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ABSTRACT. It is proven that if f : @ — (' is an elliptic function and ¢ is the maximal
multiplicity of all poles of f, then the Hausdorff dimension of the Julia set of f is greater
than 2¢/(q + 1) and the Hausdorff dimension of the set of points which escape to infinity is
less than or equal to 2¢/(q+ 1). In particular the area of this latter set is equal to 0.

1. INTRODUCTION

Throughout the entire paper f : € — @ denotes a non-constant elliptic function. Every such
function is doubly periodic and meromorphic. In particular there exist two vectors wy, wo,
%(5—;) # 0, such that for every z € €'and n,m € Z,

f(2) = f(z + mwi + nws).

Let
R = {t1w1 +t2w2 :0 S tl,tg S 1},
be the basic fundamental parallelogram of f. Then f({) is an open subset of € and simulta-

neously f(@) = f(R) is a compact subset of €. Since the sphere €'is connected, this implies
that

@) =¢ (1.1)

It follows from periodicity of f that
f o) = U (R N f 1 oo) + mw; + an).

mneEZ

For every pole b of f let ¢, denote its multiplicity. We define
q:=max{g : b€ f '(c0)} =max{g :bc f '(o0) NR}.

The Fatou set F(f) of a meromorphic function f : @ — € is defined in exactly the same
manner as for rational functions; F(f) is the set of points z € € such that all the iterates
are defined and form a normal family on a neighborhood of z. The Julia set J(f) is the
complement of F(f) in @. Thus, F(f) is open, J(f) is closed, F(f) is completely invariant
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while f=1(J(f)) € J(f) and f(J(f)\{o0}) = J(f). For a general description of the dynamics
of meromorphic functions see e.g. [1]. We would however like to note that it easily follows
from Montel’s criterion of normality that if f : @ — @ has at least one pole which is not an
omitted value then

1) = U T ) (1.2)

Since, by (1.1), the elliptic function f has no omitted values and since it has at least one pole
(thus infinitely many), (1.2) is true for all elliptic functions. Let Crit(f) be the set of critical
points of f i.e.

Crit(f) ={z: f'(z) =0}.
Its image, f(Crit(f)), is called the set of critical values of f. Since R N Crit(f) is finite and
since f(Crit(f)) = f(R N Crit(f)), the set of critical values f(Crit(f)) is also finite. Let

Ial(f) ={z €@ lim () = o)

be the set of points escaping to infinity under iterates of f. Let HD denote the Hausdorff
dimension, H” and I, denote respectively h-dimensional Hausdorff measure and 2-dimensional
Lebesgue measure. The following two theorems constitute the main results of our paper.

Theorem 1.1. If f : @ — @ is an elliptic function, then

HD(I(1) > 1o

This theorem generalizes the results of [2], stating that HD(I(f)) > %qq for elliptic functions
satisfying the condition that the closure of the postcritical set is disjoint from the set of poles.

Theorem 1.2. Let f: @ — @ be an elliptic function. Then

2q
HD(7 < —.
(Tl < T
As an immediate consequence of these two theorems we obtain the following two corollaries.

Corollary 1.3. If f : @ — @ is an elliptic function, h := HD(J(f)), then H*(Io(f)) = 0,
and consequently ly(I(f)) = 0.

and

Corollary 1.4. If L is a lattice in @' and ICr is the field of all elliptic functions with respect
to L, then sup{HD(J(f)): f € Kr} =2.

The following third corollary will be proven in the last section.

Corollary 1.5. If f is an elliptic function, J(f) = @ and I, ({z tw(2) C Un>1 f”(C’m't(f))}) =
0, then there exists a o-finite f-invariant measure i equivalent with the Lebesgue measure ls.
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More about geometry and dynamics of elliptic functions in the case when J(f) # @ will be
contained in our subsequent paper.

The present paper is organized as follows. In the second section we prove Theorem 1.2. In
section three we recall the concept of infinite iterated function systems (frequently abbreviated
as i.f.s) and apply estimates of Hausdorff dimension of the limit set given in [4] to prove
Theorem 1.1. Finally in the section four we show how Corollary 1.5 follows from Theorem 1.1,
Theorem 1.2 and the results of [3].

In the sequel f* and diam, denote respectively the derivatives and diameters defined by
means of the spherical metric.

2. PROOF OF THEOREM 2

Let
Br={z€:|z| > R}.
For every pole b of f by By(R) we denote the connected component of f~!(Bg) containing b.

If R > 0 is large enough, say R > Ry, then Bpg contains no critical values of f, all sets B,(R)
are simply connected, mutually disjoint and for z € B,(R)

Gb(z)

f(z) = = byw (2.1)

where Gy, : By(R) — ('is a holomorphic function taking values out of some neighbourhood
of 0. If U C Bg \ {00} is an open simply connected set, then all the holomorphic inverse

branches fb_,(},la . ,fb_,,}’qb of f are well-defined on U and for every 1 < j < ¢y, and all z € U
we have
-1y — et
|(Fow) () =z (2.2)
Therefore
qp—1
T

|(frF ()] =[] (2:3)

—~

L+ [(fro) ()2 bl

where the second comparability sign we wrote assuming in addition that |b| is large enough,
qp—1

say [b| > Ry > Ry. Let M be an upper bound of the ratios of |(f,;)*(z)| and [z| @ |b|~2
with b,U, j as above. A straightforward calculation based on (2.1) shows that there exists a
constant L > 1 such that for all poles b and all R > R; we have

diam(B,(R)) < LR,
diam, (By(R)) < LR |b| 2.

(2.4)

We take Ry > Ry so large that
LR % < R, (2.5)
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for all poles b € Bg, and all R > R,. Given two poles by,by € Byg, we denote by fb;}bhj :
B(bi, Ry) — € all the holomorphic inverse branches fb_z,lB(bl,Ro),j' It follows from (2.4) and
(2.5) that

Fri i (B(b1, Ro)) € By, (2R, — Ry) C By, (Ry) C B(by, Ro) (2.6)
Set
Ir(f) = {z € C: Vuxol ["(2)| > R}

Since the series 3ye r-1(50)\ 0y [b| ™ converges for all s > 2, given ¢ > =% there exists Ry > R,
such that

gM' S BT <L (2.7)
beBp, N/~ (c0)
Consider R > 2R3. Put
I = f_l(OO) N B(R/g)
Since R/2+ Ry < R/2+ R3; < R/2+ R/2 = R, it follows from (2.6), (2.4) and (2.5) that for
every [ > 1 the family W, defined as

ot © Fotvnssiios © Fonbrigs © oo (Boo (B/2)) b € T2 1< js < gyi = 0,1, 1}
is well-defined and covers Ir(f). Applying (2.3) and (2.4) we may now estimate as follows.

qbl by

- Z Z T Z Z Z diami’ (fb?j)l—lyjl © f(;—lhbz—z,jl—l © fb—z,lbl,jz © fb—l,lbo,jl (Bbo (R/2)))

biel ji=1 b1 €l j1=1boel
@, v,

< Z Z Z Z Z ||(sz bi—1,]1 fbl—labl—Za]l—l fb2 b1,j2 fb1 bO]l) |BR0||t diam} (Bbo(R/Q))

biel ji=1 bi€l j1=1boel

—1y t
ap =1\ ¢ by g ~1\ !

v, vy Tap, b, _ q —
w | be] ™ |bi—g| " |bo| 1 t (B @0 1
< Z Z Z Z Z M BE ’ RE e L (5) |2t

bel ji=1 bi1el j1=1bpel

by

STEV T 30 o0 35 3B ol T (TR e

bel j1=1 b€l j1=1bgel
le le

() MU S (S

b el ji=1 biel j1=1boel

[
Mlt Z |b|quit ql
bel

t [
*’(th ) |b|i+)

bEBR3|ﬁ|f71( )

Q|
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Applying (2.7) we therefore get ¥; < L*(2/R)"4. Since the diameters (in the spherical met-
ric) of the sets of the covers W; converge uniformly to 0 when [ \, oo, we therefore infere
that H.(TR(f)) < LY(2/R)!9, where the subscript s indicates that the Hausdorff measure is
considered with respect to the spherical metric. Consequently HD(Ig(f)) < ¢ and if we put

IR,e(f)::{zea':li?{gglﬂf” |>R} U 7

k>1
then also HD(I(f)) < HD(Ig(f)) = HD(Ig(f)) < t. Letting now ¢ \, 2 iy finishes the
proof. m

3. PROOF OF THEOREM 1

Keep the constants Ry R; and Ry with the same meaning as in the proof of Theorem 2. Fix
a pole a € By, with ¢, = ¢. For every pole b € By, N f~!(oc0) with g, = ¢ fix inverse branches

fbal: B(a, Ro)—>¢'andf : B(b, Ry) — T

of f, where by B(z,r) we mean the closed ball centered at x and with the (Euclidean) radius
r. In view of (2.6)

Frar (Bla, By)) € B(b, Ro) and £, (B(b, Ro)) C Bla, Ro).

Since in addition, in exactly the same way one can prove these last two inclusions with Ry
replaced by R; > Ry, the family

S = {fabl Ofbal : (a RU) _>B(a RU)}bGBRzﬂf !(o0)

forms a conformal infinite iterated function system in the sense of [4]. We set ¢, = f;,bl,l of,;al’1
and given w € (Bg, N f!(c0))", n > 1, we say that |w| = n and we put

d)w:¢wl0d)w20...0¢wn.
JS—ﬂ Z¢w aRO)

n>0 |w|

The set

is called the limit set of the iterated function system S. Since .Jg is contained in the closure
of all fixed points of ¢, w € U,>1(Bg, N f~'(00))", which are repulsive periodic points of f,
we conclude that Jg C J(f). Given ¢t > 0 we consider the function

v = 3 gl
be B, i1 (o0)
and the number
Os = inf{t > 0: ¢(t) < oo}.
Our proof is based on demonstrating that g = % and 1(fs) = oo. In view of (2.2) we can

write.
a1y

viy= S e =S

bEBR,Nf1(c0) beBRQHf*I(OO)
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+1
But the series Yy, nf-1(00) |b|_th < oo if and only if ¢ > % and therefore the equalities

Os = % and ¢ (fs) = oo are proven. The latter equality means in the terminology of [4] that
the system S is hereditarily regular and it therefore follows from Theorem 3.20 in [4] that

HD(Jg) > 05 = %. Since Jg C J(f), we are therefore done. B

4. REMARKS

In [3] we have provided sufficient conditions for a subexpanding meromorphic function f
to have o-finite absolutely continuous invariant measure p. We have proved the following
theorem.

Theorem 4.1. Let f : @ — @ be a transcendental meromorphic function satisfying the
following conditions:

a) J(f) =0
b) l(Io(f)) =0

c) ({z:w(z) C P(f)}) =0

then there exists a o-finite f-invariant measure p equivalent with the Lebesgue measure .

Thus Theorem 4.1 and Corollary 1.3 imply

Corollary 4.2. If J(f) = @ is an elliptic function and ly({z : w(z) N P(f) # 0}) = 0, then
there exists a o-finite f-invariant measure p equivalent with the Lebesgue measure [5.
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