2),), then w = hy (&) satisfies the equation

f(w) = hi*(2).

Using the Implicit Function Theorem we get

oc 3flc w
dw  Zhee(z) - 241

dA of (w)
ow

k k
We will need formulas for both partial derivatives or 3§w) and 2L giw)‘ The second one is simply

the derivative of the k-th iterate of fy, i.e. it is equal to wyw ...wy where w; = fi(w). For
the first derivative we have the formula

ey Zﬁ‘ zme, 1)

So, we have to estimate

0 1,loc 1 <k
s hW(2) — 5 iy Wiy . . wy

wy ... Wk

where 7z is in the fundamental domain F), and w satisfies f¥(w) = h{°(z). Notice that (8.2)
takes on the form

d 1loc d 1loc
A7) 3T Wi - we _ prhy (wk)_l(leiJr Lo a1t
wy ... W wy ... W wy ... W A w;  wWiWs wy .. .wk_](g‘g)

, (8-2)

We know that hy(-) — id as A — A\ uniformly on compact subsets of €. Using this observation
for Y (\o), the compact set introduced in the proof of Proposition 2.1, it easy to show that if
z € J(fr) then |(f¥)'(2)| > ¢y™ for some ¢ > 0 and v > 1 independent of A being sufficiently
close to A\g. We will also need the following, easy to prove strengthening of the expanding
property. There exists [ € IN (independent of A in a neighbourhood of \¢) such that

w = Wo, Wy, ..., W ¢ Q/\ — |(f/l\),(w)| >3

Remembering that |w;| > & for all i = 1,...,k — 1 and some constant & > 0, it follows from
the above property that the sum (1 + - + —— 4 - + wl“i}kil) is uniformly bounded. It
remains to estimate from above

ihloc(z)

OX"A )

wy ... Wk

Again, by the strengthening of Proposition 2.1, we get |wy...wy 1| > |wy...wp /€71 >
const. So, it is enough to estimate | Zh{¢(z)/wi| = Zhie(2)/hie(2), where z € Qy, \ fP(2y,)-
The function a%h,f\"c(z)‘ is bounded in €, \ fP(2y,), so the only problem arises when h{¢(z)
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is close to 0. But then we use the fact that the conjugacy h, in the neighbourhood of 0 is
simply the composition H,' o Hy,, so it is a holomorphic function of (z,)). Using the fact
that H,(0) = 0 for all A we conclude that hy in the neighbourhood of the point (0, Ag), hy
has the form hy(z) = zg(z,A), where ¢ is an analytic function of z, A non-vanishing in a
neighbourhood of 0 for every A sufficiently close to Ag. Then

0 0 Dg(2,\)
—_h — )\) = hloc A ’

and therefore the ratio ‘%hl;c(z)/z‘ is bounded in a neighbourhood of 0. Thus ‘%m(z)‘ is

bounded throughout the whole Fatou set by a number say 7. Fix now z € J(f). Then there
exists a sequence {z,}°2, of points in the Fatou set of f converging to z. Since hy(z,) — hx(2)
uniformly in A and since all the functions A +— hy(§) are holomorphic for every & € @ we

Ohy(zn Ohy(z Ohy (2
conclude that 2%atn) $)E !, Thus ‘ e;)E )

25 < T and we are done. H

Given K,« > 0 we say that a map h : € — C'is (K, a)-Holder continuous if |h(z) — h(y)| <
K|z — y|* for all z,y € @ such that |z — y| < 1.

Proposition 8.2. The conjugating homeomorphism hy : € — T is (Kg,1/Q)-Hélder con-
tinuous where, Q) is the quasiconformality constant of hy and Ky : [1,00) — (0,00) is an
increasing function.

Proof. 1t is well known that every quasiconformal homeomorphism is Hélder continuous on

compact sets. But here, we know in addition that supzew{‘dhgf) ‘} < oo. In particular, this

implies that in some sufficiently small neighbourhood of Ay we have sup,.q¢{|z — hr(2)|} < 1.
We now follow the standard proof of Holder continuity of quasiconformal homeomorphisms.
Fix x € @. Consider the open disk G of radius 1 with the center at x. Then the topological
disk G' = h,(G) is contained in the disk of radius 2 with center at hy(z). Let R : ID — G’ be
its conformal representation such that R(0) = hy(z). Then the map g = R~'ohy: G — DD is
a quasiconformal homeomorphism between two disks of radius 1. Hence, by Mori’s theorem
19(21) — g(22)| < 16|21 — 2|9, In particular, for every z € G, |g(2)| = |g(z) — g()| <
16z — x|'/9. This implies that if |z — 2| < 1/2, then |g(2)| < (1/2)Y/€. Therefore, if
|21 — @], |22 — x| < 1/2, then

[ha(22) = ha(21)] = | R(9(20)) = R(g(22))| < Kg|R'(0)]lg(2) — g(21)| < 16K|R/(0)]+ |22~ 1]

where Ky is the Koebe distortion constant corresponding to the scale (1/2)"/9. Now, by
Koebe’s i-theorem the image R(D) contains a ball of radius |R'(0)| centered at hy(z).

Hence |R'(0)| < 8 and consequently |y (25) — ha(z1)| < 128K4. We are done.

We end this section with the following simple observation.
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Proposition 8.3. For every Ao € Hyp, every X\ sufficiently close to Ay and every z € @', we
have hy(z + 2mi) = hy(2) + 2mi.

Proof. Since hy conjugates f\ and f),, we have
)\eh,\(z) — h,)\(>\062) — h,)\(>\062+2m) — )\eh,\(z—l—?m').

Hence hy(z + 2mi) — hy(z) € 2miZ and, since the function z +— hy(z + 27mi) — hy(z) is
continuous, there exists k(\) € Z such that hy(z + 2pi) — hy(z) = 2wik()\) for all z € C.
Since the function A — hy(27i) — hx(0) = 27wik(A) is holomorphic, we conclude that k() is a
constant independent of A. Since hy,(27i) — hy,(0) = 27i — 0 = 27i, the proof is complete. ®

In particular, h, induces the map of the cylinder P onto itself and we reserve for it the same
symbol h.

9. REAL ANALYTICITY OF THE HAUSDORFF DIMENSION

In this section we prove Theorem 9.3, our main result in this paper. Let us recall that by
Hyp we denoted the set of all those parameters A € €'\ {0} for which the mapping f, : €' — €
has an attracting periodic orbit. We will need the following continuity result.

Lemma 9.1. For every t > 1 the function A — Py(t), A € Hyp, is continuous.

Proof. Fix Ay € Hyp and then r > 0 so small that B(\g, ) C Hyp and for every A € B(\y, )
fr, fr, are quasiconformally conjugate via the homeomophism hy : €' — € described in
Section 8. Then h) conjugates also Fy and F),. Fix now v > 1. Let 0 < r; < r be so
small that infycpngr){dist(0,J(fr))} > 0. Then there exists 0 < ro < ry so small that if
|z — w| < ry then

1wl
v o< <.
2]
In view of Proposition 8.1 there exists 0 < r3 < 75 so small that if |\ — \g| < 73 then
|ha(2) — 2| < ry away from a small fixed neighbourhood of the attracting periodic orbit. Fix
now z € J(Fy,). Take n > 1 and = € F) "(z). Since hy conjugates F) and Fy,, ha(F)"(2)) =
F\"(z). Also, for every 0 < i < n and every x € F,"(2), ha(f3,(x)) = f'(hr)(z)) and,
therefore | f§ (2) — fi(ha(z))| < ro. Hence,
[(FR) (ha(@)] _ (IF2) (ha(@))] _ TS0 AU (a(@)] _ 1”—[ | f{(ha(2))]

@l Gral M AR b @ <0

Since hy : F\"(z) — F\ "(hx(2)) is a bijection, we therefore conclude that
2w ™ (ha(2)) |(F3) ()
S (B V@)

c (,y—tn, ,Ytn)
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and from this,

Tlog Y Y@ - X IEL @I € (~log tlog).

2E " (ha(2)) e (2)

So, Pa(t) — Py, (t) € (—tlog~,tlogy) for all A\ € B(Ag,73). The continuity of the function
A — P\(t) is established. ®

Fix now Ay € Hyp and ¢y € (1,00). Since by Proposition 8.2, hy : J(F\,) — J(F)) is Holder
continuous with the Holder exponent a(\) depending on A and since «(\) converges to 1 as
A — Ao, we get that for every r > 0 sufficiently small that

a =inf{a(\): A € B(XAy,7)} > 0. (9.1)
For every A € B(Xo,7) and every ¢ > 1 let £, : Ho(J(F),)) = Ho(J(F),)) be the operator
induced by the weight function |F} o hy| ™" : J(F),) — IR, i.e.
£3.9(2)= > |Ex(ha@)] " g(x).
xelﬂ;ﬁ(z)

Our aim is to use Corollary 7.7. However, the potential |F§ o hy|™* does not depend on
(\,t) € €% in a holomorphic way. For this reason, we have to embed ) into €* and ¢ into .
We embed the complex plane € into @® by the formula x + iy > (z,y) € €*. So, A € €' = IR?
may be treated as an element of ¢%. Fix

f ::fh)and P’ZZPKW
The technical result of this section is provided by the following.

Proposition 9.2. Fiz \y € Hyp and ty, > 1. There then exist R > 0 and a holomorphic
function

L : Dgs (Ao, to), R) = L(Ha(J(F(Xo))

(\o is treated here as elements of @2, ty as an element of €) and o comes from (9.1) with r

replaced by R) such that for every (A, t) € B(\g, R) x B(ty,R) C U'x IR
L(At) = LS, (9.2)

Proof. For every A € ( sufficiently close to Ay, say A € U, let 8, = F} o hy and for every
z € J(F) let

S (2) = 05[] (9.3)
and
_ 6(2)
HAO(Z),

¥:(N) (A\,2) €U x J(F).
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We claim that there exists 7 > 0 such that for every z € J(F) the holomorphic function
log1, : B(Ag,7) — €'is well defined and there exists a universal constant (independent of
z € J(F) in particular) M; > 0 such that

[ logv- (M) < My (9.4)

for all A € B(\g,r), where the branch logi,()) is determined by the requirement that
log1,(Ag) = 0. Indeed

6a(0) = Fi(ha(2) _ falha(z)) _ Pa(fae(2) _ ha(fao(2)) = fao(2)
£, (2) () Fro(2) Fro(2)

and, using Proposition 8.1 along with the fact that J(f),) lies at a positive distance from the
origin, we see that there exists r > 0 so that for all A\ € B(Ag,r) and all z € J(F) we have
|1, (N) — 1| < 1/2. So, formula (9.4) is proven. Fix now zj, 2o € P with |z5 — 21| < §. There
then exist the lifts 2, € 7 '(21) and Z, € 7 (22) such that |z — Z,| = |22 — 21]|. We have

V(N _ S(a(Z2)) - fo(Z) _ AeMENgen

(A a(ha(21) - fa(Z2)  AeM D) Ape

= eXp(h,)\(Zg) — h,)\(gl) + 51 — 52)
Hence, applying Proposition 8.2 and (9.1), we get
|[Tog bz, (A) —log ¢z, (A)] = |ha(Z2) — ha(Z1) + 21 — Zof < |ha(Z2) — ha(21)| + 21 — 22
S (C + 1)|21 - 22|a = (C+ ].)|Zl - Zz|a S 2C|Zl - 22|a.

Hence for every A € B(\g,r) the function z — logv,(\), z € J(F), belongs to H, and its
Holder constant is bounded from above by 2C'.

Since the function log, : B()\g,r) — € is holomorphic, it is uniquely represented as a
power series

+1

log 1,(A\) = i an(2)(A — Ao)".

n=1

By Cauchy’s inequalities,
|an(2)] < —= (9.5)

for all n > 0. For every A = 2 + iy € B(\y,7) C €, we have

Relog .(4) = Re (3= 0,(2) (& ~ Re(u) + (o~ m))

(9.6)

o0

= 3 63z — Re(A))’ (y — Im(A))",

p,q=0

where ¢, (2) = ap44(2) (”J;q)iq. Due to (9.5)

g (2)] < lapig(2)] - 2740 < My27 0y 00 (9.7)
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Hence, Relog ¥, extends by the same power series expansion

o0

S a(2) (7 = Re(X))? (y — Im(Xy))’

P,4=0
to a holomorphic function on the polydisk Dge (Ao, 7/4). We denote this extension by the
same symbol Relog, and we have

Relogy,(\)| < S M 270 = 40, (9.8)
p,q=0
on Dgz (Ao, r/4). So, for every t € Bg(ty, p), where p = t, — 1, the formula
G (2) = — (tRelog b, (A) + tlog |6, (2)]) (9.9)

extends —tlog |0)(z)| on the polydisk Dge (Ao, r/4) X Bglto, p). Now, due to (9.8), for every
(A, t) € Bge(Ao,7/4) X Bg(to, p) and every z € J(F'), we have

|e§“(z)| = exp (Re(—tRelog 1, () — tlog |05, (2)|)

= exp(Re(—tRelog1,()))) |0, (2)| 7" < exp(|t||[Relog b, (A)])[0x, ()]~
< 64M1\1t||9/\0 (Z)|7Ret (910)

Since the function |0,| ¢ is summable, it therefore follows that each function

¢()\,t) - GC(A,t), ()‘7 t) € DGQ()\Oa T/4) X B@(tm p)a
is summable and one part of the assumption (a) of Corollary 7.7 is proven. Of course putting
L t) = LY (N t) € Dga(No,7/4) x Bglto, p), the condition (9.2) is satisfied. Obviously, the
function (A, 1) = ¢y (2), (A1) € Dg2 (Ao, 7/4) X Be(to, p), is holomorphic for every z € J(F)
and the assumption (a) of Corollary 7.7 is established.

We shall now show that for every A € Dge (g, /4) the function z — Relogv,(N), z € J(F),
is in H,. Since we have already proved that for every A € B(\g, r) the function z — log,(\),
z € J(F), is in H, and its Holder constant is bounded from above by 2C', using Cauchy’s
inequalities, we conclude that

an(2) = an()] <20 () o = wl

for all z,w € J(F) with |z — w| < §. Therefore,

4\ P+ g\ P+
pal2) = epa(w)| <2024 (2] z—wlt =20 (Z) e —wlt (011)
Hence,
X /8NP e NP\ N N
Relog ()~ Relog M| <2C 3 () (15) ({5) 12— vl =8C1z — w
P,q=0 (9.12)

for every A\ € Dgz (Ao, 7/16)) and all z,w € J(F) with |z — w| < 4. Hence, using (9.8), we
see that the function z — Relogv,(\), z € J(F), is in H, for every A € Dgz (Ao, r/4). Since
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Ox(2) = F5,(2) = Xo€?, we get that log |0y, (2)| = log|Ao|Re(z). Combining this, (9.12) and
(9.9) we conclude that

S (2) = Conp (w) | < 9CH |z — w|* < 9C(Jto] + p)|z — w|* (9.13)

for every (A, t) € Dge (Ao, 7/16) X Bg(to, p).

We shall now check the second part of the assumption (a) of Corollary 7.7 that ¢, =
eSon € Hy, for all (A, 1) € Dga (N, 7/16) x Bglty, p). Indeed, first observe that due to (9.10)
there exists a constant M, > 0 such that

(A, 1)(2)] = |0 @] < M, (9.14)

for all (A, t) € Dgz(No,7/16) X Bg(ty, p) and all z € J(F). Obviously, there exists a constant
M3 > 0 such that |e" — 1| < Ms|n| for all n € €' with || < 9CH§*. Applying (9.13) and (9.14),
we obtain

600 (2) — By ()| = |00 eConEI=Con®) — 1| < M M| (i (2) — (g (w)]
< 90M2M3(|t0| + p)|Z — U]|a

for all (A, t) € Dgz (Ao, 7/16) X Bg(to, p) and all z,w € J(F) with |z — w| < ¢. In particular,
P € Hy and assumption (a) of Corollary 7.7 is verified.

We shall now check the assumptions (b) and (d) of Corollary 7.7, i.e. that all the functions
Py = €500, (A t) € Dga(Ag,7/16) X Bglty, p), are dynamically Holder (with the exponent
«) with uniformly bounded constants cs, . So, fix A € Dga (Ao, r/16), n > 1, v € F~"(z) and
z,y € J(F) with |x — y| <. Applying (4.1) and (9.13), we obtain

|5 CanlF W) = T o (P ()
< z G (FU(E(0))) = o (F (F ()

< S 9C(tol + )| FU(E(9) — FI(E" ()"

1=0
< 9CL([to] + p) - B2y — x|
1=0
9C' Lo

< (Ito] + p)ly — x|

1-po
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ﬂ‘ s 2] < 2CLE (1 +p)} < 00, we get

Therefore, putting M, = Sup{ . 1—go

[P0 (F, " (Y) = b (F, " (2)] <

—-n d) )\,t s
= o (F " (@) - [ 522

= [oann(E, " (@)l

9C'M,L*
< ——(
1—pe

[tol + D) (F" ()] - |y — ]

and the assumptions (b) and (d) of Corollary 7.7 have been verified.
We shall now check the assumption (c) of Corollary 7.7 that the function

()\,t) — (]5(,\,,5) € H,
is continuous in some neighbourhood of (A, ;) in €®. Since
¢(>\:t)(z) = ¢ Relogv=0). |9/\0 (Z)|7t7

it is enough to show that both maps z — e *Rel8¥:(N) and z s |0, (2)|~* are in H, and that
both maps

()\,t) — e—tRelogw(.)(/\) € H,
and
(A1) = |03, ()] € Hy

are continuous.

First recall that the function z +— Relog,(\), 2z € J(F), is in H, and consequently the
function z — tRelog,()), z € J(F), is in H, for every ¢t € IR. Our most direct aim now
is to show first that the mapping (A,?) + tRelogv)(A) € H, is continuous on a polydisk
Dgs ((Ao, to), R) with sufficiently small R > 0. This function is obviously continuous with
respect to the variable ¢ on the polydisk Dge (Ao, 7/16) X Bg(to, p). It is therefore sufficient
to prove the Lipschitz continuity of the functions A — —tRelog.)(A) € H, with Lipschitz
constants independent of ¢. In order to do it, fix A = (Ag, Ay), N = (N}, A}) € Dga(Ao,7/16)
In view of (9.6) we have for all z € J(F') that

|Re IOg ¢z(A1) — Re lOg 1/)2()‘)| =

o0

= 3" cpa(2) (X, = Reo)”(N, — TmAg)” — (Aa — ReAo)”(N, — Im)\o)q)(}):w)

p,qg=0
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Put a, = A}, — Re)g, a, = )\’ —ImAg, b, = A\, — ReXg and b, = Ay — Im),. We then have
abal — bEbE| = |af (al — b) + b (ah — )]

T

< ey = 1 5 1077+ ] el
=0
r\P r\9" 1 r\4? r\P~ 1
< — — o 1
- (q (16) (16) T (16> (16) > [[A" = Al (9.16)

16 r\P/r
<= K P
<+a) (1) (55) IV =2l
Combining this, (9.15) and (9.7), we obtain

16 - 16C
|Relog 1, (N) — Relog(v,(\)] < 7||)\’ A Y (p+ )8 0 = 1

P,q=0
(where C; = Y00 _o(p+ )8~ #*9 is finite) for all ¢ € Bg(to, p/2) and all A, X' € Dge (A, 7/16).
Fix now z,w € J(F) with |z — w| < 4. It follows from (9.11) and (9.16) that

[#]|Re log 1 (X') — Relog h()) — (Relog 1, (V) — Relogt. (1))

— I\ = All,

o0

=1t | 3 (epq(w) = cpg(2)) (N, = Redo)? (N — TmAg)? — (As — Redo)? (A, — TmAo)?))
P,q=0
32C , —(p+q)
< ([to + p)—— [z = wl*[|A" = A Z p+q)2
P,g=0
320(]2

(It + PN = Alllz — w]”
where Cy = 37° _(p + ¢)27 %9 is finite. Thus,
va(—tRelog vy (A) — (—tRelog ) (X)) < 32CCh([to] + p)r*|IN = All-

for all A, X" € Dgz (Ao, 7/16) and t € Bg(to, p). Thus the proof of the continuity of the function
(A, t) = —tRelog ¢y (A), (A, t) € Dga(Ao,7/16) x Be(to, p), is complete. The continuity of the
function (A, £) = ¢y () = exp(—tRelogty(), (A1) € Dg(o, 7/16) x Befto, p) follows
now immediately from (9.8) and inequality |e® — e?| = |e?||e®® — 1] < A|b — a|, where A
depends on the upper bound of |al.

We shall now show that for every (A,t) € Dga(Ao,7/16) X Bg(to, p) the function z —
10\, ()|t 2 € J(F), is € H,. Indeed, this immediately follows from the formula log [0,,(2)| =
log |A\o| + Re(z), along with the facts that Re(¢) > 0 and

k =1inf{Re(§) : £ € J(F)} > 0. (9.17)
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So, it remains to show that for every z € J(F) the function (\, ) = |0y, (2)| 7" = |Ao| eRe2) €
H, is continuous. Since |0),(z)| " does not depend on A, we only need to check its con-
tinuity with respect to the variable t. Let fy, : J(f) — IR be defined as 8, = 6, o .
Then |0y, (2)|™" = 1,27 = 1he ()78 = (Aol e?| ™8 = |Ao|'e~™Re*). This function is IR-
differentiable with respect to z = (z,y) and its gradient is equal to — (e *!°6*0¢e~t* (). Recall
that the Julia set J(f) is contained in the half-plane Re(z) > k. So, given t;, {5 close enough

to to, we can estimate from above the norm of gradient of the function |0, (-)| ™ — |0, ()| "
in the half-plane Re(z) > R by

_(eftl 10g|/\0‘t167t1$) o (_(eftQ 10g|/\0‘t267t2$))‘ .

sup
T>K

Since Re(t1),Re(ty) > 0, it is obvious that this supremum tends to 0 as t — t;. This
implies that v, (9~)\0(-)|_t1 - |9~A0(-)|_t2) is arbitrarily small if ¢, and ¢; are close enough. Since
lim, o0 |05, (2)| = 00, it is easy to see that the function ¢ — |fy,(-)|* € C,, is continuous in the
supremum norm. Consequently the function ¢ — |0, (-)|* € H; C H, is continuous. Thus the
same is also true for the function ¢ — |0y,(-)|* € H, and the proof of the item (c) is complete.

So, it remains to check item (f), the last assumption in Corollary 7.7. In order to do it
fix arbitrary Ay € Dge(Ag,r/16) and ty € Bg(to, p). Take v > 0 so small that Dge(Ag, ) C
Dg2 (Ao, 7/16) and Bg(te,27) C Bg(ty, p). Then fix arbitrary A\; € Dge(Ag,7/16) and ¢, €

(1, Re(tz) 7v) Then for every (A, t) € Dga(A2,7) X Bg(ta, ), we have
ftRelogz/)Z( )
it 1w ()| (1) = ek ) Rt g (1=
(Ar,t1) (2 :
:etl(Relogqu(/\l)fRelogz/)Z(/\)) 6(t1 t)Relog ¢, (A |9}\0( )| (t—t1)
Using (9.8) we can estimate
|6t1 (Relog . (A1)—Relog v (A | _ eR (t1(Relog 9. (A1)—Relog . (N))) < e|t1(Relogqu()\l)fRelogz/)Z(/\))\ < 68t1M1‘
and

|6(t1—t)Re10g¢Z(/\)| — eRe((tl—t)Relong(/\)) < €|(t1—t)Relong()\)| < €4pM1.

Since A = inf,c;(r) [0, (2)] is finite, since Re(t; — ¢) < 0 and since Re(t; —t) > —p, we can
write

(t—t1) __ Re(t1—t) . Re(t1—t) : —p : —p
162 (2)| T = 103 (2)] < min{1, [0, (2) |} < min{1, [0, (2)[} 7 < min{l, A}"7.
Therefore
¢(A,t)(2’)
¢()\1,t1)(z)
and the item (e) is verified. The assumptions of Corollary 7.7 are therefore checked with
G = ]D)aa ()\0, 7"/]_6) X B@(to, p) |

< exp(8t1M1 + 4pM1) min{1, A}~

We are now in a position to conclude the proof of the following main result of our paper.
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Theorem 9.3. The function A\ — HD(.J,(f\)), A € Hyp, is real-analytic.

Proof. In view of we are equivalently to prove that the function A — HD(.J,(F))), A € Hyp,
is real-analytic. So, Fix A\g € Hyp and ¢, € (1,00). Since by Proposition 8.2, hy : J(F),) —
J(F),) is Holder continuous with the Hélder exponent () depending on A but converging to
1 as A — A, we get that for every r > 0 sufficiently small

a = inf{ay : A € B(Ag,7)} > 0.

Recall now that for every A € B(\g,7) and every t > 1, L3, : Ho(J(F),)) = Ho(J(Fy,)) is
the operator induced by the weight function |F} o hy| ™" : J(F),) — IR, i.e.

L3.9(2) = > |F(ha(@)] " g(x).
:vEF;OI(z)
Proposition 9.2 says that there exist £ > 0 and a holomorphic function
L : Dge ((Mo, to), R) = L(Ha(J(F X))
(Ao is treated here as elements of €% and t; as an element of @) such that for every (), ) €
B()\(),R) X B(to,p) COx IR
L(At) = L3, (9.18)
Now, in view of Theorem 4.4 and Proposition 3.7, e?® (¢ € B(t,, R) is a simple isolated
eigenvalue of the operator L(Xo,t) = L3, : Ha(J(F),) = Ha(J(F),)). Applying now the
perturbation theory for linear operators (see [Kal), we see that there exists 0 < Ry < R and
a holomorphic function v : Dgs((o, ), R1) — @ such that (A, tg) = ePo(0) and for every
(A, t) € Dga((Ao,t), Ry) the number v(\, t) is a simple isolated eigenvalue of L(\,t) with the

remainder part of the spectrum uniformly separated from ~y(A,¢). In particular there exist
0 < Ry < R; and k > 0 such that

o(L(A 1) N B(e®, k) = {7(\, 1)} (9.19)
for all (A, t) € Dgs ((No, o), Ra). Consider now for each (A, t) € B(\g, o) X (to — R,to + R the
operator Ly, : Hi(J(Fy)) — Hi(J(F))) (see Lemma 4.1) given by the formula

Lag(z) = X [F@)]g(a).
zeF~1(z)

It is easy to see that the map Ty : Cy(J(Fy)) — Cy(J(F),)) defined by the formula T)(g) =
g o hy establishes a bounded linear conjugacy between Ly, : Cy(J(Fy)) — Cy(J(F))) and
L3, 2 Co(J(Fyy)) = Cy(J(Fy,)). Since the map hy : J(Fy,) — J(F)) is Holder continuous
with the Holder exponent «, we obtain

TA(Hi(J(FX))) C Ha(J(Fx,))-
is an eigenvalue of the operator

L3¢ Ha(J(F,)) = Ha(J(Fy,))

Hence e ®)
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and, by Lemma 9.1, en® € B(eH®) k) for all A € B(A\g, R3) and all t € (to — p,to + p)
if p € (0,min{ty, R2} and R3 € (0, R,) are sufficiently small. Combining this, (9.18) and
(9.19) we see that y(\,t) = e™® for A\ ¢ as above. Therefore the function (A, ) — Pj(t),
(A, t) € B(XAo, R3) X (to — p, to + p), is real-analytic. Since, by Theorem 6.2, Py(s)) = 0 where
sy = HD(J(F))), in order to conclude the proof it suffices to show that

oP, (1)
o 7"

for all (A,t) € B(Ao, R3) X (to — p,to + p). So fix such A and ¢t. Fix z € J(F)). Since for every
u > 0 and every n > 1

> EY @) = 3 (E) @ EY @) <L 3 () (@)

TEF "(2) TEF, " (2) TEF, " (2)

we conclude that Py(t 4+ u) — Py(t) < ulog S which implies that 8%5('5)()\,15) <logp < 0. We
are done. W

10. ArPPENDIX. CONSTRUCTION OF CONFORMAL MEASURES

Let A € Hyp. In what follows we rely on the description given in [BD], we also use the
notation of this paper. We assume that zg, z1,...,2, = % is an attracting cycle of f = f,.
Assume that the singular value 0 is contained in the domain A;, the immediate basin of
attraction of z;. The Jordan domain with smooth boundary B, ; C A; is chosen so that
0,21 € Buy1, clf"(Buy1) C Byt Then B, is defined as B, = f~}(B,;1). Notice that B,
contains some half-plane Rez < —M and 2z € B,,. Theset B,,_1, B,_o, ..., By are then defined
inductively as follows. B; is a connected component of f~1(B;,1), containing z;. Notice that
for « < n B, _; is a simply-connected unbounded domain. The set B, is a complement of
a union of infinitely many sets F;. Obviously, F; = F, + 2k7i) (see Fig 3. in [BD]). (Here,
Fy+2kmi is the image of Fy under the map z — z+2kmwi.) To build an appropriate dynamics,
we fix one component Fj of the complement of By. Since the construction is very transparent
in the case of a fixed attracting point, we describe it first. So, assume that n = 1. Then we
start with B,. B is an unbounded domain containing some half-plane, f~!(B;) is connected
and B; C By = f~}(By). Each component F; of the complement of By is mapped by f onto
@'\ clB; D clUF;. Let S = F,. Then we see that

£(S) > e (U(S + 2/m)>

k

and f~'(S)N S is a union of countably many disjoint unbounded simply-connected domains
("fingers” ), each of them being mapped by f univalently onto S + 2k7i for some k € Z. We
define F': f1(S)NS — S as F' = 7o f where 7 is the natural projection 7 : U F; — Fp.
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In the general case of periodic attracting orbit the construction is slightly more complicated.
Again, let Fy be a component of the complement of Bj. Let

n—1
S=F, \7T_1( U Bi)a
=1

where 7 is the natural projection 7 : U F; — Fy. So,

£(S) 2 J(S + 2kmi)

and, actually, modifying the set S slightly, we can require that f(S) D clU.(S + 2kmi).
Again, SN f~H(71(S)) is a union of disjoint unbounded, simply connected domains and
F:f7(S)NS — Sas F=mo fis defined as FF=7o f. Let

J(F)={ze€ S : F"is defined for all n}.
One can easily see that
J(f)NS = J(F).

In this section developing the arguments worked out in [UZd] we construct first conformal

measures for the map F' : SN J(f) = SN J(f). The details are presented for the sake of
completeness and the convenience of the reader. A Borel measure m is called (¢, a;)-conformal
(with ¢ > 1) if for any Borel set A C S on which F' is injective, we have

m(F(A4)) = [ ol £'['dm
A
In [UZd] we only considered the case when a; = 1. Let
Sy ={z€S:Rez < M}.

Consider the preimage F~1(S),). This set is a union of infinitely many topological disks Q;
and
Qi N Qj = 0.

M

Now, we consider the finite family of disks ();", which are contained in Syr. In this way we

obtain the finite iterated function system:

where ¢; are appropriate holomorphic branches of F~1. Let Jy be the limit set of this system
and let my; be its unique (¢, exp(Py(t)))-conformal measure, where

Pu(t) < P(t) < oo (10.1)

is the standard topological pressure for the repeller F|;,, : Jy — Ju and the potential
—tlog |F"|.
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Remark 10.1. We have Jy; C Jyriy for all M large enough. In order to see this, take QM
and let QM. be the preimage of PM+1 under the same holomorphic branch ﬁ’;l of Pt
Then, obviously, QM > QM. Since F(QM'\ QM) C {z € Pyyp1 : M < Rez < M + 1}
and since the derivative of ﬁ'*_l on {z € ]5M+1 : M < Rez < M + 1} is bounded from above
by CyM~", we conclude that diam(QM'\ QM) < C,M~" for some appropriate constants C,
and Cy. Since QM C {Rez < M}, this implies that

QM c {Rex < M + 1}

for all M large enough. Hence, each QM > QM is (see the definition) used in the construc-
tion of Jyri1. Thus, the corresponding limit set Jy; 11 contains Jy.

Proposition 10.2. Ift > 1, then the sequence of measures myr, M € N is tight, i.e. for
every € > 0 there exists M so large that for every N

my({z € S:Rez > M}) <e.

Proof. Fix e >0, M > 0 and N > ¢. We shall estimate separately the measure my of two
sets, which cover {z € S: Rez > M}. First, we have

my({x € Jy : ReF(z) > M}) = kz: my({zx € Jy: f(z) € [M,N] x ([—m, 7] + 2kmi).

If x € Jy and Ref(z) € [M, N] x [—7, n] + 2kmi}, then

/(@) = 7)) > 5(M +lk]) > (M + K]

1
2
which gives

. 0 2te—Pn (1)
my({zx:ReF(z) > M}) <2» my{z: M <Rexr < N}) ———
v ,g) N (M + k)P
< ot ~Py(t) 3 (10.2)
s ,CX_% M + k)’
If N < M, then
my({z €S :Rez>M})=0. (10.3)

Since, by Remark 10.1, the sequence N — Py () is eventually non-decreasing, we see thaty(t) =
supy{—Pn(t)} < oo. If N > M, then it follows from this along with (10.2) and (10.1) that

9t+1,—Pn(t) ot+1n (¢

my({x : ReF(z) > M}) < :71]\/[1"5 < %i)

Keeping N > M we now estimate the measure of the second set. Namely

my({z: M < Rex < N and ReF'(z) < M}).

M (10.4)
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If Rex > M, then |f(z)| > AeM and therefore |Imf(z)| > VA2e2M — M2, Hence |F'(z)| =
/(@) = 1 ()] > [Imf ()| > /323 — 322, Thus,

my({z: M < Rex < N and ReF(z) < M} < consty(t) > kt
k>\/A2e2M — M2
< constMeM(l’t). (10.5)
t—1
Combining this along with (10.3) and (10.4) we obtain
my({x: Rex > M}) <e¢

for all N and all M large enough. ®

Since, by Prop 10.2 the sequence my is tight, it follows from Prochorov’s theorem that there
exists a subsequence my, weakly convergent to some limit probability measure m = m,. This
is the measure we are looking for. Recall that

J(F) =SnJ(f).

The proof of the following theorem requires only minor obvious modifications of the proof of
Theorem 3.4 in [UZd].

Theorem 10.3. The measure m is (t, i) -conformal, where iy = limy_ o0 €°5® and m(J(F)) =
1.
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