


Existence of Invariant Measures for
Transcendental Subexpanding Functions

Janina Kotus*
Faculty of Mathematics
and Information Sciences
Warsaw University of Technology
Warsaw 00-661, Poland.
Email: janinak@panim.impan.gov.pl
and
Mariusz Urbanski
Department of Mathematics
University of North Texas
P.O. Box 311430
Denton TX 76203-1430, USA.
Email: urbanski@unt.edu,
Web: http://www.math.unt.edu/~urbanski
Fax:940-565-4805

January 31, 2002

Abstract

We consider the problem of the existence of absolutely continuous in-
variant measures for transcendental meromorphic functions. We prove
sufficient conditions for a subexpanding meromorphic function f to
have a o-finite absolutely continuous invariant measure y and we find
a class of functions satisfying these assumptions.
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1 Introduction

The orbits of points under iteration by a meromorphic function fall into three
categories: they may be infinite, they may become periodic and hence consist
of a finite number of distinct points or they may terminate at a pole of the
function. Points in the last category are called prepoles. For transcendental
meromorphic functions with more than one pole, it follows from Picard’s
theorem that there are infinitely many prepoles.

The Fatou set F(f) of a meromorphic function f : C — C is defined
in exactly the same manner as for rational functions; F(f) is the set of
points z € C such that all the iterates are defined and form a normal family
on a neighborhood of z. The Julia set J(f) is the complement of F(f) in
C. Thus, F(f) is open, J(f) is closed, F(f) is completely invariant while
F7YI(f) € J(f) and f(J(f) \ {oo}) C J(f). For description of the dy-
namics of meromorphic functions see e.g. [3]. We would however like to note
that it easily follows from Montel’s criterion of normality that if f: C — C
is either entire or has exactly one pole w and w ¢ f(C) (such functions f
will be called subentire and for them f: C\ {w} — C\ {w} is well-defined),
then there exists a set £ C C consisting of at most one element and such
that for every z € J(f) \ {oo} if f is entire and for every z € J(f) \ {w, o0}
if f is subentire, every r > 0 and every ¢ > 1

U r(B(z,1) > C\ E.

n>1

In the sequel E will be called the set of omitted values of f. It can be also de-
fined for meromorphic functions which are not subentire. If f is meromorphic
but not subentire nor entire, then (see [3])

J(f) = F(c0).

n>0

The singular set S(f) C C of a meromorphic function f consists of those
values at which f is not a regular covering. These are either critical values
(algebraic singularities) or asymptotic values (transcendental singularities).
The postsingular set P(f) is the union of the forward orbits of all singular
values, i.e.

P(f)=J f(s)).

If a singular value is a prepole (belongs to | J,~, f~"(c0)), we take the images
in this union only until the image is equal to oo and then we stop. It follows



from Iversen’s (see [8]) theorem that £ C S(f) and, and consequently, £ C
P(f). By Iy we denote the Lebesgue measure on the plane and by m the
measure induced by the spherical metric on C = C U {oo}. Note that both
measures [5 and m are equivalent in the sense that they have the same sets
of measure zero. Let

L(f) = {z: () = o}

Given z € C let w(z) be the w-limit set of z, i.e. the set of all accumulation
points in C of the sequence {f"(2)}52,.

M. Lyubich has proved in [11] that there is no o-finite measure absolutely
continuous with respect to the Lebesgue measure /5 and invariant under the
action of the map z — e®. Aiming to give a positive contribution in the
opposite direction we shall prove as our main result the following.

Theorem 1. Let f : C — C be a transcendental meromorphic function
satisfying the following two conditions:

(a) J(f)=C
(6) ({2 : w(2) € P(f) U{oo}}) =0

then there exists a o-finite ergodic conservative f-invariant measure p equiv-
alent with the Lebesgue measure .

Recall that ergodicity means that if G is a Borel set satisfying f~'(G) = G,
then either u(G) = 0 or u(G°) = 0 and conservativity means that for every
set G with positive measure, the measure of those z for which f"(z) € G only
for finitely many n’s is equal to zero. Of course condition (b) implies that
lo(Io(f)) = 0. Note that due to Lyubich’s result from [11] the condition (b)
of Theorem 1 fails for the function z — e* and due to Bock’s result from [6] it
fails for the map z — tan (”T”) The simplest examples of functions satisfying
the assumptions of Theorem 1 are given by the formula f(z) = 2mie* and
g(z) = mitan(z). For the proof that these functions actually satisfy (b) it
is important to know that ly(/(f)) = 0 and l5(/(g)) = 0 (see [9] and [6]
respectively). Here we present a larger class of functions f with ly(I(f)) =

0.

Theorem 2. If
Ae” + Be™"

%) = Gery Dew
pEN, AD — BC #0, then ly(I(f)) = 0.
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An example of a function satisfying the assumptions of Theorem 1 and holo-
morphically conjugate to a function from the class involved in Theorem 2
with p = 2 is given by the formula

f(2) = Vmitan(2?) + /7.

Indeed, this easily follows from the fact that the asymptotic values 0 and
2/ as well as the critical point 0 are mapped by f on the repelling fixed
point /7 and the property that l3(I(f)) = 0 following from Theorem 2.

We will frequently use the following two versions of Koebe’s distortion theo-
rem.

Theorem A. (Koebe’s Distortion Theorem, I) There exists a function k :
[0,1) — [1,00) such that for all z € C, all v > 0, all t € [0,1) and any
univalent analytic function H : B(z,r) — C, we have

sup{|H'(z)| : © € B(z,tr)} < k(t)inf{|H'(z)| : © € B(z,tr)}.

Theorem B. (Koebe’s Distortion Theorem, II) Given a number s > 0 there
exists a function k, : [0,1) — [1,00) such that for any z € C, r > 0, t €
[0,1) and any univalent analytic function H : B(z,7) — C such that the
complement C\ H(B(z,r)) contains a ball of radius s we have

sup{|H'(z)|, : © € B(z,tr)} < ky(t)inf{|H'(z)|, : @ € B(z,tr)},

where |H'(z)|, means that the derivative is taken with respect to the spherical

metric on C.

We put K = max{k(1/2), ks(1/2)}.

2 Proof of Theorem 1

We start with the description of our setting. Let X be a compact metric
space, m be a Borel measure such that m(X) = 1. Suppose T : X — X is
a measurable map and m is a quasi-invariant measure, i.e. mo T~ << m.
In the proof of Theorem 1 we apply the following result of M. Martens (see

[12]).

Theorem 2.1. Let (X, m,T) be as above. Suppose we have a partition A =
{A4; 11 € NU{0}} of X such that A; are Borel sets of positive measure,
m(X \U,~, Ai) = 0 and they satisfy the following conditions:
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1. T 1s ergodic and conservative with respect to the measure m.
2. Vi, >0 3k >0 such that up to measure zero TF(A;) D A;

3. Vi >0 3K; > 1, for all Borel sets A, B C A; and for all integers n > 0

m(T~"(4) _ omi(4)

m(T"(B)) = 'm(B)’

Then there exists o-finite ergodic conservative measure p equivalent with m
and such that
poT t=p

and for every Borel set A

(Note that due to conservativity of f, > o m(T*(A4y)) = 00.)

Let f: C — C be a transcendental meromorphic function such that

L({z:w(z) Cc P(f)Uu{cc}}) =0.

Obviously this assumption implies that

L(P(f)) = 0. (1)

First we construct the partition A, next we check that it satisfies the as-
sumptions of Theorem 2.1. We define a new metric on the plane C by
putting

min (2, y) := min{1, |z —y|)}

and we consider the family of balls

{B <Z %%m(&@)) }ze(C\P(f) '

This family obviously covers C\ P(f). Since C\ P(f) is an open set, it is a
Lindeldf space, and therefore we can choose a countable subcover of C\ P(f),

which we denote by
1 - oo
{B <Zi, §dmin (Zzap(f)))} .
i=1
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We inductively define a partition A = {4;}3°, of C\ P(f) as follows. Let

Ay = {B <z0, %dmm(zo,%)> } :

Assume that we have defined the set Aq,..., A, such that
1 _
4; C {B <Zj: §dmm(2’j,P(f))>}

IntAj 7é @

and

Then A, we define as
1 _ n
An+1 - {B <Zn+17 §dmin(zn+17 P(f)))} \ U A]
j=1
The set A,,,; is disjoint with the sets Ay,..., A, and
1 — " 1 —
An+1 CB <Zn+17 §dmm(zn+lap(f))> \ U B <Zj7 §dmzn(zjap(f))> .
7=1

Thus either A, 1 =0 or IntA,,; # 0 and we remove all the empty sets.

Remark 1. Since A is the partition of C\ P(f), we have S(f)NA; =0 for
each j € NU{0}.

Lemma 2.2. Let f : C — C be a transcendental meromorphic function.
If z € J(f)\{oo}, r > 0 and K C C is a compact set disjoint from the
exceptional set E, then there exists n > 1 such that f*(B(z,1)) D K.

Proof: Suppose first that f is either entire or subentire. Since due to Baker’s
and Bhattacharyya’s theorem (see [1] and [4], comp. [3]), the set of repelling
periodic points is dense in the Julia set, we see that there exists a periodic
point z € B(z,r), say of period ¢ > 1. Since x is repelling there exists
s > 0 so small that B(x,s) C B(z,r) and f9(B(z,s)) D B(z,s). Since
Ujs1 f¥(B(2,5)) D C\ E, since K is a compact subset of C\ E and since
{f9(B(z,5))}52, is an increasing family of open sets, there thus exists & > 1
such that f%(B(z,s)) D K. So, we are done in this case. Assume in turn
that f is not entire nor subentire. Then |J, -, f~"(c0) = C and fix a point

w € B(z,7)N U F7(00).

n>1



So, w € f~"(oo) for some n > 1 and there exists ¢ > 0 so small that
B(w,t) N U?;(} f7(c0) = 0. Hence f"(B(w,t)) is well-defined and it forms
an open neighbourhood of co € C. Since oo is an essential singularity of f,
by Picard’s theorem the set f(f"(B(w,t))\ {oo}) contains the whole C\ E.
The proof is complete. m

As an immediate consequence of this lemma we get the following.

Corollary 2.3. Let f : C — C be a transcendental meromorphic function
such that J(f) = C and ly({z : w(2) € P(f)U{occ}}) = 0. If A is a partition
defined above, then ly(C\|J;~, A;) = 0 and A satisfies the second assumption
of Theorem 2.1 i.e.

Vi, >0 3k >0 such that wup to measure zero f*(A;) D A;.

Lemma 2.4. Let f: C — C be a transcendental meromorphic function such
that J(f) = C. If l5({z : w(z) € P(f)U{oo}}) =0, then f is ergodic and
conservative with respect to the measure m.

Proof: Let P(f)_ ={z¢€ C:w(z) C P(f)U{oo}}. We shall prove first that
every forward invariant (f(F) C F') subset F' of J(f) is either of measure 0 or
1. Tndeed, suppose on the contrary that 0 < m(F) < 1. Since m(P(f)_) =0,
it suffices to show that

m(F\ P(f)_) =0.

Denote by Z the set of all points z € F'\ P(f)_ such that
_m(B(z,r) N(F\P(f).)) _
limn m(B(r) =1 2)

In view of the Lebesgue density theorem (see for example Theorem 2.9.11
in [7]), m(Z) = m(F). Since m(F) > 0 we find at least one point z € Z.
Since z € J(f)\ P(f)_, there exists x € C\ P(f) and an increasing sequence
{nk}32, such that

T = klgn f™(2) and |f™(2) — x| <6/2

for every k > 1, where 0 = dist(x, P(f)) > 0. Suppose that m(B(z,d)\ F) =
0. Obviously m(f(Y)) = 0 for all Borel sets Y such that m(Y’) = 0. Hence,

= m(f"(B(z,8) \ F)) > m(f"(B(z,8)) \ f*(F))
> m(f"(B(z,9)) \ F) > m(f"(Bl(z, ))) m(F)

(3)



for allm > 0. Since by Lemma 2.2, sup,,», {m(f"(B(z,§)))} = 1, this implies
that 0 > 1—m(F) which is a contradiction. Consequently m(B(z,d)\F) > 0.
Hence for every j > 1 large enough, m(B(f" (z),26)\F) > m(B(z,6)\F) >
0. Therefore, as f~'(J(f)\F) C J(f)\F, the standard application of Koebe’s
Distortion Theorem II (Theorem B) shows that

) m(B(z,r)\ F)
s> = (B(er)

which contradicts (2). Thus either m(F) = 0 or m(F) = 1. In particular
ergodicity is proven and conservativity is now straightforward. One needs to
prove that for every Borel set B C J(f) with m(B) > 0 one has m(G) =0,
where

>0

G={xeJ(f): ZXB(f”(x)) < 4o00}.

n>0

Indeed, suppose that m(G) > 0 and for all n > 0 let

Go={z € J(f): Y xp(f"(x) =0} ={z € J(f): ff(z) ¢ B forall k>n}.

k>n

Since G = |J,,5¢ G, there exists £ > 0 such that m(Gy) > 0. Since all the
sets G, are forward invariant we conclude that m(G;) = 1. But on the other
hand all the sets f~™(B), n > k, are of positive measure and are disjoint
from G. This contradiction finishes the proof. m

Remark 2. Notice that the same result under slightly weaker assumptions
was proved by H. Bock in [5] and [6]. We presented our independent proof
for the sake of completeness.

Lemma 2.5. Let f : C — C be a transcendental meromorphic function such
that lIs({z : w(z) C P(f)U{oc}}) =0. If A = {A;}2, is a partition defined
above, then for every ¢ > 0 there exists K; > 1 such that for each n > 0 and
all Borel sets A, B C A; € A with m(B) > 0, we have

m(f"(A))
m(f="(B))

Proof: Fix ¢ > 0. Note that all holomorphic inverse branches of f™*, n > 1,
are well-defined on (B(z;, (1/2)dmin(z;, P(f))). Denote the set they form
by F;. It is well-known (see [2] where the proof is provided in the setting
of rational functions) that F; is a normal family. Since J(f) = C, all the
limit functions of F; are constant. Therefore there exists r; > 0 such that if
fm e F, then f™(B(zi, (3/4)dmin(2i, P(f))) is disjoint from a ball of radius

v

m(A)
= Ria@)y
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r; (with respect to the spherical metric). It therefore follows from Koebe’s
Distortion Theorem, IT (Theorem B) that there exists K; > 1 such that

), -
@l =

forall f," € F; and all z,y € B(z;, (1/2)dmin(2i, P(f))), where the subscript
p indicates that the derivative is taken with respect to the spherical metric.
Hence for all Borel sets A, B C A; we get

m(f(A) _ LU Rdm _ swpa UV m(A) _ - ym(A)
m(f(B) [, Bdm = ity (10 Pm(B) =

m(B)
In order to conclude the argument, note that

IN

m(f,"(4)) < fo?%m(fu”w))

_ 12 -n _ ~2m(A) -n
_Kim—B);m(fy (B)) = K; @m(f (B))

We are done. m

The proof of Theorem 1 follows now immediately from Corollary 2.3,
Lemma 2.4, Lemma 2.5 and from Theorem 2.1.

3 Proof of Theorem 2

The idea of the proof is to obtain good estimates of the derivative of the
function f around poles and to follow the scheme worked out in [10]. We can
rewrite f(z) in the form

Ae*’ + B

%) = a3

It is easy to calculate that

£(2) 2p(AD — BC)zP~1e***  2p(AD — BC)2P~'e**"(f(2))? (1)
zZ) = =

(Ce*” + D)? (Ae??” + B)?
For p = 1 the function f has no critical points. Let p > 1. Then f'(z) =0
iff z = 0 and f(0) = % is a critical value. Note that the assumption

AD — BC # 0 implies that either C' # 0 or D # 0. Assume that C' = 0
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then f is a transcendental entire map with one finite asymptotic value %

Analogously, if D = 0 then f is also a transcendental entire map with one

finite asymptotic value %. For transcendental entire function the theorem

follows from Theorem 7 in [9]. So, suppose that C' # 0 and D # 0. It is
straightforward to verify that the function g(z) = (Ae*+ Be™?)/(Ce*+ De™?)
satisfies the Riccati equation ¢’ = a + bg + cg® with « = —2AB/(AD — BC),
b=—2(AD+ BC)/(AD — BC), ¢ =2CD/(AD — BC). Since f(z) = g(z"),
we therefore conclude that

f'(z) = p2"Ha + bf(2) + c(f(2))?). (5)

Fix now R >> 1, a pole 2, of f with |z,| > R. Let A = {2 € C:|z| > R}
and let V, be the connected component of f~'(Ag) containing z,. Since
c # 0, it then follows from (5) that with R sufficiently large

: P iiapo-
() = Slelll7 R > R? (6)

for all z € Vi Fix now Ry > R, put Agp, = {z € C: R < |2| < R} and
consider V, g,, the connected component of f~*(Ag g,) enclosing (in C) the
point z,. It then follows from (5) that

' (2)] < 2plell=l" "R (7)

for all z € V, z,. Combining this with the first part of (6) we get that

SUp, .y f'(z 2
_ EV‘J’R1|,()|§L:4C<&> , (8)
inf,cq, 1f'(2)] R

where

¢= s%p inf{|z| : z € V}

if R is large enough.

Since the map ¢ is the composition of a Mobius transformation and the map
2+ €% for every ¢ large enough and since each holomorphic branch of z'/?
sending the point 2} to z; is univalent on the balls containing z#, so big that
applying Koebe’s Distortion Theorem I (Theorem A) produces some radius
7 such that

B(zq,74/4) C Vg C Bl(2g,74/2). (9)
Let V = f~'(Ag). A straightforward calculations show that

lim L(Arr, \V)

=1 10
Ri—0 l2(AR,R1) ( )
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and

. l2 (‘Z] Rl)
lim 2 af) 11
Ritso 1y(V;) (11)

uniformly with respect to q. Therefore for every R; > 0 large enough

L(Arr \V) 1 b(Var) _ 1
> — and > —, 12
BAne) 22 ™ Loy 72 12
We want to show that for every ¢ we have
L(Va\ f~1(V) 2\—1
> (4L , 13
ZUAREE "

where L is the upper bound on distortion given by (8). And indeed, using
(8) and (12), we get

LV V) _ L(Ve\ Ver) \ F U Ve, \ fO)D)

]
lo(V) l(Vy)

12(‘74,1%1 \fﬁl( )) — lZ(fq I(AR’Rl \V)) . lz(vq,Rl)
- 12(V) L(f7 (Arr,)) 12(V)

szlz (Arr, \ V)

1
> _
T2 lo(AR,r,)

> (4%

Suppose now on the contrary that lo(I,(f)) > 0. Since

cMUN/(Ar)

n>1k>nl>k

there in particular exists k& > 1 such that [, ( wo(F) N s [ (A R)) > 0.

Let & be a density point of the Lebesgue measure of the set I.(f) N
ﬂjZk f77(Ag). For every n > 0 put

En = f" (50)
Since lim,, ;o &, = 0o, for every n large enough there exists ¢(n) such that
&n € Vo, lim,yo0 |8 — zg(n)| = 0 and lim, ,, g(n) = oo. Hence, using

Koebe’s Distortion Theorem I (Theorem A), we deduce that for all n large
enough &, —2ym)| < Yqm)/8 (7, are the numbers defined in (9)) and combining
this with (9), we conclude that

B(&ns Yam)/8) C V) C B(&ns Ya(n)) (14)
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Since each &, is also a density point of the set (1,5, f~ J(Ag), we may if needed
replace & by an appropriate iterate £, and assume that all the numbers ¢(n),
n > 1 are so large as one wishes. Since for every ¢ the map f : V, — Ag is
univalent, there exists its inverse map ¢(@ : Ap — Vg Since in addition for
all n > 1, Vi) C Ap, therefore the composition

Jn = gq(O) e} gq(l) o gq(2) ...0O gq(n) : AR — AR

is well-defined (and obviously univalent). Moreover g,(Vym)) C Vi) By
Koebe’s i—Theorem and Koebe’s Distortion Theorem I (Theorem A), we get

5 (60 11 6)n ) © n(B(Ens) © Bl6s Kl (&) )

where we abbreviated 4,y to 7,. Using Koebe’s Distortion Theorem I (The-
orem A) again along with (14), we can estimate as follows.

Lo (B(&0, K gy () Iym) N f =D (AR))
I (B((€0, K19}, (€0) 7))
I (B(&, K|y, (§)1m) \ f~"D(AR))
HEGCRIIADED))
bgn(B&n 1) \ F "2(AR) _ | Blgn(BE ) \ f 1))

= T TL B K@) (4K)2h(B (50,4|gn<5n>m>)
cq_ L BlgBE o\ O) 1 bBE )\ V)
T 16K? b(gu(B(Gwmm) T 16KT (B(&, )

e L BV \SO) 1 b \T'V)

= 20K L(B(emm/®) 20K 1y (Vew)

S P

— 212K4L2’

where writing the last inequality we have used (13). Hence, for every n > k

lo (B (&0, K19,,(&a) ) N Njop [/ (AR)) < 2 (B(&0, K9 (€n) 1) N f~012) (AR))

L (B((&. K |9, (&) 7)) - Lo (B((€0, K19, (6) [7n))

1
<1- 12 AT 2"

Thus & is not a density point of the set [, f7(Ag) and consequently not
a density point of the set Ioo(f) N (55 f/(Ar). This contradiction finishes
the proof of our theorem. -
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