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Abstract

In this paper, we give sufficient conditions for the existence of conformal fam-
ilies of measures for fibred systems. We describe a general construction principle,
modelled on the principle developed by Denker and Urbanski. For those systems
that are weakly topologically exact along fibres and fibrewise countably critical,
we show that each measure in the constructed family is supported on the whole
fibre where it is naturally defined. We illustrate our result with a natural exam-
ple, namely, a family of non fibrewise expanding fibred polynomials which are
weakly topologically exact along fibres and fibrewise countably critical.!

1 Introduction

Throughout this paper, a fibred system is a collection Y = (Y, T, X, S, ), where Y and
X are compact metrizable spaces, T : Y — Y and S : X — X are continuous maps,
and 7 : Y — X is a continuous surjective map which satisfies 7 oT'= S ow. Thus, T
preserves the fibres Y, := 7 1({z}), z € X. The restriction of T to the fibre over r,
Y., will be denoted by T,; so T}, : Y, — Ys,.

In 1999, Denker and Gordin [5] (See also [4, 6]) showed that compact fibred sys-
tems, whose fibre maps are Ruelle expanding and topologically exact, admit, for every
globally continuous, uniformly fibrewise Holder continuous potential, a unique Gibbs
family of conditional measures on their fibres. This result reduces to the celebrated
Ruelle-Perron-Frobenius theorem in the non-fibred case (or, in other words, in the
one-fibre case, that is, when X consists of only one point).

Recall that a family {m,}.cx of Borel probability measures on Y is called a mea-
surable system of conditional probabilities for ) if m,(Y;) = 1 for all z € X and the
integral [ ¢(y)dm,(y) is a Borel-measurable function of z for every bounded Borel-
measurable function g on Y.

Denker and Gordin [5] defined the notion of Gibbs family for fibred systems in
the following manner. A system {m,},cx of conditional probabilities for Y is called
a Gibbs family (or conformal family) for a measurable function ¢ : Y — IR if there
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exists a positive Borel-measurable function A : X — IR, with the following property:
For all x € X the Jacobian of m, with respect to the map 7T is given by

% = A(z) exp(—¢) mg-a.e.,
that is,
mso(L:B) = A(e) [ expl=(y)])dma (y) 1)

for every special relative set B C Y, (this simply means that B is a measurable set
such that T, B is measurable in Yg, and T,|p is one-to-one).

It is called a weakly conformal family if Equation (1) is satisfied on every special
relative set which is disjoint from the closure of the set of singular points.

In his Ph.D. thesis, the first author considered whether such a family exists for
systems having fibre maps that are expansive rather than Ruelle expanding. He showed
that, whenever the base space X is countable, compact fibred systems, whose fibre maps
are uniformly open, expansive and topologically exact, and whose fibres are continuous
in the Hausdorff metric, possess, for every continuous potential, a Gibbs family, though
this family is generally not unique. Moreover, he proved that, without any restriction
on the cardinality of X, these systems admit a unique Gibbs family for every globally
continuous, uniformly fibrewise locally constant potential (See [9]). The approach he
used is based upon Denker and Gordin’s results and the existence of a change of metric
on Y, compatible with the topology, that transforms the initially fibre expansive system
into a fibre expanding one under the reign of the new metric (See [9, 10]).

In this paper, we generalize the first result mentioned in the previous paragraph. We
give sufficient conditions for the existence of weakly conformal and conformal families
of measures. However, we do not assume that the systems are submitted to any kind of
expansion along their fibres. Neither do we assume that the systems have continuous
fibres in the Hausdorff metric. Moreover, we do not impose any restriction upon the
cardinality of the fibres (cf. [5]).

When the base space is countable, the weakly conformal and conformal families
obtained satisfy all the requirements imposed by Denker and Gordin.

Theorem 1 Let Y = (Y, T,X,S,7) be a fibred system with countable base space X .
Assume that ) is fibrewise surjective and bounded-to-one on fibres great orbits. Then,
for every continuous function  on'Y, the system Y admits a weakly conformal family
of measures {my}tzex. If, furthermore, Y is weakly topologically exact along fibres and
fibrewise countably critical, then supp m, =Y, for all x € X.

Moreover, if Y is supplementarily a fibrewise local homeomorphism, then the family
{mgy}zex is conformal.

Since we work along individual great orbits, and the partition of a system into its
great orbits is usually not measurable, it seems that the measurability of the disinte-
gration obtained is hardly provable, not to say beyond the scope of our method, in
the case where X is uncountable. Nevertheless, our method does apply when the base
map S is countable-to-one, though it does not permit us to conclude anything about
the measurability of the system of measures.

We describe a general construction principle, inspired by the construction Denker
and the second author of this paper did concerning conformal measures for dynamical



systems. We provide the reader with a natural example of a fibrewise expansive,
though not fibrewise expanding, family of fibred polynomials that are fibrewise open
and weakly topologically exact along fibres, some of whom have a countable base. These
latter hence admit, according to Theorem 1, a conformal family of measures (which
may not be unique by the way). Our work also ensures the existence of conformal
families for mapping families, as studied by Arnoux and Fischer [1].

2 Construction of Conformal Families of Measures

Let Y = (Y, T, X, S, m) be a fibred system and ¢ be a continuous function on Y. Assume
that Y is fibrewise surjective, that is, T, is a surjective map for every x € X. Assume
also that ) is bounded-to-one on fibres great orbits, that is, for every x € X there is
a M, € IN such that T} is at most M,-to-1 for every & € [z], where [z] denotes the
great orbit of z, that is, [z] = {# € X|S™(%) = S™(x) for some m,n € Z}. Finally,
assume that S is countable-to-one.

In analogy to the construction principle for conformal measures enounced by Denker
and Urbanski [3], we will rely on the analytical fact that the transition parameter
¢ = limsup,,_,,, a™/n of a sequence of real numbers (a"),cpv is uniquely determined by
the fact that Y, o v exp(a™ — ns) converges for s > ¢, and diverges for s < ¢. For s = ¢,
the series may converge or diverge. However, there is a sequence (b™),cn of positive
real numbers satisfying

— <00, §>¢
n n_ )
nEZIb exp(a ns){ — . s<c

and lim,,_,, 0" /0" =1 (See [3, Lemma 3.1]).

We define sets (E7)neneex in the following way. For each x € X, choose a finite
subset E! of Y,. Then, having successively defined the sets (E¥),cx, 1 <k < n, for a
fixed n € IV, define E?*t = T 1(E%,) for every 2 € X. (Since T} is surjective, we have
in particular that T,(E"™') = E%_.) Thereafter, define the sequence (a?),c for every
x € X, where a?! = log¥,cpn exp[(Sn)(y)] and Spe = Ygckpen v © TF, and denote
by ¢, the transition parameter of the sequence (al),cpy. We then have the following
result.

Lemma 2 The transition parameter function ¢ : X — IR is constant over great orbits,
that is, c; = ¢, for every & € [x] and every x € X.

Proof. It is sufficient to show that for every x € X, it holds that ¢, = ¢g,. For this,
given x € X and s € IR, we compare the (n+1)st term of the series 3, v exp(al —ns)
with the nth term of 3}, o exp(a%, — ns):

exp(a’™! — (n+1)s)

X

n+1
am

= exp(—s)exp(a;” —a,)

exp(a, — ns)
EyeEQ“ exp[(Sn19)(y)]
ZyeEgm exp[(She) (v)]
Y yenn exp(p(y)) expl(Sne) (Ty)]
2 yeEn, exp[(Snp)(y)]

= exp(—s)

= exp(—s)



As Y is bounded-to-one on fibres great orbits and T,(E"*') C E%_, we obtain an
upper bound:

exp(a’™! — (n+1)s)

. S,
n < exp(—s+ ||¢l|oo) M. >yerz, eXp[(Snp) (y)]
eXp(aSm - ns)

:”Zyeggz exp[(Sne) (v)]
= exp(—s + [|¢[lc) M-

Whereas, as T,(E2*) D E%,, we get a lower bound:

exp(a’™! — (n+1)s)

x

> o 00
exp(agw—ns) > exp( S ||<10|| )ZyengeXp[(SnSO)(y)]

= exp(—5 — |l¢[loo)-
The simultaneous existence of these bounds ensures that both series have the same

nature for all s € IR and therefore ¢, = cg, for every z € X.
The following result is an immediate consequence of the previous lemma.

Corollary 3 There exists a sequence of positive functions (b" : X — IRy ),en which
are constant over great orbits and are such that for every x € X, it holds that

0

<00, §>c¢
Eb”ex a’ —ns ’ v
=" p(a ) =00, $< ¢,

and lim,,_,o, 0" /b2 = 1. In particular, the functions L : X — R, and H : X — IR,
respectively defined by L, = inf{b"™!/b" |n € IN} and H, = sup{b"*'/b%|n € IN}, are
constant over great orbits.

Now, for each z € X and s > ¢,, define the normalized measure

1 (o0}
mp ==Y Y Brespl(Sup) () - nsld,
T n=1yekEy
where N
My =3 > byexp[(Sup)(y) — ns]
n=1yekEnr

and 9, is the Dirac measure supported at y. Observe that, for each x € X, all measures
(m2)sse, satisfy m3(Y;) = 1, and so do their accumulation points. They also share
the same support, supp m; C Y,, and their common support is uniquely determined
by the sets (EI)n,en. Furthermore, note that if there exists € > 0 such that for every
y € Y and 0 > 0, there is n = n(y,0) € Z, for which

™ (B(y, N Yﬂy) 2 B(Tn(y)a 6) N Ysnry,

and if the finite sets (E}),cx are chosen so that they are e-dense in Y, for every x € X,
then supp m? =Y, for all s > ¢, and all x € X. This follows from the fact that, by
definition, E? = (Tgn-2,0-++0Tg, 0 Ty) " (Eg,-1,) for all x € X when n > 2. This is
evidently the case when ) is weakly topologically exact along fibres, and, consequently,
when Y is topologically exact along fibres in the sense of Denker and Gordin (cf. [4, 5]).
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Definition 4 A fibred system Y = (Y,T,X,S, ) is said to be weakly topologically
exact along fibres if for everyy € Y and 6 > 0, there exists n = n(y,0) € Z, such that

T"(B(y,0) N Yay) = Yonn,.
In summary, we have the following.

Lemma 5 For each x € X, the measures (mf)ss., satisfy m:(Y,) = 1. They further
have the same support, and this latter is uniquely determined by the sets (EI)pen-
Moreover, if the system is weakly topologically exact along fibres, then their support is
the whole fibre where they are defined, namely, supp mS =Y, for all s > ¢, and all
reX.

Now, fix x € X and s > ¢,. Let B C Y, be a special relative set and let

Ap(s) = m (T.B) = 37 [ exples = o(w)ldmi(o) ©

As T7Y(E2,) = EM! for every n € IN, we get

3, (T.B) = MS > Y Bewl(Su)y) s

n= lyeE” NT, B

M b7 exp[(Spe) (Ty) — ns]

5% n= 1yeBmT (E2)

M by expl(Sny19)(y) — (n +1)s] - expls — p(y)].

St n= lyGBﬁEn+l
Observe also that
M; [ exples — pldmiy) = > Y brexpl(Sug)(y) — ns] - exple — p(y)].
B n=1yeBNEY

Therefore

Ap(s) = Z S brte expl(Snr19)(y) — (n+ 1)s] - exp[—p(y)]

n=1yepnErt!

MSm

bTL
. (bnil e’ — 1) —b! Z e,

yEBNE]

The second term in the absolute value is clearly bounded. Henceforth, we study
the properties of the ratio M?/M¢. when s N\, ¢,. Both M? 7 oo and M§, oo as
s \y ¢z = Cg;. But what can be said of their ratio? Does limg\ ., M3/M§, exist? If so,
is it greater than 0?7 Or does M$/M§,_ remain at least bounded as s\ ¢,7

To answer this latter question, we compare the (n 4 1)st term of M? with the nth
term of Mg :

Syeprt by exp[(Sui1) (y) — (n + s
2 yeEn, b5, exp[(Snip) (y) — ns]




_ e Ui exp(=s + ¢(y)) expl(Sng) (Ty) — s
Yyerz, Vs exp[(Snp)(y) — ns]

As Y is bounded-to-one on fibres great orbits and T}, (E"*!') C E? | we obtain an upper
bound:

Y yemnt by exp[(Sn19) (y) — (n + 1)s]
2yern, Vs, exp[(Snp) (y) — ns] EyeE" bt expl(Sn) (y) — ns]
S Rl e T, expl(5,9) () —
Yyern, Vs, exp[(Sup)(y) — ns]
Yyers, Vs exp[(Snp)(y) — ns]

IN

exp(—s + [|¢lloc) M Hss

= exp(—s + [[¢lloc) Mz Hsy
= exp(os + plle) M ®
Since T,,(E™™') D E%_, we get a lower bound:
> yemntt by exp(Sn19) (y) — (n + 1)s]
Yyem, b, exp[(Snp)(y) — ns]
> exp(—s — [|¢lle)

Yyerp bt exp[(Snp)(y) — ns]
Yyern b, exp[(Sap)(y) — ns]
> exp(—s — [|¢lloo) Lisa

— exp(—s — [¢llo) L. @)
It follows immediately from (3) that
My X Yyery Uy expl(Snp) (y) — 1]
Mz, TR 2 yeEn, Vs, exp[(Sne) (y) — ns]
b Y em explo(y)]
M,

Yo EyeE,’}Jrl bcycH—l exp[(Snr19)(y) — (n +1)s]
2 net 2 yeEn, b5, exp[(Snip) (y) — ns]
bre”* Eyem explp(y)]
Mg,
+EZ°:1 exp(—s + |[0]|oo) Mo Hy Yyen U5, exp[(Sn) (y) — ns]
2 net ZyeE” b, exp[(Snp) (y) — ns]

< exp(—s+||go||oo){ RL[SA + M, H}

_|_

IN

and, from (4), that

M: X Yy b expl(Snp)(y) — ns]
Mg, — T2 emn b3, exp[(Sap)(y) — ns]
o Tab Tyempr B exp[(Snin0)(y) — (4 1)s]
- Sols Syerms. Vs, exp(Sne) (y) — ns]
T exp(=s — [[9lleo) Le Syermy, B expl(Sne) () — ns]

2 onet EyeE” b, exp[(Sne)(y) — ns]
= exp(—s — ||¢]|o0) Lo



Hence, under the assumptions that ) is bounded-to-one along fibres great orbits
and T,(E2*Y) = E%, for all n € IN, the ratio M:/M$, remains bounded as s \, ¢,.
More precisely, we have shown that

by| |
M,

v
expl=s = ) Le < - < exp(s + el { 2]+ 01, .

Sz
The fact that this ratio is bounded and that M? 7 oo as s\, ¢, suffice to ensure
that

sli\r?m Ap(s)=0.

Now, for each [z] € [X], where [ X] denotes the set of great orbits of the base system
(X, 9), choose a sequence (si)gemv, with sp \, ¢; when k 7 0o, such that the sequences
(MZ* /JM&E) ke and (m3f)genw converge for all & € [z] (the measures are assumed to
converge in the weak*-topology). This is possible since the great orbits of (X,S) are
all countable, the map S being countable-to-one by assumption. Thereafter, define

e~ 12 Sk Sk
Al(z) = lim M+ /M, (5)
and
mz = lim m2* (6)
k—o00

for every & € [x] and each [z] € [X]|. Then, given any x € X and any special relative
set B CY,, we have
lim Ag(sg) = 0. (7)

k— o0

Moreover, if B is a m,-continuity set, that is, m,(0B) = 0, we have, according to the
Portmanteau Theorem (see [2, page 11]),

lim [ exple, — o(u)ldm(v) = [ exples — o(u)ldma(y). (®)

k—o0

We deduce from (5) and (8) that

Sk

lim 55 [ exples = o(y)ldmi:(y) = A'(@) [ exples = p@)ldma(y).  (9)

It then follows from (7), (2) and (9) that
i % (2,8) = A'(2) [ exle, — p(u))dm.(y). (10

From (10), we obtain, for those B such that, supplementarily, T, B is a mg,-continuity
set,

mso(I,B) = lim m¢, (1, B)
= A'(x) /Bexp[cx — ¢(y)ldms(y)
— A’(x)ec“”/Bexp[—gO(y)]dmz(y)

= A(@) [ expl—p(y)ldm. (y), (11)
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where A(z) = A'(z)e.

Remark. The construction of this family suggests that it may not be unique, as
expected.

Remark. Given any x € X and any measurable set B C Y, such that T]'B is
measurable in Ygn,, T"|p is one-to-one and mg;,(0T/B) = 0 for all 0 < j < n, we
obtain by induction

mins(TB) = Au(@) [ expl=(S.0) 0)ldma(y)

where A, () = A(S"'x)---- A(Sx) - A(z).

In the same spirit as Denker and Urbanski (cf. [3]), for each x € X we denote by
Y2 the set of all points y € Y, at which T, fails to be open, that is, for which there
is a sequence {V,(y)} of open neighbourhoods of y such that diamV,(y) — 0 and
T (Va(y) NY,) is not open in Yg,.

On the other hand, we denote by Crit(T}) the set of critical points of T}, that is,
the set of points y € Y, which do not have any open neighbourhood V' (y) such that
V(y)NY; is a special relative or, equivalently, the set of points y € Y, that do not have
any neighbourhood on which T is injective.

Note that Crit(7}) is a compact subset of Y, for every x € X. Indeed, fix x € X. If
(Yn)nemv is a sequence in Crit(T},) which converges to y, then, given € > 0, there exists
N = N(e¢) € IN such that y, € B(y,€/2) for every n > N. Therefore B(y,,¢/2) C
B(y,¢€) for all n > N. Since y,, € Crit(7T}) for every n € IN, the map T, is not injective
on B(yn,€/2) for each n € IN. Hence T, is not injective on B(y,¢€) for every n > N.
This shows that y € Crit(7},) and Crit(7}) is thereby closed, and compact, in Y.

Finally, we define Sing(7}) := Y**UCrit(7}) for every z € X. A point y € Sing(7)
is called singular. Note that this set is generally not compact.

Lemma 6 Let x € X, p be a Borel probability measure on Y, v a Borel probability
measure on Ys, and f € L'(u). Assume that there is ax) € IRy such that the relation

V(T.C) = @) [ f)du(y) (12)
holds for every special relative set C C Y, with C' N Sing(T,) = 0 and p(oC) =
v(0T,C) = 0. Then the aforementioned relation (12) holds for any special relative

set A CY, with AN Sing(T,) = 0.

Proof. The proof is essentially the same as in [3, Lemma 2.4], so we will just give some
additional guidelines. Let ¢ > 0. Let A C Y, be a special set satisfying ANSing(T;) = 0.
Since p is regular on Y, there is an open set A C V' C Y, \Sing(7}) such that

a(z) /V \Af(y)du(y) <€

For each y € A, there exists a nonempty open ball B(y,r,) NY, C V such that
1| By, )y, is a homeomorphism and p(0(B(y,ry) NYy)) = v(01:(B(y,ry) NY,)) =
0. Indeed, since y € A and A N Sing(7,) = 0, the point y is nonsingular. This
means that there exists an open neighbourhood N(y) of y such that T,|n(y)ny, is a
homeomorphism. Since N(y) is an open neighbourhood of y, there is ry > 0 such that
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B(y,ry) € N(y) and B(y,m9)NY, C V. Observe that the sets {0(B(y,r)NYy) : r < ro}
and {0T,(B(y,r)NYy) : r < ro} form two uncountable families of mutually disjoint sets
(this fact holds for the second family since T,|n(yny, is injective). Therefore all but
countably many of these sets have measure zero and we can hence find a r, satisfying
the above mentioned assertion.

We can then choose a countable family of relative balls that covers A, construct
recursively a partition and go along similar lines to Denker and Urbanski’s proof from
now on.

Corollary 7 The collection {my}.ex constitutes a weakly conformal family of mea-
sures whenever the base space X is countable.

Proof. Fix x € X and let u = my, v = mg,, f = exp[—¢| and a(z) = A(z).
Relation (11) shows that the hypothesis of the previous lemma is satisfied and it follows
from this that

ol T:B) = A(a) [ expl—(y))dm. (v)

holds for every special set B C Y, with B N Sing(7,) = 0 or, in other words, that the
family of measures {m;}.cy is weakly conformal, but for its measurability aspect.
When X is countable, the functions A, ¢ and = — [ ¢(y) dm,(y) are measurable
functions for every measurable function ¢ on Y, for they are defined on a countable
space X, and the Borel g-algebra of a countable metrizable space coincides with the
trivial o-algebra of all subsets of this space.
The measurability of the family is then trivial.
Remark. If X is uncountable, then the method still applies but does lead to a pseudo
weakly conformal family of measures, in the sense that we cannot say whether this
family forms a measurable system of conditional probabilities or not.

Corollary 8 Assume that Y is a fibrewise local homeomorphism, that is, each T, is
a local homeomorphism. Then {mg}.cx constitutes a conformal family of measures
whenever the base space X is countable.

Proof. Simply observe that Sing(7,) = 0 for every = € X.

2.1 Sufficient conditions for the conformal family to satisfy
supp m;, =Y, for all x € X

We begin this section with a definition.

Definition 9 A fibred system Y = (Y,T,X,S,x) is said to be fibrewise countably
critical if for every x € X, the set Crit(T,) is countable.

We now prove the following result.

Lemma 10 If a fibred system Y = (Y, T,X,S,m) is weakly topologically exact along
fibres and fibrewise countably critical, then the support of the measures belonging to
the previously constructed (weakly) conformal family is the whole fibre where they are
defined, namely, supp m, =Y, for all x € X.



Proof. Fix x € X. For every n € IV, it holds that

n—1

Crit(12) = [J (T4) 1 (Crit(Tie,)).

k=0

Since ) is bounded-to-one on fibres great orbits, the set Crit(7") is countable. We can
thereby write Crit(7T0') = {c1,cs,...}. On the other hand, for each y € Y, \Crit(7}),
let 7, > 0 be such that 17} |p(,,) is injective. Since {B(yary)}erI\Crit(Tg) form an
open cover of the secound-countable set Y, \Crit(7T7), one can extract, according to
Lindel6f’s Theorem, a countable subcover {B(y;, r;)}3;. Then

o

Y, = | By, ;) U Crit(T7)

i=1
Since ) is weakly topologically exact along fibres, given any relative open set U, C Y,
there is a n = n(U,) € Z, such that T"(U,) = Ysn,, and therefore

]_ = msnx(anx)

= Mgny (UT (yisrs) NU) U {T"cz})
i:c; €Uy

< stn B(yi,ri) NU2)) + > mena({T}ci})
1:¢;EUg

= ZmS" B(yi, i) NU)) + Z mgng ({1 ci})
i:c; €Uy

B [Z/ o SR (S0) )l (1)

+ Z exp[—(Spep (Cz)]mx({cz})}

i:c; €U

< Au(@) exp(n]|]|0) [me Wirr) NU) + 32 ma({ci})

i:c; €U

This implies in particular that, either there is some y; with m,(B(y;,r;) "U,) > 0, or
some ¢ € U, such that m,({c¢;}) > 0. In either case, it follows that m,(U,) > 0. This
completes the proof.

Remark. Theorem 1 is a straightforward rewrite of Corollaries 7 and 8, and
Lemma 10.

3 A Family of Non Fibrewise Expanding Fibred
Polynomials Admitting Conformal Measures

Fibred polynomials constitute an interesting family of fibred systems. They have been
introduced by Sester [11], following earlier work done in the same spirit by Heine-
mann [7] and Jonsson [8] on Julia sets for maps of several complex variables. Some
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work in this direction has also been more recently accomplished by Sumi [13] and the
first author of this paper [10].
We first recall some basic definitions (cf. [12]).

Definition 11 Let X be a compact metric space. A continuous map P : X X € — X x €
is called fibred polynomial if

P(z,z) = (f(r), Px(2)),

where f: X — X s a continuous map and P, : € — € is a polynomial of degree at
least two for each x € X.

Let P: X x € — X x € be a fibred polynomial. For eachn € IN and x € X, set
P} = Pp-1izyo...0 Py and P} = Idg. The set

F, = {Z e ‘ {P}'}nemw is normal at z}

is called Fatou set for P in z, and J, = € \F, Julia set for P in x. Moreover, the
Julia set for P is defined as

J(P) = | {a} x /.,

zeX

whereas
F(P)=(X x €)\J(P)

is called Fatou set for P. The filled-in Julia set for P in x is defined by
K, = {Z el ‘ {P}(2) }nemw is a bounded subset of 6’}

and the filled-in Julia set for P is

Finally, the set
Crit(P) = {(z,2) € X x € | Pi(2) = 0}

s called critical set for P and

Post(P) = | J P*(Cri(P))

nelN

posteritical set for P.

The following lemma regroups the most fundamental properties of J(P) (See [12,
Proposition 2.9]).

Lemma 12 Let P: X x € — X x € be a fibred polynomial with P(x, z) = (f(z), Px(2)).
The following statements hold.

(i) For x € X, we have P;'(Fyy)) = F, and Py (Jp)) = Jos

(ii) J(P) is forward invariant, that is, P(J(P)) C J(P);
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(111) If f is surjective, then P is surjective, too;

(iv) If f is an open surjective map, then J(P) is completely invariant, that is, it holds
that P~'(J(P)) = J(P) = P(J(P));

(v) The map x — J, is lower semicontinuous with respect to the Hausdorff metric
for the space of compact subsets of €.

An important family of fibred polynomials are those whose postcritical sets stay
away from their Julia sets.

Definition 13 Let P : X x € — X x €@ be a fibred polynomial. We say that P is
hyperbolic along fibres if Post(P) C F(P).

Another important family of fibred polynomials are those that are coined expanding
along fibres.

Definition 14 Let P : X x ¢ — X x € be a fibred polynomial. We say that P
is expanding along fibres if there exist constants C' > 0 and X\ > 1 such that for each
n € IN

inf [(P2)(2)] = OA

(z,2)€J(P)

In fact, Sester has shown that the previous two families are the same (See [12,
Theorem 1.1]).

Theorem 15 A fibred polynomial P : X x € — X x @ is hyperbolic along fibres if
and only if it is expanding along fibres.

Sester further proved the following (See [12, Proposition 4.1]).

Proposition 16 If P : X x ¢ — X x ' is a fibred polynomial which is hyperbolic
along fibres, then P has continuous fibres, that is, the application x — J, is continuous
with respect to the Hausdorff metric on the space of compact subsets of .

Let us finally recall two other results (See [12, Corollary 2.6] and [12, Theorem
5.2]).

Theorem 17 The set K, is connected for all x € X if and only if Crit(P) C K(P).

Theorem 18 If P: X x ¢ — X x € is a fibred polynomial which is hyperbolic along
fibres and if the interior of K, is a non-empty connected set for all x € X, then each
K, is a k-quasidisk (with k independent of x) and therefore each J, is a k-quasicircle.

In [10], the first author of this paper showed that some fibred polynomials, despite
not being expanding along fibres, are fibrewise expansive.

Theorem 19 Let P: X x € — X x €' be a fibred polynomial on the unit interval
X =[0,1] € € . Assume that P(xz,z) = (f(x), Py(2)), where f has the following
properties:

1. f is a homeomorphism of the interval;
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2. flx) <z forall0 <z <1;
3. f(x) <x/8 for all x < x, and some x, > 0,

and that Py(z) = 2> + x/4. Then Y = (J(P),P, X, f,7x) is a fibrewise expansive,
compact system whose fibres are continuous in the Hausdorff metric. Furthermore, Y
s uniformly fibrewise open, but is neither fibrewise expanding nor expansive with respect

to the metric induced on J(P) by the usual euclidean norm ||(x, 2)|| = \/|z]? + |z|2.

In the course of the proof of this result, it was established that:

Lemma 20 J; is the unit circle and Jy the cauliflower.

Lemma 21 For each x € X, we have J, C A%(Hﬂ),%(lﬂ/lﬂ)’ where Ayp = {2z €
Cla <z < B}

Lemma 22 Given & < 1, the fibred polynomial P<; = P|[0,i]X¢U 15 expanding along
fibres and the fibred system Y<; = (J(P<z), P<z, [0, %], f,mx) generated by P<; is fi-
brewise expanding. Moreover, Y<; has continuous fibres and is not expansive. Further-
more, each J, (x < &) is a quasicircle.

We now prove that these fibred polynomials are weakly topologically exact along
fibres.

Lemma 23 All fibred polynomials described in Theorem 19 are weakly topologically
exact along fibres.

Proof. Notation: For each z € X and n € Z,, let x, = f"(x).

Fix & < 1 and choose an arc C in J;. Since the fibred polynomial P<; := Plj s« ¢
is expanding along fibres according to Lemma 22, there exists a > 0 and ) € Z,
such that diam(P{(C)) > a for all ¢ > . Choosing @ so large that d®(.J,, Jp) <
a/2 for all x < Z¢ (the second property of f and the continuity of the fibres in the
Hausdorff metric, d”, ensure the existence of such a @), there is z, € J, such that
0 # B(zq,a/2) N J;, € P{(C) for all ¢ > Q.

For every open set U C €' with U N Jy # (), there is a smallest k(U) € Z.
such that PSC(U)(U) D Jo. Observe that the family {B(z,a/2)}.c;, forms an open
cover of Jy. Let 0 < § < a/4 be a Lebesgue number for this cover. Then the family
{B(z,0)},cJ, constitutes an open cover of .Jy. By definition of 4, each element of
{B(z,0)},cJ, is contained in at least one element of {B(z,a/2)}.cs,- Choose a finite
subcover {B(z;,6)}5_, of {B(z,0)}.es, and let k = maxi<j< k(B(z;,0)). Then, for
each z € Jy, there exists 1 < j(z) < [ such that B(zj,),d) C B(z,a/2). It thereby
follows that k(B(z,a/2)) < k(B(zj(),0)) < k < oco. This implies in particular that
P§(B(z,a/2)) 2 Jy for every z € Jy.

Moreover, since P is an open map and {B(z;,d) X 6’};:1 are open sets in X x @,
the sets {P*(B(z;,0) x €')};_, are open in X x €' and P*(B(z;,d) x €') 2 {0} x Jo
for every 1 < j <. The set {0} x .Jy being compact in X x €, there exists ¢ > 0 and
2" > 0 such that P¥(B(z;,0) x €) 2 [0,2"] x Aj_c14, for each 1 < j < [. This implies
in particular that P¥(B(z,a/2) x €') 2 [0,2"] X Aj_c 14 for every z € Jp. We deduce
from the first two properties of f and Lemma 21 that there is 0 < 2’ < 2" such that
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PE(B(z,a/2)) D Ju for every z € Jy and all x < 2’ (by simply choosing 0 < 2’ < 2"
so that A1 /7= La4yvise) € Ai-cite). It follows that PE(B(z,a/2) N J) = J for
every z € Jy and all x < z'.

Now, if necessary, enlarge () so that 2o < 2'. Then

PER(C) = PE(PR(C)) 2 PE (B(2q,/2) N i) = Js

Q+K*

Finally, it follows from standard properties of Julia sets (in complex dynamics) that
P, is weakly topologically exact along fibres on the cauliflower.

An example of fibred polynomial with a countable base can easily be found by
restricting f to the orbit of a single point (or even countably many points) of X.

Example 24 Fiz 0 < zy < 1. Let P : [0,1] x € — [0,1] x @ be one of the fibred
polynomials described in Theorem 19 and X = {f™(xo)|n € Z}. Then P : X X € —
X x € is a fibred polynomial, and the fibred system Y = (J(P), P, X, f,mx) it induces
admits a conformal family of measures {my} cx such that supp my, =Y, for allx € X.

Indeed, the above system is compact metric, fibrewise surjective and two-to-one
on fibres. Its base space is obviously countable. It is weakly topologically exact along
fibres and trivially fibrewise countably critical, as Sing(T,) = O for all x € X. This
is a consequence of the fact that it is a fibrewise local homeomorphism, because of its
fibrewise openness and expansiveness.

It thereby satisfies all the hypotheses of Theorem 1 and the conclusion follows.
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