REAL ANALYTICITY OF TOPOLOGICAL PRESSURE
FOR PARABOLICALLY SEMIHYPERBOLIC GENERALIZED
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ABSTRACT. For arbitrary parabolically semihyperbolic generalized polynomial-like maps f,
we prove that on a certain interval, which contains the interval (0, HD(J(f))), the pressure
function t — P(—tlog|f’|) is real-analytic. Our results generalize the work of Makarov and
Smirnov in [3] and [7].

1. Introduction and Statement of Results

In this paper we consider parabolically semihyperbolic generalized polynomial-like maps f.
We show that on a certain interval which contains the interval (0, HD(.J(f)), the associated
topological pressure P(—tlog|f’|) is real-analytic as a function in ¢. Here, HD(.J(f)) refers to
the Hausdorff dimension of the corresponding Julia set J(f). Roughly speaking, we obtain
these results by showing how to associate to f some finitely primitive conformal graph directed
Markov system. This then allows to use a result of [5], which states that for this type of Markov
system the pressure function is real-analytic in the relevant range. We remark that our paper
extends results by Makarov and Smirnov obtained in [3] [7]. Also, note that our method of
associating to f a graph directed Markov system is completely different from the method used
in [3] and [7]. That is, we do not have to use the construction of Hofbauer towers, nor do we
have to introduce a ‘new Riemann metric’ in order to force some proper expansion.

Before we state our main result more precisely, we introduce some preliminary concepts and
notation. Let U C ('be an open Jordan domain with smooth boundary, and let U := J;c; U;
be a finite union of Jordan domains which are fully contained in U and which have pairwise
disjoint closures. A generalized polynomial-like mapping (abbreviated as GPL-map) is a map

fiU—U

which has a holomorphic extension to an open neighbourhood of ¢ such that for each i € I
the restriction of this extension to Uj; is a surjective branched covering map.
The set of parabolic periodic points of f is defined by

Q:={welU: fl(w)=w and (f9)'(w)=1 for some ¢ > 1}.

Without loss of generality, we shall assume that all parabolic periodic points of f are in
fact fixed points of f, and that f'(w) = 1 for each w € € (this is of course achieved by
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taking a suitable iterate of f, which does not affect our analysis here, since P(—tlog|f’|) =
LP(—tlog|(f™)']), for each n € N).
Also, we define

Crit(f) :={c: f'(¢) =0} and Crit(J(f)) := J(f) N Crit(f).
It will be convenient to split up the index set I in the following way.
I, :={i € I:U;N Uy f*(Crit(f)) =0} (‘post-critical free’),
L={iel:QnU;#0} (‘parabolic’),
I.:={iel:U;NCrit(f) #0} (‘critical’),
I, =TI\ (I,UI,) (‘regular’).
Furthermore, we define

Llo = U Ui, Llp = U Ui, Z/{C = U Ui, Z/{r = U Uz

iel, i€l iel, iel,

Definition. A GPL-map f is called parabolically semihyperbolic if and only if the following
conditions are satisfied.

(@) L.C I, (b) U,Ul,cU, (c) |J f(Crit(f))C U,

n>1

Note that in this definition we do not rule out the possibility that Q = (). If this holds, the
map f is simply called semihyperbolic. Also, recall that a GPL-map f is called non-recurrent
if for each ¢ € Crit(J(f)) we have that U; N {f"(c¢) : n > 1} = 0, where i € I is uniquely
determined by the fact that ¢ € U;. Hence, by (a) in the definition above, a parabolically
semihyperbolic GPL-map is always non-recurrent. In fact even more can be said, namely that
such a GPL-map is parabolically subhyperbolic and critically tame (see [8] for the definitions).
Furthermore, we remark that for a parabolically semihyperbolic GPL-map the sets I,, I, and
I, are always pairwise disjoint.

Throughout, we shall assume that if ¢ € I,, then the map f : U; — U is a conformal
homeomorphism. It then follows from Schwarz’s lemma that Q N U; is a singleton, denoted
by w;, and that w; is contained in the boundary of U;. Also, let f' : U — Uj; refer to the
inverse branch of f for which f; '(w;) = w;. By the Denjoy-Wolf theorem, it follows that
f7(2) converges to w; uniformly, for z € U. Since f' has an analytic extension to an
open neighbourhood of w; and since (f; ')'(w;) = 1, there exists a Taylor expansion of this
extension, which for z close to w;, and for some fixed a; # 0 and p; € N, has the form

fit(2) =24 ai(z —w)P T+

Using this, we obtain that for each compact set F' C U there exists a constant C'z > 1 such
that for every n > 1 and for all z € F' we have that (see e.g [1])

pitl _pitl

Cpin e <|(fi")'(2)] < Cpn™ i (LBP)




Furthermore, the following ‘critical parameters’ will be crucial in our analysis. Recall that for
c € Crit(J(f)), the order ¢(c) of ¢ is determined by the local behaviour of f around ¢. That
is, for z sufficiently close to ¢ we have for f the Taylor expansion

f(2) = fle) +bo(z — €)1 + . ... (LBC)
These ‘critical parameters’ are the following.

1 c

x(c) := liggg)lfg loggfl{|(fk)'(f”(c))|} and x := min {% tc€ Crit(f)} :
For an introduction and discussion of the topological pressure function P for GPL-maps
the reader is referred to Section 2. Notice (see Theorem 2.1) that if f is a semihyperbolic
GPL, then x > 0 and consequently {t € (0,00) : P(¢) > —xt} is an open interval in (0, +00)
containing (0, HD(J(f))]. If f is a parabolically semiheperbolic GPL such that £ = (), that is,
if f is semihyperbolic, we denote by A(f) the connected component of this interval containing
(0, HD(J(f))]; if @ # 0 we put A(f) = (0,HD(J(f))). We can now state the main result of
this paper as follows.

Theorem 1.1. If f is a parabolically semihyperbolic GPL, then the topological pressure func-
tion P : A(f) — IR is real-analytic.

As an immediate consequence of this theorem and the discussion preceeding it, we get the
following.

Corollary 1.2. For a parabolically semihyperbolic GPL-map f, the associated topological
pressure function is real-analytic in the interval (0, HD(J(f))).

We remark that these results generalize the results in [3] and [7] mainly in two ways. First,
our results do not require that there is exactly only one critical point contained in the Julia
set. Secondly, we also allow the presence of parabolic periodic points. Another important
difference in comparision with [3] and [7] is that we use a completely different method, which
is based primarily on the progress on graph directed Markov systems obtained in [2], [5] and
9].
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cussing the material of this paper. The second author extends these thanks to the Technical
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2. Review of topological pressure and conformal Gibbs states

Let us first recall the classical definition of pressure, and formulate the variational principle.
Let T: X — X be a continuous map of a compact metric space (X, d) into itself. For z,y € X
and n > 0, the metric d,, is defined by

dp(7,7y) := max{d(T"(z), T"(y)) : 0 <i < n—1}.

For e > 0, a set F C X is called (n, €)-separated if it is separated with respect to the metric
dy,, that is if d,(z,y) > € for all distinct z,y € F. With (F,(€))nen denoting a sequence
of maximal (in the sense of inclusion) (n,€)-separated sets, the topological pressure of the
continuous potential function ¢ : X — IR is defined by

1 n—1 )
P(T, ¢) := limlim sup — log ( > expd ¢poT’ (a:)) .
=0 noco N i
rEF, (€) J=0
Note that the notion of topological pressure belongs to topological dynamics, whereas measure
theoretical entropy h, (1) represents an important concept in ergodic theory. The link between
these two notions is given by the following so called variational principle

P(T,6) = sup{h,(T) + [ 6 du},

where the supremum is taken with respect to all T-invariant (ergodic) Borel probability
measures p supported on X.

In the more general case of a GPL-map f, if there are critical points in the Julia set, then
for ¢t > 0, the potential —tlog | f'| is neither continuous nor bounded. Hence, a priori it is not
clear how to adapt the above definition of pressure to this more general situation. However,
for arbitrary rational maps F. Przytycki suggested in [6] several ways to extend the concept of
topological pressure associated with the potential —tlog|f’|. We now recall these suggestions
in the setting of a GPL-map f, and for ¢t > 0.

(1) Variational pressure.

Py(t) := sup{h,(f) — t/log F|du),

where the supremum is taken with respect to all ergodic f-invariant measures sup-
ported on J(f).
(2) Hyperbolic variational pressure.

Piv(t) = sup{h.(f) — t/log f|du},

where the supremum is taken with respect to all ergodic f-invariant measures sup-
ported on J(f) such that the Lyapunov exponent is positive, i.e. such that [log |f'|du >
0.

(3) Hyperbolic pressure.

Py(t) := sup{P(ﬂx, —tlog|f'])},



where the supremum is taken with respect to all f-invariant hyperbolic subsets X of
J(f) such that some iterate of f|x is topologically conjugate to a subshift of finite
type. (Recall that a forward invariant compact set X C J(f) is called hyperbolic if
there exists n > 1 such that |(f™)'(z)| > 1, for each z € X).

(4) DU-pressure.

Ppu(t) = sup{P(f|x ), —tlog|f'|)},

where the supremum is taken with respect to all open subsets V' of J(f) for which
J(f) N Crit(f) € V, and where K(V) := J(f) \ Upn>o f (V). Note that K(V) is
compact, f-invariant and disjoint from Crit(f). -

(5) Conformal pressure.

Pe(t) :=log A(t),

where A(¢) is defined as the infimum of the set of all positive A for which there exists
a Borel probability measure m with the property d(m o f)/dm = \|f'|".

(6) Point pressure.

1
P.(t) :=limsup—log > [(f")(z)]"
n—oo 1 zef—(2)
for z € G, where G C @'\ Uy f"(Crit(f)) has the property that HD(C'\ G) = 0 and
that P,(t) = P,(¢) for all z,w € G. Note that the existence of such a set G has been
obtained in [6].

Since, as we already mentioned, a parabolically semihyperbolic GPL-map is in particular
non-recurrent, the following theorem can clearly be applied to the situation of a parabolically
semihyperbolic GPL-map. For the proof of this theorem we refer to the proof of Theorem 2.6
in [8] (cf. also [6]).

Theorem 2.1. For a non-recurrent map f and for each t > 0, all types of pressure functions
defined in (1)-(6) above coincide. Their common value will be denoted by P(t). Furthermore,
the following holds.
(a) If 0 <t < HD(J(
(b) If @ =0, then P(
(c) If Q #0, then P(t

(.

)), then P(t) > 0.
< 0 for all t > HD(J(f)).
=0 for all t > HD(J(f)).

~+

— —

Finally, we collect a few facts concerning conformal Gibbs states which will be relevant
throughout. For the proofs of these facts we refer to [8] where they were in fact proven
for non-recurrent rational functions. We remark that it is straight forward to adapt these
proofs to the setting of a non-recurrent GPL-map.

Recall that for a given ¢ > 0 a Borel probability measure m; supported on J(f) is called
t-conformal Gibbs state if f is non-singular with respect to m; and

d(mgo f)

— ~P() /t‘
G = Ol
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In view of the definition of conformal pressure, it follows from Theorem 2.1 that for a non-
recurrent GPL-map and for each ¢ > 0 there exists a t-conformal Gibbs state m;. Now, the
following result can be extracted from Corollary 3.5 and Theorem 3.6 proven in [8].

Theorem 2.2. Let t € A(f) and let m; be a t-conformal Gibbs state for a parabolically
semihyperbolic GPL-map f. Then m, is atomless and there exists a unique ergodic f-invariant
probability measure p; which is equivalent to my.

3. CONFORMAL GRAPH DIRECTED MARKOV SYSTEM AND GPL-MAPS

Before we state the main result of this section, we first recall the definition of a conformal
graph directed Markov system, abbreviated as CGDM-system.

Recall from [5] that the combinatorical spine of a graph directed Markov system is represented
by a directed multigraph (V, E,i,t, A), consisting of a finite set V' of vertices, a countable set
E of directed edges, two functions i,¢: E — V, and a transition matrix A : ' x E — {0,1}.
Here, i(e) refers to the initial vertex and t(e) to the terminal vertex of an edge e € E. In
our special context here, the matrix A = (A,,) has the property that A,, = 1 if and only if
t(u) = i(v). We then define the corresponding symbolic space as follows.

E:={(e1,e9,...) EE*: A =1 foralli>1}.

Additionally, assume that we are given a set {X, : v € V'} of non-empty compact connected
subsets X, of @, and a set ® = {@. : Xy¢) = Xj(¢) }ecr of univalent contractions, all with some
fixed Lipschitz constant 0 < s < 1, which have respective conformal extensions from an open
connected neighbourhood W) of X;) to an open connected neighbourhood Wi of Xy).
If @ satisfies additionally the ‘open set condition’ and the ‘cone condition’ (see [5], section
4.2), then @ is called a CGDM-system. The limit set Jg of ® is then defined as follows. For
an arbitrary 7 = (14, 79,...) € £ and n > 1, let

¢T\n = ¢7'1 ©...0 ¢Tn : Xt(Tn) — XT(el)'

Since ® consists of s-Lipschitz contractions, the intersection ,>; ¢, (Xt(m)) is a singleton,

€i€i+1

which we denote by 7(7). In this way we obtain a map 7 : & = U,cy Xo, and we let
Jp :=m(E).

The following proposition will turn out to be crucial in our analysis of the analytic properties
of the pressure function. Note that in the proof of this proposition we introduce some notation
which will also be used in the following section. Also, in here ‘finitely primitive of order 2’
refers to that for each pair u,v € V; there exist a,b € Ey such that i(a) = u,t(b) = v and
Agp =1 (cf. [5]).



Proposition 3.1. For a parabolically semihyperbolic GPL-map f there exists a CGDM-system
; which is finitely primitive of order 2, such that Jg, C J(f) and

Jo, NU, = J(/)NU,\ J fT(QU N F7"(WUy)).

n>0 k>0
Proof. For the proof it is sufficient to show how to associate to f a CGDM-system. For
this we define U ;) := f;'(U;), for each (i, j) € (I, x I,) U (I, x I, \ {diag.}). Here {diag.}
denotes the diagonal in I, x I,, and fj_1 : U — Uj refers the inverse of the map f|y,. Using
condition (c) in the definition of a parabolically semihyperbolic GPL-map, it follows that
Uiy N U £7(Crit()) = 0. (3.1)
n>1
Let Vy:=1,U (I, x I,) U (I, x I, \ {diag.}) be the set of vertices. The conformal univalent
contractions of our system are given as follows. By (3.1) and the definition of the set I,, we
have that for each v € V; the holomorphic inverse branches of any iterate of f are well-defined
on U,. Hence, for v € Vy and n > 1 we consider all holomorphic inverse branches f, " : U, — U
of f for which f;"(U,) C U, for some w € V}, and for which f*(f,™(U,)) N (Usey Us) = 0
for all 1 < k < n. In this situation we write ¢, : Uyey — Uje) instead of f, " : U, — Uy,
where t(e) = v and i(e) = w. Also, we define N(e) := n. Now, let

q)f = {¢6 : Ut(e) — Ui(e)}eEEfa
where E; is some countable auxiliary set parametrizing the family ®;. Note that the set V;
of vertices is finite, whereas in general the set E; of edges is infinite. We denote by &; the
corresponding symbolic space. Since U, NU,~; f*(Crit(f)) = 0, it follows that for each v € V;
there exists an open connected simply connected set U, C W, C U such that if e € E; and
t(e) = v, then ¢, has a univalent holomorphic extension to W, and ¢.(W,) C Uy (for later
use, we also introduce accordingly W and W, := U,c;, W;). Since for each i € I, we have that
Nuso f(J(f) NT;) = {w;}, we immediately obtain from the construction of ®; that
Jo, Nl = J(f) U\ U JTQU ) F78 (W)

n>0 k>0

We remark that the cone condition is satisfied, since for each v € V' the boundaries of the
disc U, is smooth. Also, the open set condition follows immediately from the construction
of ®¢, noting that the elements of ®; are inverse branches of forward iterates of f. Finally,
since for each pair u,v € V there exist a,b € E such that i(b) € I, and such that i(a) = v,
t(b) = v and A, =1, it follows that the system ®; is finitely primitive of order 2.

|

4. REAL ANALYTICITY OF THE TOPOLOGICAL PRESSURE

In this section we give the proof of our main result in this paper. From now on we shall
always assume that f is a parabolically semihyperbolic GPL-map.
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Lemma 4.1. Ift € A(f), then there exists 0 < p < 1 such that for all n > 1 we have
m (ﬂ fj(ur)) <L p
=0
Proof. Fix ¢ > 1, and consider the set

UD =U N fHU)N.o0fIU,).

Since the map f : U; — U is univalent for each j € I,, it follows by induction that there exist
finitely many, say &, holomorphic inverse branches of f7, denoted by fi " : U = U,,..., fr.*:
U — U,, such that

U = J ;U (4.1)

Hence, for any arbitrary set A C U, it follows that
kq

U A ) = U f ), (4.2)
7j=1

and by conformality of m, we have for each j € {1,2,... ,k,} that

5T S AT S m AT (N

as well as
(W) > ma(th)e O inf {(77) ()1} (4.4

Now, on U, we can apply Koebe’s distortion theorem, that is there exists a constant K > 1
such that

sup {|(f; ()} < K inf {10772}

ZEI/{T
Therefore, (4.3) and (4.4) imply that
Kt
() < o A)me(£04).

Combining this estimate with (4.1) and (4.2), it follows that
t

UD A Fa4) < ——
mt( r f ( )) = mt(ur)
Let U™ := N0 f7(U) = Ny1 U, and observe that f=H(U>)) D U*). By ergodicity of
11¢, we hence have that p,(U4>) € {0,1}. Now, since i, (U,) > 0, and since U, C U \ U,, we
have 1,(U;) < 1, which then implies that 2, (142°) = 0. Since {¢{?}22, is a descending sequence

of sets, we conclude that lim,_,, y;(U?) = 0, and hence that lim,_,,, m;(U?) = 0. Therefore,
8

my (UD)my(A). (4.5)

r



we can choose ¢ > 1 sufficiently large such that K'm,U'?)/m,U,) < 1/2. Inserting this
observation into (4.5), we obtain that for any arbitrary A C U, we have that

U O FIAY) < 3 mi(A). (4.6)

In order to finish the proof, we use (4.6) and observe that for every £ > 1 we have that

qk . q(k-1) q(k-1)
my (ﬂ f](ur)) =my (Z/{SI) r\|fiq ( ﬂ f](ur)>> < -—my ( ﬂ fj(ur)) .
j=0 j=0 Jj=0
By way of induction, this gives that
(ﬁ Fi )) <(by
my it T = \9 )

which also holds for £k = 0. Now let n > 1 be given, and write n = gk + r, for 0 < r < ¢ and
k > 0. It follows that

(0 <m0 < () < ()7 =2 (())

As an immediate consequence we derive the following corollary, which shows that for certain
values of ¢ the sets J(f) and Jg, coincide m;-almost everywhere on U,.

DO | —

Corollary 4.2. Ift € A(f), then my(Jo, NU,) = my(U,) > 0.

Proof. By Proposition 3.1 we have Jo, NU, = J(f) MU \ Upso f 7 (U Nk>o f~%U,)). By
Theorem 2.2 m; has no atoms. Finally, by Lemma 4.1 we have that m; (N> f*u,)) =o.
Combining these three observations, the statement of the corollary follows. [ ]

Lemma 4.3. For each ¢ € Crit(J(f)) we have x(c) > 0.

Proof. For every ¢ > 1, let f{'?,..., f;? be the holomorphic inverse branches which we
already considered at the beginning of the proof of Lemma 4.1. By Vitali’'s theorem, the
family {f;*: ¢ > 1,1 < i < k,} is normal, and since J(f) C U, this implies that each
point of accumulation of this family is a function equal to some constant. Hence, each point
of accumulation of the family of derivatives of these functions is the constant function equal
to zero. Thus, there exists ¢ > 1 such that [(f; 7)'(2)] < 1/2, for all 1 < i < ky, z € U,.
Also note that, since Uy~ f¥(Crit(f)) C U,, we have for each pair n,l > 1 that there exists
j€{1,2,... Kk} such that f;'(f"*'(c)) = f"(c). Now, let [ > 1 be fixed such that | = sq+r,
for 0 <r < qand s > 0. For each n > 1 we then have by the chain rule

(Y ()] 2 2°M, > 26710, = (219 M, /2,
9



where we have set M, := ming<;,{inf{|(f7)'(2)| : 2 € U, }}, which is strictly positive due to

the fact that Crit(f) N, = (0. Hence, it follows that inf;>1 {|(f*)'(f/(c))|} > (21/q)l M, /2 for
every [ > 1, which implies that x(c) > (log2)/q > 0. [

Lemma 4.4. Ift € A(f), then there exists | > 1 such that for each Borel set A C U we have

me(f1(A)) < (ma(A)Y

Proof. Using the t-conformality of my, it follows that the assertion holds for all Borel sets
A C U such that AN Ueecnirr sy B(f(c),0) = 0, for some fixed positive §. Hence, from now
on let a Borel set A C B(f(c),d) be fixed, for some ¢ € Crit(J(f)), with m;(A) > 0 and where
§ < dist(U,, 0U) /2 is chosen sufficiently small (which will be specified during the proof). Let
f.1(A) be the intersection of f~1(A) with the component of f~Y(B(f(c),d)) which contains

c. Also, for n > 1 we define

An(e) = (") (f(0)],

and let A(w,r,R) :={z € C:r <|z—w| < R} denote the annulus centred at w € € of inner
radius r and outer radius R.
The structure of the proof is as follows. We show that for each pair s,k > 1 we have that

@) mu(Ble, (SAgp(c) VIO)) & A y(c) M) POk,

For this we slice B(f(c),d) into annuli and define the ‘stopping time’
ui=sup{n > 0 m,(ANA(f(c),0An(c) 1, 8)) < Agulc) e TO™}.

We show that u is a finite number, and by combining this with the estimate in (i), we obtain
(i) ma(f7(A4)) < Au(e) PO,

Finally, we prove the following two facts, which then finishes the proof of the proposition.
(iii)  Agu(c) W1 PBsu < (N, (c) e POs)1/L for some [ > 0 and for s sufficiently large.
(iv)  Aw() e PO < my (AN A(f(€), ONsusny (€)1, 6)) (< mu(A)).

For (i), first note that by Koebe’s distortion theorem we have for all n > 1 that
me(B(f(c),0An(c)Y)) < Ap(c) te T,

Using this observation and the fact that |(f;1)(2)] < |z — f(c)|"*~4) for z # f(c) close to

f(c) (where f. ! refers to an inverse branch of f defined on some neighbourhood of z which
10



maps z close to ¢), it follows for each pair s,k > 1 that

me(B(e, (FAx(c) ™)) = :mt(A(c, (A1) (€) ™)V (X (c) ) ey

< z my (f;1<A<f<c>, Oa(i(0) 7 0Ay(€) 7))
= Z Ay ()77 e PO, (A(F (), Oy (), 6Ag(0) )
< &P i}cxsxc)(l—qéﬂtmt( (F(e). 60 () ™))
p
= i A Vrgs(¢)"te PO = i Ay () M9 g P05
j=k Jj=k
= \ypp(c)7H9(0) =P sk (1 - j§:+1 (ii%) o e—P<t>8<j—k>> .

Hence, we are left with to show that the sum in the latter expression is bounded from above.
For this recall that, since x(¢) > —q(c)P(t)/t, there exists x > 0 and some s depending on ¢,
such that *log|(f*)' (f"(¢))| > —q(c)P(t)/t + & for all for all v > s,n > 1. Thus, for every
Jj > k + 1 we have that

log (;i—g) Zglog Astin)(€) — log Asi(c ZIO ( sAl:zEc()C)>

= S lon (0] > (@ﬁ (G~ K.

It follows that

—t/q(c)
()\sj(c)> e—P(t)s(j—k) < e—(—q(c)P(t)—l—tn)s(j—lc)/q(c)e—P(t)s(j—k) — exp (_ tks (] B k)) ,
)‘sk(c) q(c)

which completes the proof of the statement in (i) above.
Since limy, o m (A N A(f(c), dAsn(c) ™, 6) = my(AN B(f(c),d)) > 0, in order to see that
the ‘stopping time’ u is finite it is sufficient to show that

lim A, (c) ‘e PO = .
n—oo

If P(t) > 0, then this is an immediate consequence of Lemma 4.3.
If P(t) < 0, then tx(c) > —q(c)P(t) implies that tlog|(f”) (f(c))| > —vq(c)P(t), for each v
sufficiently large. This gives that \,(c) fe P®v < ePOv(a()=1) "and since ¢(c) > 2, the result
follows.

11



For (ii), we combine (i) and the finiteness of u and obtain

mi(f7(A)) = mq(f7 (AN B(), Aeu(@) ™)) + ma (7 (AN A (), 6Asu() 7). 9)))
< mi (£ (BUF(), 0Aau(0) 1)) + ma(£7 (AN A(f(€), 6Au(0) ™), 6)))

< my (B, (0ha(@) ) 1)) + (SAsulc) ™ W@ PO, (AN AF (), heu(c)

S KcAsu(C)_t/q(c)e_P(t)su + (5)\su(6)_1)(q(0)_1)t _P( )SU)\ ( )
=~ )\su(c) *t/Q(C)efP(t)su

Y

where we have set K, := (1 + 3521 exp(—trs(j — )))

For (iii), recall that Llog|(f*)'(f(c))| = —q(c)P(t )/t—|— r for all for all v > s. Hence, by
choosing [(c) sufficiently large such that x > P(¢)q(c)(1 — q(c))/(t(I(c) — gq(c)), it follows that

(1(c) — () 282 5 (‘q(C)P“) n ) (1(c) = q()) = 192U 1 ey,

su t t

An elementary rearrangement then gives

)\su(c)—t/q(c)e—P(t)su < ()\su(c)_te—P(t)Su)l/l(c).

By defining [ := max{l(c) : ¢ € Crit(J(f))}, the statement in (iii) follows.
Finally for (iv), the finiteness of u gives

(AN A (), A (€)1 6) > Asurn(€) e PO > o P08 |y ()b,

which completes the proof of the proposition. [ ]

We now pass to the CGDM-system ®; associated with the GPL-map f. For this the reader
is asked to recall the construction and notation given in Section 3.

For each t > 0,s € IR and e € Ey we define the potential gt(;) : Wiey = IR for x € Wy by

912 () == tlog |, (x)] — sN(e).

We shall now see that for suitably chosen s and ¢ the family G, := {g,ﬁf;) ce € Ef}isa
summable Holder family of functions, where Holder refers to the fact that for some v > 0 we
have (cf. [2], [5])

sup sup sup g1y (D (2)) = 00 (9, ()] < 00

n>1 (Tl,Tz,...)ng Z,’U}EUt(-,—n)
Lemma 4.5. If u € A(f), then there exists § > 0 such that G, s is a summable Hélder family
of functions, for each s > P(u) — 4.

Proof. Using Koebe’s distortion theorem, it is straight forward to see that G is a Holder

family of functions, for each t > 0 and s € IR (see [5] paragraph 4.2, Lemma 2.2). In order to
12
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prove that Gy is summable, put Z™ := {e € E; : N(e) = n} and define
U De(Uyey) for n>1.
ecZ()

We first observe that if there are no parabolic elements then we have for n > 1 that R, C
[ ( s f‘j(ur)) (for n = 1, we have Ry C U,), and hence Lemma 4.1 and Lemma 4.4

imply
n—2 n—2 1
m(Ry) < my (fl (O fj(ur))) < (m (O fj(ur))) <po (47)

If there are parabolic points then Xo = 0, and consequently the condition P(u) > —yu implies
that P(u) > 0. For e € Z™ we have that there exists 1 < k < n such that f/(Use)) C U,
for all £ < j < n and such that f1(Uiey) C U; for all 1 < j < k and for some i € I Using
Lemma 4.1, Lemma 4.4 and (LBP), We obtain in this situation, with some fixed g such that
max{e T pl < B <1,

n pit1 n—k ) 1/
mu(Ry) < (my(f(R,))Y' < (Z e PO N | (ﬂ fJ(%)))

k=1 i€ly
I
< (e_kP(“)pn—k card(lp))l/ < B,

Combining this estimate and (4.7), we conclude that no matter if there are parabolic points
or not, there exists o > 0 such that for all n > 1 we have

my(R,) < e “". (4.8)

Using the definition of the measure m, along with Koebe’s distortion theorem, we now im-
mediately have for all n > 1 that

> sup (J(f") ()] e T e,

ecZ(n) z€U;e)

Taking now ¢ = a/2 finishes the proof. u

For the following lemma recall that the topological pressure P associated with the family G
is given by (cf. [2], [5])

1
P(t,s) := lim —log > sup exp <gts +Z qﬁw,...,rn(Z’))),

n—oo n, 2€U,
(i) “EVER)

where we have set E}(c”) ={(r,..., ) EE} : Apry =1 forall j=1,2,... ,n—1}
Also, associated with G there exists a unique G s-conformal probability measure m; s sup-

ported on Jg,. That is, foreach n > 1 and 7 = (7,... ,7,) € E™ we have for every Borel
f f

13



set A C Uy,) that

mys(9r(A)) = /AeXp <gts + Z I (Drisr m(2)) = WP S)> dmy s (2).

Lemma 4.6. If t € A(f), then P(t,P(t)) = 0. Furthermore, for every n > 1 and for each
T=(T,...,T) € Ej(cn) we have that

mt,P(t)(¢T(Ut(Tn))) = mt(¢T(Ut(rn))):

with comparability constants not depending on n and 7.

Proof. By conformality of m; and m, s, we have for each n > 1 that

(6 W) = [ 1642 'e OV i (2)

t(mn)
= /|9, ||lt POL;- 1N(Tj)T'”Lt(Ut(m))

— PP ||¢ ||t ~P(t) Y0, N(7j) ,—nP(LP(1))

< enP(LP(0) My p(t (¢T(Ut () ))

Therefore, if on the one hand P(t,P(t)) > 0 then m;p(Je,) = 0, which contradicts
Mt p(t (Jq:.f) = 1. On the other hand, if P(¢,P(t)) < 0 then we obtain m;(Js,) = 0, which is
also a contradiction. Thus, it follows that P(¢,P(¢)) = 0, which gives the lemma. u

Proof of the Theorem 1.1.
Using Lemma reflhsum and applying Theorem 2.6.12 of [5] (or alternatively [2] Theorem
6.4), we see that for each u € A(f) that there exists > 0 such that P is real-analytic on
(u—d,u+0) x (P(u) — 0,P(u) + d) in both variables ¢t and s. In order to prove that P is
real-analytic on (u — 0, u + J), we employ the implicit function theorem, showing that P is
the unique real-analytic function which satisfies P(¢,P(¢)) = 0 for all ¢t € (v — d,u + ). For
this it is now sufficient to verify that for all ¢ € (u — 6, u + §) we have

IP(t,s) exists and is strictly negative. (4.9)

Os  lap()

Denote the measure m; p(;) by v;. Proposition 3.1, Lemma 4.5 and Lemma 4.6 guarantee that
Theorem 3.7 of [5] is applicable. This gives that the measure v, has a lift 7; to the symbolic
space &f, and that there exists a measure /i, in the measure class of 7, which is invariant
under the shift map on the space £, and whose Radon-Nikodym derivative with respect to
7; is bounded away from zero and infinity. We can now apply Proposition 2.6.13 of [5] (or
alternatively [2] Proposition 6.5), which gives

oP(t,s)
0s

- —/Ndut (4.10)
(t,P(t)

14



Using the estimate in (4.8) and the second part of Lemma 4.6 we then compute

/Ndﬂt = /Ndﬂt - /Nd’/t = > my(R,) = Y nmy(Ry) < Y ne™® < oo,

n>1 n>1 n>1 (4.11)

where after the first equality sign we treated the function N slightly informally as defined on
the limit set Jg,. Combining (4.10) and (4.11), and using the fact that the function N is
strictly positive, we derive (4.9), which then completes the proof of Theorem 1.1. [ |
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