OPTIMAL PERIODIC ORBITS FOR NON RECURRENT
RATIONAL FUNCTIONS

MARIUSZ URBANSKI

ABSTRACT. We prove that each non-parabolic periodic orbit contained in the w-limit set
of a measure-recurrent optimal orbit for a continuous function defined on the Julia set of a
non-recurrent rational function is also optimal. As a by-product, we prove in the next section
appropriate versions of shadowing and closing lemmas for non-recurrent rational functions.

1. PRELIMINARIES AND INTRODUCTION

Let X be a compact metric space, 7' : X — X be a continuous map, and ¢ : X — IR a
continuous function. For every x € X and n > 1 put
1 n—1

Subl(o) =~ Y- ST (x)

and

< ¢ > () = lim S,é(z)
if the limit exists. If < ¢ > (y) exists for some y € X and < ¢ > (y) > limsup,,_,,, Spé(x)
for each x € X, then the (forward) orbit of y is called an optimal orbit for 7" and ¢. The
question about existence of optimal orbits though fundamental has an easy positive answer

(see for example [5]). In fact, a slightly stronger result is proven in [5]. In order to describe

it fix x € T. If the weak limit
1 n—1

= i 3 b

exists, where 4, is the Dirac measure concentrated at y, then z is said to generate the invariant
measure /i, and p, is said to be generated by . A point x € X is said to be measure-recurrent
if x generates a T-invariant measure p, and x belongs to the topological support of the measure
p. The following result has been proved in [5].

Theorem 1.1. If T : X — X s a continuous map of a compact metric space X and ¢ :

X — IR is a continuous function, then there always exists a measure-recurrent optimal orbit
for T and ¢.

Let f : @ — @ be a rational mapping of the Riemann sphere @ of degree > 2. The mapping
f is non-recurrent if ¢ ¢ w(c) for every critical point ¢ € J(f), where J(f) is the Julia set of
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f and w(c) is the w-limit set of ¢ under f. This class contains in particular all expanding,
subexpanding and parabolic functions. In [5] the problem of the structure of optimal orbits
was dealt with. The authors proved that if T is either an Axiom A diffeomorphism or an
expanding map of a smooth compact manifold, then each periodic orbit contained in the
w-limit set of a measure-recurrent optimal orbit for a Lipschitz continuous function ¢ is also
optimal for ¢. We prove a corresponding result (see 3.3) in the context of a non-recurrent
rational mapping f : J(f) — J(f) and all continuous functions ¢ : J(f) — IR. As a by-
product, we prove in the next section appropriate versions of shadowing and closing lemmas for
non-recurrent rational mappings. We end this section by recalling the following two notions.
Firstly, a point w € ('is called parabolic (rationally indifferent) if it is periodic and there
exists ¢ > 1, a multiple of a period of w, such that (f9)'(w) = 1. The set Q@ = Q(f) of all
parabolic points of a rational mapping of the Riemann sphere is finite and contained in the
Julia set J(f). Secondly, if A, B are two subsets of €, we put

dist(A, B) = inf{|b —a| : a € A,b € B} and Dist(A4, B) =sup{|b —a| :a € A,b € B}.

2. SHADOWING AND CLOSING LEMMAS

From now on throughout the entire paper f : € — € is assumed to be a non-recurrent
rational mapping. We recall that given o > 0 a sequence {z;}3°, is called and a-pseudo-orbit
if |x;01 — f(x;)] < « for all i > 0. We call a pseudo-orbit {z,}22 , #-well behaving provided
that z,.1 = f(x,) if 2,41 € B(Q,0) and z ¢ B(Q,0) for infinitely many k’s. It follows from
Mane’s theorem (see [1], comp. Lemma 2.13 in [2]) that for every § > 0 and every ¢ > 0
there exists € € (0,¢€) such that if = ¢ B(€,0), then for every n > 0 and the diameters of all
connected components of f~"(B(z,€)) do not exceed e. We shall prove the following version
of the Anosov-Bowen shadowing lemma appropriate in the context of non-recurrent rational
functions.

Lemma 2.1. For every 0 > 0 and every € > 0 there exists 6(0,€) > 0 such that if {x,}22, is
a B-well behaving (0, €)-pseudo-orbit, then {x,}2, is e-shadowable.

Proof. Put 1 = (¢/2)/2. Therefore, if f¥(z) ¢ B(Q,0), then

diam (Cy (2, B(f*(2),2n)) < €/2. (2.1)
In view of Lemma 5.3 from [3] there exists ¢ > 1 such that if K > q and f*(2) ¢ B(Q,0), then
diam(Cy (2, B(£*(2), 2n)) < n/2. (2.2)

Take 6 > 0 so small that
(- (@A T+ DU+ DN+ -+ DI <, (2.3)

where in this inequality ||f’|| occurs ¢ — 1 times. We now extend our pseudo-orbit {z,}>,
to a pseudo-orbit {x,} such that f9(z_,) = zo and x,_, = f"(z_,) ¢ B(2, ) for all

o0
n=—q
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0 <n<g—1. We call a piece {z;}]_,, of the pseudo-orbit {z,};2_, of category L if x,, z, ¢
B(Q,0) and n—m = q and of category IT if z,,,, z,, ¢ B(Q,0) and {z;};_7 ., C B(Q,9). If now
{x;}n_ is a block of category I, then by (2.3), |x, — f/(x,)| < n. Hence f¥(z,,) € B(wn,n) C
B(f4(x,,),2n) and therefore D7, the connected component of f~9(B(z,,n) containing ,, is
contained in Cy(zm, B(f¥(xm),2n)). In view of (2.2)

Dy, € Cy(@m, B(f"(xm), 21)) C B(2m,n)- (2.4)

Since for every i € {0,1,... ,n —m}, fi{(D") C C’q,i(fi(xm), B(f(z), 277)), it follows from
(2.3) and (2.1) that

Dist(xm+i,fi(Dgl)) < Nmei — fizm)| + diam((]q,z- (fi(xm),B(fq(a:m),Qn)))

< € € €
_77+§<§+§—6. (25)

If {x;}, is a block of category II, then
|Tmi = f'(@m)| <1 (2.6)

for all s € {0,1,... ,n—m}. And indeed, if i = 0, then |z, — [ (zn)| = |Tm — 2] =0 < 1,
if i > 1and i +m < n — q, then x;,, = f'(x,,) since our pseudo-orbit {z;}3°, is f-well
behaving and {z;}729"" ¢ B(Q,6). If n4+m > n—q+ 1, then (2.6) follows from (2.3). Hence

fr"(@m) € Bwn,m) € B(f""(wm), 2n)

and therefore D?, the component of f~(=™)(B(z,,n)) containing z,, is contained in the set
Ch—m (mm,ﬁ(f”*m(xm), 277)). In view of (2.2)

Dy, C Con (s B(f" " (2m),20)) C B(tm, 1)- (2.7)

Since for every i € {0,1,...,n—m}, f4(D%) C Com_i(f'(zm), B{(f" ™(zm),2n), it follows
from (2.6) and (2.1) that
Dist (2 i, F1(D)) < |wmii = f1(@m)] + diam(Comi(f(zm), B ™(wm), 20)))
€ € €
Now, since our pseudo-orbit is #-well behaving, there exists an increasing to infinity sequence

{ng}p2, such that z,, ¢ B(Q,0) for all & > 1. For each k¥ > 1 one can decompose the

pseudo-orbit {z;}7%__ into blocks of category I and II:

[l‘jgzi)l,l‘jgzi)l_l_l, RN ,.’L'js(k)], [:Ujili)Z, xjgi)ﬁ-l’ ce ,a;‘jgzi)l], [a;‘jgzi)?), xjgi)g-i-l’ RN ,:Ujs(li)Z], Cee
[xjék),xjék)_l_l, ce ,:Uj?()k)]
where j*¥) = n;, and the last block [fL']{k), Ty g ,l'jék)], where jfk) = —q and
limsup j$¥ < 0. (2.9)

k— 00
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()
Fixing k > 1 define now in the backward direction the sequence {F;}2_, as follows. F, = Dj?k)

(k)

and suppose that F; C D }7{)1 has been defined for some 3 < i < s. It follows from the definition

(k)
of the sets D' and (2.4) that the intersection D i) ﬂ f (J’ ]H) (F};) is not empty. Denote
this intersection by F;_;. Fix a point zj, € Fy. It follows from (2.5) and (2.8) that

|l'j§k)+]. — fj(zk)| <e€ (2.10)

for all 0 < j < ng. In view of (2.10), passing to a subsequence, we may assume that jék) is

the same for all £ > 1, say jék) = jo. Let y be an accumulation point of the sequence {z}32,.
Fixing n > 1, it immediately follows from (2.10) and continuity of f that |x].(k)+]. —f(y)| <e
2

for all 0 < 7 < n. Since n is an arbitrary number, we get
00,5 — Fy)| <e (2.11)

for all j > 0. Since jo < 0, in view of (2.11) the point z = f72(y) shadows the pseudo-orbit
{,}52,. The proof is finished.

Since, because of presence of critical points, the shadowing point constructed in the previous
lemma is usually not unique, the standard way of deducing Anosov’s closing lemma from
Anosov - Bowen shadowing lemma fails. We therefore provide below its direct proof.

Lemma 2.2. For every 8 > 0 and every € > 0 there exists m = m(0,€) such that if ¢ >
m(0,¢€), fU(x) € J(f)\ B(,0) and |f?(x) — x| < €, then there ezists a point y € J(f) such
that fi(y) =y and |f'(x) — fi(y)| < € for alli =0,1,... ,q.

Proof. Fix m(0,€) so large that Bem{pr# < €/2, where &, p and B, come from Lemma 5.3
in [4]. We shall define by induction a sequence {C,,}2°, of compact connected subsets of € as
follows.

= B(f"(x),¢)
and C is the connected component of f~7(Cj) containing x. In view of Lemma 5.3 from [4],
the definition of m and since ¢ > m(6, €), we have diam(C;) < €/2. Therefore

C, C B(x,é/2) C B (fq(x), L g) _B(f(x),6) = Co.
Suppose now that Cy,, n > 1, has been defined and C), is a connected component of f~9(C),_1)
contained in Cj,_;. Then also f79UCy) C f79(Cy-1) and we conclude that there exists C, 41,
a connected component of f~7(C,,) contained in C,. Hence C,,; C C,, and f9(Cyy1) = Cp.
Since by our construction C,, is a connected component of f~9(B(f(x),¢)), it follows from
Lemma 5.3 in [4] that lim,, ,, diam(C},) = 0. Therefore the intersection (,,»; C,, is a singleton
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and we denote its unique element by y. Then

ff (ﬂ Cn) C N f1C) = Cor= N Ca € () Cu={y}-
n>1 n>1 n>1 n>0 n>1

Thus f%(y) = y. Now, in view of the definition of ¢, for every i = 0,1,... ,q, f*(C}) contains

both f*(y), f(x) and has diameter bounded above by €. We are done. B

Y

3. OPTIMAL ORBITS FOR CONTINUOUS FUNCTIONS

We start with the following.

Lemma 3.1. If x € J(f) generates a recurrent optimal orbit for a continuous function ¢ :
J(f) = IR, then for every e > 0 and every 6 > 0 there exists 0 < 6 < € and q(€) > 1 such that
if |fAre(x) — fR(2)] < 0 and f¥(z) & B(,30) for some integer’s k > 0 and q > q(¢), then

1 ket

Zqﬁ - <¢>(v)

<e

Proof. Fix n > 0 so small that |z — w| < n implies that |¢p(z) — ¢(w)| < €/2. Take
d =min{7,0,(0,n)}/4, q(e) = m(0, €) and let y be the periodic point of period ¢ produced in
Lemma 2.2 with the point z replaced by f*(x) and € replaced by 1. Then | f*(z) — fi(z)] < 7
forall: =0,1,...,q and therefore

1 ka1

Zaﬁ —<¢>(y)| <= Z|¢f’+’“ ) — o(f'(y))] < (3.1)

NSRS Y

Hence
1 ka1

;2 ) S<o> Wy E<o> )by

So, it remains to prove that

k+q—1
1 +q

=3 H(fi(x) 2< o> (x) —e

q =k

In order to do it define inductively the increasing sequence {k;}32, as follows. Since r € w(z),
there exists the least integer k; > 0 such that | f* (z)— f*(x)| < §/||f'||?. Given k;, again since
x € w(z), there exists the least integer k;.1 > k; + ¢ such that | f*+1(z) — f¥(z)| < §/||fF']]“.
Remove all the pieces of the form { f* (z), f%*1(x), ..., fFT4 1 (z)} from the orbit {f(x)},
of x. Write the remaining sequence as {z:}%°,. Since |f**9(z) — f*(z)|ed, we get for every
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j > 1 that
|fRta(a) — f(f5 )| = [ M () — 5 ()]
< |fEt(z ) = fPrU@) [+ [fE () = R )]+ [ fH(2) = R ()
)
<A 5me + 0+ 17 < 36

||f||q e =

Thus {2}, is a 36-pseudo-orbit. Since |f* (z) — f¥(x)| < 6§, f¥(x) ¢ B(Q,30) and § < 0, we
get fFi(x) gzé B(Q 26). This implies that f%~(z) ¢ B(Q, ). Also, since | f¥+9(z)— fF+e(z)| <
§, |fET9(z) — fF(x)| < § and f*(z) ¢ B(Q,30), we see that f*T4(x) ¢ B(Q,0). Thus the
35 pseudo-orbit {z}2, is #-well behavmg and, in view of Lemma 2.1 this pseudo-orbit is
n-shadowed by a true orbit {fi(2)}22,. Let

kj+q—1
1 q—

a—sup—Zqﬁ

1<j<o0 4 i=k;

Since |f* (z) — fF(x)] < §/]1F]|9, we get |fFiti(z) — fFri(x)| < § forall 0 <i < g—1and
therefore

q—1 )
a < 1s;lp é (Z¢ (f"(x)) + ( o(fHr( ¢(fk+z(fc))))
<y<oo =0
q—1 qg—1 )
< ZoUt) +11335 S 1647 (@) = o () (52)
0 =0
< lqz:l¢ fk+z 6.

2
Now, for every n > 0 there exists ¢, > 0 such that
{3 u{fi(z) 5 €{1,2,... ,qn},i € {kj, k;+1,... kj+q—1}}
forms an initial segment of the orbit {f'(z)}°, of the point z. Hence

<> ()= hrni(Zd) —i—i zq: o(fI(x )

n%ooqq+n+]_ J=1 i=k;
<l f +
ity (S0 + )
or equivalently
1 f +1)< o> + —< Q> > 0.
mint g (S0l — (041 <65 () + il <0 () >
Again, this equivalently means that

hﬁgﬁ%qi”ifm(% <Z¢ — (1) <6> (@ >) +<a—<¢>(x>) >0,
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Thus

andq
a—<¢)>()_—hgg£fm qnq<2¢) n+1)<¢>(x)>

=tima g (1) < 0> (@)~ 3 00a)

e (<n F1) <6 > (1) = 30l + 30U - d’“@?))
> hgsgp# << ¢ > (r) — n—ll—l Zﬁ%qﬁ(}”(g))) +
1

+ hgg}fm §(¢(fl(z)) — o(2})).

Now, since the orbit {f(2)}32, n-shadows the pseudo-orbit {z}2°,, we get

1 - i ! 1 : i /
m ;(¢(f (2)) = d(a7))] < m ; [9(f"(2)) — ¢(x})]
1 g 7 ! €
< T L) ol <
and consequently
liminf ———— S (p(fi(2)) — o(a) > —. (3.4)

n—o0o qnq + 77/+ 1 =0

Since 0 < —2t_ < 1 and since

angq+n+1
lim inf << ¢ > (x - Zgb ) 0,

n— 00

we conclude that

liminfniJrl( ¢ > (x Z(]ﬁ )

n%e gng +n A1

Combining this (3.4) and (3.3), we get a— < ¢ > (x) > —¢/2. Combining in turn this and
(3.2), we obtain

1 k—1 ) ¢
5Z¢(fk+l(x)) Za—§ >< > (v) —e.
i=0
We are done. ®

Given 4,0 > 0 an orbit { f()}52, comes within (4, f) of a periodic orbit { f(y)}?=, of period ¢
if y ¢ B(2,20) and if there exists k > 0 such that | f**(z) — fi(y)| < d foralli = 0,1,... ,q}.
We are now in position to prove the following.
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Proposition 3.2. Fiz 0 > 0. Suppose that {f'(z)}32, is a measure-recurrent optimal orbit
for a continuous function ¢ J(f) — IR. Then for every e > 0 there exist 6 > 0 and m > 1
such that zf{f ()Y, is a periodic orbit of period ¢ > m and {f1(x)}22, comes within (6/2, )

of {f'(y)}i=y, then
<op>(r)—e<< > (y) << d > (x).

Proof. Take § > 0 and m = q(¢/2) ascribed to €¢/2 and #/3 as in Lemma 3.1. Since

{f(x)}32, comes within (4,0) of {f'(y)}i= ~,, there exists k > 0 such that |f*+(z) — fi(y)| <
d/2 foralli=0,1,...,q}. Since 0 < 6/2 we therefore get

1t

Z(zﬁf’““ —<¢>(y)|<- Zlcbf’“*’ ) — f )] <

l\')lm

Since f*(z) —y| < § and since y ¢ B(Q, 20), we get that f*(z) ¢ B(£,0). Since also
6 0

7449(2) — F4(@)] < |F9() — FU) +177) — )] < 5+ 17—yl < 3+ =3

Lemma 3.1 applies and we get < ¢ > (x) — 523;(} o(f*(x)) < €/2. Consequently < ¢ >
() —€e << ¢ > (y) << ¢ > (v) and we are done. W

Our main result in this paper is the following.

Theorem 3.3. If {f(x)}2, is a measure recurrent optimal orbit for a continuous function

¢ : J(f) = IR, then for every periodic point y € w(xz) \ Q(f), < ¢ > (y) =< ¢ > (x).
Proof. Let ¢ > 1 be a period of y and let

0= Sdist(@, (£ W), 7 (1)) > 0.

Fix e > 0 and let 0 > 0 and m > 1 be chosen as in Proposition 3.2. Since y is periodic
orbit of any period ¢l, [ > 1, we may assume without loss of generality that ¢ > m. Since
y € w(z)\ Q, the orbit {f(z)}2, comes (infinitely often) within (5/2,6) of {f(y)}%Zy
therefore follows from Proposition 3.2 that < ¢ > () —e << ¢ > (y) << ¢ > (x). Letting
€ \( 0, we obtain < ¢ > (y) =< ¢ > (x) which finishes the proof. B
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