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FINER GEOMETRIC RIGIDITY OF LIMIT SETS OF CONFORMAL IFS

VOLKER MAYER AND MARIUSZ URBANSKI

ABSTRACT. We consider infinite conformal iterated function systems in the phase space IR¢
with d > 3. Let J be the limit set of such a system. Under a mild technical assumption which
is always satisfied if the system is finite, we prove that either the Hausdorff dimension of J
exceeds the topological dimension k of the closure of J or else the closure of J is a proper
compact subset of either a geometric sphere or an affine subspace of dimension k. A similar
dichotomy holds for conformal expanding repellers.

1. Introduction and preliminaries

In this paper we explore the finer geometric structure of limit sets .J of infinite conformal
iterated function systems. Under a natural easily verifiable technical condition (always sat-
isfied if the system is finite), we demonstrate the following dichotomy. Either the Hausdorff
dimension of J exceeds the topological dimension £ of the closure of J or else the closure of J
is a proper compact subset of either a geometric sphere or an affine subspace of dimension &
(in addition, if any one of our conformal contracting mappings is a similarity, then the latter
case holds). This is a strengthening of the following weaker dichotomy proven in [MMU]: if J
is connected, then either the Hausdorff dimension of J exceeds 1 or else .J is a proper compact
segment of either a geometric circle or a straight line. The picture is now much clearer. We
would like to add that so far, up to our knowledge all the similar works concerned the same
dichotomy as that produced in [MMU] (see for ex. ([Bo], [MU2], [Ma], [Pr], [Ru], [Su], [U1],
[UV], [Z1], [Z2]) most of which dealing with the plane case d = 2 and applying the Riemann
Mapping Theorem. Our approach is based on an extensive use of the concept of rectifiablity.

To start the preliminaries concerning conformal iterated function systems, let I be a countable
index set with at least two elements and let S = {¢; : X — X : i € I} be a collection of
injective contractions from a compact set X into X for which there exists 0 < s < 1 such
that p(¢;(x), ¢i(y)) < sp(zx,y) for every i € I and for every pair of points z,y € X. Thus,
the system S is uniformly contractive. Any such collection S of contractions is called an
iterated function system. We are particularly interested in the properties of the limit set
defined by such a system. We define this set as the image of the coding space under a coding
map as follows. Let I* = UJ,,~; [", the space of finite words, and for 7 € I", n > 1, let
¢r = ¢y, 0 ry0--0 ¢, Let I = {{r,}°°,} be the set of all infinite sequences of elements
of I. If 7 € I* U I°° and n > 1 does not exceed the length of 7, we denote by 7|, the word
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TiTy...T,. Since given 7 € I*°, the diameters of the compact sets ¢.,(X), n > 1, converge
to zero and since they form a descending family, the set

Fjo Grl,, (X)

is a singleton and therefore, denoting its only element by 7(7), we define the coding map
m I — X.

The main object in the theory of iterated function systems is the limit set defined as follows.

TEI® n=1
Observe that J satisfies the natural invariance equality, J = U;c; ¢i(J). Notice that if I is
finite, then J is compact and this property fails for infinite systems. Let S(co) be the set of
limit points of all sequences x; € ¢;(X), ¢ € I', where I’ ranges over all infinite subsets of I.
In [MU1] the following has been proved

Proposition 1.1. If lim;c; diam(¢;(X)) =0, then J = J U Uy do,(S(00)).

An iterated function system S is said to be conformal if X C IR? for some d > 1 and the
following conditions are satisfied.

(1a): Open Set Condition (OSC). ¢;(IntX) N, (IntX) = O for every pairi,j € I, i # j.

(1b): There exists an open connected set V such that X C V C IR? such that all maps
bi, 1 € I, extend to C* conformal diffeomorphisms of V into V. (Note that for d =1
this just means that all the maps ¢;, ¢ € I, are C'* monotone diffeomorphisms, for
d > 2 the words conformal mean holomorphic or antiholomorphic, and for d > 3, the
maps ¢;, © € I are Mobius transformations. The proof of the last statement can be
found in [BP] and [Va] for example, where it is called Liouville’s theorem)

(1c): (Cone Condition) There exist a,l > 0 such that for every x € X C IR? there
exists an open cone Con(z,u,a) C Int(X) with vertex z, the symmetry axis deter-
mined by vector u € IR? of length [ and a central angle of Lebesgue measure «. Here
Con(z,u,a,l) ={y: 0 < (y — z,u) < cosally —z|| <1}

(1d): (Bounded Distortion Property (BDP)). There exists K > 1 such that

|67(y)| < K|¢/(2)]

for every 7 € I* and every pair of points x,y € V, where |¢.(z)| means the norm of
the derivative.

Under these assumptions it was shown in [MU1] that the hypothesis of Proposition 1.1 holds
and we can change the order of the union and intersection operations to obtain:

J=m(1®) = U 6.(X).

n>1|r|=n
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Let us first collect some geometric consequences of (BDP). We have for all words 7 € I* and
all convex subsets C' of V

diam(¢,(C)) < [|¢[|diam(C) (1.1)

and
diam(¢-(V)) < D||¢/]], (1.2)
where the norm || - || is the supremum norm taken over V' and D > 1 is a universal constant.

Moreover,

diam(¢-(J)) > D~'||¢, || (1.3)

and
¢-(B(x,7)) D B(g-(x), K~ |¢r]Ir), (1.4)

for every x € X, every 0 < r < dist(X,0V), and every word 7 € I*.

From now on throughout the entire paper we assume that d > 2. By H' we will denote the
t-dimensional Hausdorff measure, by HD the Hausdorff dimension and by TD the topological
dimension (we will only deal with subsets of IR? so all Hausdorff and topological dimensions
are finite). The main result of our paper is the following.

Theorem 1.2. Ifd > 3, S = {¢;}icr is a conformal IFS and HD(S(00)) < HD(J), then
either
(a): HD(J) > TD(J) or
(b): J is a proper compact subset of either a geometric sphere of dimension TD(J) or
a TD(J)-dimensional affine hyperspace, both contained in IR®.

In addition, if any one of the maps ¢; is a similarity mapping, then the latter case holds.
Since in the finite case the set S(c0) is empty, we get immediately the following.

Corollary 1.3. Ifd > 3, S = {¢; }icr is a finite conformal IFS, then either

(a): HD(J) > TD(J) or B
(b): J is a proper compact subset of either a geometric sphere of dimension TD(J) or
a TD(J)-dimensional affine hyperspace, both contained in IR®.

In addition, if any one of the maps ¢; is a similarity mapping, then the latter case holds.

Remark 1.4. Put k = TD(J). Since a compact subset of a k-dimensional sphere or hyper-
space G has topological dimension k if and only if its interior in G is not empty, we see that
in the second alternative of Theorem 1.2 and Corollary 1.8, J contains an open ball in the
appropriate sphere or hyperspace and, for dynamical reasons, it turns out that there is an
open subset Q) of that sphere or hyperspace such that J = Q.
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With essentially the same methods as those employed in the proof of Theorem 1.2 one can
prove the following.

Theorem 1.5. If F : Y — Y is a conformal expanding repeller, then the same dichotomy
holds as in Corollary 1.3. Only one geometric sphere or an affine hyperspace is to be replaced
by a finite union of such sets. In the case when Y is connected also this finite union reduces
to either one sphere or one hyperspace.

Let us now recall from [MU1] that a Borel probability measure m is said to be t-conformal
provided m(.J) = 1 and for every Borel set A C X and every i € |

m(éi(4)) = [ 1] dm
and

m($i(X) Ne;(X)) =0,
for every pair i,j € I, i # j. It has been proved in [MU1] that if a t-conformal measure exists,
then ¢t = h, the Hausdorff dimension of the limit set Jg of S and this measure is unique. The
system S is called regular if a conformal measure exists. Let o : ¥ — ¥ be the left shift

transformation (cutting out the first coordinate), o({z,}32 ;) = ({z,}5%,). In [MU1] we have
proved the following.

Theorem 1.6. If the system S is reqular and m is the h-conformal measure, then

(a): There exists a unique Borel probability measure m on I*° such that mor~' = m.

The measure m s positive on non-empty open subsets of I°°.
(b): There exists a unique o-invariant probability measure i absolutely continuous with

respect to m. Moreover, i is equivalent with m, sup {| log (Edr%) |} < o0 and the dy-
namical system o : I — [ is ergodic with respect to the measure [i.

2. RECTIFIABILITY AND TANGENTS

A set Q C IR%is called k-rectifiable if H*(Q) > 0 and there exist Lipschitz maps g; : IR¥ — IR?,
1t =1,2,... such that

it (\ Ut =o.
i=1
A set T C IR%is called purely k-unrectifiable if and only if H*(QNT') = 0 for every k-rectifiable

set Q.

It follows from Theorem 15.19 in [Ma2] that for H*-a.e. point z in a k-rectifiable set @) C IR?
there is a unique approximate tangent k-plane for () at z. This tangent plane will be denoted
in the sequel by 7,0 € G(d, k). We recall that G(d, k) is the Grassmannian manifold of all
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k-dimensional linear subspaces of IR? and that the existence of a tangent k-plane T,Q for @
at z implies that, for every 0 < s < 1,

lim - H*(Q 1 Bz, ) \ 2(, T.Q,5) =0
where
Z(2,V,s)={x € R"; dx —2V) < s|lz— 2|}
The space G(d, k) has a natural measure 4 (see Section 3.9 in [Ma2] for its definition and

basic properties). Given V € G(d, k) we denote by Py : IR? — V the orthogonal projection
from IR¢ onto V.

The following lemma is crucial since it gives rectifiability of the limit set provided the topo-
logical and Hausdorff dimension coincide.

Lemma 2.1. If S = {¢;}ics is a conformal IFS and H™Us) (Jg) = H™PUs) (Jg) > 0, HD(J) =

TD(J), then the system S is reqular, m =
closure Jg is TD(Js)-rectifiable.

Proof. Put J = Js and k = TD(J). Since H*(J) > 0 and since HD(.J) = k, we conclude
from Theorem 4.16 in [MU1]| that the system S is regular and, using Lemma 4.2 in [MU1], we

—H’cf%zg) |ss is the k-conformal measure on Jg and the

deduce that H*(J) < co and m = HI,:I—:J)|J is the k-conformal measure on J. Now, Federer’s

theorem on p. 545 in [Fe] says that if the s-dimensional integralgeometric measure Zj(A) of

a subset A of a Euclidean space vanishes, then TD(A) < s — 1. Since HD(J) > HD(J) = k,
we therefore conclude that ZF(.J) > 0. Since (see [Ma2], p. 86)

THT) = /G " /V HO(7 NP5 (a))dHF (a)dryg(V),

we therefore conclude that there exists a Borel set G C G(d, k) with 74,(G) > 0 such that
H°(J NPy (a)) > 0 for every V € G and all @ in some set Wy C V with H*(W5) > 0. In
particular Py (J) D Wy and therefore H*(Py/(J)) > 0 for all V' € G. Hence, it follows from
Theorem 18.1(2) on p. 250 in [Ma2] that J is not purely k-unrectifiable. Therefore, combining
Theorems 17.6 (Notice that although this is not indicated in Matillas’s book, we need to know
that H*(J) > 0 for this theorem to make actually sense), Theorem 6.2(1) in [Ma2] and the
fact that H*(J) = H*(J) > 0, we conclude that ©%(J,z) = 1 for all  in some set F' C J with
H*(F) > 0, where the density functions ©F as well as ©F and ©* were defined on p. 89 in
[Ma2]. Fix now x € J. It follows from the distortion property (1d) that for all i € I and all
r > 0 small enough

HE(T ) Bls(a), |6, (@)lr) > HF(6,(J 1 Bla, K1) > K- 6(e) FHE A B, K1),
where K, is such that lim,_,, K, = 1. Hence
HE(T ) Blon(a), [64(@)lr) . KM@, o LHMIAB K
Ca@nt 2 Campr ¢ 0B ) = K e e
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and letting r ™\, 0 we conclude that

04T, ¢3(x)) = O4(T, 2). 1)
Let m be the lift of the conformal measure m to the coding space I* and let i be its shift-
invariant version produced in Theorem 1.6. Since by this theorem the dynamical system
(o, 1) is ergodic, it therefore follows from Birkhoff’s Ergodic Theorem and (2.1) that the
function w — ©F(J, m(w)) is constant fi-a.e.. Since (7 (F)) > 0, we therefore conclude
that ©F(J, m(w)) = 1 for ji-a.e. w € I®. Thus O%(J,x) = 1 for H*-a.e. z € J. Combining
this with Theorem 6.2(1) in [Ma2] we see that ©F(J, z) exists and is equal to 1 for H¥-a.e.
x € J. Invoking now Theorem 17.6(1) in [Ma2] finishes the proof. m

3. Proof of Theorem 1.2

Put J = Js, k = TD(Js) and suppose that HD(J) < k. Since HD(S(o0)) < HD(J),
using Proposition 1.1, we conclude that HD(J) = HD(J) < k. Hence, HD(J) = k and
H*(J) = H¥(J) > 0, where this inequality follows from Marczewski’s theorem (see Theorem
vii 2, p. 104 in [HW]. Thus the assumptions of Lemma 2.1 are satisfied. In view of this
Lemma the set J is k-rectifiable. By Theorem 15.19 in [Ma2] this equivalently means that
for Hf-almost all z € J there is a unique approximate tangent k-plane 7,.J for J at z.

We fix now such a point, say zg = 7(w) € J, w € I*°, and make the following renormalisa-

tion. Set A, = |@y, (7(0™(w)))|* and define then
Bn(z) = (2 — 20).

It follows from the Bounded Distortion Property (1d) that each mapping 3,0¢,, : X — R%is
locally Lipschitz continuous with the Lipschitz constant K and from (1.2) that 3,0, (X) C
B(0,DK). Therefore, the Ascoli-Arzela theorem applies and there exists an increasing to
infinity sequence of positive integers {nj};’il such that the sequence v; : X — IR? converges
uniformly to a continuous function ¥ : X — IR?, where ¢; = Bn; © qﬁw‘nj. The limit function
¥ : X — X is conformal. We shall prove the following

Claim 3.1. ¥(J) C T}, J.

Proof. Suppose on the contrary that the claim does not hold. Then there exists an open

bounded set 2 C ¥(.J) such that
n =dist(Q, T, J) >0 . (3.1)
Since € is an open subset of J, we get H*(Q2) > 0. Put U = ¥1(Q) and U; = f;(U). Then
0 < HHQ) = [ [WNdHE = lim [ g = lim HE((U)) = lim B (8, (U)
Hence, there exists 7 > 0 and jy > 1 such that
0 <7< HA(G,, (U) = X, HE(D)) (3.2
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for all j > jo. Due to (3.1) and the boundednes of € we can choose 0 < s < 1 such that
Z(0, R*,2s)NQ = 0. Consider the cones Z = Z(0,T,,J, s) and Z; = Z(z, Ty, J, s) = Bn_jl(Z).
Fix also a ball B = B(0, R) such that Q@ C B(0, R/2) and set B; = 3,'(B) = B(2, R\;)).
Since T}, J is an approximate tangent k-plane of J at zy, we have
. Y W ) N T -1 —k k(T . )

lim XLHE(T00B;\ 25) = lim (RA)) "HAINB;\ 25) =0. (3.3)
But, if j is sufficiently large, then 3, (U;) = ¥;0¥ () C B\ Z and therefore U; C JNB;\ Z;.
It then follows from (3.2) that

Ay BTN B; \ 25) > A HYU;) > 7 >0

and this contradicts (3.3). We thus proved the claim and therefore the "smooth or fractal”
dichotomy announced in Theorem 1.2.

We are left to show that if one of the maps ¢; is a similarity map (\;A; +a;, 0 < \; < 1), then
J is contained in a k-dimensional hyperspace of IR?. And indeed, suppose on the contrary
that J C @, a geometric sphere in IR?. Since ¢;(Q) = \;A;(Q) + a; is a geometric sphere of
dimension k and the sphere @ N ¢;(Q) contains the k-dimensional set .J, this intersection is
a k-dimensional sphere, and therefore equal to both @) and ¢;(Q). This contradicts the fact
that ¢; : Q — @ is a strict contraction with a Lipschitz constant equal to A;. We are done. B

In the case of a conformal expanding repeller F' appearing in Theorem 1.5 the proof of
Lemma 2.1 requires only minor obvious modifications. In the proof of Claim 3.1 one replaces
X by balls of some sufficiently small radii and the maps d)w‘nj by appropriate inverse branches
of forward iterates of F'. We thus get that each point of Y has a neighbourhood being an open
subset of either a k-dimensional geometric sphere or hyperspace. Compactness of Y proves
the first part of the theorem. If Y is connected this finite union clearly reduces to one sphere
or a hyperspace.
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