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THERMODYNAMIC FORMALISM, TOPOLOGICAL PRESSURE,
AND ESCAPE RATES FOR
CRITICALLY NON-RECURRENT CONFORMAL DYNAMICS

MARIUSZ URBANSKI

ABSTRACT. We show that for critically non-recurrent rational functions all the definitions of
topological pressure proposed in [12], coincide for all ¢ > 0. Then we study with detail the
Gibbs states corresponding to the potentials —tlog|f’| and their o-finite invariant versions.
In particular we provide a sufficient condition for their finiteness. We determine the escape
rates of critically non-recurrent rational functions. In the case of presence of parabolic points
we also establish a polynomial rate of appropriately modified escape. This extends the corre-
sponding result from [6] proven in the context of parabolic rational functions. In the last part
of the paper we introduce the class of critically tame generalized polynomial-like mappings.
We show that if f is a critically tame non-recurrent generalized polynomial-like mapping and
g is a Holder continuous potential (with sufficiently large exponent if f has parabolic points)
and the topological pressure P(g) > sup(g), then for a sufficiently small § > 0, the function
t— P(tg), t € (1 —0,149), is real-analytic.

1. Introduction and Preliminaries

A rational function f : € — @ is called critically non-recurrent if no critical point contained
in its Julia set is recurrent. In [17] and [18] we explored some geometrical and dynamical
properties of critically non-recurrent rational functions. In this paper we continue the inves-
tigations originated in these two papers. More precisely, in Section 2 we deal with various
generalizations of topological pressure P(¢) of the potential —¢log|f’|, ¢ > 0 proposed in [12].
We demonstrate (see Theorem 2.6 that for critically non-recurrent rational functions all these
definitions of topological coincide for all ¢ > 0. In Section 3 we deal with thermodynamic
formalism of critically non-recurrent dynamics. We study with detail the Gibbs states cor-
responding to the potentials —tlog|f’| and their o-finite invariant versions. In particular we
provide a sufficient condition for these invariant measures to be finite. In Section 4 we deal
with escape rates. We show that in the critically non-recurrent case this rate is equal to P(2).
In the case of presence of parabolic points we establish a polynomial rate of appropriately
modified escape. This extends the corresponding result from [6] proven in the context of
parabolic rational functions. Our approach differs from Haydn’s and Isola’s in that point that
we estimate moduli of appropriate annuli and we use McMullen’s result relating such moduli
with hyperbolic diameters of corresponding sets enclosed by these annuli. In Section 5, the
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last section, we deal with generalized polynomial-like maps and Holder continuous poten-
tials. We show that if f is a tame non-recurrent generalized polynomial-like mapping and g¢
is a Holder continuous potential (with sufficiently large exponent if f has parabolic points)
and the topological pressure P(g) > sup(g), then for a sufficiently small 6 > 0, the function
t+— P(tg), t € (1 —4§,1+ ), is real-analytic.

2. VARIOUS PRESSURES

Let f : @ — @ be a rational function of the Riemann sphere @ of degree > 2. In [12] F.
Przytycki has proposed several ways of extending the concept of topological pressure of the
potential —tlog|f’|, ¢ > 0 to the entirely general case. Let us describe them briefly:

1. Variational pressure.

Puar(t) = sup{hy(f) — ¢ [ log|f'd},

where the supremum is taken over all ergodic f-invariant measures on J(f).

2. Hyperbolic variational pressure.

Phypvar (t) = Sup{hu(f) - t/lOg |f,|d,u}7

where the supremum is taken over all ergodic f-invariant measures on J(f) with positive
Lyapunov exponent, i.e. such that x,(f) = [log|f'|du > 0.

3. Hyperbolic pressure.
We call a forward invariant compact set X C J(f) hyperbolic if there exists n > 1 such that
for every x € X, |(f")'(x)| > 1. The hyperbolic pressure

Pryp(t) = Sl)l(p{P(ﬂXa —tlog|f'])},
where the supremum is taken over all f-invariant hyperbolic subsets X of J(f) such that an

iterate of f|y is topologically conjugate with a subshift of finite type.

4. DU pressure.
Let V' be an open subset of J(f) such that J(f) N Crit(f) C V and let

EWV)=J(H\ U ).

n>0

Since K (V') is compact, f-invariant and disjoint from the set of critical points, we can consider
the standard topological pressure P(f|x vy, —t [log|f']). Put

Ppy(t) = Slép{P(ﬂK(V)a —tlog|f'])},

where the supremum is taken over all open sets V' considered above.
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5. Minimal conformal eigenvalue. The minimal conformal eigenvalue A(t) is defined to be
the infimum of all A > 0 for which there exists a Borel probability measure m such that

dmo f
dm

= MfI"

We set
P.(t) = log A(%).
6. Point pressure.
Given z € €'\ U, 5o f"(Crit(f)) and ¢ > 0 put

: 1 n _
P.(t) =limsup— > [(f")'(z)|™".
n—oo T _
zef~"(2)
F. Przytycki has proved in [12] that there exists a set G C @'\ U, f"(Crit(f)) such that
HD(C'\ G) = 0 and P,(t) = P,(¢) for all z,w € G. This common value will be denoted by
P,(t). It is not difficult to check (see [12]) that the following proposition is true.

Proposition 2.1. All the pressures defined in the items (1)-(6) are Lipschitz continuous and
monotone with respect to the variable t.

The following fact has been proved in [12] (comp. [4] and [16])

Theorem 2.2. There exists a number h = h(f) called the Poincaré exponent of the function
f in [12] and called the dynamical dimension of the Julia set in [4] such that all the pressures
defined in items (1)-(6) coincide on the interval [0, h], are positive on [0, h) and vanish at the
point h.

Our aim in this section is to extend this equality of pressures to the whole set [0, 00) in the
case of critically non-recurrent dynamics. We start with the following.

Lemma 2.3. If f is critically non-recurrent and y € J(f) is a periodic point of f, say of
period q, then there exists a sequence {y,}5°, C J(f) of periodic points of f, say of period ¢,
respectively, all different from y such that lim,_, y, = y and

.1 1

lim —log [(f™)"(yn)| < glogl(fq)'(y)l-

n—00 qn

In addition, if there exists no k > 1 such that f*(y) \ {f’(y): 0 < j < q— 1} C Crit(f) or
if y € Q, then this inequality can be replaced by equality.

Proof. Our strategy is to approximate y by periodic points of f9. Without loss of generality
we may assume that ¢ = 1. Regardless whether y is repelling or rationally indifferent there
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exists 0 > 0, z € J(f)NB(y,#) and € > 0 such that all the local holomorphic inverse branches
f;" of all iterates of f are defined on B(z,2¢) C B(y,0) \ {y}, the closed ball centered at z
and with radius 2e. Local means here that lim,_, f;"(z) = y and f;"(B(z,2¢)) C B(y,0).
In the case when y is a repelling point all these branches are defined on the entire ball B(y, )
for @ > 0 small enough. Since U,~¢ f*(Crit(f)) is by Lemma 5.2 from [17] nowhere dense in
J(f)), there exists a closed ball B C 2B C B(x,¢) centered at a point w € J(f) such that
2BNUp>o fM(Crit(f)) = 0. This implies that for every n > 0, f,"(2B)NU, 5o f*(Crit(f)) = 0
and since f : J(f) — J(f) is topologically exact, there thus exists [ > 1 independent of n and
a holomorphic branch f, " : f,"(2B) — € of f~' sending f,”(w) to B. Therefore, for every
n > 1 large enough f.'o f?;”(2B) C 2B. Hence by the Brouwer fixed point theorem there
exists Y41 € 2B, a fixed point of f, "o f, ™ : 2B — 2B. Hence f"*(yn11) = ynis and ynyy # y
as, by the choice of €, y ¢ 2B. It is clear that in the repelling case

lim ~ log| (/") (4)] < log|f'(y) (2.1)

n—oo n

and in the parabolic case this follows from the fact that |(f, ™) (w)| < n 5 for all w €

B(z,€), where p > 1 is the number of petals of the point y. If there exists no k& > 1 such
that f=%(y) \ {fi(y) : 0 < j < ¢ — 1} C Crit(f), then f-! extends holomorphically on
B(y, ) for some x > 0 sufficiently small and the inequality (2.1) becomes an equality. If

_ptl

y e Qand fH(y) \ {fi(y) : 0 < j < q—1} € Crit(f) , then [(f;") (ysd)l =< 0 5 and
£ " Wnt) —yl < n 7. If | < k, we conclude the proof as above. If & < I, passing to a

subsequence, we may assume that lim,, ., ¥, = ¢, a critical point of f' belonging to f~'(y).
Denote the order of the critical point ¢ of f! by s. We then obtain the following.

1

070 55 s = 102G o) 16 = (3) ) it = (3).

Thus |(f"*) (ynss)| < n' 75 and therefore

lim log |(f™*") (yn+)| = 0.

n—oo n + [
The proof is complete. B

Let €2 be the set of all parabolic points of f, i.e.
Q={we J(f): Fp1f1(w) =w and (f9)(w) =1}

Lemma 2.4. Assume that f is critically non-recurrent. If u is a Borel probability f-invariant
ergodic measure supported on J(f), then either

Xp = /log|f’|du >0 or u(Q) = 1.
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Proof. Suppose that p(2) < 1. Since Q consists of periodic points and since pu is ergodic,
this implies that p(£2) = 0. Since no critical point contained in the Julia set of f is periodic,
we conclude that

(U QU Crlt(f)ﬂJ(f)))> =0.

n>0

Hence, by Birkhoff’s ergodic theorem there exists z € J(f) \ U,>o /™" (2 U (Crit(f) N J(f)))
such that

[ 101 ldre = Jim_~ tog |(£")'(2) (2.2)

In view of Proposition 6.1 from [17] there exist an increasing to infinity sequence {n;}2,
(depending on z) and a number 7(z) > 0 such that

Cn; (2, B(f" (2),1(2))) N Crit(f") = 0,

where Cy,(z, F') is the connected component of f~"(F) containing z. We may assume that
n(z) < n, where n > 0 is the constant appearing in Lemma 7.7 of [18]. It therefore follows
from Koebe’s distortion theorem that

(/™)' (2)] = diam(Cy, (2, B(f"(2),1(2)/2)) (2:3)

Choose # > 0 used in the definition of the operation Comp* from [18]. There then for
every n > 1 exists n* < n, the only number such that z € Comp” (B(f"(z),n(2)/2)) =
Chn(z, B(f™(2),n(2))). Combining (2.3) and Lemma 7.7 of [18] we obtain that

1
lim inf — log |(f™)’ 0 2.4
im inf - og|(f")'(2)] > (2.4)

Since p(€2) = 0, we may require 6 > 0 to be so small that p(B(€2,26)) < 1/2. Applying now
Birkhoff’s ergodic theorem we deduce that we could choose z to satisfy the following

n—1

1
lim inf - @ > lim —ZIIJ MB@.20) © f1(2) > 1/2.

_]*)OO n] n— 00 n

Combining this, (2.4) and (2.2), we conclude that [log|f’|dy > 0. The proof is complete. B

As an immediate consequence of this lemma we get the following.

Corollary 2.5. If f is semi-hyperbolic (critically non-recurrent and @ = (), then [log|f'|du >
0 for every Borel probability f-invariant ergodic measure pu supported on J(f).

The main result of this section is the following.

Theorem 2.6. Assume that f is critically non-recurrent. Then
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(a) All the pressures defined in items (1)-(6) coincide throughout the whole interval [0, 00)
and denote their common value by P(t).

(b) If Q2 =0, then P(t) <0 for all t > h.

(c) If Q#0, then P(t) =0 for all t > h.

(d) h =HD(J(f)), the Hausdorff dimension of the Julia sets J(f).

Proof. The item (d) is an immediate consequence of the results obtained in [17]. It follows
from the facts established in the course of the proof of Theorem A2.9 in [12] that

Pe(t) = Pp(t) > Phypuar (1) = Pryp(t) < Poar () 2 Ppu(?).

Thus, in order to complete the proof of item (a), it suffices to show that

Pvar (t) = Phypvar (t) (25)

and
Ppu(t) > P.(t). (2.6)

And indeed, if Q = (), then (2.5) immediately follows from Lemma 2.4. If Q # () and ¢ > h,
then in view of Proposition 2.1, P4 (£) = 0. Using in addition Lemma 2.4, we see that also
Prypvar (t) = 0. Therefore, applying Theorem 2.2, we conclude the proof of formula (2.5).

In order to prove (2.6) we shall construct a Borel probability measure m on J(f) such that
dmef — o] f'|' for some P(t) < Ppy(t). And indeed, for every ¢ € Crit(f)N.J(f) there exists
a point y. € w(c) \ Upso f7(Crit(f) N J(f)). For every n > 1 let

V, = U B(ye, 1/n).
ceCrit(f)NJ(f)

Then for all n large enough V,, N Crit(f) = 0. In addition, for every ¢ € Crit(f) N J(f) there
exists k(c) > 1 such that f*)(c) € V,, and

K(V,) C K ( U f’“(c)(Vn)) :

ceCrit(f)NJ(f)

Thus

Po(t) := P(fl (v, —tlog| /') < P(f] ,—tlog|f']) < Ppu(t)

K(Ucecrit(f)ﬁJ(f) fﬁk(C)(Vn)) (27)

is expansive and consequently

Since it is not difficult to see that f]| (U -
ceCrit(f)NJ(f)

KO 1))

50 is f|k(v,), it follows from Theorem 3.12 in [2] that there exists a Borel probability measure
m,, supported on K (V},) for which

ma(f(4)) = [ O fdm, (2.8)
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for every Borel set A C K(V;,) \ 0V, (0V,, is the only set where the map f|x(y,) may fail to
be open) such that f|, is 1-to-1 and

mn(f(A)) > / PO | 't dm,, (2.9)

A

for every Borel set A C K (V) such that f|4 is 1-to-1. A straightforward analysis (see [4]
for details) shows that (2.8) continues to hold for all sets A C J(f) \ V,, and (2.9) continues
to hold for all sets A C J(f) satisfying in each case the requirement that f|4 is 1-to-1. Let
m be a weak limit of measures m,, as n  oo. Since P, (t) is an increasing function, the
limit P(¢) = lim,_,o Py (t) exists and by (2.7), P(t) < Ppy(t). Proceeding as in the proof of
Lemma 5.5 in [4] (comp. [16]) we conclude that

m(f(4) = [ FOIf 'dm (2.10)
for every Borel set A C J(f) \ {y.: c € Crit(f)} such f|4 is 1-to-1 and
m(f(4) = [ FOffdm (2.11)

for every Borel set A C J(f) such f|4 is 1-to-1. In order to proceed further we need to
impose more restrictions on the choice of points y.. Namely, since for every ¢ € Crit(f),
w(e) is compact and f(w(c)) C w(c), there thus exists a Borel probability f-invariant ergodic
measure /i, supported on w(c). Fix an arbitrary point y, € supp(w(c)) which is recurrent and
such that

i, 10 (/") (3)| = Xy = [ Tog | (212)

n—oo n

Our aim is to show that (2.10) is also satisfied for the singleton A = {y.}. And indeed
suppose first that y. is eventually periodic. Since y. is recurrent, it must be periodic. Fix

€ > 0. In view of Lemma 2.3 there exists a periodic point x, whose periodic orbit is disjoint
from Crit(f) and such that

1
o817 (@) < X+ 6

where ¢ > 1 is the shortest period of z.. Let 1, be the atomic probability measure equidis-
tributed on the forward orbit of z.. Of course p, is ergodic and f-invariant. Since for all
n > 1 large enough z. € K(V,,), we get

. 1
P(t) > Pu(t) 2 hy, —tlog|f|dug = —t=1log () (wc)| = —txu, — te.
q

Letting € \, 0 we therefore get P(t) > —tx,, = —% log |(f?)'(yc)|, where p > 1 is the shortest
period of periodic point y.. Equivalently

POI(fY (g = 1 or POI(FY (fly)] > 1.
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Using this and applying (2.11) consecutively to the sets {f?(y.)}, {/* " (vo)} -, {f(y.)}, we
get

m(f(yc)) - m(f(f”(yc))) Z / ) ef’(t)|f/|tdm Z /p71 er’(t)|(f2)/(f(yc))|tdm Z o Z
[ IO () dm = POV ) m(F () = )

So, all the inequalities in this formula are in fact equalities and in particular
m(fe) = [, O ldm = [ PO tdm
fP(ye) Ye

and we are done in this case. So, suppose that the point . is not eventually periodic. Since
ye € supp(w(c)), along with Lemma 2.4 and (2.12) this implies that

1 n
gglgloglog|(f ) (ye)| = X > 0.

It is not difficult to demonstrate (see [16] for instance) that there exists R > 0 such that for
every n > 1 the holomorphic inverse branch f, ™ : B(f"(y.),4R) = @ of f" sending f"(y.)
to y. is well-defined. Since by Corollary 6.2 from [17] and by Koebe’s distortion theorem,
lim,, o 1dlam (f "(B(f™(ye), 2R)) = 0, and since the point 7. is recurrent, there thus exists
an increasing to infinity sequence {nj}>1 of positive integers such that

1, (B (4e), B)) € B(f" (ye), R).

Therefore, by Brouwer’s fixed point theorem for every k > 1 there exists a point z; €
B(f"™(ye), R) such that f "™ (xy) = x4 This implies that f™ (r;) = z; and by Koebe’s
distortion theorem,

(™) (@) 7 = 1R (@)l = KO (F (ye))l = KM (™) ()|
(2.13)

where K > 1 is the Koebe constant corresponding to the Koebe’s factor 1/2. Since limy_, oo 2 =
Y. and all the points x; are different from y., infinitely many of them are mutually distinct
and (since these are periodic) their forward trajectory is disjoint from {y, : a € Crit(f)}.
Hence, for every k > 1 there exists j, > 1 such that z;, € K(V},). Therefore

(1) > Py (1) = by ()t [ log [ |d = —log (/™) ()|

where v, is the ergodic f-invariant probability measure equidistributed on the forward orbit
of . Thus, it follows from (2.13) that

e POI(f10) ()| > PO K| (™) ()| > K.
So, applying (2.11) we obtain that

> m({ () k> 1)) > i
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which implies that m(y.) = 0. Replacing in the above considerations 3. by f(y.), we see that
also m(f(y.)) = 0, and, in particular

m(f() = | e OLf'dm.

Consequently, (2.10) holds for every Borel set A C J(f) such f|4 is 1-to-1. Thus P.(t) <

~

P(t) < Ppuy(t) which completes the proof of part (2.6) and the whole item (a) of Theorem 2.6.

In order to prove item (b) notice that it immediately follows from Theorem 2.1 in [1] and
Koebe’s distortion theorem that if Q = (), then there are constants C' > 0 and 3 > 1 such
that for every z € J(f) \ Un>o f*(Crit(f)), every n > 1 and every x € f~"(z), we have
|(f™)(z)] > CB™. Write ¢ in the form § + 7, n > 0. Then for every n > 1

o @I = 3 Y @I (@) < o™ 30 () ()]

ze fn(z) zef~n(z) zefn(z)

Hence
P,(t) <lim supl log(C™") —nlog f + lim = SO (@)

n—oo M n—oon vefn(2)
= —nlogf + P,(0) < —nlogf < 0.

Let us finally prove item (c). If w € €, let v be the purely atomic probability measure
equidistributed on the forward orbit of w. The measure v is f-invariant and ergodic. It follows
from item (a) of our theorem that for each t > 0, P(t) = P4, (t) > h, —tlog|f'|dp = 0—-0 = 0.
The proof of Theorem 2.6 is complete. B

Remark 2.7. As Feliks Przytycki has pointed out to me the equality P,(t) = Pya,(t) follows
easily for all rational functions and all t > 0 from the results proven in [13].

3. CONFORMAL AND INVARIANT MEASURES

Throughout the entire section, similarly as in the previous one, f : @ — € is assumed to
be a critically non-recurrent rational function. Given ¢t > 0 a Borel probability measure m;
supported on the Julia set J(f) is called a t-conformal Gibbs state if f is non-singular with
respect to m; and moreover
dmy o f

dmt -
It follows from Theorem 2.6 that a t-conformal Gibbs state exists for all ¢ > 0. Since no
critical point in the Julia set is periodic, for every ¢ € Crit(J(f)) := Crit(f) N J(f) there
exists p(c) > 1 such that fP()=1 ¢ Crit(.J(f)) and

{f(c) : 7> p(c)} N Crit(f) = 0. (3.1)

eP(t) |f’|t.
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Let .
T . - . k\I/ rn
x(¢) = lim inf - log inf {|(f*)'(f"(c))[}
and let
X = min{—c i€ Crit(f)},

where ¢(c) is the order of the critical point ¢ for the function (). We have the following.

Proposition 3.1. If f : @ — @ is a critically critically non-recurrent rational function, then
we have my (UnZI(f”(Crit(J(f)))) = 0 for each t-conformal Gibbs state my. If in addition
t € [0,HD(J(f))] (the case t = HD(J(f)) is established in [17]), then m;(2) = 0.

Proof. Since the set

U (f(Crit(7(1)))

n>1

is nowhere dense in J(f), the equality m; (Un21(f”(Crit(f))) = 0 can be proved in the same

way as Corollary 7.2 (and Lemma 7.1 in [17]. For an elaborated argument in a more complexed
situation comp. [15].

The same reasoning as in Theorem 4.2 of [18] gives the following.

Theorem 3.2. If m, is a t-conformal Gibbs state and if my(2) = 0, then up to a multiplica-
tive constant there exists a unique f-invariant o-finite measure p; absolutely continuous with
respect to my. Moreover p; 1s equivalent with m; and it is conservative and ergodic.

The measure p; will be frequently called an invariant ¢-conformal Gibbs state. The critical
question for our purposes is when the measure i, is finite. In order to give at least a partial
answer to this question we need to know how the measure p; is constructed. This is done in
the paper [8]. So, let us describe the relevant theorem and relevant construction from this
paper. Suppose that X is a o-compact metric space, m is a Borel probability measure on
X, positive on open sets, and that a measurable map 7' : X — X is given with respect to
which measure m is quasi-invariant, i.e. moT~! < m. Moreover we assume the existence of a
countable partition a = {A,, : n > 0} of subsets of X which are all o-compact and of positive
measure m. We also assume that m(X \ U,>¢ 4,) = 0, and if additionally for all m,n > 1
there exists £ > 0 such that -

m(T7*(A,)NA,) >0,
then the partition « is called irreducible. Martens’ result comprising Proposition 2.6 and
Theorem 2.9 of [8] reads as follows.
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Theorem 3.3. Suppose that a = {A,, : n > 0} is an irreducible partition for T : X — X.
Suppose that T is conservative and ergodic with respect to the measure m. If for everyn > 1
there exists K, > 1 such that for all k > 0 and all Borel subsets A of A,

—k
md) _ m(THA) o mA)
m(An) = m(T*(An) — " m(Ay)
then T has a o-finite T-invariant measure |1 absolutely continuous with respect to m. Addi-

tionally 1 is equivalent with m, conservative and ergodic, and unique up to a multiplicative
constant.

K*l

Since in the sequel we will the method in which the invariant measure claimed in Theorem 3.3
is produced we shall also describe this procedure briefly. Following Martens one considers the
following sequences of measures

n—1
> Sk(m)

Sp(m) = moT ' and Qrp(m)=—-—-—"".

=% ™) = Sy (o)
It is proven in [8] that each weak limit u of the sequence @,(m) has the properties required
in Theorem 3.3, where a sequence {vy : k > 1} of measures on X is said to converge weakly if
for all n > 1 the measures v, converge weakly on all compact subsets of A,. In fact it turns
out that the sequence @, (m) converges and

p(F) = lim Qu(m)(F)
for every Borel set F' C X. Let us now describe the construction of partition « in the context
of critically non-recurrent rational functions. Indeed, set Y = J(f) \ (PC(f) U Q), where
PC(f) = Up>1 f7(Crit(f)). For every y € Y consider a ball B(y,r(y)) such that r(y) > 0,
m(0B(y,r(y))) = 0, and r(y) < (1/2)dist(y, PC(f)UR). The balls B(y,r(y)), y € Y, cover Y
and since Y is a metric separable space, one can choose a countable cover, say {fln :n >0},
from them. We may additionally require that the family {A, : n > 0} is locally finite that

is that each point z € Y has an open neighborhood intersecting only finitely many balls A,,,
n > 0. We now define the family o = {4,, : n > 0} inductively setting

Ay = Ao and Apy = z‘in+1 \ U A~_n
k=1

(and throwing away empty sets). Obviously « is a disjoint family and

U A, 2 J(H)\ (PC(flu)\ | 94,

n>1 n>0

whence in view of Corollary 7.2] in [17], m(UnZO An) = 1.
In order to provide some sufficient conditions for the measure p; to be finite, we need a
stronger assumption than critically non-recurrence. Namely, from now on throughout this

entire section we assume that f : € — € is parabolically semi-hyperbolic, that is that ¢ ¢
w(Crit(f)) for all ¢ € Crit(J(f)) and w(Crit(J(f))) NQ(f) = 0.
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Theorem 3.4. Suppose that f : @ — @ is a parabolically semi-hyperbolic map and that
P(t) > —xt. If my is the t-conformal Gibbs state and my(2) = 0, then the set of points of
infinite condensation of the invariant t-conformal Gibbs state py is contained in Q(f).

Proof. By the standard normal family argument there exists « > 1 and A > 1 such that
[(f*)'(2)] > A
for all z € w(Crit(J(f))). Thus
[(F) (" (@) = A (3-2)

for every ¢ € Crit(J(f)) and all n large enough. Since the conformal measure m; is positive
on non-empty open sets, inf{m;(B(x,r)) : € J(f)} > 0 for every r > 0; even more, there
exists a(r) € (0,7) such that

M(r) = inf{my(B(x,r) \ B(z,a(r)) :z € J(f)} > 0. (3.3)

It follows from (3.1) and (3.2) that there exists § > 0 such that for every ¢ € Crit(J(f))
k > 1 and every n > p(c) the holomorphic inverse branch ff’nk(c) . B(f"**(c),40) — @

sending f"*(c) to f"(c) is well-defined. Tt also follows (3.2) that for all u large enough, all
c € Crit(J(f)),allk >0and all0 <i<u-—1

Fptersivnn (B(fPOTHERD(0) 25)) © B(fFOH 0 (c), a(0)). (3.4)
For every ¢ € Crit(J(f)), all 0 < j <wu —1 and all i > 0 define now
Rij(e) = frt o (BUFPH"(0), 20)) \ £l (BUFP U0 (c), 20))
= F32 o (BUPHH(), 20) \ f i (B(FPH0HI(c), 26))),

where p = p(c¢). Applying Koebe’s distortion theorem and using (3.3) along with (3.4) we
conclude that

my(Rij(c)) < e_P(t)ju|(fj“)’(fp+i(c))|_tmt(B(fp+ij“(c),25) \ f]c_ﬂiJrju(c) (B(f(p+z+(3+1 (¢), 25))
= e POR () (f7(e)) (3.6)

Fix now a point £ € U, f"(Crit(J(f))). Obviously, because of parabolical semi-hyperbolicity
of f, the latter set is disjoint from Q. Let z = f*(£), where s > 1 is so large that

{f"(x):n >0} NCrit(f) = 0. (3.7)

Since Crit(J(f)) N w(Crit(J(f))) = 0, it follows from Lemma 2.13 in [17] that there exists
0 <7 < d/2such that if n > 1 and y € f"(x), then f*(C,(y, B(z,47))) N Crit(f) consists
of at most one point for every 0 < k < n — 1. Without loss of generality we may assume
that the set Ay involved in the definition of the invariant measure (i, is contained in B(z, 7).

(3.5)
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Suppose first that C,(y, B(x,2v)) N Crit(f™) = 0. It then follows from Koebe’s distortion
theorem that

my(Caly, B(x,7)))
my (Cn(ya B(J“a 7)) N f_n(AO))

Suppose in turn that C,(y, B(x,27v)) NCrit(f") # 0 and let 0 < k < n—1 be the least integer
such that f*(C,(y, B(z,4v))) NCrit(f) # 0. Denote by c its only element. Note that by (3.7)
k+ p(c) < n. Put p = p(c). Taking v > 0 sufficiently small, we may assume that

Crit(f) N U A (Culy, B(z,7)) € {f(c) :0<j <p—1}.

my(B(x,7)
mt(Ao)

< = 1. (3.8)

In particular

c € fH(Culy, B(x,27))). (3.9)
We have

(/75 ()] = [z = ¢ O (3.10)

forall 0 <i<wu-—1andall z € Cpyi(c, B(ff*(c),28)) (note that g(c) is also the order of ¢
for the function fP*%). Write n —k —p=su+r, s> 0,0 <r <u— 1. Since

FH(Cly, B(2,7))) C Cpirasule, B(fF7(c), 9)),
using (3.6) and (3.10), we get

mt(fk(cn(y,B( z,v ) < Z| fJu Y (P ()| —te—P(t)(p+r+iju) (|(fju)l(fp+T(c))|71)($71)t

j>s

= 3¢ PO | fivy (7))

Jjzs
Since Ay C B(z,v) C B(fP™""*"(c), ), using Koebe’s distortion theorem, we get
my(f4(Coly, Bz, 7)) N f~0 P (4y)) =
= (A | (£ (P74 (@] e 0w gy g 1) 7
= e POt | (pouy(r47 ()| 7to,

Therefore, using the assumption P(t) > —xt, we conclude that
t

mt(fk( (y’B( ’7)))) =< —P(t)(p+r+ju)|( £iu p+r+su (e
m(F5(Caly, B, )))mf—<n—k>(Ao>)‘§o e = e

for some number S(c¢) depending only on c¢. Using (3.9) we conclude that

(f*(Culy, Bz, 47)) \ f*(Culy, B(x,27)))) N Crit(f"*) =

IN

N

&
—_



14 MARIUSZ URBANSKI

and therefore Mod (*(Cy,(y, B(x, 47)))\ f*(Cu(y, B(x,27)))) > (log2)/q(c). Hence, applying
Koebe’s distortion theorem and (3.11), we obtain the following.

mlCaly, B@) U @0 (M (Caly, Bl )
m(Caly, Bz, 7)) ﬂf*”(Ao)) (FEY WOy (£4(Culy, B, 7)) 0 f~09(40))
S(@).

my(f " (B(,7))

my(f~"(Ao)
and consequently Q,,(B(x, 7)) = max{S(c) : ¢ € Crit(J(f))} foralln > 1. Thus wu(B(z,7)) <
oo and x is a point of finite condensation of p;. Since p; is an invariant measure, we con-
clude that £ is also a point of finite condensation of u; and we are done. If & € J(f) \

( w0 fP(Crit(J(f))) U Q(f)) the argument is easier. W

Therefore
< max{S(c) : c € Crit(J(f))}

A parabolically semi-hyperbolic map f : @ — ' is called semi-hyperbolic if Q(f) = 0. As an
immediate consequence of Theorem 3.4, we get the following.

Corollary 3.5. Suppose that f : @ — @ is semi-hyperbolic. If P(t) > —xt, then the invariant
t-conformal Gibbs state py s finite.

Allowing parabolic points we still get the following remarkable.

Theorem 3.6. Suppose that f : @ — @ is parabolically semi-hyperbolic. If t € [0, HD(J(f)))
(then my(Q2) = 0 is satisfied by Proposition 3.1, x > 0 follows from parabolical semi-hyperbolicity
and we have P(t) > 0 > —xt), then the t-conformal Gibbs state p is finite.

Proof. Since h = 6(f) and t € [0, h), it follows from Theorem 2.2 that P(¢) > 0. Hence, for
every k > 1 and every w € (2

1 s P(p); R, o) o, b kﬁ

my <B (w,k‘ p(w))) = Z e (t)]j p(w) S Z e~ (t)] = e~ (t) .
1 1
j=kprw) i (W)

Therefore, proceeding exactly as in the proof of Proposition 6.2 from [18], instead of (6.2) we
would get

— o0 N S

Z kp(w) Sn k(mt ) S ZefP(t)k (w)

— Sn(me)(A) k=1

Since P(t) > 0, this last series converges and all the numbers @,,(B) are bounded above by its
sum multiplied by a universal constant. This shows that w is a point of finite condensation

of p; which finishes the proof in view of Theorem 3.4. B
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4. ESCAPE RATES

Throughout this section f : @ — ('is a critically non-recurrent rational map. Let X\ be
the normalized Lebesgue measure on the sphere €' (with respect to the spherical metric).
Following the reasoning from Lemma 5.3 in [18] we shall prove the following.

Lemma 4.1. If f : @ — @ is critically non-recurrent, then for every 6 > 0 there exists € > 0
such that if D is an open ball centered in J(f)\ B(Q,0) with radius € and B is an open ball
such that 2B C D\ U,>; f*(Crit(f)), then

inf { ;Eg:;} >0,

where the infimum is taken over all integers n > 0, all D, the connected components of
f~™(D) and all connected components B,, of f~"(B) contained in D,,.

Proof. Using Koebe’s distortion theorem we obtain
diam(B,,)
diam(D,,)
and applying Lemma 3.3 in [18] we get

Awmzkﬁw<%g%%Y'

B = dion(B,) = (

>2diam2(Dn) > \(D,) (diam(Bn)>2

diam(D,,)

The proof is complete. B

Theorem 4.2. If f is critically non-recurrent, then for every € > 0 sufficiently small

limsup — log A(f " (B(J(f), €))) = P(2).

n—oo M

Proof. Fix € > 0 so small as required in Lemma 4.1 and such that there exists z €
G\ Ups1 fP(Crit(f)) for which B(z,2¢) N U,>; f*(Crit(f)) = @ (by topological exactness
of f: J(f) = J(f), Ups1 f2(Crit(f)) is obviously a nowhere-dense subset of J(f) in the
critically non-recurrent case), where G is the set coming from item (6) of the definition of
topological pressures. Applying Koebe’s distortion theorem we obtain

lim sup 1 log)\(f_”(B(J(f), e))) > lim sup 1 log)\(f_”(B(z, e))

n—oo 1 n—oo 1

:limsup%log > )\(fy_”(B(z,e))):limsup%log > |(f")'(y)[2

n—00 yefn(z) n—00 yef—(z) 4]_)

= P(2).
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Since obviously
timsup — log A(f ™" (B(J(f),)) < 0.
n—oo T

combining this, (4.1) and Theorem 2.6(c), concludes the proof in the case when Q # (. If
Q =0, cover J(f) by balls {D;}%_, centered respectively at some points {z;}*_, in G and with
radii so small as required in Lemma 4.1. Since, as we have already observed, U,;»; f*(Crit(f))
is nowhere-dense in the Julia set J(f), each ball D;, i = 1,2, ...k contains a non-empty open
ball B; such that 2B, C D; \ U, f*(Crit(f)). Thus, applying Lemma 4.1 and Koebe’s
distortion theorem, we get for every i = 1,2,...k

: 1 —-n . 1 —n

lim sup — log )\(f (Dl)) = llgisogp " log )\(f (Bl))

n—oo M

—limsup=log 3 [(f*)(u)] = P(2).

S A ()

Hence, assuming € > 0 to be so small that B(J(f),e) C D; U Dy U ...U Dy, we get
. 1 _ . 1 g
hrnsup—log)\(f "(B(J(f),e))) <limsup—logA | |J f7"(D;) | =P(2).

n—oo T n—oo T i—1

The proof is complete. B

In particular, it therefore follows from Theorem 2.6(b) that if Q = (), then the rate of escape
is exponential. In the case when Q # (), something more can be said about a modified rate of
escape. Let p(w) > 1 be the number of petals of a parabolic point w and let

p =max{p(w) :w € Q}.
Let

fz( I1 Q(C)> , (42)
)

ceCrit

where ¢(c¢) > 2 is the order of the critical point ¢ of f. Let 6 have the same meaning as in
[18]. We will need the following.

Lemma 4.3. If f is critically non-recurrent, then there exists a constant B > 1 such that if
€ > 0 is small enough, n > 1 is an integer, z € J(f), and f"(z) ¢ B(2,0), then
+1

diam (Co(z, B(f"(2),€))) < Bn <.
Proof. Since
Tim sup {diam (Cy,(w, B(f"(w)),€))) s w € J(f), f*(w) ¢ B(2,0)} =0,
there exists ¢ > 1 such that for every n > ¢, w € J(f), f*(w) ¢ B(£2,0), we have
diamn (G, (w0, B(" (), €))) < e/
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Suppose now that n > ¢ + 1. We shall inductively define the sequence

Ty = f*(2), 21 = fF1(2),... 5 = fA(2)

(I < n) of points from the set {z, f(z),..., f"(z)} as follows. We declare ky = n and xy =
f™(z). If all other points from {z, f(2),... , f"(2)} are contained in B((2, ), we put 1 = z and
stop the inductive procedure. Assume now that z; = f*i(2) € {z, f(2),...,["(2)} \ B(,0)
has been defined for all j € {0,1,...,n}. If k; < ¢, we stop the inductive procedure. If
{2, f(2),...,f%7%2)} C B(Q,0), we stop the inductive procedure by setting z;; = z.
Otherwise we define z;11 = f¥(z), where 0 < k < k; — ¢ is the largest integer such that
f(2) ¢ B(Q,0). For every 0 < j <1 — 1 define first the sets

Cj = Chj—k;y, (Tj41, B(wj,€)) and B; = Cy, (2, B(xj, €)).
Since k; — kj11 > ¢, we have C; C B(xj41,€/2) and define the set
Aj = ij+1(z7 B(ijrlv 6)) \ ij+1(z7 Cj) = Bj+1 \ BJ"
Since Cj C B(l‘j+1,€/2), Bj C Bj_|_1 lf] <[—1 and
A7 iy (Blog31,0) \ ) (43)

where Cy,,, (B(2;41,€)\C}) is this connected component of f~%+1(B(x;41,€)\C;) that encloses
the set B; in Bj;. Improving slightly Lemma 3.1 in [18] we get the following.

Mod(4;) > ¢log2. (4.4)

It follows from the local behaviour of f around parabolic points and the definition of the
sequence {z;}:_ that there exists a constant L <1 such that for all 0 < j <1 —1

p+1

diam(Cy) < (L(ky — kyer) "7 (4.5)
Fix now an integer u > 1 so large that for every ¢ > 2
teMt
o <1, (4.6)

where M = — (logL + zﬁ log e). We define
R={j€{0,1,....1—1:k— k1 >ul.
It then follows from (4.5) that for all j € R,
Mod(B(z;4+1,€) \ C;) > loge — log diam(C})
p+1

1
> loge + 2~ log L+ 27 log(ky — k1)
p

= 2L (og(ky — kyar) — M)
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Proceeding in the same way as in the proof of Lemma 3.1 in [18] and using (4.3), we therefore
obtain that if j € R, then

Mod(4;) > 51%1 (log (k; — kjs1) = M) . (4.7)
Combining this, (4.4) and using Grétzsch inequality, we conclude that

Mod(B(z,€) \ Cu(z, B(f"(2),¢)))
> €log2(l — 1 — #R) + 57 (Z log(kj — kjs1) — M#R> (4.8)

JER
If #R > 2, then using (4.6) we obtain
exp (—€2 (Sjerlog(ky — kji) — M#R))

§P+1

(EjeR(kj - kj+1))7 ’

p+1

et €5
_ (eM#RZjeR(kj - ij)) _ ( MR § 1 ) ’
HjER(kj — kj-i-l) jER HzER\{]} (k - kl"‘l)

§P+1

M#R\ §5—
S(&) <1

(4.9)

uHFR—1
Since, by our inductive construction,
1 1
l—]_—#RZ— n—q—Z(kj—ij) Z— n_Z(kj_kj-l—l)
q jER
for all n large enough, we therefore obtain

exp (= Mod(B(z,€) \ Cu(z, B(f"(2),6))))
—gptl

—¢log?2 p
ST [

+1
S Bln_ng

for a sufficiently large constant By. Since in the case when #R < 1, (4.10) follows immediately
from (4.8), the formula (4.10) is always true. In view of Theorem 2.4 in [11], the hyperbolic
diameter of C,(z, B(f™(z),€)) in B(z,¢€) is bounded above by

By exp (~Mod (B(z,¢) \ Cu(z, B(f"(2),€)))) < BaBin <5
for some universal constant B, and the inequality sign was written due to (4.10). Since z €
Cyn(z,B(f™(2),€)) and since lim,,_, BgBln{% = 0, the euclidean and hyperbolic diameters
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of Cp(z, B(f"(2),€)) become comparable, and consequently there exists a constant B > 1
such that

diam (Ch (2, B(f"(2),€))) < Bn

for all n > 1. The proof is complete. B

Remark 4.4. In the proof of Lemma 4.3 one shows in fact that Mod(A;) > &,, where &, is
the degree of f™ restricted to Cy(z, B(f"(2),€)). In particular if Cy(z, B(f"(2),€)) contains
no critical points of f", then &, =1 and

p+1

diam (Cy(z, B(f"(2),€))) < Bn'» .

So, in the parabolic case (no critical points in the Julia sets), we get the result proven in ([6]).

Recall that in view of Theorem 2.6 h = HD(J(f)) and P(h) = 0. Developing now the
approach from ([6]) we shall prove the following.

Theorem 4.5. For every 0 < ¢ < diam(J(f)) there exist constants € > 0 and C' > 1 such
that

O < A(S T (BUW)\ B®,6),9))) < O 025

Proof. Fix w € Q such that p(w) = p. Let ¢ > 1 be the period of w. Fix also y €
B(J(f)\ B(2,6),€) \U,>1 f*(Crit(f)) and then x € f~!(y) for some [ > 1, so close to w that
the inverse branches f;% of f?% are well-defined on some some neighbourhood B(z, ) of z and
limy 00 f, %% (B(z,7)) = w. Take then 0 < 1 < € so small that B(y,n) C B(J(f) \ B(,9),¢)
and f!(B(y,n)) C B(z,r). It follows from the local behaviour of f around parabolic points
that for every k > 1,

_2p+1

AW (BUI)\ B2,0),6))) = Af " (Bla,r) = (£ (@) = (ak) ™7

and the first inequality of Theorem 4.5 easily follows. In order to prove the opposite inequality
fix kK > 0 ascribed to 0 > 0 so small as required in Lemma 4.1 and cover J(f) \ B(%,0)
with finitely many open balls Dy, Ds, ... , Dy with radii x centered at the points of the set
J(f)\ B(2,6). Since J(f) \ B(£,0) is a compact set, there exists ¢ > 0 such that

BU(f)\ B(2,8),¢) C DyUD,U...Dy. (4.11)

For every i € {1,2,...,k} fix then an open ball B; such that 2B; C D; \ U, f*(Crit(f))
and denote its center by z;. Now, applying Koebe’s distortion theorem and Lemma 4.3 (with
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d =0), for every i € {1,2,...,k} and for every n > 1 we obtain

A(f”(Bi))=A< U fx”(Bi)>§ S OAMETB)) = X I @) AB)

ref~m(z;) zEf~n(2) ref~"(z;)
=MBi) > ™ @ @) "
zEf~m(2)
= A(B;) Y. diam (Cy(x, B(z;,7))* " |(f") ()| "
:vEf—"(zi)
£(h—=2)EEL  epys —h
<=XB;)) > n > |(f") ()]
e f =" () (4.12)
= ABY TS| (@)
TEf~"(2i)
= MBS (7B r)) = MBI m (f7 (B2, 1))
TEfT"(2i)
< A(B)néhD5
Applying now Lemma 4.1 and (4.11) we obtain for every n > 1 the following
k k Ll
MBI\ B(Q,6),6))) < A ) = AT <ZA e

I
—

< kmax{\(B;) i € {1,2,... k) s 2%

We are done. ®

Since in the parabolic case (no critical points in the Julia sets), £ = 1, as an immediate
consequence of Theorem 4.5 we get the corresponding result proven in [6].

5. REAL-ANALYTICITY OF TOPOLOGICAL PRESSURE

This section differs from the previous sections in two points. We consider the general-
ized polynomial-like mappings (defined below) instead of rational functions and we consider
Hoélder continuous potentials instead of the functions —tlog|f’|. Notice that each generalized
polynomial-like mapping with one critical point was proved in [7] to be quasiconformally con-
jugate to a polynomial. The case of a bigger number of critical points can be treated similarly.
Since such a conjugacy is Holder continuous, it might turn out to be helpful in some parts of
this section if one wants to deal with maps without parabolic points only. Since this conjugacy
is usually not Lipschitz continuous, it is rather useless if parabolic points are present. In order
to define the generalized polynomial-like mappings let U C 'be an open Jordan domain with
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smooth boundary and let {U;};=12..; be a finite family of Jordan domains contained in U
and with mutually disjoint closures. A map

!
f : U Uj U

j=1
is called a generalized polynomial-like mapping (GPL) if f extends holomorphically to an
open neighbourhood of Ué‘:1 U; and for all j = 1,2,... [, the restriction f|Uj :U; = Uis a
surjective branched covering map. The branched points of f coincide of course with Crit(f),
the set of all critical points of f, and we denote by Br the set of such indexes i € {1,2,...,1}
that U — 7 contains a critical point of f. We call Br the set of branched inducers. If j € Br,
then by C; we denote the set of critical points of f contained in U;. We also assume that if
oU; N oU # 0, for some j € {1,2,...,1}, then this intersection is a singleton consisting of a
periodic parabolic point. Following tradition we call the branched conformal GPL f critically
non-recurrent if for all j € Br

uyn e =0
n>1

We finally call a GPL critically tame if there exists 1 < j <[ such that
U;n|J f(Crit(f)) =0, U; CU, and U;NJ(f) #0,

n>1

where J(f) is the Julia set of f, i.e. the boundary of the set of those points in U whose
all forward iterates under f are well-defined. In the context of critically tame GPLs we will
always assume without loss of generality that the distinguished index j is equal to 1. We
would like to notice that each critically non-recurrent GPL with one critical point is critically
tame if for the branched index j, U; C U. There are of course critically tame GPLs which
are not recurrent. It can be easily verified that everything proven so far for rational critically
non-recurrent functions can be also proven for critically non-recurrent GPLs. Let g : U — IR
be a Holder continuous function such that

P(g) =P(g, fla)) > sup{glsp}-

Similarly, as in [3] only easier due to the fact that the disk U is already given, we can prove
the following.

Theorem 5.1. Let g : U — IR be a Holder continuous function such that P(g) = P(g, flip) >
sup{g|sp}. Then
(a) There exists a unique Borel probability measure m supported on J(f) such that

m(f(4)) = [ "9 dm

for every Borel set A C U§:1 U; such that f|4 is 1-to-1. The measure m is atomless.
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(b) There exists a unique Borel probability f-invariant measure pu absolutely continuous
with respect to m. In addition, i is ergodic and the Radon-Nikodym derivative 1) =

diL - J(f) — [0,00) has in L'(p) a continuous version which is bounded away from

zero.
We will need the following technical mixing type result.

Lemma 5.2. There exists 0 < n < 1 such that

(ﬂf U\Ul)_ "

for alln > 1.
Proof. It follows from Theorem 5.1 that
0<t¢:=inf{(z):z € J(f)} <¢:=sup{e(z): 2z € J(f)} < o0.

Consider a partition Dy,..., D, (modulo a set of y measure zero) of U such that all holo-
morphic inverse branches of f are well-defined on each of the sets D;, j = 1,...,¢. Such
a partition exists since, due to Theorem 5.1, measures m and p are atomless (in particular
m(f(Crit(f)) = u(f(Crit(f)) = 0). Notice also that due to the same theorem the map f is
nonsingular with respect to both m and p. For every i € {1,... ¢} choose one holomorphic

inverse branch f; ' of f mapping D; into U,. Applying Theorem 5.1 we get for every Borel
set A C U that

0 ) 2 0 (U740 D)) = (a7 (40 )

zgijm(f; (AN D)) 1/)2/ eI P9 dm

AND;
> e P9 ellgllo Zm(A ND;) = 1/)6 9)+lglle) m(A)
o i=1
= u(A),
where v = ¢~ 'e=(P@+llgllo) > 0. Therefore

p(UNT)A S (A)) = p(f1(A) = n(U N fHA) = p(A) = (TN F71(A))
< p(A) = ypu(A) = (L= 7)u(A).

Thus
I (nolf_j(U\Ul)) = ((U\U1 nf=* (ﬂ fHU\) )) < (1=7)p (HOQf—j(U\U1)>

and the lemma follows by induction takingn=1—~. B
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From now on we assume that l

f : U Uj U

j=1
is a critically tame GPL. Our first aim is to associate with f a conformal infinite (hyperbolic)
iterated function system satisfying all the requirements from [9]. And indeed, since f is
critically tame, there exists an open topological disk V' O U; whose closure is contained in U
and is disjoint from Uy U Uz U ... U U,. In particular
v nlJ f(Crit(f)) = 0. (5.1)

n>1

For every n > 1 let
R,={z¢c€U :f"2)cUand U n{ff():k=1,2,...,n—1} = 0}.

That is R, is the set of those points in U; whose first return time to U; is equal to n. Let
now x € R,. In view of (5.1) there exists a unique holomorphic inverse branch f;":V — €
of f™ sending f"(x) to x. Notice that f™(V) C U; C V. Since if y is another point in R,,
then either f," = f,", or f;"(V) N f;"(V) = 0, we conclude that there exists a finite set
A, C R, such that f7"(V) N f"(V) =0 for all z,y € A,, v # y and for every z € R, there
exists w € A, such that f" = f_ ™. Therefore, the countable family

S={f;": VoV, " U = Ullnsigea,

forms a conformal iterated function system in the sense of [9]. We will frequently denote the
elements of S by ¢;, + € I. Given w = wjwsy ...w, € I", we put

¢w:¢wlo¢wzo"-¢wn-

Let N(i) denote the only integer satisfying ¢; = f, Vi for some z € Ay.. Given t > 0 and
s € IR we introduce the family Gy = {g;1s : V — IR}ics by the formulas

Gieslz) = tgg o fi(i(x)) — sN(i).

Recall that p = max{p(w) : w € Q}. Let us prove the following.

Lemma 5.3. Suppose that f is a critically tame critically non-recurrent GPL. If the GPL
f has no parabolic points, then all the functions g;;s, © € I, are Hélder continuous with the
same Holder exponent and the same Holder constant. If the GPL f has parabolic points, then

the same is true assuming additionally that the Holder exponent of g is greater than pﬁl'

Proof. Notice first that U; has no parabolic points. In the case of the lack of parabolic
points, it immediately follows from Lemma 7.7 in [18] (the stars can be dropped there), comp.
[1]. So, suppose that Q # (). It then follows from (5.1) and Remark 4.4 that diam(V,) <

Bn % for all n > 1 and all connected components V,, of f~™(V'). Hence, it follows from
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Koebe’s distortion theorem that |(f, ") (z)] < B(n + 1)_13_+1 for all n > 0, all holomorphic

inverse branches f." : V — U of f*, all z € U; and some B > 0. In particular if y, z € U,
then for all s €

=

Zgof’ bi(2)) - X_i:IQij(aﬁi(y)) <Y lgo F(é() — g0 ()]

]_

=

< ZCIfJ(cbz( )) = F(i(y)”

Ni 1
<SCCB(N;+1—5) 5 |2 — y|®

00 gt
Szk p|Z_y|o¢,

where « is the Holder exponent of g and C' is the Holder constant. We are done. B

Lemma 5.4. For allt > 0 and s € IR, G4 is a Holder family of functions in the sense of
[5] and [10].

Proof. By Montel’s theorem the family {¢; : V' — U };¢; is normal, and since UyNJ(f) # 0,
all its limit functions are constant. Therefore all the limit functions of derivatives ¢ of ¢;
are equal to the constant function 0. Thus, there exists ¢ > 1 such that ||¢/,|| < 1/2 for all
w € I" with n > ¢, where || - ||« is the supremum norm on U;. Notice also that by Koebe’s
distortion theorem (and since U; C V),

Q =sup{||¢),||:w e, 1 <n<qg—1} < 0.
Fix now n > 1, w € I", and two points z,y € U;. Write n — 1 = kq+r, where 0 < r < ¢ — 1.
n—1
Then ||¢] |l < (1/2)*Q < Q(1/2) @ and therefore
. — — (,_lyn—l
diam(¢,(T7)) <@ (277)

where @ is the constant depending on @, the diameter of U;, and the maximal number of
segments needed to join each point in U; with an arbitrarily frozen point in U; (note that
U, is not assumed to be convex nor of the star shape). Using Lemma 5.3, with the Holder
exponent « following from Lemma 5.3, we conclude that

|gw1,t,8(¢tr(w)(y)) — Gut,s (d)a(w) ($))| < Cl|¢tr(w) (y) - ¢tr(w) (x)|a < Cl@ (27%)7‘_1

for some universal constant C; depending on ¢t. We are done. B
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We recall (see [10], comp [5], where in the latter paper a different terminology was used) that
a Holder family {¢; : Uy — IR}cs is called summable if

Zes“p(qi) < 0.
icl

Using Lemma 5.2 let us prove the following.

Lemma 5.5. Assume the same as in Lemma 5.53. If P(g) > sup(g), then there exists 6 > 0
such that if (t,s) € (1 —0,1+9) x (P(g) — 9, +00), then Gy is a summable Hélder family of
functions.

Proof. The fact that the families G, ; are Holder, has been proved in Lemma 5.4. Since

R_Ulﬂnﬂlf U\NU)Nf™ (ﬂf U\U1>

j=1

and since the measure p is f-invariant, it follows from Lemma 5.2 that u(R,) < n**. Ap-
plying now Theorem 5.1(b), we infer that there exists a constant C; > 0 such that

m(R,) < Cin"

for all n > 1. Combining this, Lemma 5.3 and Theorem 5.1, we conclude that there exists a
constant Cy > 0 such that

> exp (sup (Zgo flo P(g )TL)) < Con™

wEA, Ui

for all n > 1. Hence, for every t > 0 and all s € IR, we get the following.

Z exp (s;p (itgofj N sn)) =
Zexp(sup(ZgofJ P(g)n+ (t—1) Zgof” ofrt+ (P ()n—sn))

wWEA, Ui

wEA, U, j=1

< exp([t — 1/|[g]]n) exp((P(g) — s)n) > exp (sgp (Zg oflofy— P(g)n))

< Cyexp(—rn) exp((P(g) — s)n) exp(|t — 1]llgl|son),

where k = —logn. Taking now § = k(4(1 + ||g]|) ™", We conclude that for all (¢,s) €
(1—10,140)x (P(g) —9,+00) and all n > 1,

> exp (s&p (zn: tgo flof t— sn)) < Cyexp (—%nn)

weA, U,y j=1
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and therefore
> exp sup Ztgofj fil— < 00.
n>1weA,

We are done. B

Since both functions g — P(g) and g — sup(g) are continuous, we get the following.

Lemma 5.6. If P(g) > sup(g), then there exists 6 > 0 such that P(tg) > sup(tg) for all
€(1—-0,1+9).

Given w = wywy ...w, € I, n > 1, let 0(w) = wywy...w, 1. Recall from [5] and [10] that
the topological pressure P(Gy ) of the family G, s is defined as follows.

exp (Z gwj )ty UJ w)

P(Gi) = Jim log 3

w|=n

= nll)r{olo log Z €xp (Sungw],ts ¢ajw> :

jw=n 0 j=1

0

Let Jg be the limit set of the iterated function system
S={f": VoV, i7" U = Ullns1uea,.
Its limit set is defined as follows
n=1|r|=n

For an alternative definition of the limit set Jg and its further properties see [9] and [10] for
example. Let us also recall ([5], [10]) that the G s-conformal measure mg, , supported on Jg
is uniquely determined by the following two properties.

me,,(9i(A)) = /Aexp (gi,t,s — P(F)) dmg,,, Viel

and
m(6:(T7) 1 65(T7) = 0
for all 7 # j.

Let 6(g) > 0 be the minimum of the numbers ¢ from Lemma 5.5 and Lemma 5.6. For
t € (1—0,1+0) let m; be the measure produced by Theorem 5.1(a) for the potential ¢¢.

We shall prove now the following.
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Lemma 5.7. Ift € (1 —6(g),1+d(g)), then

P(Gipug)) =0 and MG, pieg) = me -

Proof. Denote P(Gypqg)) by f’(t) and mg, ,,, by 7. By the definitions of measures 1,
my and by Lemma 5.4, Lemma 5.6 and Theorem 5.1, for every 7 € I = U,,»; I"", we have

1y (¢-(Ur)) o Jexp (Z] 197 t, P(tg)) eXp(—f’(t)|T|)dmt _ 4
my(¢-(U1)) - Jexp (Z] 1 97 ,t,P( tg)) dm, A eXp( P(t)|7—|)'

So, if P(t) > 0, then 7i2,(Jg) = 0 and if P(t) < 0, then m,(Js) = 0 which contradicts the fact
that my(Js) = my(U;) > 0 which follows by a straightforward induction from the formula
my (Uier ¢5(U1)) = my(Uy) resulting from Poincare’s recurrence theorem. Thus P(t) = 0
and the first part of our lemma is proven. The equality 7, = my|,, follows now from (5.2)
considered as two formulas: one for the numerator and one for the denominator along with
either Theorem 3.1.7 from [10] or Corollary 2.12 from [5]. The proof is complete. B

(5.2)

Following [10] and [5] we call g, : I°° — IR, defined by the formula

gtas (T) = g7—17t75(7r(0-7—))
the amalgamated function of the family G, . Here 7 : I*® — 'is the projection associated
with the conformal iterated function system S and o : I*® — I is the shift map. We are
now in position to prove the following.

Theorem 5.8. Assume that f is a critically tame non-recurrent GPL and that ¢ is Holder
continuous with the exponent greater than m if f has parabolic points. Then the function
t— P(tg), t € (1 —0,1+0) is real-analytic.

Proof. Let 1y, = mg,,,,,- In view of Theorem 2.6.12 from [10] (see also [19] and [5]) and
Lemma 5.5, the function

(ta S) = P(gt,s) = P(Gt,S)a (ta 8) S (]- - 57 I+ 5) X (P(g) - 67 P(g) + 6)
is real-analytic. In view of Lemma 5.7 and the implicit function theorem, it is therefore now
enough to demonstrate that 25(¢,s) # 0 at the point (¢,P(tg)) for every t € (1 — 4,1+ 6).
And indeed, let fi, t € (1 — 0,1 4 0) be the shift invariant measure on I* equivalent to
my, the lift of the measure m, to the coding space I*°. Since p;, the measure appearing in

Theorem 5.1(b) for the potential tg, is f-invariant and the system S is defined according to
the first-return time, pu, is S-invariant in the sense that

" (U @-(A)) S a(6(A)) = u(A)

icl iel
for every Borel set A C Js. Hence, using the last part of Lemma 5.7, we deduce that
telse = fu o m . Therefore applying Proposition 2.6.13 in [10] (see also [19] and [5]) along
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with Kac’s lemma, we obtain that

opP
So(t.Plg) =~ [

Joo

N(m)djiy = — /J Ndp| sy = — £0,
S

1
mery

where after the second equality sign we treated slightly informally the function N as defined
on Jg. The proof is complete. B

After this paper has been written the analogous result for potentials of the form —tlog|f’|
was established in [14].
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