THE FINER GEOMETRY AND DYNAMICS OF THE HYPERBOLIC
EXPONENTIAL FAMILY

MARIUSZ URBANSKI AND ANNA ZDUNIK

ABSTRACT. We consider the maps f : € — € from the exponential family {\e*} that have
attracting periodic orbits. We prove that J,.(f)) (the subset of the Julia set consisting of
points that do not escape to infinity under forward iterates of f) has the Hausdorff dimension
hy less than 2, that the hy-dimensional Hausdorff measure of J,.(fx) is positive and finite on
each horizontal strip, and that the hy-dimensional packing measure of J,.(fy) is locally infinite
at each point of J,.(f)). We introduce as our main technical device some map F' defined on
some strip P of height 27. This map carries enough information about the dynamics of
f to study f itself. In particular the existence and uniqueness of a probability conformal
measure m (with an exponent greater than 1) for F' and a o-finite conformal measure for
f is proven. We also prove the existence and uniqueness of a Borel probability F-invariant
ergodic measure equivalent with the conformal measure m.

1. Introduction
Given A € €'\ {0} let the entire function f : € — € be defined by the formula
fr(z) = Ae”.

C. McMullen proved in [McM] that the Hausdorff dimension of the set of points escaping to
infinity under forward iterates of f) is equal to 2. In this paper we thoroughly investigate the
geometric (fractal) and dynamical structure of the complement (in the Julia set J(fy)) of this
set which will be denoted in the sequel by .J.(fy). Although our results apply to all functions
fr with attracting periodic cycles, ! we perform our analysis in great detail assuming that
A € (0,1/e) and treat the general case briefly in Section 6. Since f is periodic with period
27i, it is natural to identify points which differ by 2k7i and to consider (instead of f) the map
F, our main technical device, defined on some strip P of height 27. Armed with the map F
and the concept of tightness we prove the existence and uniqueness of a probability conformal
measure m (with an exponent greater than 1) for F' and a o-finite conformal measure for
f. This powerful tool enables us in turn to prove that hy, the Hausdorff dimension of the
set J,.(fy), is less than 2, that the hy-dimensional Hausdorff measure of J.(f)) is positive
and finite on each horizontal strip, and that the h)-dimensional packing measure of .J,(f) is
locally infinite at each point of J,.(fy).

The research of the first author was supported in part by the NSF Grant DMS 9801583. The research of
the second author was supported in part by the Polish KBN Grant 2 PO3A 009 17.
n a forthcoming paper we treat in the same spirit a large class of non-hyperbolic functions fy, including
the case when A € [1/e, 00).
1



2 MARIUSZ URBANSKI AND ANNA ZDUNIK

The fact that h) < 2 shows in particular that the equality of the hyperbolic dimension and
the Hausdorff dimension, conjectured in the theory of iteration of rational functions, fails in
the context of transcendental entire functions.

Turning towards dynamics, we prove the existence and uniqueness of a Borel probability F'-
invariant ergodic measure equivalent with the conformal measure m. We do this by applying
first the method of Marco Martens to show the existence of a o-finite F'-invariant conservative
ergodic measure equivalent with the measure m and checking then that this measure is finite.

Our paper is organized as follows. In Section 2 we prove that for every A the Hausdorff
dimension of the set Jyu(fy) = {2z € J(f\) : {f"(2)}is bounded} is larger than one. This
does not require any assumption about hyperbolicity. We need this fact (which, itself, seems
interesting) in Sections 2 and 6 for the proof of the existence of conformal measure and in
Section 5 for the existence of a Borel probability F-invariant ergodic measure equivalent with
the conformal measure. Notice that Theorem 2.1 was already proved in [Ka] for the case of
an attracting fixed point with A real. In Sections 3-5 we give the detailed proofs of the result
described above in the case when f, has an attracting fixed point and A is real. In Section 6
we show how to modify the arguments to make them work in the general case of an attracting
periodic orbit. In the Appendix we provide an alternative direct proof of the fact that the
Hausdorff dimension of the set .J.(f)), is less than 2 without using the concept of conformal
measures.

2. BOUNDED ORBITS
Let
fn(z) = Ae®, A #0.
We shall prove the following.

Theorem 2.1. If Jyy(f2) is the set of all points z € J(f) such that {f{(2)}n>0, the forward
orbit of z, is bounded, then HD(Jyq(fr)) > 1.

Proof. Let log A be the logarithm of X satisfying Imlog A € (—m, 7]. Fix R > 0 and consider
the square

Sk = (R,2R) x (R,2R).

Let I = {z € € : 0 < Arg(z) < 7/2} be the first quadrant. For every k € Z consider
[, : I — @, the holomorphic branch of the map inverse to the map z — Ae® given by the
formula

Ik(2) = —log A + log |z| + iArg(z) + 2mik, 0 < Arg(z) < 7/2.
If R > el and k > 1, then [(Sg) C IT and for every j € Z

Re(lj(k(2)) = log |lx(2)| — log|\| = log | — log A + log || + iArg(=) + 2mik| — log |A].
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Define the set Ir to be
In={k >1: R <log (~|logA| + |log(V2R) + 2mik|) — log |\

< log <| log A| + |log(2V2R) + %rzk

) —log|A| < 2R}

and for every k € I put
Ipk={j>1:R+2r <2mj <2R— 2w}

Notice that for every k € Ig, every j € Z and every z € Sg, R < Re(l;(l4(2)) < 2R and if
j S IR,ka then
Cl(lj o lk(SR)) C SR.

We have produced in this way the finite family of maps

GR = {l] o lk : SR — SR}kGIR,jGIR,k'

Each map g € G maps Sk conformally onto some topological disk, whose closure is contained
in Sg. Moreover, there exists a neighbourhood V' O Sg such that each map g € G extends
conformally to U and is easy to see that

(L 0 1) (Sw)) N el((ly o 1) (Sr)) = 0

if (4,k) # (j',k'). Indeed, applying (for various k € Ig) Iy to Sg we obtain a collection of
topological disks, each of them being an image of the other by a translation z — 2z + 2mmi
for some m € Z. Each of these disks is contained in some horizontal strip of height 7. So, it
is obvious that they are disjoint and there exists a neighbourhood V' O Sg so that [ extend
conformally to V and I;,(V') Nl (V) = 0. The sets 1; (1 (V) Nl (I (V)) are disjoint for k # '
since already I (V'), [ (V') were disjoint. Also, 1;(1x(V)) Nl;(1(V)) = 0 for j # j' because
lj, 1y are different branches of f,° '. We define the compact Jg as follows.
Jr= () U9"(Sr)
n>0 gn

where we take the union over all possible compositions

gn:gilo"'ogina Givs -y iy GGR'

The map fy|s, : Jr — Jgr is a conformal expanding repellor. In addition, it is easy to see that
Jr is a Cantor set. For every t € IR the topological pressure Pg(t) of the potential —t log |f}|
with respect to the reppellor fy|;, : Jg — Jg can be calculated as follows.

1 .
Pa(t) = lim ~log 3" [I(6") I
gn

n—o0

where, again, we sum up over all possible compositions

gn:gilo"'ogin7 Givs -y iy GGR'

It is well-known (see [PU], comp. [Bo]) that the Hausdorff dimension t = HD(Jg) of J is
determined as the unique ¢ € IR for which Pg(¢) = 0. Since the function ¢ — Pg(t) is strictly
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decreasing, in order to prove that HD(Jg) > 1, it is enough to show that Pg(1) > 0. Indeed,
for z € Sg and all k € I, j € Igy, we have

1 1

liol) = > >
e b)) = 2 9V2R| — log A + log | 2| + iArg(2) + 2kmi| —
1
>
2V2R(|log | + | log |z| + iArg(z) + 2kmi|) ~ (2.1)
1
2V2R(|log A| + | log |z| + 2ki])
Let |(lj o ly)| = inf{|({; o lx)'(2)| : 2 € Sg}. Fix t > 0. Then by (2.1)
Pr(t) > log Z Z (o ly)"|"
k€lr JEIR 1
IR o)+ Bainl”
> log <7> #Iry || log Al +log(2V2R) + —mik
%I:R 2/m) TRk | log A ( )+ 5
> tlog [—— ) — tlog R+ o <R>+lo ) <|lo A+ |log(2V32R) + 2 k|>t
I - o :
Z tlog 22 g g i gke[R g g 9

the definition of I, that (|logA|+ |log(2v2R) + mik|) < 47k, min(Iz) < exp(3R) and
max(Ip) > exp(%R) for all R sufficiently large. Hence

where we have used inequality #Ir; > ﬁ, true for all R large enough. It follows from

exp (%R)

1
Pg(t) > tlog <2—\/§> —tlog R+ log R —log(4m) +log > (4wk)™*
k:exp(%R)
exp(%R)

1
= tlog <2—\/§> —log(47) + log R — tlog R — tlog(4m) + log > k7"
k:exp(%R)

Therefore

exp (%R)

Pr(1) > log (—) —2log(4m) +log > k7!

k=exp (%R)

1
> log ( ) — 2log(4m) + log (log exp ;R — log exp ZR - C’)

1
=1 —— | — 2log4 log(-R —
og (2\/§> og4m + og(4R C)
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where C' > 0 is a universal constant. It therefore follows that Pr(1) > 0 for R large enough
and, consequently, HD(Jz) > 1. By the definition of the set Jr we have Jr C {z : fi"(z) €
Sk for all n > 0}. Since |e?| = eR*(*), we conclude that the forward orbit of each point in
Jr is bounded for every R > 0. Since J is contained in the closure of fixed points (which
are necessary contracting) of all compositions of maps forming the system G, it is contained
in the closure of repelling periodic points of f which in turn is contained in J(f). Hence
Jr C J(f) Thus HD(de(f)\)) >1. 1

We would like to notice that this result overlaps with those proven in [Ka]. More precisely,
it follows from Theorem 2 in [Ka] (even though it is not stated explicitly there) that for
A € (0,1) we have HD(Jyq(f1)) > 1. Unlike [Ka] however we do not assume that X is real and
belongs to (0,1/e) nor that there exists an attracting fixed point of f.

The following observation ending this section can be deduced from Theorem 2 in [Ka].

Corollary 2.2. If ) € (0,00), then
—0

3. EXISTENCE OF CONFORMAL MEASURE

From now on until the last section we assume that A € (0,1/e). Then f = f, has a unique
attracting fixed point, 0 € Ay, the basin of its immediate attraction and f)|gr has another
(positive, repelling) fixed point which we denote by ¢ = ¢,. Standard straightforward calcu-
lations show that

{z:Re(z) < »} C A,.
Let
P={zel:—m<Im(z) <7}
and let
P, ={z € C:Re(z) > qand Im(z) € (—m,7]}.
Fix M > ¢, and set
Py ={z€ P:q\ <Re(z) < M}.
Let
m:C— P

be the projection given by m(z) = w if and only if w € P and exp(z) = exp(w). We define
the map F' = F) : P — P we intend to work with by the formula

F(z) = m(f(2)) (3.1)
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In this section we construct a conformal measure for the map F' : PN J(f) — Pn.J(f).
Recall that a Borel measure m is called ¢ conformal (with ¢ > 0) if for any Borel set A C P
on which F' is injective, we have

m(F(A)) = /A |F'[tdm.

We will frequently use throughout the entire paper the following obvious fact without explicit
invoking it.

Theorem 3.1. For any conformal measure m for F : J(F) — J(F) and any non-empty open
subset U of J(F) (in the relative topology on J(F)), m(U) > 0.

Here, instead of the rectangle Py, we consider a slightly modified rectangle. Indeed, notice
that there exists p < ¢ so close to ¢ that for every M > ¢, the set

~ 3 3
PM:{ZEP:—ZW<Imz<Z7r,p<Rez<M}

is disjoint from the forward orbit of 0 under iterates of f. Consider the preimage F~'(Py;).
This set is a union of infinitely many topological disks @; contained in the strip —7 < Imz < 7
(recall that the points z € P such that |[Imz| > 7 are mapped into the region Rez < 0, thus

outside Py;). Moreover,

Qi N Qj - @
Now, we consider the finite family of disks @, whose closures are contained in Py, In this
way we obtain the finite iterated function system:

¢i315M—>QZM

where ¢; is an appropriate holomorphic branch of F~!. Let J,; be the limit set of this system
and let mj; be the unique conformal measure. In this case this is simply the normalized
Hausdorff measure with the exponent hj; equal to the Hausdorff dimension of .J,.

Remark 3.2. We have Jyy C Jyry1 for all M large enough. In order to see this, take QM and
let QM*L, be the preimage of Pyryy under the same holomorphic branch F=' of F~'. Then,
obviously, QM+ > QM. Since F(QM ™\ QM) C {2 € Pyryy : M < Rez < M 41} and since
the derivative of F, ' on {z € PM+1 : M < Rez < M + 1} is bounded from above by Cy M1,
we conclude that diam(QM™ \ QM) < CoM~" for some appropriate constants Cy and Cs.
Since QM C {Rez < M}, this implies that

QM C {Rez < M + 1}

for all M large enough. Hence, each QM > QM is (see the definition) used in the construc-
tion of Jyri1. Thus, the corresponding limit set Jy; 1 contains Jyy.
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Remark 3.3. Since Jy(f) NP = UN—=g+1 I, reasoning as in the remark above, it follows
from Theorem 2.1 and Remark 3.2 that there exist hy > 1 and My such that for every M > M,

Proposition 3.4. The sequence of measures my;, M € N is tight, i.e. for every e > 0 there
exists M so large that for every N

my({z € P:Rez > M}) <e.

Proof. Fix ¢ > 0, M > 0 and N > q. We shall estimate separately the measure my of two
sets, which cover {z € P : Rez > M}. First, we have

my({z € Jy : ReF(z) > M}) = Y my({z € Jy : f(x) € [M,N] x (=7, 7] + 2kmi}).

keZ
If € Jy and f(z) € [M, N] x [—7, 7] + 2kmi, then

F/(@)] = 7(@)] = (M +lk)) > (M + k)

DO | =

which gives
00 9ohn
my({z: ReF(z) > M}) <23 my({z: M <Rex < N}) - —————
= (M + k)
) (3.2)

< ohNHLNTY
= kz::[] (M + k)h]v

where, let us recall, hy is the exponent of the measure my. By Remark 3.3 and Remark 3.2
there exists 1" > ¢ such that hy > hy > 1forall N >T. If N < M, then

my({z € P:Rez > M}) =0. (3.3)
If M > T and N > M, then it follows from (3.2) that
23 23
my({x: ReF(z) > M}) < MY < T kT (3.4)
hy —1 hy —1

Keeping M > T and N > M we now estimate the measure of the second set, namely
my({z: M < Rex < N and ReF(z) < M}).
If Rex > M, then |f(x)| > AeM and therefore |Imf(x)| > v/A2e2M — M2. Thus,

my ({x : M < Rex < N and ReF'(z) < M}) < const > (2mk)
k>(2m) =1/ A2e2M — M2

eM(1=hy)

hy — 1 (3.5)
const M)

~ hr—1

< const -



8 MARIUSZ URBANSKI AND ANNA ZDUNIK

Combining this with (3.3) and (3.4) we obtain
my({z : Rex > M}) < e
for all N and all M large enough. m

Since the sequence my is tight, it follows from Prochorov’s theorem that there exists an
increasing to infinity sequence {IV;}°, such that the sequence {my,}°, weakly converges to
some limit probability measure m. This is the measure we are looking for. Put

J(F)=PnJ(f).
We shall prove the following.

Theorem 3.5. The measure m is h-conformal, where h = lim;_,, hy, and m(J(F)) = 1.

Proof. Since Jy C J(F), J(F) is closed and my(Jy) = 1 for every M > p, it immediately
follows from the definition of the measure m that m(J(F)) = 1. In view of Remark 3.2,
the sequence {hy} is eventually nondecreasing and consequently the limit limy_,,, hy exists.
Notice that each measure my is hy-conformal for F'|;, but not for F itself (the set Jy is not
backward invariant). However, if NV is large enough, then for every Borel set A C {z: Rez <
N — 1} such that F|4 is one-to-one, we have

my(F(A)) = /A |F' " dmy. (3.6)
To verify this, first we claim that
FA)nJy=F(ANJy). (3.7)

Indeed, F(ANJy) C F(A)N F(Jy) C F(A) N Jy. To see the opposite inclusion, let x €
F(A)NJy. Take y € A such that F(y) = z. Let @ be the component of F~'(Py) containing
y. We claim that () is entirely contained in Py, ie. Q is one of components QY used in
the construction of Jy. Suppose on the contrary, that () intersects the line Rez = N. Then
for some 2z € Q, |f(2)| = |F'(2)| = Ae™. This means that @ is contained in a component of

Y Py + 2kmi), where k > (27) '\ A2e2N — N2, If N is large, this implies that

N
di <(C— < 1.
iam(Q) < oV <

But ) contains a point y € A and A C Py_;. This contradiction shows that @ is entirely
contained in Py, i.e. @ is one of components Q¥ used in the construction of Jy. Since
x = F(y) € Jy, this implies that y € Jy. The formula (3.7) is proved. Using (3.7) we can
write

my(F(A)) = my(F(A) N Jx) = ma(F(AN Jy)) = /

|F’|hNdmN:/ |F'|"N dmy.
ANJy A

Since the sequence {my,} converges weakly to m, we have
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for every Borel set A such that m(90A) = 0. In particular, this holds for every bounded Borel
A such that m(0A) =0 and m(0F (A)) = 0. For these sets A, using (3.6), we get

m(F(A)) = lim my, (F(A)) = l1m/ |F B dimy, _/ |F' Py, +/ (|F' [P~ — |F' ") dmy,.

The first summand converges to [, |F’'|"dm. The second summand can be estimated by
sup 4 (|F'|"¥: — |F'|"). This tends to zero, since |F’| is bounded on A and hy, — h. So,

m(F(A)) = /A |F' P (3.8)

Now, take an arbitrary Borel set A such that Fj, is injective. One can assume that A is
bounded. Since J(F) C {z: 7/2 < Imz < 7/2}, and consequently, in the terminology from
[DU1], Sing(F : J(F) — J(F)) = 0, and since m(J(F)) = 1, in order to verify the equality
m(F(A)) = [,|F'|"dm, it is enough to invoke Lemma 2.4 in [DU1] and to apply (3.8). ®

The existence of a conformal measure leads to the following straightforward corollary.

Corollary 3.6. There exists a o-finite measure m, which is h-conformal for f|;s

Proof.  Define m on each strip P, = P + 2kwi as m o w, where, let us recall, 7 is the
natural projection of P, onto P. Checking that m is f-conformal is straightforward. And
indeed, assume first that A~C P, for some n € Z and f|4 is injective. Let for every k € Z,
Zr = fY(P;)N P and let A=A — 2min. Then

M(f(A) = m(f(A) = X m(f(ANZ) = Y mro f(AN Z) = ¥ m(F(AN )

keZ keZ keZ
=% [, Edm =3 [ tam = [P = [ 7
kez ' ANZk keZ A A

Now, let A C C be an arbitrary Borel set on which f is injective. Let A, = AN P,. Since
Ay N A; =0 for k # j, we get

a(fA) = S on(f(A) = 3 [ 17 fdm= [ 17 dm.

keZ keZ
This ends the proof.m

Let

Io(F) ={z € P: lim F"(z) = oo},
i.e. Io(F) is the set of points escaping to infinity under forward iterates of F'. Analogously
define

Io(f) ={z € P: lim f"(z) = oo},
Let

F)=J(F)\ I(f) and J(f) = J(f) \ Lo (F)

Notice that I(f) NP (
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Let m be the h-conformal measure constructed in Theorem 3.5. We shall prove the follow-
ing.

Proposition 3.7. There exists M > 0 such that for m-a.e. x
lim inf Re F"(x) < M.
n—0o0

In particular, m(I(F)) =0 or equivalently m(.J.(F)) = 1.

Proof. Put
Yiy={z€ P:Rez > M}
Let B C Y, be an arbitrary Borel set. We shall estimate from above the measure m(B N
F~'(B)). We have
m(BNF~'(B)) <m(F'(B)) =Y_m(z: f(z) € B+ 2kmi)
keZ
If f(x) € B+ 2kmi, then

|F' ()] = |f(2)] = | f(z)] > (M? + k?)3.

Thus
s 1
m({z: F(z) € B}) <2y m(B) - ————— < constm(B)M'™".
({z: F(x) € BY) 2m(B) e (B)
Therefore, in particular, one gets
m(BNF~'(B)) < Wm(B) (3.9)

for every Borel set B C Y3, for some constant C' independent of M and B. Since BNF!(B) C
Y, one can now use the estimate (3.9) to get inductively

m(BNFY(B)n---NF"(B)) < (CM"")"m(B)
This implies that for all M large enough

m( ﬁo F™Yy)=0
and consequently :
m(U P P (030) =0
The proof is finished. & = N

Let us show now that the estimates used in Proposition 3.7 and Proposition 3.4 lead to the
following.
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Corollary 3.8.
m(Yy) < Cet"MM,
for some constant C' and all M > 0 large enough.

Proof. It follows from the proof of Proposition 3.7 that
m({z € Yar : F(x) € Yar}) < m(Ya)CM'™
and from the proof of Proposition 3.4 (formula (3.5)) with my replaced by m that
m({x € Yy :ReF(z) < M}) < Cell=MM,

These two sets cover the whole set Yj,. The first inequality says that (for all M sufficiently
large) the first set covers less than, say, one half of the measure of Yj;. Thus,

m(Yy) < 2m({x € Yy : ReF(x) < M}) < 20 t-MM

and the proof is complete. B

4. CONFORMAL, HAUSDORFF AND PACKING MEASURES; HAUSDORFF DIMENSION
Let again f = f), ¢ = ¢\ and F' = F),. Recall that
J(F) = J(f) N ([g; 00) x [=m,7]) = J(f) N (lg, 00) x [=7/2,7/2]).
Recall also that
P, ={z € C:Re(z) > qand Im(z) € (—m,7]}.

Fix some R > ¢. Consider a countable partition o = {4, : n > 0} of Py defined as follows.

Ay ={z € P, : Rez < R},

Ay ={z€ P, :R<Rez< R+ 1},
and
A,={z€P,:R+n—1<Rez<R+n}

for n > 1. We start this section with two technical lemmas.

Lemma 4.1. If the constant R is large enough (depending on ), then for every k >0
F(Ak) DA0UA1U"'UAk+1
Proof. Let k > 1. Then f(Ay) is an annulus centered at 0 bounded by two circles of radii
Aexp(R+k —1) and Nexp(R + k).

Let zo be the point in the outer circle such that Rezg = Aexp(R+k — 1) and Imzy > 0. A
straightforward geometrical argument shows that if R > 0 is taken so large that for all £ > 1

Aexp(R+k—1)(Ve2—1—1) > 4,
then f(Ay) contains some rectangle

0 < Rez < Rezp,Imzy — 47 < Imz < Imz,
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If moreover R > 0 is taken so large that Rezy = Aexp(R+ k — 1) > k + 1 + R, then this
rectangle contains some component of the set 7' (49 U -+ U A41). So, by definition,

F(Ak)DA()U"'UA]H_l.

[t remains to check the case when k£ = 0. But f(Ay) is the annulus of inner radius ¢ and outer
radius Aexp R. If R is large then this set contains AgUA; ={z€ P:¢<Rez<R+1}. &

From now on in this section fix the partition « satisfying the statement of the previous lemma.
As an immediate consequence of this lemma we get the following.

Corollary 4.2. For every k > 0 we have
lim m(F"(Ag)) = 1.

n— 00

Lemma 4.3. For every x € J(F) and every r > 0
T m(F(B(r,1))) = 1.

Proof. For every k > 0 let Ag(z) be the element of partition o containing F*(x). Denote
by Bg(z) the component of F~*(Ag(x)) containing z. Since diameters of A; are bounded
and F is expanding on its Julia set, diam(Bg(z)) — 0 as k — oo. So, for some k € N,
B(z,7) D Bi(z). Thus, for every n > 0

F" ¥ (B(z,7)) D F"™F(By(x)) D F"(Ay)

and the lemma follows from Corollary 4.2 . B

Let us prove the following.

Theorem 4.4. The h-conformal measure m is a unique t-conformal measure for F witht > 1.
In addition it is conservative and ergodic.

Proof Suppose that v is a t-conformal measure for F' with some ¢ > 1. The same proof as
in the case of the measure m shows that v(I(F)) = 0. Let J. y(F) be the subset of .J,.(F)
defined as follows: z € J, y(F) if the trajectory of z under F' has an accumulation point in
{Rez < N}. Obviously, Uy Jyn(F) = J.(F) and by Proposition 3.7 there exists M > 0 such
that v(J, v (F)) = m(J,m(F)) = 1. Fix z € J, y(F). Then there exist y € J(F') such that
Rey < N and an increasing sequence {ny}s>, such that y = limg_,o, F™(2). Considering
for k large enough the sets F, " (B(y,n/4)) and F, ™ (B(y,n/(4K))), where F, " is the
holomorphic inverse branch of F™ defined on B(y,n/2) and sending F" (z) to z, using
conformality of measures m and v along with Koebe’s distortion theorem we easily deduce
that

By(v) '(F™) ()" < v(Bz el (F™)' ()] ) < By(@)|(F™)'(2)] (4.1)
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and
By (m) ™' |(F™)'(2)| ™" < m(B(z,c|(F™)'(2)| ")) < By (m)|(F™)'(z)| ™" (4.2)

for all £ > 1 large enough, where K = 16 is the constant appearing in the Koebe’s distortion
theorem and ascribed to the scale 1/2, By(v) is some constant depending on v and N. Let
M be fixed as above. Fix now E, an arbitrary bounded Borel set contained in J,(F') and let
E' = EnN J,u(F). Since m is regular, for every z € E' there exists a radius r(x) > 0 of the
form from (4.1) such that

m( | B(z,r(z)) \ E) < (4.3)
zcE’
Now by the Besicovi¢ theorem (see [G]) we can choose a countable subcover {B(x;, r(x;))}2,,
r(z;) < €, from the cover {B(z,r(z))}sep of E, of multiplicity bounded by some constant
C > 1, independent of the cover. Therefore by (4.1), (4.2) and (4.3), we obtain

oo

v(E') = ) < Z B(z;,7(x;))) < By (v )Zr(x,)t

< By (v i “hn(B(ai,r(1:)))

(4.4)
< BM(V)BM(m)Cet‘hm(UlB(wi, r(x:)))

< OBy (v)Bar(m)e™"(e + m(E")) = CBy(v) By (m)e™" (e + m(E)).

In the case when ¢ > h, letting € \, 0 we obtain v(F) = 0 and consequently v(J(F)) = 0
which is a contradiction. We obtain a similar contradiction assuming that ¢ < h and replacing
n (4.4) the roles of m and v. Thus t = h and letting € ~\, 0 we obtain from (4.4) that
v(E) < CBy(v) By (m)m(FE). Exchanging m and v, we obtain m(E) < C By (v) By (m)v(E).
These two conclusions along with the already mentioned fact that m(J,.(F)) = v(J.(F)) = 1,
imply that the measures m and v are equivalent with Radon-Nikodym derivatives bounded
away from zero and infinity.

Let us now prove that any h-conformal measure v is ergodic. Indeed, suppose to the
contrary that F~'(G) = G for some Borel set G C J(F) with 0 < m(G) < 1. But then the
two conditional measures vg and vp)\a

W(BNG)  W(BAJ(F)\G)
B ) L o (D IV <)

would be h-conformal and mutually singular; a contradiction.

If now v is again an arbitrary A-conformal measures, then by a simple computation based
on the definition of conformal measures we see that the Radon-Nikodyn derivative ¢ = dv/dm
is constant on grand orbits of F'. Therefore by ergodicity of m we conclude that ¢ is constant
m-almost everywhere. As both m and v are probability measures, it implies that ¢ =1 a.e.,
hence v = m.
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It remains to show that m is conservative. We shall prove first that every forward invariant
(F(E) C E) subset E of J(F) is either of measure 0 or 1. Indeed, suppose to the contrary
that 0 < m(E) < 1. Since m(I(F)) = 0, it suffices to show that

m(E \ Io(F)) =0.
Denote by Z the set of all points z € E'\ Io(F) such that

i B T) (B Lo(F)
AT m(B)

In view of the Lebesgue density theorem (see for example Theorem 2.9.11 in [Fe]), m(Z) =
m(E). Since m(E) > 0 we find at least one point z € Z. Since z € J(F)\ I(F), there exists
x € J(F) and an increasing sequence {ny}2, such that = = limy_,, F™(z). Let

6 = min{n /8, q/4}.

Suppose that m(B(x,0) \ E) = 0. By conformality of m, m(F(Y)) = 0 for all Borel sets ¥
such that m(Y’) = 0. Hence,

0 =m(F"(B(x,6) \ E)) > m(F"(B(x,0)) \ F"(E))
> m(F"(B(x,0)) \ E) > m(F"(B(x,0)) — m(E)

~1. (4.5)

(4.6)

for all n > 0. By Lemma 4.3 limn_mm(F”(B(x,cS)) = 1. Then (4.6) implies that 0 > 1 —
m(FE) which is a contradiction. Consequently m(B(z,d)\ E) > 0. Hence for every j > 1 large
enough, m(B(F™ (2),20)\E) > m(B(x,0)\E) > 0. Therefore, as F'~'(J(F)\E) C J(F)\E,
the standard application of Koebe’s Distortion Theorem shows that

: m(B(z,r) \ E)

lims

ot m(B(z )
which contradicts (4.5). Thus either m(E) =0 or m(E) = 1.

>0

Now conservativity is straightforward. One needs to prove that for every Borel set B C J(F)
with m(B) > 0 one has m(G) = 0, where

G={zeJ(F):> xs(F"(x)) < +oo}.
n>0
Indeed, suppose that m(G) > 0 and for all n > 0 let
Go={ze€J(F): Y xp(F"(z))=0}={x € J(F): F*(z) ¢ B forall k>n}.
k>n

Since G = U, >0 G, there exists k > 0 such that m(Gy) > 0. Since all the sets G, are forward
invariant we conclude that m(Gy) = 1. But on the other hand all the sets F~"(B), n > k,
are of positive measure and are disjoint from Gy. This contradiction finishes the proof. m
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In the proof of the following Theorem as well as in the proofs of Proposition 4.9 and Theo-
rem 4.10 we use various forms of the converse Frostman’s type lemmas which can be found
for example in [DU2| and in the Chapter 6 of the book [PU].

Theorem 4.5. If A € (0,1/e), then the h-dimensional Hausdorff measure H" of J,.(F) is
finite, the measure H" of J.(f)) is o-finite and

hx = HD(Jwa(fx)) = HD(J:(f2)) < 2,

where hy is the exponent of the conformal measure m = my (see Theorem 3.5 and Theo-
rem 4.4).

Proof. Fix A € (0,1/e). Put f = f\ and h = hy. By the definition of the numbers
hn (see the beginning of Section 4) and Theorem 3.5, h < HD(Jy4(f)). It follows from
(4.1) applied with the measure m that the h-dimensional Hausdorff measure H"(J, 5/(F')) is
finite. Since m(Jn,(F')\ Jrm(F)) = 0, we deduce in the similar way (using again (4.1)) that
H"(J. n(F) \ Joar(F)) = 0 for all N > M. Since Uy Jrn(F) = J.(F), we thus conclude
that H*(J,.(F)) = H*(J, 3/(F)) < 0o and consequently, HD(J,.(F)) < h.

Since J,(f) = Unez(Jr(F) + 2m’n), we therefore conclude that H"|; s is o-finite and
HD(J.(f)) < h. It therefore remains to demonstrate that HD(J,(F')) < 2. But otherwise,
it would follow from (4.1) and (4.4) with the measure v replaced by m and m replaced by
planar Lebesgue measure, that the planar Lebesgue measure of J,.(F) is positive. This would
however contradict McMullen’s result from [McM] which finishes the proof. B

An alternative direct proof, not using the concept of conformal measures, of the fact that
HD(J.(f\)) < 2 is provided in Corollary 7.3 of the Appendix. Recall that in [DU3] (comp.
[PU]) the dynamical dimension, proven in [PU] to be equal to the hyperbolic dimension,
was defined as the supremum of Hausdorff dimensions of all probability invariant ergodic
measures with positive entropy. It has been conjectured that in the case of rational functions
the dynamical dimension and the Hausdorff dimension of the Julia set coincide. Since each
Borel probability f)-invariant measure is by Poincare’s Recurrence Theorem supported on
J.(f), as an immediate consequence of Theorem 4.5 we get the following corollary which
disproves this conjecture in the case of transcendental entire functions.

Corollary 4.6. If A € (0,1/e), then the supremum of Hausdorff dimensions of all probability
fr-tnvariant ergodic measures is less than the Hausdorff dimension of the Julia set of f.

Corollary 4.7. The function A — HD(J,.(f\)) is continuous in the interval (0,1/e).

Proof. Fix A € (0,1/e) and a sequnce A, € (0,1/e) converging to A. Let m = m, and
m,, = my, be the corresponding conformal measures. Denote their exponents respectively by
h and h,. By Theorem 4.5, h = HD(.J,(f\)) and h,, = HD(J,(fy,)). Consider an arbitrary
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subsequence {ny}2 , such that the sequence h,,, converges, say to a limit £. Since the maps fy,
and f, are topologically conjugate and the conjugating map converges to identity if n — oo,
we conclude that for every compact set T C @, J(fy,) N T converges in the Hausdorff metric
to J(f\)NT. Consequently, any weak* accumulation point of the sequence m,, is a conformal
measure for F. Since, by the proof of Theorem 2.1 and by Theorem 4.5, £ > 1, it therefore
follows from Theorem 4.4 that £ = h and we are done. B

Remark 4.8. An alternative proof of this result would use the existence of quasi-conformal
conjugacies between the maps fr, A € (0,1/e) with dilations constants converging to 1 when
A — Ao.

Let P" be the h-dimensional packing measure (see [TT], comp. [PU] for example, for its
definition and some basic properties). The last three results of this section provide in a sense
a complete description of the geometrical structure of the sets .J.(F) and J,.(f) and also they
exhibit the geometrical meaning of the h-conformal measure m.

Proposition 4.9. We have P"(J.(f)) = oo, in fact P"(G) = oo for every open nonempty
subset of J,(f).

Proof. Since m(J,.(F) N (P \ Py)) > 0 for every M € IR, it follows from Birkhoff’s ergodic
theorem and Theorem 5.2 below (whose proof is obviously independent of the results proven
in the remainder of this section) that there exists a set E C J.(F') such that m(E) = 1 and

limsup ReF"(z) = oo (4.7)

n—o0

for every z € E. Fix 2 € E , n > 1 and consider the ball B(z, K~'|(F")(2)|™"), where
K =16 is the Koebe constant corresponding to the scale % Then

B(z, K |(F")|(2)[7") € F7"(B(F"(2), 1)),

where F" : B(F"(z),1) — C is the analytic inverse branch of F" mapping F"(z) to z.
Applying Koebe’s Distortion Theorem, conformality of the measure m, and Corollary 3.8, we
obtain

m(B(z, K(F")'(2)|7") < K*|(F") (2)|~"m(B(F"(2),1))
< K(EHEY ()17 m(Viepn(s)-1)
< K*'Cexp((1 = h)(ReF"(z) — 1) (K |(F")'(2)] )"

Hence, using (4.7), we conclude that
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Since m(G N J.(F)) > 0 for every non-empty open subset of J,.(F), this implies (see an
appropriate Converse Frostman’s Type Theorem in [DU2] or [PU]) that P"(G) = co. Since
Jo(f) = Upez(J,(F) + 2mik), we are therefore done. B

Theorem 4.10. 0 < H*(J,.(F)) < oo.

Proof. We know from Theorem 4.5 that H*(.J,(F)) < co and we are therefore left to show
that H*(J,.(F) > 0. Since m(J,(F))) = 1, it suffices to demonstrate that for every 2 € J,(F)
and all r > 0 sufficiently small (depending on z)

m(B(z,r)) < Cr"
for some constant 0 < C' < oo independent of z and r. And indeed, put
0 = min{, dist(J(F), {f*(0) : k > 0})}.

Fix 2z € J.(F), 0 <r < 0(32|f'(2)|)~". Since F : J(F) — J(F) is an expanding map, there
exists a largest n > 1 such that

ny/ 0
rl(f*) () = 55 (4.8)
Thus
() () > 55 (4.9)

It follows from the definition of @ that the holomorphic inverse branch f," : B(f"(z),0) — €
of f" sending f"(2) to z, is well-defined. Since f|p(sn(2),9) is 1-to-1 and since, by Koebe’s
t-Theorem, f(B(f"(z),0)) D B(f”“(z), i9|f’(f”(z))|), we conclude that the holomorphic
inverse branch f ("*1 . B(f”“(z),i9|f’(f”(z))|) — @ of f"! mapping f"*(z) to z, is

well-defined. Since
4r|(f" ) ()] = 4 (f) ()] - F (1 ()] = 9(%Tl(f")'(2)l) : élf’(f”(Z))l
and since, by (4.8), 2r|(f")'(z)| < 1, we conclude that 4r[(F"™)'(z)] < 26|f'(f"(2))]. Ap-
plying Koebe’s i—Theorem again, we see that
£ (B (=), 4r () (2)])) 2 Bz [ () el (f) (2)]) = Bz, 7).

Since the ball B(f”“(z), 4r|(f”+1)’(z)|) intersects at most 5=4r|(f"™)(z)[+1 < 7|(f"1)'(2)|
horizontal strips of the form 2mik + P, k € Z, using Koebe’s Distortion Theorem, h-
conformality of the measure m and, at the end, (4.9), we get

r M m(B(z,r)) < v M| ) () @) m (o (B (1 (2), 4r (£ (2)1)))
<R @I ()

= Kl )<k (2)
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where K = 16 is the Koebe constant corresponding to the scale 1/2. We are done by applying
an appropriate Converse Frostman’s Type Theorem in [DU2| or [PU]). B

As an immediate consequence of this theorem we get the following.

Corollary 4.11. The h-dimensional Hausdorff measure of the set J. is positive.

5. INVARIANT MEASURES

In order to prove Theorem 5.2 below we apply a general sufficient condition for the existence
of o-finite absolutely continuous invariant measure proven in [Ma]. In order to formulate this
condition suppose that X is a o-compact metric space, v is a Borel probability measure on X,
positive on open sets, and that a measurable map 7" : X — X is given with respect to which
the measure v is quasi-invariant, i.e. v oT~! << v. Moreover we assume the existence of a
countable partition & = {A,, : n > 0} of subsets of X which are all o-compact and of positive
measure v. We also assume that v(X \ U,s¢ An) = 0, and if additionally for all m,n > 1
there exists £ > 0 such that -

v(T™F(An) N Ay,) >0,

then the partition « is called irreducible. Martens’ result comprising Proposition 2.6 and
Theorem 2.9 of [Mar] reads the following.

Theorem 5.1. Suppose that o = {A,, : n > 0} is an irreducible partition for T : X — X.

Suppose that T is conservative and ergodic with respect to the measure v. If for every n > 1
there exists K, > 1 such that for all k > 0 and all Borel subsets A of A,

—k
VA) T vld)
v(An) T (T (An) = v(An)
then T has a o-finite T-invariant measure p absolutely continuous with respect to v. In

addition, | s equivalent with v, conservative and ergodic, and unique up to a multiplicative
constant. Moreover, for every Borel set A C X

L ST HA)
i) = i, S DR A

The main result of this section is the following.

K—l

Theorem 5.2. There exists a probability F'-invariant measure p absolutely continuous with
respect to h-conformal measure m. In addition, i is equivalent with m and ergodic.

Proof. Let us first prove that there exists a o-finite ergodic F-invariant measure y equivalent
with m. Let a be the partition constructed at the beginning of Section 4 with the constant
R > 0 so large as required in Lemma 4.1. In view of Koebe’s distortion theorem there exists
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a constant K > 1 such that if F, " : P — P is a holomorphic branch of F~", then for every
k>0 and all x,y € Ay we have

(F=Y )

Foya) <5 o1
We therefore obtain for all Borel sets A, B C Ay with m(B) > 0 and all n > 0 that
m(F"(A) _ [ l(F)"dme _ supy {|(F)["hm(A) pm(A)
m(F,(B) 4 |(E ) dm = b {I(F, Y m(B) ~ ' m(B)’
Therefore
m(F~" — m(F~" hm -n M — hm —-n M
(o) = A0 € SR O s = Kol BT

where the summation is taken over all holomorphic inverse branches of F". In view of
Lemma 4.3, for every £ > 0 and every [ > 0 there exists nj; > 0 such that

Fnkl(Ak) D) Al (53)

Applying now (5.2) and (5.3) along with Theorem 4.4 and Theorem 5.1 concludes the proof
of the existence of required o-finite measure pu.

It only remains to show that y is finite. And indeed, fix 0 < p < ¢ with the same requirements
as in the definition of Py, in the beginning of Section 4. Each holomorphic branch F7 : P —
P of F~7 restricted to the set AgU A, ...UA, extends in a holomorphically univalent fashion
to theset {z€ C':p<Rez < R+n+1and —2nr < Imz < 2n7} and it therefore follows
from Koebe’s distortion theorem there exists a constant C; > 1 such that for every n > 0, all
x € Ay and all y € A,,, we have

EYW o s
(Fy(a) =

Therefore, using in addition Lemma 3.8, we obtain
m(F7(An))

*

< CI(}%VM S Cl(Rn)?’Cm(AO)_le(l_h)Rn,

m(F7 (Ag)) — m(Ao)
Hence (r '(A )
m(F 7 (An n)3Cm ~1,(1-h)(R+n—1)
m(Fi(A) = 1 Cm)

and consequently, for every k > 0,

h om(F (A,
Zi}_o m( ( )) < Cl (Rn)3cm(A0)_le(l_h)(R+n_1).
>j—o m(F~7(Ag))
Thus, applying Theorem 5.1 we get
K om(F~I(A,
w(Ay) = lim Efo m ( )
k=00 30 m(F~7(Ap))

< C1(Rn)3Cm(Ap) tet-M(E4n=1)
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Since R > 0, we finally get pu(J(F)) = 3,50 #(An) < 0o. We are done. B

6. GENERAL HYPERBOLIC CASE

In this section we outline the argument showing that the phenomenon described above holds
also for every map f) = Aexp(z) such that f, has an attracting periodic orbit.

We decided to write the details of the proof for the particular case of the attracting fixed
point because the dynamics is very simple in this case. On the other hand, the extension of
the arguments for the general hyperbolic case is rather straightforward, but it requires some
extra information about the structure of the Julia set (see [BD]). So, in what follows we rely
on the description given in [BD], we also use the notation of this paper. We recall it briefly:
205,20 = % i1s an attracting cycle of f. Assume that the singular value 0 is contained in
the domain A;, the immediate basin of attraction of z;. The topological disk B, ,; containing
21 is chosen so that 0 € B,y1, f*(B,;1) C Bny1- Then B, is defined as B, = f~'(B,11)-
The set B,, contains some half-plane Rez < —M and z, € B,,.

For j=1,...,nlet B,_; be the connected component of f~'(B,_;;1) containing z,_;.

Notice that Bj is contained in the immediate basin of attraction of z; and B,,.; C By. The
set By contains B,, and f"(By) = B,,.

For + < n, B, _; is a simply connected unbounded set, bounded by a simple curve, a finger
in the notation of [BD]. The set By is a complement of a union of infinitely many ”fingers”
F;. In order to build an appropriate dynamics, we fix one component (”finger”) Fy of the
complement of By (obviously, F; = Fyy + 2kmi - see Fig.3 in [BD]). Let

n—1
P:FO\’/Til(U BZ)7
i=1

where 7 is the natural projection 7 : |J F; — Fy. Then
f(P) > (P + 2kmi)
k

and, actually, modifying the set P slightly, we can require that f(P) D U, (P + 2kmi). Now,
F:Pnf~Y 7= Y(P)) — P is defined as F = 7o f.
Let
J(F)={z € P: F" is defined for all n > 0}.
One can easily see that
J(fynP=J(F).

Now, the whole construction given in previous sections can be repeated. We omit the details
and summarize the results in

Theorem 6.1. Assume that the map f(z) = Aexp(z) has an attracting periodic orbit. Denote
by
J,={z € J(f): f"(2) does not tend to oo}.
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Then h = HD(J,) < 2. Moreover, there exists a h-conformal measure m for the map F :
J(F) — J(F) and a o-finite conformal measure m for f : J(f) — J(f) satisfying m(I-(f) =
0 . The h-dimensional Hausdorff measure of J(F) is finite, while the h-dimensional packing
measure is infinite. There exists a probability ergodic F'-invariant measure pu equivalent to m.

7. APPENDIX

Our main goal in this appendix is to provide an alternative direct proof of the fact that the
Hausdorff dimension of the set J.(f)), is less than 2 without using the concept of conformal
measures. Let

Jralf2) = {2 € J(£) s liminf | ()] < o0 and limsup | ()] = oo},

We start with the following.

Lemma 7.1. If X € (0,00), then

lim sSup HD(Jru(f)\)) <1
A—=0

Proof. Fix A € (0,1/e). Given an integer k > 2, consider the set
Je(M) = {z € Py J(f\) : Re(f*(2)) < M and Re(f’(z)) > M forall j =1,... .k —1}
and define the map Fj : Ji(M) — Py by the formula
Fi(z) = mo(f*(2)) = F*(2).

If 2 € Ji(M), then Re(f* 1(2)) > M and therefore | f*(2)| > AeM. Since Re(f*(z)) < M, this
implies that |[Im(f*(2))| > VA2e2M — M > XeM /2 for all M large enough. Since in addition
Re(f7(z)) > M for every 2z € Jy(M) and all j = 0,1,... ,k — 1, we therefore conclude that
for every w € Fy(Jx(M)) and every t > 1 we have

T oners T () (2 <M2+<§m>2>t/2>k_l

2R (w) In|> 2" n=ee (7.1)
< (jﬂ_)til )\l—t(Ml—tEt)k—l

where ¥; = % [ mdu. Since all the sets Jx(M), k > 2, are mutually disjoint, putting

)
Joo (M) = Ugs2 Jr(M), we can define the map F, : Joo(M) — Py by the requirement that
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Fol|s(my = Fi- It therefore follows from (7.1) that for every w € J(f) N Py, we get

4 t—1 0 )
S EL e < S ey S -ty
2E€F (w) b= Jj=1
(47)#1 My1—t 1—t 1 7.2
= Qe ) TR T 72)

4m)t=
< 2§)t( ) ()\e MyL=tpptt
for all M large enough. Fix now k£ > 1 and define

Ep(M) ={z € Py nJ(f) : Re(f/(2)) < M forall j =0,1,... .k —1

and F*'(2) € JOO(M)}.

Put E (M) = Ug>1 Ex(M). Since the sets Ep(M), k > 1, are mutually disjoint, we can
define the map G : Eo (M) — Py by setting

G(2) = Foo(F"(2))

if z € Ek(M)
Note that Ey(M) = Joo(M) and G|g, ) = F. Since Re(f(2)) > ¢y for all z € J(f,) and
all j > 0, we get for all w € Py, N J(f)\) that

€61 (w) niseo (03 + (270

4 t—1
§2Et(tﬂ)1 ( 1 —tpri- tz tzt
Fix now A > 0 so small that gy is so large that ¢, ‘S, < 1/2. Then for all w € Py N J(fy),
we get

S |G (2)| < G (e, (7.3)

2€G~1(w)

for some constant C; depending on ¢ and independent of M. Now, there exists 0 < py < qx
such that {z € @ : Re(z) > pa} N {f2(0) : n > 0} = 0. Cover the set Qy = {z € C: p\ <
Re(z) < M + 1} by the family R, of non-overlapping rectangles intersecting G(E(M)) of
the form A x [—3, 37] with the lengths of A equal to 1. For every element R € Ry fix
one element wp € RN G(Ex(M)). Then the family {G;Y(R) : R € R,z € G Hwg)}
covers Eo (M), where G;! : Qu :— € is the holomorphic branch of G sending w to z.

It follows from Koebe’s distortion theorem and (7.3) that if R € R), and v € R, then
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Yea-1(wp (G (0)]F < C{(MeM)'=" for some constant C; independent of M. Consequently

Y OY da@IER)< Y Y (G @) dian(R)

ReRy zeG~(wpg) ReRy zeG~(wpg)

< Br+1)fC; > (MeM)

RER
< (37 + 1)'C{(M + 1)(MeM)t
where v, € R is chosen so that [(G;')(v,)| = sup,cr{|(G;")(v)|}. Since for every N > 1,
Ju(A)N{zeC@: —m <Im(z) <7} C |J Ex(M),

M>N
since -
ooy Y diam'(G,'(R)) < Br+1)'C; Y (M +1)(MeM)
M>N RERy 2€G—(wr) M=N

and since limpy_,q ((37r + 1)'C YN (M + 1)(MeM)1*t) =0, we conclude that
HD(Jpu(fa) N{z € C: —7 < Im(z) < 7}) < t.

Since

Jru(f/\) = U (Jru(f)\) N {Z el:—m < Im(z) < 7T} + 27Ti’n),

nez

we conclude that HD(J,,(fx)) < t. The proof is finished. W

Let

5(5) = {2 € J(f) :limnt |7(2)] < o).
Since J.(fx) = Jpa(fr) U Jru(fr), combining Lemma 7.1 and Corollary 2.2, we obtain the
following.

Theorem 7.2. If A € (0,00), then
&12% HD(J,(fy)) = 1.

Corollary 7.3. If |\| < 1/e and A # 0, then HD(J,.(f\)) < 2.

Proof. The following theorem has been proven in [As] as Corollary 1.3 (comp. [GL],
Theorem 5, p.13.

Theorem 7.4. If f : Q — Q' is a K-quasiconformal homeomorphism and E C Q is a compact
set, then

2KHD(E))
HDUE)) < o Kk —1)up (@)
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Although Astala’s result is stated for compact sets E only, it is in fact true for all subsets
E of Q. And indeed, assuming first that £ C G and the closure E is compact, we see that
Theorem I1.8.1 from [LV] applies and Astala’s proof goes step by step through. Now, it suffices
to notice that the Hausdorff dimension is o-stable and each subset of €2 is a countable union
of sets whose closures are compact subsets of €). In particular quasiconformal maps send
sets whose Hausdorff dimension is less than 2 into sets with Hausdorff dimension less than
2. Since all the maps fy with [A\| < 1/e and A # 0 are mutually quasiconformally conjugate,
combining Theorem 7.2 and Theorem 7.4, we obtain our corollary. B
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