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Abstract. For points x belonging to a basic set A of an Axiom A holomorphic en-
domorphism of P2, one can construct the local stable manifold we, (z) and the local
unstable manifolds W2 (%). A priori, W (%) should depend on the entire prehistory
Z of . However, all known examples have all their local unstable manifolds depend-
ing only on the base point . Therefore a natural problem is to give actual examples
where, for different prehistories of points in the basic sets of holomorphic Axiom A
maps, we obtain different unstable manifolds. We solve this problem by considering
the map (2% 4+ ew?,w?) and then also show that, by perturbing (22 + ¢,w?), one can
get also maps f- which are injective on A., their corresponding basic sets, hence the
cardinality of the set (f=|a.)”!(z),2z € A, is not stable under perturbation.

1. Introduction. Throughout the paper we consider an Axiom A holomorphic
map f : P2 — P2 on the 2-dimensional complex projective space. Denote by
Q= {z € P2,V U neighbourhood of z,3n > 1 s.t f*(U)NU # 0}, the non-
wandering set of f. For the general theory of Axiom A maps, we refer to [2], [8],
[9], [10]. If f is an Axiom A map, then  is the closure of the periodic points of f,
and f is hyperbolic on 2. First, let us define the space of prehistories of (2,

Q0= {& := (xn)n<o, f(Tn-1) = Tp,z, € Q,Vn <0}

and the inverse limit f : (} = Q) defined by the formula

f((2n)n<o) = ((f(@n))n<o)-
The tangent bundle over € is defined by its fibers:
Te,((xn)n) = {((zn)n,v), with v € T, P?}.
If f is hyperbolic, then there exists a continuous splitting of the tangent bundle,
Te((xn)n) = E*(x0) ® E*((xy)n) and constants C' > 0, A > 1, such that
Df,(E"(&)) C EB*(f2), Df(E*(2)) C E*(fx),
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[|IDf*(v)|| < CAX™-||v|], Yv € E*(xg), Yn >0
and
[|Df™(w)]| > c—am. [|lw]], Yw € E*(z), Vn > 0.

Like in the case of diffeomorphisms, the above splitting into stable and unstable
directions, implies the existence of local stable and unstable manifolds for every
0<egp <<t

We(x):={y€ P2, d(f"z, f™y) < o, Vn > 0},

W;f) (@) ={y € ]P)zay has a prehistory g = (yn)nSO; d(T—n,Y—n) < €0,Vn > 0}

W2 (x) and W2 (Z) are complex disks. If y ¢ W3, (x), W2 () N W2 (y) = 0, and
the family (W7 (z)), forms a lamination. W (%) depends a priori on the entire
prehistory #, but as will be explained later, in all known examples so far, W2 ()
depends only on the base point z and not on the entire prehistory. Obviously,
before one should try to find examples when this is not true, one should obtain
examples of families of maps which are not injective on their basic sets. On the
other hand we will show that in fact, by perturbing the map (22 + ¢, w?), one gets
in general both maps which are injective and maps which are not injective on their
respective basic sets. If (M, d) is a compact Riemannian manifold, then we consider
the usual C",r > 1 topology on the space of C” functions on M. In the real case,
we would like to mention Przytycki’s result ([8]), showing that, if f is any special
Anosov endomorphism of a compact manifold M (special meaning that unstable
spaces do not depend on prehistories), f not expanding or a diffeomorphism, ¢ > 0
and z € M are given, then there exists g : M — M, and G!,, a set of prehistories
of x under g, so that d(f,g) < &, G, is homeomorphic to a Cantor set, and the
unstable manifolds W' (&), & € G}, are all mutually distinct. Also in this situation,
Gl 5 & — E"(%) is a homeomorphism, so the unstable vector spaces depend on
the prehistories from G’, as well. However, his proof is depending on local C'*°
real perturbations and does not seem to be extendable to the complex case. We
will obtain our examples as perturbations of maps of the form (z*,w?*). Firstly, in
order to understand the problem at hand let us look at some classical examples of
holomorphic mappings on P2.

1) flz:w:t]=[P(z:t): Qw:t):td], with P,Q one-dimensional complex
polynomials of degree d, hyperbolic on their Julia sets Jp, respectively Jg. Then,
in the set t = 1,51 = {periodic sinks of P} x Jg U Jp x {periodic sinks of @}. In
t =0, S; has a basic set given by the Julia set of the map [P(z : 0) : Q(w : 0) : 0]. In
the example of this form, if x € S; is fixed, then all the unstable manifolds W (%),
for & € §1 coincide. So W*(z) does not really depend on £, it depends only on z.

2) Let ¢ the Serre map, ¢: P! x Pt — P2, ¢([20 : wol, [21 : w1]) = [2021 : wowy :
2ow1 +woz1], a 2-to-1 covering of P2. If f: P! — P! is holomorphic and hyperbolic
on its Julia set, then there exists f holomorphic on P2 such that ¢(fo, fo) = f o ¢,
and f is Axiom A ([2]). The basic sets for S; are of the form ¢ ({periodic sink
for fo} x Jy,) and again it is easy to check the independence on prehistory of the
unstable manifolds.

3) There are other examples of Axiom A maps f (even s-hyperbolic) which
have basic sets A near which the map is injective, like the solenoidal examples ([2],
[5]). For these examples the map f behaves like a diffeomorphism, hence the local
unstable manifolds depend only on x and they form a lamination on A.
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So, the question arises whether there are examples of Axiom A holomorphic
maps on P? for which the unstable manifolds W*(%) truly depend on #, and not
only on z. Also is it possible that for every point z € A, we have different local
unstable manifolds W*(z) and W*(&') whenever the prehistories of z, & and &' are
different? Obviously, before we attack this problem, there must be found first a
non-trivial example of a map g with a basic set A, such that g|,, is non-injective,
since this would guarantee the existence of at least two different prehistories for a
given point x € A,.

2. Main results and proofs. In this section we provide precise formulations and
prove all the results announced in the introduction. Let f(z,w) = (z*,w?*). Then
f has a basic set A = {0} x J(,2) = {0} x S*. Since f is Axiom A and has no
cycles, the Stability Theorem ([8], [9]) will imply that for € > 0 small enough,
f-(z,w) := (z* +ew?, w?) has a basic set A, close to A in the Hausdorff metric and
f= is hyperbolic on A.. For more clarity, we shall denote the unstable vector space
of a prehistory & € A by E¥(Z). If (z,w) € A; then |w| =1.

Theorem 2.1. For every point (z,w) € A, and (7,;), @Tw\)’, any two differ-
ent prehistories of (z,w) from A., we have E%(z,w) # E¥(z,w)'. In particular
W2 (z,w) # W2 (z,w)".

€0
Proof. In fact we prove more. Namely, we estimate from below the angle between
E¥(z,w) and E¥(z,w)’. Let us consider (29, wp) € A and show that (—zp,wp) € A
also. Before we go any further let us estimate the following two quantities: C. :=

inf |z|,D. := sup |z|. Assume D. is attained at a point (zp,wo) € A..
(z,w)€A. (z,w)EAL

Therefore, since f. : A. — A, is onto, there will exist a point (z,w) € A, such that
fe(z,w) = (20, wo), so:
2Pt ew? = 29 = |20 = |2t +ew?| < |2|* +e < 20|t +e,
where we used the fact that |w| =1 for any (z,w) in A.. Hence, from the above:
|z0|* — |20] +€ > 0.

Let us study the function of one real variable g(t) := t* —t +¢. We have ¢'(t) =
4t — 1, so g has the critical point to = (1/4)'/3. This is a point of minimum and
g(to) < 0, for € > 0 sufficiently small; also g is strictly decreasing for ¢t < tp and
strictly increasing for ¢ > to. Now, g(g) = et —e+e =¢* > 0 and g(2¢) = 2%e? -2+
e = 16e* — e < 0 for € small. Also, let us notice that g(1/2) = (1/2)* —1/2+e <0
and g(1) =1—-14¢ =¢ > 0, hence g has two real zeros, one between £ and 2¢
and the other between 1/2 and 1. But |z9| = D. is close to 0, because f is a small
perturbation of (24, w?), therefore we obtain:

e < D, < 2e.

Let us estimate also C.. Assume C. = |z1|. Hence there exists (z,w) € A, such
that f.(z,w) = (21, w), meaning that

A rew? =2 =|n|>e— |2t >e—(20) > 0.9
for € small enough. In conclusion, for (z,w) € A, we have 0.9 < |z| < 2e.

Let us calculate now the iterates of f..

fi(z,w) = ((z* + ew?)t + ew®, w'®) =



738 EUGEN MIHAILESCU AND MARIUSZ URBANSKI

= (e*wd + ew® + Cy(z,w)e, w'®) = (wB(e + &*) + Ca(z, w)e*, w'®),
where Cy(z,w) is a function which is bounded everywhere by a positive constant
C' and which is independent of e, and where we used that 0.9e < C. < |z| <
D. < 2e,Y(z,w) € A.. Also, f3(z,w) = (w8(e +&*) + Ca(z,w)e?)* + ew?, w®) =
(w2 (e + (e + e*)*) + C3(z,w)eb, wb), where again |C3(z,w)| < C. In general, for
any n, it can be showed by induction that

f2(z,w) = (T Ey(e) + Cu(z,w)e>™, w'"),
with Cp(z,w) < C a bounded function coming from the iterated development of
the power in the expression. Consider now an arbitrary point (zp,wp) from A.
and let us prove that (—zp,wp) belongs to A;. Denote in general by D(zg,7) the
disk of center zy and radius n > 0 in the complex plane. Take U = D(zp,n) X
D(wo,n) a small neighborhood of (zp,w); then, from the fact that (z9,wo) is a
non-wandering point, we get that there exists an increasing sequence of integers
ng such that f(U) NU # 0. In consequence there exists a point (z,w) n-close
to (20, wo) such that |w*™/2 — /wg| < n/3 and z,, = p1 o f*(z,w) is also n/2-
close to zp, where p; is the projection on the first component and /wyq is a fixed
determination of the square root of wg. Therefore |E,, (¢) — \/Z%O| < n/2, for k large

enough. Let now another point (2, w’) € U such that |(w’)*"*/? — (—\/wo)| < n/2.
Then |(w')*"*/2E,, () + 20| < n, if k is large enough. But this would imply that
f*(2',w") belongs to a neighbourhood D(—z¢,n) x D(wq,n) of (—zp,wp). Hence we
showed that (—zg,wp) belongs also to A.. Since obviously fe(z0,wo) = f:(—20,wo)
we get that the map f. |4, is at least 2-to-1. We will now look closer at the definition
of hyperbolicity for f.|a.. According to the definition (for example from [2]), there
exists a continuous splitting of the tangent bundle

Ty (2) = EX() © B2 (a,)

such that (Df.)e(FX(#)) C EL(fo8), (Df.)ey(E2(20)) C E2(foz0), and there
exists A > 1 with || Df2(v)|] > A™ - ||v]| and || D frw|| < A™™ - ||w]| for all v € E*()
and all w € E?(z). So, a priori the unstable spaces E*(Z) should depend on &, and
in our situation we show they really do. We have

423 2ew
(Dfs)(z,w) = ( 0 4w3>

and assume E%(Z,w) = {(v1,v2) € C2, vy = B(Z,w) - v}, for (Z,w) € A.; Ef(z,w)
is close to the vi-axis, and E¥(z,w) is close to the vs-axis, so 8(z,w) < By < 1,
where 3y is independent of ¢ > 0 small enough and of (z,w) € A.. Now

v\ _ (423 2ew)\ (v _ [4z3v; + 2ewvy
(Dfe) ) <U2> - < 0 4w3> <U2> - ( 4w v, :
Denote by (z—;, w—;) = (Z,w)—;, (z—i,w—;) € A.. We know that

(D) sy ) (B2 (251, w020)) = EX(Zw)

and

423 vy + 2w vy = B(Z, W) - 4w | vg,
where (vy,v2) € E¥(27,w_1). Since vy = B(z 1, w_1) - v2, We get

42° Bz, w_1)ve + 2ew_qv2 = B(Z,w) - 4w vy,
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where vy # 0. Thus

Applying recursively the above identity, gives

— 1 Z_1.3 o
—e/2—— - -
B(z,w) =¢/ =, +(w_1) B(z1,w-1)
5/2—1 +5/2_ 1 (Z—l )3+(Z—1 Z_2 )35( o )
- ' — Z_9,W_9) = ... =
wgl 'LU272 w_1 w_1 W_»o 25 2
= 5/2(L+(ﬂ)3_i+ +( Z—1---Z—n+1 \3 1 +( Z_1---Z—nm )3,3(2 — )
'U)2_1 w_q U)2_2 W_1...W_py1 wz_n W_1.W_p, —nyW—n)-

Fix now a point (z,w) € A.. From our discussion at the beginning of the Example,
we know that (—z_1,w_1) € A, too and denote by (z,w)" any prehistory of (z,w)
such that (z,w)" ; = (—2—1,w—1). We will show that 3(z,w) # B8(z,w)". With the
notation (z},w!) = (z,w)!,, we get:

o 1 Z_1 1 Z_1Z_2 —
"=¢g/2—— —¢/2 3 38(225, ws).
B(z,w) 5/ w2 5/ (w,l) w32 w,lw,g) B2z, w_2)
Hence
_ _ 1 _
BE®) = BED)| = ey - (=) + O(")] 2 €2 + O(®) 2 05" (2.1)
—2 —1

In the equation above we used that C. > 0.9¢ and D. < 2¢. Moreover, we can
estimate the difference 3(z,w) — 8(z,w)’ in the same way as before also for other
prehistories.

For example, if (z,w)_; = (z,w)";, 0 < i < j, and (z,w)"_; = (—2—;,w—;), then,

since Cz := inf |z| > 0.9¢, and D, := sup |z| < 2¢, we get
(z,w)€A. (z,w)EA.
0.5e%1! < |B(z;w) — B(zw)| < 531! (2.2)

for ¢ > 0 small enough. We see therefore that for these maps f., there pass
an uncountable collection of local unstable manifolds through every point of their
basic sets A..

O

For |c| small, the map f.(z,w) = (2* 4+ ¢+ ew?, w*) has the same characteristics
on one of its basic sets A.(c) as the function (z* +ew?,w?). A similar calculation as
before will show that  sup  |z| < 3Jc| and  inf |z] > 2|c[,if 0 < e < &(c)

(z,w)€A.(c) (z;w)€Ae(c)
and then for |c| small, (2.1) will give also that §(z;w) # B(z,w)’. The results in
[4] and [5] applied to the map f.(z,w) = (2* + ¢ + ew?,w*) give that W“(A/E-(\c))

has empty interior and estimate HD(W;‘(/E(\c))) and HD(WZx(A)), where HD(-)
denotes the Hausdorff dimension.

In the course of working on this article, we also came upon the following question:
If f|a as d'-to-1 and f. is a small perturbation of f, then is f.|x d'-to-17 Of course
the first case to check would be that of f(z,w) = (2% + ¢,w?),c small, ¢ # 0 on
its basic set A = {po(c)} x S!, with py(c) a fixed attracting point of 2% + c. If ¢ is
small enough, f is Axiom A (see also [1]); and f|a is 2-to-1.
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Theorem 2.2. If |c| # 0, small, the map f.(z,w) = (2% + agz + bew + c + dezw +

ecw?, w?) is injective on its basic set A. close to po(c) x S*, as long as |c| <

c(a,b,d,e), b#0, and € < (a,b,c,d,e).

Proof. Assume that f.(z,w) = f-(2',w') for two points (z,w), (2/,w’) € A.. Then
22 4+ e(az + bw + dzw + ew?) + ¢ = 2'? + e(az’ + bw' + dz'w’ + ew?) + ¢

and consequently
(22 = 2"%) +e(a(z — 2') + b(w — w') + d(zw — 2'w") + e(w? — w'?)) = 0.

2

Assume that w # w'. Then w' = —w since w? = w'2. Hence

22— 2" +elalz — 2') + 2bw + dw(z + 2')) =0
and therefore
(z—=2")(z+ 2 +ea) = =2bw-e — dew(z + 2'). (2.3)

Let po(c) be a fixed attracting point for z — 22 + ¢, ¢ small. And consider a :=

sup |z —po(c)|; let (z9,wp) a point in A, where the supremum in A, is attained
(z,w)EA.

so @ = |zo — po(c)], and p2(c) + ¢ = po(c). Now, we can find a point (z,w) € A,
such that f.(z,w) = (20, wo). Then 29 = 2% + aez + bew + ¢ + dezw + esw?. So,
20 — po(c) = 2% — p3(c) + acz + bew + dezw + ecw?
= (2 — po(c))? + 22po(c) — 2pa(c) + acz + bew + dezw + esw®.
Consequently, a < a?+2|po(c)|a+ Ke with K = K (a, b, d, e), a suitable majoration

constant. Now a? + a(2|po(c)] — 1) + Ke > 0, and since a@ < 1 (since A, is very
close to {po(c)} x S1), we obtain:

2Ke ,
0<a<L <K -
1=2lpo(c)l + /(1 = 2[po(c)])? — 4Ke

From (2.3) and since |z — 2’| < 2a and |z + 2’| < 3|pp(c)|, one gets

€, K' = K'(a,b,c,d,e).

2|ble < 2K'e - (ea + 3|po(c)]) + 3de|po(c)|
for e < e(c), since z,z' are e-close to po(c). We used also here the fact that |w] is
close to 1, for (z,w) € A..

So 0 < |b| < K'(ea + 3|po(c)|) + 3d|po(c)|, which is a contradiction if b # 0, and
¢ is small in comparison to b, ¢ < ¢(a, b, d, e) (¢ small will imply that |po(c)| is also
small, and we can always reduce ¢ accordingly). Hence we proved w' = w. Then,
from f.(z,w) = f.(z',w') it follows that

22— 2 telalz —2) +dw(z —2') =0
If z # 2', we would then get z + 2z’ + €(a + dw) = 0, hence

|z + 2| = ¢la+ dw| < e-(Ja] + |d])

But z, 2" are both close to po(c) # 0, so if we choose € < €(a, b, ¢,d) small enough,
the above inequality gives a contradiction. In conclusion z = 2',w = w' hence
fela.: Ae = A; is an injective map.

([l
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In order to conclude our paper we need the concept of preimage entropy. Its
definition requires some preparations. Let us call a branch of length ¢ (or prehistory
of length ¢) in X, a sequence of preimages, 8 = (20, 2—-1,-.-,2-¢), With z; € X,
—¢ < i < 0, such that f(z;—1) = z;, —£+ 1 < i < 0. Given another branch
B = (2,...,2",) of same length, define their branch distance to be d°(3,5') =

max, d(z—j,2L;). d® measures the growth of inverse iterates. Using this, we now
0<j<

define a branch metric on X:
d(z,2") < e,

if for every branch § of length ¢ with zo = x, there exists a branch 3’ of length ¢
with z{ = 2’ such that d°(8,3') < €, and vice versa. Denote by Nypan(€,d}, X) the
smallest cardinality of an e-spanning set for X in the d’é metric. Hence, if 4 is an
e-spanning set with #A4 = Nypan(€,d?, X), then, for all z € X, there is y € A with
db(z,y) < e. Let also Nsep(e,db, X) be the largest cardinality of an e-separated
set for X. So, if A is e-separated, then for all z,y € A, z # y, d5(z,y) > . The
following proposition gives the definition of the preimage entropy h;(f) and two
ways to calculate it.

Proposition 2.3 ([7]). For f: X — X continuous, (X,d) compact metric space,
we have

1 —1
lim lim —log Nyep(e,d’, X) = lim lim — log Nypan (£, d%, X)
e—0 n

Yo '
e—>0n—oon

and the common value is called the preimage (branch) entropy, denoted by h;(f).O

In general there is no relation between h;(f) and the topological entropy hop(f)
but, as can be easily proved, they coincide if f is a homeomorphism. We will
also use one result about the preimage entropy from [7]. To formulate it we need
some additional terminology. A finite graph is a compact metric space K with
a distinguished finite set of points called wvertices, whose complement has finitely
many connected components, edges, homeomorphic to the open interval (0,1). We
fix the metric on K by assigning length 1 to each edge and the distance between
two points in K is the length of the shortest path connecting them.

Theorem 2.4. [Nitecki-Przytycki, [7]] Let K be a finite graph and f: K — K
continuous map. Then h;(f) = 0. O

We can give now our concluding result, showing that even a small perturbation
can produce significant changes in the character of the basic set.

Corollary 2.5. If f. satisfies the assumptions of Theorem 2, i.e f. is injective on
its basic set A, then A, is not a Jordan curve.

Proof. Suppose on the contrary that A. is a Jordan curve. It then follows from
the theorem above that h;(f:|s.) = 0. But since f.|s. is a homeomorphism of A.,

hz(fs|A5) - htop(f5|AE) - htop(f5|//\;) - htop(.ﬂ[\) = htop(f|A) - 10g2; since f€|[/\;
and f|; are conjugate. This contradiction finishes the proof. O
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