THE DIOPHANTINE ANALYSIS OF CONFORMAL
ITERATED FUNCTION SYSTEMS

MARIUSZ URBANSKI

ABSTRACT. A formula for the Hausdorff dimension of a Besicovic-Jarnik subset of the limit
set of a conformal infinite iterated function system is derived and expressed as a unique zero
of the topological pressure of the corresponding strongly Holder family of functions.

1. INTRODUCTION, PRELIMINARIES

The diophantine analysis has its origins in classical papers [Be] and [Ja] by Besicovic and
Jarnik respectively. The connections of their work with the theory of dynamical systems
is well explained in [HV1]. Also the papers [HV2], [St] and [SU] deal with the subject of
Diophantine analysis. Especially interesting phenomena have been discovered in [St] and
[SU]. The aim of this paper is to initiate the Diophantine analysis in the general context of
conformal infinite iterated function systems. Ultimately we would like to provide a dynamical
proof of the classical result by Besicovic and Jarnik and to provide a full explanation of the
phenomena (a kind of phase transition of the Hausdorff dimension function) observed in [St]
and [SUJ]. We feel that conformal infinite iterated function systems provide a right setting to
do it.

The plan of our approach in this paper is to deal first with finite systems and to prepare some
auxiliary technical tools in the setting of infinite systems. Then, assuming an appropriate
separate condition, we approximate a conformal infinite iterated function system by finite
subsystems, we use a version of the variational principle from [MU2], and we develop the
approach of Hill and Velani form [HV] following preatty closely their consierations adapted
to the setting of iterated function systems. At the end of this section we formulate our
main result and in order to do it we first recall (see [HMU], comp. [HU] and [Ur|) the basic
properties of conformal iterated function systems, the general concept of strongly Holder
families of functions and an appropriate version of thermodynamic formalism. So, let I be
a countable index set with at least two elements and let S = {¢; : X — X : i € I} be
a collection of injective contractions from X into X for which there exists 0 < s < 1 such
that p(¢;(x), ¢i(y)) < sp(zx,y) for every i € I and for every pair of points z,y € X. Thus,
the system S is uniformly contractive. Any such collection S of contractions is called an
iterated function system. We are particularly interested in the properties of the limit set
defined by such a system. We can define this set as the image of the coding space under a
coding map as follows. Let I = {J,~; I", the space of finite words, and for w € I", n > 1,
let ¢, = ¢, © Py 0+ 0@y, . If w € I*UI® and n > 1 does not exceed the length of w, we
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denote by w|, the word wyws ...w,. Since given w € I, the diameters of the compact sets
P, (X), n > 1, converge to zero and since they form a descending family, the set

ﬁo Pl (X)

is a singleton and therefore, denoting its only element by m(w), defines the coding map = :
I*° — X. The main object in the theory of iterated function systems is the limit set defined
as follows. .
J=x() = U (o) =N U au(X)
wel>® n=1 n>1 |w|=n

Observe that J satisfies the natural invariance equality, J = U;¢; ¢i(J). Notice that if I is
finite, then .J is compact and this property fails for infinite systems.
An iterated function system S = {¢; : X — X : i € I} is said to satisfy the Open Set
Condition if there exists a nonempty open set U C X (in the topology of X) such that
¢;(U) C U for every i € I and ¢;(U) N ¢;(U) = 0 for every pair i,j € I, i # j.
An iterated function system S satisfying the Open Set Condition is said to be conformal if
X C IR? for some d > 1 and the following conditions are satisfied.

(1a): U = Intjpa(X).

(1b): There exists an open connected set X C V C IR? such that all maps ¢;, i € I,

extend to C' conformal diffeomorphisms of V into V.
(1c): There exist 7,1 > 0 such that for every z € X C IR? there exists an open cone

Con(z,7,l) C Int(X) with vertex z, central angle of Lebesgue measure -, and altitude
l

(1d): Bounded Distortion Property(BDP). There exists K > 1 such that
6L (W)] < K4, ()|

for every w € I* and every pair of points x,y € V, where |¢/,(r)| means the norm of the
derivative.

In fact throughout the whole paper we will need one condition more which (comp. [MUL])
can be considered as a strengthening of (BDP).

(Le): There are two constants L > 1 and a > 0 such that

16| — 16()]| < LIy — =]
for every ¢ € I and every pair of points x,y € V.

Let us now collect some geometric consequences of (BDP). We have for all words w € I'* and
all convex subsets C' of V/

diam(¢,,(C)) < |[[4,||diam(C) (1.1)
and

diam(¢,(V)) < D¢, I, (1.2)
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where the norm || -] is the supremum norm taken over V' and D > 1 is a universal constant.
Moreover,
diam (¢, (X)) = D™|¢, || (1.3)
and
¢u(B(w,1)) D B(du(x), K74} ]|r), (1.4)

for every x € X, every 0 < r < dist(X,dV), and every word w € I*.

The topological pressure function, P(t), for a conformal iterated function systems is defined
as follows.

.1 ,
P(t) = lim —log > ||¢,|’

n—oo n, |w|—n

As it was shown in [MU1] there are two natural disjoint classes of conformal iterated function
systems, regular and irregular. A system is regular if there exists ¢ > 0 such that P(¢) = 0.
Otherwise the system is irregular. Denote by HD(A) the Hausdorff dimension of a set A
(treated as a subset of a metric space) and by H' the t-dimensional Hausdorff measure. The
following result has been proved in [MU1].

Theorem 1.1. If S is a conformal iterated function system, then
HD(J) =sup{HD(Jp) : F C I, F finite} =inf{t > 0: P(t) <0}.
If a system is reqular and P(t) = 0, then t = HD(J).

Passing to Holder families of functions fix 3 > 0 and let F = {f® : X — IR:i € I} be a
family of continuous functions such that defining for each n > 1,

Va(F) = sup sup {| (o) () = f) (o) () [}V,

wel™ oyeX

the following is satisfied:
Va(F) = sup{V,(F)} < o0

n>1

The collection F is called then a Holder family of functions (of order 3). If in addition

Zes“p(f(i)) < 0o or equivalently Lp(1) € C(X),
iel
where
) (2
Lr(g)(x) = e Wg(gi(x)), g€ C(X),
icl
is the associated Perron-Frobenius operator, then the family F' is called a strongly Holder

family of functions of order 3. Throughout this paper the family F' is assumed to be strongly
Holder of some order 8 > 0. We have made the conventions that the empty word () is the



4 MARIUSZ URBANSKI

only word of length 0 and ¢y = Idx. Following the classical thermodynamic formalism, we
defined the topological pressure of F' by setting

1 n
P(F) = lim —log Z exp (sl)l(pz:f‘”f o gzﬁm) .
j=1

n—oo n, |w|*n

Notice that the limit indeed exists since the logarithm of the partition function

Zn(F) = > exp(sup(S,(F)))

|w|=n

is subadditive, where
Sw(F) = Z f(wj) © ¢Uﬂu'
j=1
and o : I U [* —: I*° U I* is the shift map, i.e. cutting off the first coordinate. Moreover

P(F) = inf {%loan(F)}.

n>1

Now, if A is a subset, of I, then we denote F|4 := {f® :i € A} and P4(F|,) is the topological
pressure of the family F'|4 with resepect to the iterated function system {¢;};c4. Combining
Theorem 3.1 from [MU2] and the display immediately preceeding (2.18) from [HMU], we get
the following version of the variational principle.

Theorem 1.2. If F is a strongly Holder family of functions then
P(F) = sup{PA(F[4)},
where the supremum is taken over all finite subsets of I.

Now, a Borel probability measure mp is said to be F-conformal provided it is supported on
J, for every Borel set A C X

m(du(A)) = /Aexp(Sw(F) ~P(F)|w|) dmp, YweI* (1.5)
and
m(¢u(X) N ¢ (X)) =0 (1.6)
for all incomparable w, 7 € I*. In ([HU], [HMU], and [Ur]) we have proved the following

Theorem 1.3. If F is a strongly Holder family of functions, then there exists exactly one
F-conformal measure mp.

Although we will not use this object too often, we will recall now the definition of the potential
function or amalgamated function, f, induced by the family of functions F'. namely, f : [* —
IR is defined by setting

fw) = (m(ow))).
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Our convention will be to use lower case letters for the potential function corresponding to
a given family of functions. Frequently instead of P(F) we will also write P(f). Using the
properties (le) and (1d) it is not difficult to check that the family

== {-log|o;[}ics
is strongly Hoolder with exponent a and the corresponding amalgamated function is given
by the formula
§(w) = —log e, (m(ow))].
We end recalling facts about Holder families of functions with the following technical but
frequently used result.

Lemma 1.4. Suppose that F' is a Holder family of functions. Then there exists a constant
Q > 1 such that if v,y € ¢,.(X) for some T € I*, then for all w € I*

Su(F)(x) — Su(F)(y)] < Qe

Suppose now that F' = {f® : X — IR} is a strongly Holder family of functions such that the
amalgamated function f : I*® — IR satisfies the following inequality

3 (1.7)
Let
O(F)=inf{t > 0: P(—tf) < oo}.
We shall briefly sketch the following easy to prove result.

Lemma 1.5. Pl gy = +00. The function t — P(—tf) is convex, continuous and strictly
decreasing to —oo on (0(F), 00).

Proof. Since f > £ > 0, the function ¢ — P(—tf) is noincreasing. Hence P g(r)) = +00
and P(—tf) < oo for every t > 6(F). Using Hdolder’s inequality it is easy to see that the
function ¢ — P(—tf) is convex on (6(F'),00), and therefore continuous. In order to see that
P(—tf) is strictly decreasing on (0(F),o0), fix §(F) < u < t. Then, since f > £ > —logs > 0,
we get

P(—tf) = lim l1og >~ exp(sup Su(—tf) )

n—oo n,

|w|=n
1
< lim ~log 37 exp(sup Su(—uf) | +sup Su((u — 1))|)
oo (1.8)
< lim llog Z eXp(SUPS (—Uf)|[ })
T n—oon \w\:n " .

=P(—uf) + (t —u)logs < P(—uf)
Keeping u fixed, this last display also implies that
I%Lnﬁor})fP(—tf) < P(—uf) + tlgrnoo(t —u)logs = —o0
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The proof is complete. O
We set

§(F) =inf{t > 0: P(—tf) < 0}.
Now we shall define define the main object of our interest, the set D,(F,C), called the

Besicovic-Jarnik set associated with the family F'. More precisely, fix x € X, C' > 0 and
define D, (F,C) as the set of those points z € X that

2 € B(gu(x), Cexp(—S,F()))
for infinitely w € I*. The first obvious observations concerning the sets D, (F, C') are contained

in the following.

Lemma 1.6.
(a) D (F,C) C J.
(b) If C < D=1 or if there exists 3 > 0 suc that f > £+ 3 and x € IntX, then D,(F,C) C J.
We call an element x € J finitely accessible if there exists a finte subset £ of I such that

x € Jg, the limit set generated by the contractions from F. The main result of this paper is
the following.

Theorem 1.7. Suppose that ® is a conformal iterated function system such that J C IntX
and F' is a strongly Holder family of functions such that f > &£. Then for every finitely
accessible v € J and every C' > 0

HD(D,(F,C)) = §(F).

We would like to end up this section with the remark that HD(D,(F,C)) < §(F) (see Propo-
sition 2.1) without the assumptions that J C IntX and that x is finitely accessible.

2. HD(D,(F,C)) < §(F)
In this section we shall prove the following easier part of Theorem 1.7 without assuming that
J C IntX and that x is finitely accessible.

Proposition 2.1. If ® is a conformal iterated function system and F' is a strongly Hdélder
family of functions such that f > &, then for every x € X and every C > 0, HD(D,(F,C)) <
§(F).

Proof. By definition

D.(F,C)= U U B(8(x),Cexp(~S.F(x))).

qz1n>q|w|=n
Fix ¢ > 0. Then
d(F)+e S .
R (D,(F,0)) < liminf 37 37 (2C exp(—S,F(x))

leq ‘w‘:n

= (20" 3 3 exp(—(5(F) + €)S,F(x)).

an |w|:n

)6(F)+e
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Since P(—(6(F) + €¢)F) < 0, thereexists n > 0 and ¢y > 1 such that for all n > gy,
lwl=n exp(—(é(F) + e)SwF(x)) < e™™. Therefore

6*77‘1

0(F)+e < 0(F)+e m __ O(F)4e€13:n 1 —
H (D.(F,C)) < (20) h{}gg}lfnzgqe = (20) hggg)lf = 0
Hence H'¥)*<(D,(F,C)) = 0 and consequently HD(D,(F,C)) < §(F)+e. Letting now e \, 0,
we conclude that HD(D (F,C)) < §(F). The proof is complete. O

3. AUXILIARY RESULTS

We recall that a finite measure v defined on Borel sets of a metric space X satisfies the doubling
property if there exists a constant C' > 1 such that for every ball B, v(2B) < Cv(B), where
2B is the ball centered at the same point as B and with the radius twice as big as the radius
of B.

Proposition 3.1. If ® is a finite conformal iterated function system, F' is a strongly Holder
family of functions, and J C IntX, then the corresponding F'-conformal measure m = mpyg
satisfies the doubling property.

Proof. Fix y =7(w) € J and 0 < r < R :=dist(J,0X). Let [ > 0 be the minimal number
such that ¢, (B(r(c'w),R)) C B(y,r), and let k& > 0 be the maximal number such that
¢w‘k(B(7r(akw) R)) D B(y,2r). By (1.5) and Lemmal.4 we get

B 2 [,y 25T (Z>—P(F>l)dm(Z>2MQlexp(Sth(x)—P(F)l?é.n

where z is an arbitrary in X and M = inf{m(B(z, R)) : z € J} > 0 since m is positive on
open sets of J. Similarly

B(y,2r)) < / . exp Sw|kF(z) — P(F)k)dm( ) < Qexp( Sul F(z) — P(F)k)
7I' a w (32)
Of course k£ < [. On the other and, we have from the definitions of £ and [ that

diam (¢,,_, (B(r(0'w), R))) > r and ¢,,,, (9B(r(0*"'w), R))) N By, 2r) # 0.

Consequently, using the first part of (1.1), we get 2R||¢;,,  [| > r, and, using (1.3), we obtain
K|, IR <2r If 1 <k +2 we stop. Otherwise / —1 > k +2 and we get

16l 16l > 1600112 5 > 6l

hence s'=%=2 > ||¢w[k+2l 1]|| > (4K)~!, and consequently [ — k — 2 < _1%(?() Thus, in any
case, [ < k + p, where
—log(4K)

p=2+
log s
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Using this, Lemma 1.4, and combining (3.1) and (3.2), we therefore get
m(B(y.1)) = MQ™ exp(Su1, F (g, (#) + Speuy F ) — P(F)I)
— MQ exp(S, F qsgkwh ) = P(F)E) - exp (S F(2)) exp(P(F)(k — 1)
> MQ™ exp(Suy, F(x) = P(F)k) exp((k — )| f|]o) exp(—pP(F)) (3.3)
(=

> MQ ™’ exp p||f|| )exp( pP(F))m(B(y, 2r))
The proof is complete. 0

Fix now z € J, C' > 0, and for for every w € I'* put

B, = B(¢u(z),C exp(~S,F(x))).
Then for every n > 1 and every set B C X put
S(B,n)= Y, exp(—¢(F)S,F(x)).
wel™:B,CB
Let ms = m_sp. We shall prove the following.

Lemma 3.2. If the assumptions of Proposition 3.1 are satisfied, f > &, and C < D1, then
ms(B) < X(B,n)
for every ball B (either closed or open) centered at a point of J and every n > (logdiam(B) —
2log2 —log D)/ logs.
Proof. On the one hand we have

BnNJcC U d)w(X)C U ¢w(X)C U ¢w(X)a
weI™: BN, (X)#0 welm™:p,(X)C2B wel™:B,C2B
where the last inclusion we could write by (1.4) since C' < D~! and f > £ (and then B, C
¢.,(X)), and the second inclusion is satisfied provided that D||¢/,|| < fdiam(B) which is
implied by by the requirement Ds/“l < ldiam(B) which in turn means that
log diam(B) — log2 — log D)
log s

jw| =

So, if n is greater than or equal to this last number, then

ms(B) < > msou(X)x > exp(—0S,F(x)) = (2B, n).

welm™:B,C2B wel™:B,C2B

Thus, applyling Proposition 3.1, we get
my(B) << mg(%B) << X(B,n)
for all n > (logdiam(B) — 21log2 —log D)/logs. On the other hand
B> U 6(X)D U 6,(X)> U XD U ),

wel™:¢p,(X)CB welm: L BNg, (X)#0 weln: L BNB,#0 welm:B,CiB
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where the third inclusion followed from (1.4) along with inequalities C' < D! and f > ¢
(since then B, C ¢,(X)), and the second inclusion is, in view of (1.2), satisfied provided that
D||¢,,|| < +diam(B) which is implied by by the requirement Ds// < idiam(B) which in turn
means that

log diam(B) — 2log2 — log D)

> .
wl 2 log s

So, if n is greater than or equal to this last number, then

ms(B) > Z msp,(X) < Z exp(—0S,F(x)) = E(1

2
wel™:B,C1B wel™:B,C1B

B,n).

Thus, applyling Proposition 3.1, we get
ms(B) >> ms(2B) >> X(B,n)

for all n > (logdiam(B) — 2log2 — log D)/ log s. The proof is complete. O

In the last two proofs we have clearly indicated which of the geometric properties of the
Bounded Distortion Property we were using. In the sequel we will use these without indicat-
ing it. Given now a set E C X such that ENJ # () and diam(E) < R := dist(J, 0X),
define ¢(E) to be the largest integer for which there exists a word w € I® such that
¢w‘q(E)(B(7r(aq(E)w,R)) C E. Since diam(F) < R, ¢(E) > 0. Since the maps ¢;, i € I,
are uniformly contracting, ¢(F) is a finite number. The following two lemmas describe simple
but useful properties of the number ¢(E) and the word w associated with it.

Lemma 3.3. If an infinite word 7 € I*° and p > 0 are such that ¢,,(B(n(o?T,R)) C E,
then p < q(E) and 7|, = w|p,, where w € I is the word involved in the definition of the
number q(E). In particular w|q g is determined uniquely.

Proof. Put ¢ = ¢(F). By maximality of ¢, ¢ > p. Since both balls B(m(c%), R) and
B(n(0oP7), R) are contained in IntX and since ¢, (B(7(c%w), R)) N ¢, (B(7w(c?7),R)) D E,
it follows from the open set condition that either w|, extends 7|, or vice-versa. Since p < g,
we thus conclude that w|, extends 7|, and the proof is complete. O

Lemma 3.4. If D C E are such that DN J # () and diam(E) > R, then q(D) > q(E) and
wplgr) = Welqm). Moreover, for every 0 < C < 1 there exists an integere ke > 1 such that if
diam(D) > Cdiam(E), then q(D) < ¢(E) + kc.

Proof. The first part of this lemma is an immediate consequence of Lemma 3.3. Denote
wp by 7 and wg by p. Since ¢p|q(E)(B(7r(aq(E)p),R)) D E, ENJ # () and the open set
condition is satisfied, there exists 3 € I* such that 7(8) € B(r(c?®)p), R) and Dol (T(B)) €
E N J. Since ¢y, 06 (7(08)) = ¢p|, 1 (7(8)) € E, it follows from the definition of ¢(E) that
Dol )5 (B(W(aﬁ),R)) does not contain E and that there exists a point y € 0B(w (o), R)
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such that @), 6, (T(08)) = By, pys (v)| < diam(E). Hence

K 1R = K6l le(0) — ]
< |¢P\q(E),31 (m(0fB)) — ¢P|q(E)ﬁ1(y)|
< diam(E).
And consequently ||¢/ ||[K2R™!||®'||"'diam(FE), where ||®'|| = min{||¢}|| : i € I}. Writing

Plae)
now 7lyp) = plemyn, n € I1°°, we thus obtain

Cdiam(E) < diam(D) < 6,y (B(r(0"P'7), R))
< 116, 1 IR < K@) srldiam(B).
Therefore sl > C||®'|| K2, and taking logarithms we get || < log(C||®'||K~2)/logs. Thus,
taking ko = log(C||®'|| K ~2)/ log s finishes the proof. O

Define now G = {g; : i € I} = G — Z, a new strongly Hélder family of functions, by setting
g9i = [i — & = fi +log|¢j.
Our last result in this section is the following.

Lemma 3.5. If B= B(y,r) C X and y € J, then

5(F)

m(;(B)

= exp(3(F)Sup),m G (@)

Proof. Put p = wg|yp). In view of te definition of wg, ¢(B), conformality of measure m,
and Lemma 1.4 we can estimate as follows

ms(B) < / exp(—é(F)SpF)dm(;(z)

B(n(01B)wg),R)
< Qms(B(n(0"Pwp), R)) exp(—0(F)S,F(x))
= Qexp(—0(F)8,G(x)) exp(—6(F)S,E(x)) < exp(—6(F)S,G(x)) |6, (x)[".

We also have
2r = diam(B) < diam(¢,(B(r(0"Pwy), R))) < [|¢,][2R < K|¢),(x)|2R

and consequently

|¢,(x)| = (KR) 7. (3.5)

We shall now prove inequalities opposite to (3.4) and (3.5). Writing y = «(7), 7 € I, let
p = p(B) be the least non-negative integer such that

0l-1, (B(r(o"7), R)) C Bly,r). (3.6)
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Then diam (¢|-,_, (B(r(0?7), R))) > r, which implies that

r<|lof, . |I2R. (3.7)
Put now
log s

where [] denotes the integer part. Then u > 1 — 10%()(;[( which means that s'™* > 2K. Using
thus inequality [|¢} || <||¢]

K74,

Therefore ¢, (B(m(o? 1), R))) D B(n(7),r) = B, and consequently, due to Lemma 3.3,
p—u <q(B)and 7|,—y, = p|p—u. Using (3.5) and Lemma 1.4 we therefore conclude that

B) > /B S exp(—é(F)ST|pF)dm5 > Q ' exp(~8(F)Sy, F(x))ms (B(r (o), R))

> MQ™" exp(—0(F)Sy,G(x)) Q" exp(—6(F)S,,E(x))

> MQ~ md <m7%(>ﬁm%x>ﬁ exp(—u|lg[o)

> MQ K" exp(—ullgllo) exp(—d(F)S,G(x)) |6l _, ()"
> MQ ™ K=" exp(—ulg|lo) exp(—0(F)S,G (x))r"".

e |Is'™* and (3.7) we can estimate as follows

IR > KRYgr, Jls' ™ > K DSt

Tlp—u

So, the proof of the ”<<” of Lemma 3.5 is finished. In order to prove the ”>>" part notice
that due to (3.6) r > K‘1||¢|’| ||R and therefore, as p —u < ¢(B) and 7|,—y = plp—u, We

obtain |¢),(z)| < [|]; _ || < [[¢5 ] - [|@]|7* < KR™!||®'||~“r. Hence, we can continue (3.4)
as follows

my(B) < (KR ||@'][7))r0),
So, the proof of Lemma 3.5 is complete. O

4. PROOF OF THE MAIN THEOREM

Our first aim in this section is to prove the ”>" part of Theorem 1.7 assuming that the system
® is finite. Formally we will prove the following.

Lemma 4.1. If ® is a finite conformal iterated function system such that J C IntX and F s

a strongly Hélder family of functions such that f > &, then for every x € J and every C' > 0,
HD(D,(F, C)) > 5(F).

Proof. Take a constant 0 < C; < min{C, D'} so small that Vo>1, Vo, rem, if w # 7, then
B(¢u(2), Cil|8]]) N B(¢-(x), il ]]) = 0.
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It is possible to fulfill this requirement since = € IntX and the sets ¢, (IntX) and ¢, (IntX)
are disjoint. We will understand and treat the objects introduced in the previous sections (as
¥(B,n) for ex.) as associated with the constant C;. Notice that D,(F,C,) C D,(F,C). Fix
now a rapidly increasing sequence {n;};>1 of non-negative integers which will be gradually
required to satisfy more and more conditions. We then define the sets {K(l)};>; inductively
as follows.

K(1) =X, K(1+1) = J{B(du(2), Cr exp(~5.F(2)))}

where the summation is taken over all words w of length n;,; such that

F(@,(x),C’l exp(—SwF(x))) c K(I).
For every w € I'* put
B, = E(qﬁw(x), o exp(—SwF(x)))
and define
I :={wel":B,c K0}

Notice that by our choice of Cy, B,NB; =0 ifw # 7 and w, 7 € I". Since the sets {K (1) };>;
form a descending sequence of compact sets, the intersection

K=[K()
1=1

is a compact subset of X. Since each point ¢, (z) € J, there exists 7 € I* longer than w such
that B, C B,. In particular, letting n; grow fast enough we will have K(I) # 0 for all [ > 1,
and consequently K # (). Since C; < C, it immediately follows from the definition of K that
K C D,(F,C). We shall now define a Borel probability measure on K as a weak limit of the
sequence {/4};>1 of Borel probability measures on X which will be constructed inductively
below as follows. Let p; be any Borel probability measure on K (1) = X. Suppose that sy
has been defined for some [ > 1 on the set K(l). For every w € I;;; fix an arbitrary Borel
probability measure v, on I, We then define ;.1 on K (I + 1) by setting for every w € I,
and every A C B,

exp(—6(F) S, F () v (A)
1(A) = (B ),
f+1(A) ZTGI”I+1—”I:W‘TLIT€II+1 exp(_é(F)Swan(x))M ( | 1)

In particular
exp(—0(F)S,F(x))
ETEInH,lfnl:w'anEIH»l exp(_é(F)Sw‘an(x

Obviously 41 is a Borel probability measure on K (I+1) and by a straightforward calculation
we see that for every p > 1, every w € I, and every ¢ > p, p,(B,) = p1,(By). Since aditionally
B, N K are clopen subsets of K, we conclude that the weak limit p = lim; ., p; exists, is

pisi (Bo) = ))m (Bo,)- (4.1)
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supported on K, and for every [ > 1 and every w € I, u(B,) = w(B,). Coming back to
formula (4.1) we may transform it as follows.

exp(—0(F)S,F(x)) exp(—6(F)S,F(x))
1 (Bw\nl) =
EpGInHI:BPCBwlnl exp(—5(F)SpF(x)) E(Bw‘nl y nl+1)

o (B2) = ()

Iterating this formula we get for all w € I;

I=Lexp(—0(F)Sy),. F(x
= i) o) A5 00)

Since the system @ is finite, and since C; < D~!, letting the sequence {n;} growing sufficiently
fast and applying Lemma 3.2 and Lemma 3.5, we can write

I-lexp(—0(F)Sy,. F(z
1(By) = exp(—é(F)SwF(x)) 1:[1 p( m(é()B || F( ))

) exp(O(1))
(4.2)

= exp(~3(F)SLE () [T exp(3(F)S,,G2) x esp(O(),

where p; = wp, |

v q
B = B(y,r). Consider the family F; of all the words w € {J;s; [; such that B, " BN .J # (),
diam(B,) < 4r and diam(B,|,, ,) > 4r. Next, consider the family JF, consisting of all balls
of the form Bw‘nlfl, where w € F; N I; for some [ > 1. Since all the balls of the family 7
have radii > 2r, intersect the ball B(y,r) and the complement of the ball B(y,2r), and any
two of them are either disjoint or contained one in the other, a straightforward area argument
shows that the number of elements of the family F, is bounded from above by a constant M
independent of y and r. Fix now an element B, € F,, 7 € I;_ for some [ > 1. Then using
(4.2)we get

(B ) Fix now a point y € D,(F,C), a radius 0 < r < R and the ball
w|ni

D(r) = Y u(B,) << Y exp(—é(F)SwF(x))Hexp(é(F)SpiG(x))xexp(O(l)),

weT1(T) w€eT»H(T)
where
Ti(1) ={w € L1 : B,NBNJ # 0,0y € Fi1, By, C B, and diam(B,) < 4r}
and

Ty(r)={w € 141 : B,NBNJ #0,wl, € Fi, By, C By and B, C B(y,b5r) = 5B}.
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, <i<l—1, p = - i
Take now w € T5(7). Then for every 1 <i <1 —1, p; WB,,. |Q(Bw\n ) wa,, |‘1(Br|n1) is
independent of w. Therefore, we can write
-1
£(r) << [Jexp(8(F)S,G(x)) > exp(—0(F)S,F(x)) x exp(O(1))
i=1 w€eT>(T)
-1
<[Tep(8(F)S,Gx) > exp(=0(F)SLF(x)) x exp(O(1))
=1 wel™+1:B,C5B
-1
= [ exp(6(F)S,,G(2))S(5B, ni1) x exp(O(1)).
=1

We want now to apply Lemma 3.2 to the term X(5B,n;41). In order to do it we require the
sequence {n;} to grow so rapidly that for every I, —n; 1 logs > —logh + 3log2 + log D —
log C' + || f]lory. Fix now one element w € Ty(7). Then

diam(B) > %diam(me) = %exp(—5w|an(x))

and consequently
log(5diam(B)) — 2log2 —log D > log5 — 3log2 —log D +1log C' — S|, F(x)
> logh —3log2 —log D +1og C — || f||omu

> nyyq logs.

Therefore
log(5diam(B)) — 2log2 — log D

log s

Ny41 =

and Lemma 3.2 is applicable to the sum ¥(5B,n;y;). Hence, we obtain

2 (1) << mgs(B Hexp( )S,,G(x)) exp(O(1)).

Using now Proposition 3.1 and Lemma 3.5, we can write

(1) << 1" exp(=0(F)Sup, i G )Hexp( )S,,G(z)) exp(O(1)). (4.3)

Now, since 2B N B, N J # () and since 2B N B, contains a ball of radius r/2, it follows from
Lemma 3.4 that wB|q(B) = meBT|q(B) and

¢(B) 2 q(2B) = q(2B N Br) = kija = q(Br) = kuja.
Therefore, applying Lemma 3.4 again, we get

WB(Br) ks = WBNB, la(Br) =k /s = WB. lo(Br) k1 a-
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Hence, we can continue (4.3) as follows

S(r) << ) exp(—5(F)5wB\q(B,)fk1/4 r)) H exp(8(F)S,G(x)) exp(O(1)
= 73(F) eXp(_(S(F)SWB7-|q(BT)—k1/4 ) H eXp( SplG( )) eXp(O(l))
< 190 exp (=0(F) S, ., G H exp(3(F)S,,G(x)) exp(O(1)) (4.4)

Hexp( )S,,G(x)) exp(O(1)).

Fix now ¢ > 0. We may require the sequence {n;} grow so fast that
Hem( )llgllomax{a(B(p)) : p € I'"'}) exp(O(1)) <

< exp(8(F)|gllo(! — 2) max{q(B(p)) : p € I"-*}) exp(O(1))
< min{(C exp(—SnF(x)))% in € [”1—1}

Coming now back to our ball B and corresponding element 7 € I;_;, we therefore see that

ro¢ >4 (C’ exp(—STF(x)))

—€

> min{(C’exp(—SnF(x)) e } (F)S,,G(x)) exp(O(1)).

,_.

So, combining this and (4.4), we obtain (1) << r( )=¢. Hence pu(B) < Y,em 2(1) <
MroF) =< Thus HD(D,(F,C)) > HD(K) > 6(F) — € and letting ¢ \, 0 we conclude that
HD(D,(F,C)) > §(F). The proof is complete. O

Now, in order to conclude the proof of Theorem1.7 suppose that = € J, for some finite subset
A of I. Take then any finite subset B of I containing A. Then x € Jz and D,(F,C;B) C
D,(F,C), where writeing D,(F,C; B) we indicate that this set is made up only with the
help of the alphabet B. Thus, in view of Lemma 4.1, to complete the proof it is enough to
demonstrate that

;gg{éB(FlB)} = sup{0p(F|p)} = 6(F),

where the suprema are taken over finite subsets of I. The “equality” part in this formula is
obvious. To prove the “inequality” part put u = supgz{dg(F|z)}. Then by Theorem1.2 and
Lemma 1.5 we get P(u) = supg{Pg(—uF|g)} < 0, where the supremum is taken over all
finite subsets of I. This, again in view of Lemma 1.5 implies that u > 6(F). The proof is
complete. O
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