HAUSDORFF DIMENSION OF HARMONIC MEASURE FOR
SELF-CONFORMAL SETS

MARIUSZ URBANSKI AND ANNA ZDUNIK

ABSTRACT. Under some technical assumptions it is shown that the Hausdorff dimension of
the harmonic measure on the limit set of a conformal infinite iterated function system is
strictly less than the Hausdorff dimension of the limit set itself if the limit set is contained
in a real-analytic curve, if the iterated function system consists of similarities only, or if this
system is irregular. As a consequence of this general result the same statement is proven for
hyperbolic and parabolic Julia sets, finite parabolic iterated function systems and general-
ized polynomial-like mappings. Also sufficient conditions are provided for a limit set to be
uniformly perfect and for the harmonic measure to have the Hausdorff dimension less than
1. Some results in flavor of [PUZ] are obtained.

1. Introduction, Preliminaries

The general framework of this paper is provided by the scheme of conformal infinite iterated
function systems (see [MU1] and the description below). Conformal infinite iterated function
systems appear as natural objects in a number of subfields of dynamical systems. Inducing
procedures mentioned briefly at the end of this introduction and thoroughly explored in
Section 6 already provide a large class of examples. Conformal infinite iterated function
systems emerge also naturally when studying parabolic implosions (see [DSZ], [UZ1] and
[UZ2] for example) or transcendental entire or meromorphic functions (see [Bal, [KU1], [KU2],
[UZ] for example). The concept of conformal infinite iterated function systems provides
methods and tools to treat all this variety of objects with a unified framework. Our paper
also contributes in this direction. In particular, we extend in this way the setting from [Vo|
and [PV] we focus our attention mainly on the same problem as they did: Is the Hausdorff
dimension of the harmonic measure on the limit set (the repeller and the Julia set in their
context) of the iterated function system considered strictly less than the Hausdorff dimension
of of the limit set? Under some technical assumptions, assuming that the closure of the limit
set is uniformly perfect our answer is positive in the following three cases: If the limit set is
contained in a real-analytic curve, if the iterated function system consists of similarities only,
or if it is irregular.
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of North Texas. All these institutions provided us with warm hospitality and excellent working conditions
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The motivation of our approach come essentially from three sources: the paper [Zd2],
where a method of constructing invariant measures has been proposed and turned out to
be adaptable with some modification to our setting, from [HMU], [MU4] and [MU3], where
Holder families of functions and Holder potentials on a subshift of finite type with infinite
alphabet have been treated from the point of view of thermodynamic formalism and, in our
present setting, applied to the Jacobian of harmonic measure, and finally from [MPU], where
the Radon-Nikodym derivative of the invariant measure equivalent with conformal measure
has been shown to have a real-analytic extension on a neighbourhood of the limit set. This
last result enabled us to avoid delicate and difficult considerations concerning the Jacobian
of harmonic measure.

The strategy of the proof of our main theorem is the following. By [HMU], equality of
dimensions of harmonic measure and the limit set implies equality of invariant harmonic
measure and invariant conformal measure. In view of the result for the Radon-Nikodym
derivative of the invariant measure conformal measure, this equality of invariant measures
yields that the Jacobians of harmonic measure have a real-analytic extensions. Hence, by
harmonic rigidity lemma these are constant. Since the invariant harmonic and conformal
measures coincide, due to some results from [MPU], this implies that our iterated function
system is conformally conjugate with a linear one. And for linear systems we have a separate
argument.

Developing various inducing procedures we create suitable infinite iterated function systems
to apply our general results for such systems to a large class of ” 1-dimensional” examples com-
prising Julia sets of hyperbolic and parabolic rational functions of the Riemann sphere, finite
parabolic iterated function systems, and generalized polynomial-like mappings. Note that the
main theorem is also true on a sufficiently small open neighbourhood of a ”1-dimensional”
hyperbolic rational function.

We also provide sufficient conditions for a limit set to be uniformly perfect, for the harmonic

measure to have the Hausdorff dimension less than 1, and we obtain some results in flavor of
[PUZ].

Remark 1.1. We would like to end this introduction by emphasizing that if an appropriate
version of the harmonic rigidity (Lemma 4.8) is proven, then our results automatically become
true for all the systems considered without the ”1-dimensionality” assumption.

Remark 1.2. We would like also to emphasize that almost a half of our paper (Section 6)
15 devoted to explore in great detail various mon—hyperbolic examples including generalized
polynomial-like mappings. Our main goal we achieve in this section is to reduce the problem
of inequality between the Hausdorff dimension of the harmonic measure and the Hausdorff
dimension of the reference set to the same problem for the limit set of an appropriate infinite
hyperbolic iterated function system. Thus, the results from the sections 1-5 apply in this
context. We find this reduction step interesting even though actually all real-analytic non-
hyperbolic GPL’s are critically finite and the critical point is of order 2.
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To start preliminaries, we want to say that throughout the entire paper if R: X — Y is a
measurable map of a measurable space X endowed with a measure n into measurable space
Y, then by no R~ we mean the measure on Y given by the formula

no R (A) =n(R™'(4))

for every measurable subset A of Y. If in addition R is injective and p is a measure on Y
then by po R we mean the measure on X given by the formula

po R(A) = p(R(A))

for every measurable subset A of X. Passing to iterated function systems let I be a countable
index set with at least two elements and let S = {¢; : X — X : i € I} be a collection of
injective contractions from a compact metric space X (equipped with a metric p) into X for
which there exists 0 < s < 1 such that p(¢;(x), ¢;(y)) < sp(z,y) for every i € I and for every
pair of points x,y € X. Thus, the system S is uniformly contractive. Any such collection
S of contractions is called an iterated function system. We are particularly interested in the
properties of the limit set defined by such a system. We can define this set as the image of
the coding space under a coding map as follows. Let [* = {J,,~; I", the space of finite words,
and for 7 € I", n > 1, let ¢, = ¢y, 0 pry 0 ---0 by, Let I® = {{r,}°2,} be the set of all
infinite sequences of elements of I. If 7 € I* U I* and n > 1 does not exceed the length of 7,
we denote by 7|, the word 717 ...7,. Since given 7 € I, the diameters of the compact sets
¢-1,(X), n > 1, converge to zero and since they form a descending family, the set

ﬁo G-, (X)

is a singleton and therefore, denoting its only element by 7(7), defines the coding map
m:I* — X.

The main object in the theory of iterated function systems is the limit set defined as follows.

J=m(*)= U Ném(X)= U & (X)
TEI® n=1 n>1|r|=n
Observe that J satisfies the natural invariance equality, J = U;c; ¢:(J). Notice that if I is
finite, then J is compact and this property fails for infinite systems. Let X (co) be the set of
limit points of all sequences x; € ¢;(X), ¢ € I', where I’ ranges over all infinite subsets of I.
In [MU1] the following has been proved

Proposition 1.3. If lim;c; diam(¢; (X)) = 0, then J = J U Uyer ¢ (X (00)).

From now on throughout the whole paper we assume that d = 2, more precisely that X
is a closed Jordan domain contained in the complex plane €, and that {¢;} is a conformal
iterated function system consisting of holomorphic contractions. As usually in the definition
of conformal IFS (see [MUL1]), we assume that there exists a topological disc V' containing
X such that all ¢; extend to univalent holomorphic maps defined on V. In addition, and
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this makes our class of conformal iterated function systems narrower than that in [MU1], we
assume that X itself is a closed topological disk and

U i(X) C IntX (1.1)
i€l
We also assume that
Pi(X)Ngj(X)=0 (1.2)

for all 4,5 € I, i # j and that J is a topological Cantor set. Note that in general (1.2) does
not imply this property; this is however so, if the system S is 1-dimensional, that is if X is
contained in a real-analytic curve which is invariant under all maps ¢;, 1 € I.

Notice that due to Koebe’s distortion theorem our assumptions imply that the distortion
of all ¢, is bounded above and below by a universal constant. More precisely, there exists

K > 1 such that
Kl< |9, ()] <K
~ oL@ T
for all w € I* and all z,y € B(X, dist(X, dV)). This property is denoted here by (BDP).

Let us now collect some geometric consequences of (BDP). We have for all words 7 € I*
and all convex subsets C of V

diam(¢-(C)) < [|¢]|diam(C) (1.3)

and
diam(6,(V')) < D6, (1.49)
where the norm || - || is the supremum norm taken over V and D > 1 is a universal constant.

Moreover,

diam(¢, (7)) = D[4 ] (1.5)

and
¢-(B(w,7)) D B(or(x), K~ |gy|Ir), (1.6)

for every z € X, every 0 < r < dist(X,0V")/2, and every word 7 € I*.

The topological pressure function, P(t), for a conformal iterated function systems is defined
as follows. .
i It
P0) = Jug - 1ox 3 6]
T|=n

As it was shown in [MU1] there are two natural disjoint classes of conformal iterated function
systems, regular and irregular. A system is called regular if there exists ¢ > 0 such that P(t) =
0. In Theorem 1.10 we will provide a different, in a sense more geometric, characterization of
regular systems. Otherwise the system is called irregular. Denote by HD(A) the Hausdorff
dimension of a set A (treated as a subset of a metric space) and by H' the t-dimensional
Hausdorff measure. The following result has been proved in [MU1].
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Theorem 1.4. If S is a conformal iterated function system, then
HD(J) =sup{HD(Jp): F C I, F finite} =inf{t > 0: P(t) <0}.
If a system P(t) =0, then t = HD(/J).
Following [MU4] we will work with the following.

Definition 1.5. Fiz 3> 0 and let F = {f% : J — IR :i € I} be a family of functions such
that defining for each n > 1,
V() = sup sup {17 (6 (0)) = 1) G0}
TEI™ 2,y

the following s satisfied:
Va(F) = sup{V,(F)} < o0
n>1

The collection F' s called then a Hélder fm;ily of functions (of order ).

In [HU], [HMU], and [Ur] it was additionally assumed that all the functions f, i € I, have
continuous extensions to .JJ. Due to the progress done in [MU4] and [MU3] this requirement
is not needed anymore.

Definition 1.6. If (in addition to Definition 1.5)

Zesup(f“)) < o0,
el

then the family F' is called a summable Holder family of functions of order [3.

Remark that in [HMU] and [Ur] instead of summable Holder families the term strongly
Holder families has been used. Throughout this paper the family F'is assumed to be summable
Holder of some order S > 0. We have made the conventions that the empty word ) is the
only word of length 0 and ¢y = Idx. Let o : I® U I* —: I*° U I* be the shift map, i.e.
cutting off the first coordinate. Following the classical thermodynamic formalism, we defined
the topological pressure of F' by setting

1 n
P(F) = nli_)r{.loﬁlog > exp (supiTj o (;5(,_]'7) )

|7|=n j=1
Notice that the limit indeed exists since the logarithm of the partition function
Zn(F) = > exp(sup(S:(F)))
|7|=n

is subadditive, where
n

ST(F) = Zf(T]) © ¢afr-

j=1
Moreover

P(F) = inf {%loan(F)}.

n>1
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Now, a Borel probability measure mp is said to be F-conformal provided it is supported on
J, for every Borel set A C X

m(ér(A)) = /Aexp(ST(F) —P(F)[r|) dmp, Vrel (1.7)

and

m(¢-(X) N ,y(X)) =0 (1.8)
for all incomparable 7, p € I'*. (In our case this last condition is trivially fulfilled.) In [MU4]
(comp. also [MU3], [HU], [HMU], and [Ur]) we have proved the following

Theorem 1.7. If F' is a summable Holder family of functions, then there exists a unique
F-conformal measure mp.

In addition to Theorem 1.7 we have (see [HMU] for example) the following.

Theorem 1.8. If F' is a summable Holder family of functions, then

(a): There erists a unique Borel probability measure mp on I°° such that mpom~' = mp.

(b): There exists a unique o-invariant probability measure fir absolutely continuous with
respect to mp. Moreover, i is equivalent with mpg, sup {log (i‘i—i)} < oo and the
dynamical system o : [°° — [ is completely ergodic with respect to the measure [ip.

By i we denote the measure fip om~!. We recall now the definition of the potential function
or amalgamated function, f, induced by the family of functions F. Namely, f : I*® — IR is
defined by setting

(1) = [ (x(a(r))).
Our convention will be to use lower case letters for the potential function corresponding to a
given family of functions. Frequently instead of P(F') we will also write P(f). We say that a
function g : I°° — IR is Holder continuous (of some order > 0) if

Vsl) = sup{sup{lg(r) — g (I Y 7l = pl}} < oo,

Obviously, if F' is a Holder family of functions, then the amalgamated function is Holder
continuous. In order to clarify the situation we would like to mention that in [MU3] we have
worked in the abstract (no iterated function system, only the shift space) situation with the
functions ¢ as above and in [MU4] we applied the results obtained in [MU3] to geometrical
contexts. Given 7 € I* we put

[[1={peI*:ply =1}
If B is a countable partition of of 1°° into Borel sets and /i is a Borel shift-invariant measure
on [*°, then by
Hi(8) = — >_ i(B)log(iu(B)).
Bep

We also write H,(8) = Hz(8) if won ' = fi. The following technical result has been proved
in [HMU].
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Lemma 1.9. The following four conditions are equivalent:

(a): [ro —fdpip < 0.

(b): Zier inf(—f[n) exp(inf f]i) < oo.

(c): For every ¢ > 1, Hz, (o) < oo, where of = {[r] : 7 € I?}.
(d): There exists ¢ > 1 such that Hy, (o) < oo.

Of special interest are the measures myz, up=, my= and fip=, where t= = {tlog |¢}|}icr and
h = HD(J) is the Hausdorff dimension of the limit set J. If the system is regular, meaning
that P(hZ) = 0, we called in [MU1] the measure myz simply h-conformal. In the sequel this
measure will be denoted by m and the measure p= by p. The formula (1.7) takes then on
the following form

miz(6:(4)) = [ |64 dmie. (1.9)
The converse is also true. In fact (see [MU1]) we have proved the following.

Theorem 1.10. The following two conditions are equivalent.
(a): P(hZ) =0. and (1.8).
(b): There exists a unique Borel probability measure m satisfying (1.9) and (1.8).

If i is a Borel shift-invariant measure on I°°, then by

xi = = [ 1og 6, (o(7)|di

we denote the Lyapunov exponent of the measure ji. We also write x, = xz if por ! = fi.
In the sequel we will need the following result proven in [MU4] as Theorem 4.37 in the more
general context of conformal graph directed Markov systems (comp. also Theorem 4.1 in
[HMU]) and the corollary following it.

Theorem 1.11. (Volume Lemma) Suppose that ) is a Borel shift-invariant ergodic probability
measure on 1> such that at least one of the numbers H,(«) or x,(o) is finite, where H,()
s the entropy of the partition a with respect to the measure 1. Then

HD(norm 1) = zz(((;)) :

Since the Hausdorff dimension of any measure is finite and since Lyapunov exponents are
positive, as an immediate consequence of this theorem we get the following.

Corollary 1.12. Ifn is a Borel shift-invariant ergodic probability measure on I° and x, (o)
is finite, then also the entropy H, () is finite.

An important tool (see [MU4]) of our approach is given by the following.

Theorem 1.13. Suppose that {¢;}icr is a regular conformal system such that xz,-. < 00.
Suppose also that [ is a Borel ergodic probability shift-invariant measure on 1*° such that
Hi(a) < oo. IfHD(fiom ) = h:=HD(J), then ji = fipz=.
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For every 7 € I* denote by D} = % the Jacobian of the map ¢, : J — J with respect to
the measure pu = pp=. We will also rely on the following result proved in [MPU].

Theorem 1.14. For every i € I the Jacobian DZ has a real-analytic extension on a common
neighbourhood of X.

2. Harmonic Invariant Measure

Although the title of this section is not entirely correct it presents well the goal of this section:
looking for invariant measures equivalent with harmonic measures.

Throughout this whole section we assume that the domain @'\ .J is regular in the sense of
Dirichlet.

Since Ujer ¢:(X) C IntX, there exists a slightly smaller topological disk W with smooth
boundary (denoted in the sequel by ) such that

U ¢i(X) c W.

el

Obviously

n=1|w|=n
Let G be the class of all subharmonic functions defined on W which are harmonic and positive
on W\ J and vanish on J. Note that G|y, the restriction to W of the Green’s function with
the pole at oo of the domain @'\ J, is a member of G. Recall also that iAG = w. Our first
result is the following.

Proposition 2.1. The formula
L(g)=)_g0 oi
i€l
defines an operator acting on the space G.

Proof. First of all we check that the sum above is finite. For this end we shall prove the
following result interesting itself.

Lemma 2.2. There exists a constant C' such that for every y € OW, every T € I* we have

Clw(9:(X)) < G(¢r(y)) < Cw(er(X)).

Proof. Consider the following function

1
fr=Goor X))

defined in W. Then F is subharmonic in X, positive and harmonic on X \ J, and vanishes
on J. In addition

Go¢7>=¥wo¢f.

(6-(X))

1
A =4 (w NENES)
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Since there is some definite space between v = 0W and 0X, one can use Harnack’s inequality
on 7 to deduce that there exists a constant K > 0 such for all 7 € I* and all x,y €

F.(z)
Fr(y)

If for some y € v, F,(y) < CG(y) with some C < 1/K?  then by above inequalities we
would have F.(z) < ¢G(x) for every x € W with some constant ¢ < 1. This implies that the
Radon-Nikodym derivative of AF, with respect to AG is bounded from above by ¢ < 1. But
since both AF, and AG are probability measures, this is impossible. The conclusion is that
for every y € v

< K.

1 _
G(6:(y)) > 77w (9(J)).
The opposite inequality is obtained in the same way. The proof is complete. O

Now, we continue the proof of Proposition 2.1. Let F' € G. Then (by Maximum Principle)
there exist constants ¢,C' such that ¢G < F' < C'G. Thus, the functions

P;(F)(y) = 3_ F(¢i(y))
satisfy for y € OW 7
Pi(F) < CY G(i(y)) < C - const Y w(d;(X)) < C < constG(y).

i<j
By Maximum Principle the same inequality holds in the whole domain W. Thus, the sequence
F; is increasing and uniformly bounded, by constG; the infinite sum is an element of G. [

If 1 is a Borel finite measure on X we define
oS =73 podg.
icl
and inductively po S™*' = (o S™) o S. A Borel finite measure ¢ on X is said to be S-
invariant if g o S = p. Notice that due to (1.2) a Borel finite measure on J is S-invariant if
and only if p o 7 is shift-invariant. Using the observation that if H : A — B is a holomorphic

homeomorphism between the domains A, B C @, then A(goH) = Ago H - |H'|? (for g € C§°)
we (see [Zd2, Prop. 1.2]) get the following.

Proposition 2.3. If g € G, then A(Lg) = Ago S.
As an immediate consequence of this proposition, we get the following.
Corollary 2.4. If g € G, then A(L"g) = Ago S™ for every integer n > 1.

Definition 2.5. The system S is called w-conservative if w(J \ J) = 0, or equivalently, if
w(X(00)) =0.

Repeating the reasoning from Section 2 in [Zd2] we shall prove the following two results.
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Lemma 2.6. If the system S is w-conservative then for every g € G there exists a constant
C > 1 such that

C7lg(2) < L"g(2) < Cy(2)
for alln > 1 and all z € W, a neighbourhood of J.

Proof. Recall that W is the domain of g. Since OW is a compact Jordan curve, using
Harnack’s inequality, we deduce that there exists a constant 7" > 1 such that for all n > 1
and all g € G

supgw L"g

: <T.
infoy L™g

Let | = infyy g and M = supyy, g. Fix n > 1. Suppose that at some point z5 € OW we have
L™g(z9) < 1/2T. Then L"g(z) < TL"g(zp) < /2 < $g(2) for every z € OW. Since in addition
L™g — g vanishes on J, is continuous on X and harmonic on X \ J, we conclude from the
Maximum Principle that L"g — %g < 0on W\ J. Since L"g — %g = 0 on J, we therefore
obtain L"g < £g on the whole set W. By w-conservativity, Ag(U;es ¢5(X)) = Ag(X) and

therefore Ago S"(J) are equal (n > 1). Since in addition the measures AL"g and Ag are
supported on J, we therefore get from Corollary 2.4 and Proposition 2.3 that

— — — 1 —
Ag(J) = Ago 5"(J) = A(L"g)(J) < 5Ag(J).
This contradiction shows that infgy L™g > 1/(2T). Thus, for every z € OW we have

I ! I
n > = >
L9(2) 2 55 = 5K 2 op9?)
[

and applying the Maximum Principle in the same way as above we conclude that L"g > 5=-¢

on W. Starting with the hypothesis that there exists a point 2/ € W such that L"g(z'") >
2MT we could proceed similarly as above to conclude that L"g < %g on W. The proof is

complete. 0

Theorem 2.7. If the system S is w-conservative, then there exists a Borel probability S-
invariant measure v on J equivalent with the harmonic measure w. In addition

sup {

for some function G € G such that C'G < G < CG on W for some constant C' > 1.

d ~
log—l/‘} <o and v =AG
dw

Proof. Recall that G is the Green’s function of the domain €'\ J with the pole at oo.

Consider the sequence
1 n—1

G,=— ELi(G), n>1,
n o

of the functions from G. By Lemma 2.6 there exists a constant C' > 1 such that C'G <
G, <CG on W. Thus G,, n > 1, are uniformly bounded and one can choose a subsequence
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Gy, converging uniformly on compact subsets of W to a function Geg satisfying
CI'G <G <G (2.1)

on W. Let x € W\ J. We fix £ > 0 and choose a compact subset F' C W'\ .J such that x € F
and

> Gole) < (2.2)
{i:pi(z)EW\F} !

Let M = #{i € I : ¢;(z) € F}. Since G, converges to G uniformly on compact sets, there
exists ng such that for n > nyg

Migg 1G(2) — Gu(2)] < e. (2.3)
By (2.2) and (2.3) we get

|L(G)(x) = L(Gy)(2)| < 2¢ (2.4)
and

L(G,) =L (% n_ZO Li(G)> = %n; L'YG) = %n; L'(G) + (%L”“G — %G)
— G+ <%L”+1G - %G)
Thus,
|L(Gn)(2) = Gu(z)| << (2.5)

But by (2.3), |Gn(z) — G(z)| < &. So,
IL(G(z)) — G(z)] < 4e.

Since e was arbitrary, we get L(G(z)) = G(x). Denote G = Aéé(j) and v = AG. Then,

applying Proposition 2.3, we get
voS=AGoS=A(LG)=AG =v.

This means that v is S-invariant and, in view of (2.1), C~! < % < O for C = C1/AG(J). In
particular, v is supported on J. The proof is complete. O

Remark 2.8. Actually, we have verified (and then used ) the fact that the operator L acts
continuously on the space G. Namely, if G™ € G and G™ — GO uniformly on compact sets
then L(G™) — L(G©) uniformly on compact sets.
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We want to close this section with an example of a system which is not w-conservative. The
construction goes as follows. Let C' C S! be a closed totally disconnected set of positive
1-dimensional Lebesgue measure. Consider a countable set I and a system S consisting of
similarities
¢;: B(0,2) > T, i€l

such that the images ¢;(B(0,2)) are disjoint, ¢;(B(0,2) C B = B(0,1) and X (c0) = C C S
If J is the limit set of this system, then C' C J. Let w be the harmonic measure in @'\ J
evaluated at co. Denote by wp the harmonic measure in €'\ B. It coincides with the usual
Lebesgue measure, thus wg(C) > 0. But w(C) > wg(C), so it is positive and the system is
not w-conservative.

3. Uniform Perfectness

In this section we will provide some number of auxiliary results needed to complete the proofs
in Section 4. We recall the definition

Definition 3.1. A compact set K C C is uniformly perfect if there exists a constant 0 <
¢ < 1 such that for each positive radius small enough and each point z € J the annulus
A(z,eryr) ={w e C: cr < |w—z| <r} intersects K.

Remark 3.2. Uniform perfectness (which, itself is an interesting geometric property, see
[Po]) guarantees, in particular that the complement of K in the Riemann sphere is a domain
reqular in the sense of Dirichlet.

Let us recall from Section 1 that

X (00) =limjseepi(X) =) U (X)),
F iel\F
where the intersection is taken over all finite subsets of I.

If X(oc0) is empty (i.e. if the set I is finite) then our limit set is a (classical) conformal
expanding repeller. In this case J is always uniformly perfect (one of possible arguments is
provided in Section 6, Theorem 6.2). If the set of symbols I is infinite, this is no longer the
case.

Indeed, one can easily define an infinite system which is not uniformly perfect, because
already the sets ¢;(X) can be well separated. So, let X = B(0,1) and let a; be a decreasing
sequence of positive numbers quickly converging to 0, so that a:‘jrl — 00. Let ¢;(2) = a; + \iz
with )\; small. Then 0 € J and, obviously, if \; have been chosen small enough, .J is not
uniformly perfect.

So, some condition is certainly necessary: the construction of ¢; itself must not violate the
uniform perfectness property. More precisely, we need the following property below.

Definition 3.3. We say that the set J is C-uniformly perfect (¢ > 1) at large scale if the
following condition (UP) holds:
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X (00) is finite and for each index i € I there exists an infinite sequence {in},>1 of elements
in I (in # imif n # m) such that iy =i and
diam(¢;, (X))
diam(¢;,,, (X))
dist (@i, (X), ¢i, (X))
min(diam(¢;, (X)), diam(¢;, ,, (X)))

Remark 3.4. It can be easily seen that if J is uniformly perfect at large scale then for every
w € X (o0) there exists a sequence j, such that ¢; (X) — w and the condition (UP) above is
satisfied for the sequence jy,.

C' < <C

<C

The theorem below says that if the set X (co) is finite, then this necessary condition is also
sufficient.

Theorem 3.5. Suppose that J is C'—uniformly perfect in large scale for some constant C'.
Then J, the closure of the limit set .J, is uniformly perfect.

Proof. The proof below is divided into three steps. First, using the condition (UP) above,
we verify the uniform perfectness property at all the points w € X (00). Next, we consider
an arbitrary point z € J (i.e. z € ¢;(J) for some i € I) and, using the first step of the proof,
we verify the uniform perfectness property for all r > const - diamg;(X) bounded above by a
universal constant. At the last step, we consider an arbitrary point z € J and an arbitrary
radius 7 with 0 < r < diam(X).

It follows from (1.4) and (1.5) that for every 7 € I*
diam (¢, (X)) < DI|6|| < D*diam(6,())) (3.1)

Let the constant C' > 0 be as in the condition (UP) above.

Step 1: The uniform perfectness of .J at the points w of X (c0).

Fix w € X(o0) and let {j,}°°, be the sequence claimed in Remark 3.4. It follows from
(1.2) that the set {n > 1:w € ¢;, (X)} is either a singleton or an empty set. Let n, > 1 be
the least element in the complement of this set. Set

R’w - dlSt(’U], ¢jnw (X))

and consider any radius 0 < r < R,,. Since w € lim,,_,»¢;, (X) and since lim,, ,, diam(¢;, (X))
0, there exists an element & > n,, such that ¢;, (X) C B(w,r). Let p be such a least index
k. If diam(¢;,(J)) > r/8D*C, then using the fact that ¢; (J) C B(w,r), we conclude that
A(z,7/16D*C,r) N ¢;,(J) # 0. But since ¢;,(J) C J, we get

A(z,r/16D*C,r) N J # 0

and we are done in this case with any constant ¢ < 1/16D*C.. So suppose that diam(¢;,(J)) <
r/8D*C'. Then by (3.1), diam(¢;,(X)) < r/8C. So, by the definition of w,

dist(e;,(X), ¢;,_, (X)) < % and diam(¢;,_, (X)) < %
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Since ¢;,_,(X) N (C\ B(w,r)) # 0, we deduce that,

dist(¢;,(X),0B(w,r)) <

Since ¢;,(X) C B(w,r) and diam(¢;,(X)) < r/
A(w,r = 7 = §,7) = A(w,r/2,7). Since J N ¢;, (X
constant ¢ < 1/2.

Put

r

r
s
8C' < r/4, we conclude that ¢; (X) C
) # 0, we are done in this case with any

OOIﬂ

R=min{R, : w € X(00)} > 0 and ¢; = min{1/2,1/16 D*C}.
Step 2: Consider now an arbitrary index i € I, an arbitrary point z € ¢;(.J) and an arbitrary
radius r such that %diam(@(X)) <r<R.
Let {i,},>1 be the sequence ascribed to the index i guaranteed by our hypothesis. Suppose

that
6. ()N (€\B (= 5n)) #0

for some n > 1. Then n > 2 and let ¢ > 2 be the least index n with this property. If

diam(¢;,_, (J)) > ¢17/32D?C, then using the fact that ¢; _,(J) C B(z,c¢ir/4), we conclude

that A(z,c;7/64D*C,cir/4) N ¢y, (J) # 0. But since ¢;,_,(J) C J, we get
A(z,c17/64D*Ccir/4) N T #

and we are done in this case with any constant ¢ < ¢;/64D?C'. So suppose that diam(¢;,_, (J)) <
c17/32D*C. Then by (3.1),

diam(¢;,_, (X)) < ¢17/32C. (3.2)
But then . -
dist(¢s, , (X), ¢, (X)) < % and diam(¢;, (X)) < 31—2
Since ¢;,(X) N (C'\ B(z,c17/4)) # 0, we deduce then that
: ar _ar _ o
dist(¢y,_, (X),0B(z,c17/4)) < 35 T3 = 6"

Since ¢;,_,(X) C B(z,cir/4) and, by (3.2), diam(¢;,_,(X)) < ¢i7/16, we conclude that
Giy 1 (X) C Az, Gr— & — £, %r) C A(z, @r,7). Since JN ¢y, (X) # 0, we are done in this
case with any constant ¢ < ¢1/8. So, suppose in turn that ¢;, (X) C B(z,c;r/4) for alln > 1.
Let w € @ be an arbitrary point of lim,, ,o®;, (X). Then w € X(oc0) N B(z,c¢;r/4) and, as
r/2 < R < R,,, we conclude from what has been already proved that A(w,cyr/2,7/2)NJ #
0. Then A(w,cir/2,7/2) C B(z,(r/2) + (ci7/4)) C B(z,7) and take an arbitrary point
x € Alw,er/2,r/2)NJ. Then |z — 2| > |z —w| — |z —w| > /2 — eir /4 = er/4
which implies that A(z,c;r/4,7) NJ # () and we are done in this case with the constant
co = ¢1/4 = min{1/8,1/64D*C'}.

Obviously, taking c; > 0 appropriately smaller, if necessary, we have now the local uniform
perfectness at the point z with the constant ¢y for every radius r satisfying

4
—diam(¢;(X)) < r < 8K D¢,
1
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Step 3: Passing to the last step of this proof, fix an arbitrary point z = «(7) € J, 7 € I*,
and a positive radius 7 < 8(K D)%¢; *diam(X). Let n > 1 be the least integer such that

¢, (X) C B(2,8 ' K*D%¢yr). (3.3)
Consider the ball
B(m(a"(1)), K~ |¢y, . 17'r)

(note that 7(o™(7)) = d);&_l(z) and that if n = 1, then ¢,,_, is the identity map). Since
8 'K 2D 2cir < diam(¢,,_, (X)), using (1.4), we get
K= Igy, |17 < 8K D% ||¢, |7 diam(gr, _, (X)) (3.4)
< 8KD20II||¢,T\n_1||71D||¢,T\n_1|| = 8K D’c;! '
Using (3.3) and (1.5), we obtain
K¢, |7 = K765, [T MK D% el (47 K~* D™ err)
> 4K D%, |¢y, || diam(pr, (X))

N e N 4
> 4K DA 16], 1D dhy, || 2 4Dy 5, | = —diam(r, (X).

This inequality and (3.4) enable us to apply the previous step, and as its consequence, we
obtain an annulus A(7(a"(1)), co K ~'|¢ |7, K7H|#);, [|7'7) having a non-empty inter-
section with JJ. Hence

rlr (A (0™ (7)), B[, I K160, 1] i) T # 0.

Assuming K to be so large that K~'D < dist(X, V'), using the Bounded Distortion property,
the mean value inequality, and (1.6), we get

Ol (Al (0™ (7)), K00, 7 K[OG, L 11717) € Az, K72, r).
Hence A(z,coK2r,7) NJ # () and the proof is complete. O

4. Properties of invariant harmonic measure v

For every 7 € I* let D] : J — (0,00) be the Jacobian of the measure v o ¢, with respect
to the measure v, ei. D] = %% Given a function g : ¢.(J) — IR, T € I*, let osc(g) =
sup(g) — inf(g). We shall prove the following easy

Lemma 4.1. The collection D = {log(D?)}icr forms a Hélder family of functions on J if
and only if there exist C' > 0 and > 0 such that

d -1
14

for every T € I*, where the map gzﬁ;ll is treated as defined on ¢, (J).
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Proof. Suppose first that D is a Holder family of functions of some order $ on J. Fix
7 € I*. Then for all z,y € ¢,(J), say x = ¢.(2'), y = ¢ (y'), 2’y € J, we have

o (2505 3)) = tog (%505 ) )| = [108((DE e 41)) k(D7 ) )

dv
= [1og((D}})(¢or (7)) = Log((D') (b0 (4))]
< Vﬁ(p)efﬁ(hl*l) — eﬁvﬂ(p)e*ﬁlﬂ

and we are done with the first implication. The proof of the opposite implication is similar.

ot .
Suppose that osc <10g <%>> < Ce A7l for every 7 € I*. Fix 7 € I* and 2,y € J. We

then have

108((D) 60 (2)) ~ LoB((D5) (- (/)] =
= |- tog (5050 )+ 10w (525 0.0

< Co Tl = CePeBlr-D

The proof is complete. O

Now, the following proposition extends a known result from [Ca] (comp [MV]) to our situation.

Proposition 4.2. If the system S is w-conservative then, there exist 3, C such that for every

Tel. R
—1
0S¢ <log (M)) < Ce P,
G
on ¢.(X)\ J. In particular for every i € I and every x € J the limit
a -1
g G2 076)
exists, where z converges to x in X \ J.

Proof. Tt is enough to check that Carleson’s proof in [Ca] of the same statement for finite

iterated function system can be extended for our case. For this reason the proof is omitted.
O

Corollary 4.3. There are constants C, 3 > 0 such that
d —1
dv

Proof. Fixing i € I and restricting the domain to ¢;(X) we have
v=A(G) (4.1)

for every T € I*.
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and
-1 = -1
vop; =A(Go¢p;) (4.2)

—
Godry translate

To finish the proof of our corollary we notice that the bounds on the ratio
automatically to the bounds on densities of corresponding measures (see [LV], appendix). O

Proposition 4.4. If the system S is w-conservative then, the collection D = {log(D?)}icr
forms a summable Holder family of functions on J.

Proof. Tt follows from Lemma 4.3 and Lemma 4.1 that D satisfied the condition on Holder
family of functions on .J, say of order 8 > 0. It remains to check that the second condition for
strong Hoélder continuity is satisfied. And indeed, employing Theorem 2.7 we may estimate
as follows.

> exp(sup(log(Dy))) < > exp(inf(log(D})) + V(D Z inf(D

el i€l

/D’dz/_e IS (@(7))_ eV5(P) < oo,
i€l

el

The proof is complete. O
Lemma 4.5. P(D) =0

Proof. Indeed, using Proposition 4.4 and Theorem 2.7 we get for every n > 1
> exp(sup(S-(D /Dle/ = v(g,(J)) =1
7|=n IT\ |7|=n

The proof is complete. H

Let mp be the measure claimed in Theorem 1.7. Since S;(D) = D], and v(¢,(A)) = [, D] dv,
we obtain the following theorem as an immediate consequence of Lemma 4.5, Lemma 2.11
from [HMU] (saying in our context that a Borel probability measure  on X is F-conformal

if and only if 1(¢,(A)) > [, exp(S,(F) — P(F)) dn for all w € I* and for all Borel subsets A
of X) and S-invariantness of v.

Theorem 4.6. v = mp = up.

In the sequel in order to simplify notation we will write H,(«) for H,, (). We would like to
end this section up with the following two technical results, the first proven in Theorem 3.1
of [MPU]J, the second being a rigidity fact from [PV].

Lemma 4.7. Suppose that the system S = {¢;}icr is reqular. Then the following two condi-
tions are equivalent.

(a): For alli € I the Jacobians DZ are constant on a common neighbourhood of X.
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(b): The conformal structure on J admits a Euclidean isometries refinement so that all
maps ¢;, © € I, become affine conformal, more precisely there exists an atlas {1, : Uy —
@} with open disks Uy, consisting of conformal injections such that U, Uy D J, all UyNUj
and U;N¢;(Us) are connected and the compositions 01, ' and 1,0 ¢;01p; 1, respectively

s 7

on Y, (U, NU,) and ¥y 0 ¢; (U N ¢i(Uy)), are conformal affine with |(1; o 71| = 1.

The assumptions of the following lemma are slightly weaker than those in [PV]. However the
proof (see below) goes through unchanged.

Lemma 4.8. (harmonic rigidity) Let u,v be two non-negative subharmonic functions on a
topological disk B. Suppose that K is a compact uniformly perfect subset of B contained in
a real-analytic curve and that the 1-dimensional Hausdorff measure of K vanishes. Suppose
also that u and v are positive and harmonic on B\ K and both vanish on K. If H = %

has a real-analytic extension on B, then H =constant.

Proof. (sketch following [PV]) One can assume that K is contained in the real line. Also,
one can symmetrize u and v to get u(z) = u(z), v(z) = v(z).

Now, since K is real, H can be extended to a complex-analytic function defined on some
ball B containing points of K. We denote this extension again by H. Let I = BN K.

Consider the function w; in B given by the formula

w; = Ou — How.

The crucial observation is that w; is holomorphic outside K and its distributional derivative
Ow, = Au — HAv = 0. Thus, w; is holomorphic in B. Similarly, ws = Ou — HOv is anti-
holomorphic. Consider now the function W = u — Hv. It is obviously continuous. We shall
show that W] is C.

First notice that the function W is smooth in the set I \ K and its derivative is equalto
W'=u—Hv— Hv' = 0u— H'v— HOv =w, — H'v (since we have assumed that u and v
are symmetric). Thus, W’ exists a.e in I and extends continuously to I.

In order to check that W is really C'! it is enough to verify that W|; is absolutely continuous.
In fact, it is even Lipschitz-continuous. This can be verified as follows.

b b _ b _ _
W(a—l—z’s)—W(b—l—ie):/ axW:/ aw+awz/ wy +ws + (H — H)dv — dHv.

In order to see that this last integral can be estimated from above by const(b — a) observe

that
const

= dist(z, K)

Letting then ¢ — 0 this shows that 1|, is Lipschitz-continuous, thus C;. Now, since W|x =
0, every point in K can be approximated by points satisfying W’ (z) = 0 (there is at least
one such point in each component of I\ K). By C* property, this implies that W’ = 0 in
K. Since W' = w; on K, we conclude that w; = 0 on K which implies wy; = 0. This, in
turn, implies that for every point = in I\ K such that W’'(z)=0 we have H'(x)v(x) = 0, thus

|9v(z)
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H'(z) = 0H(x) = 0. Since the set of these points has an accumulation point in B and H is
holomorphic, H is constant in B. O

Remark 4.9. This proof heavily relies on the fact that K is contained in the real line. In
general, if K is the limit set of an expanding repeller then using the fact that H is real analytic
(in fact: C™ is enough) one can prove (in another way!) that W is C'*¢ for some e > 0 in
B. But this is not sufficient to finish the proof in the non-real case.

5. Results and Proofs

Recall that v is the invariant measure equivalent to w and g is the invariant measure
equivalent to the h—conformal measure, where h = HD(.J). We start our considerations with
the linear case.

Theorem 5.1. If the system S is reqular, w-conservative, H,(a), H, (o)) < 0o, J is uniformly
perfect, and all the maps {¢;}icr are affine (similarities), then HD(w) < HD(.J).

Proof. Suppose on the contrary that HD(w) = HD(J). Then HD(v) = HD(J), where
v is the invariant measure produced by Theorem 2.7. It then follows from Theorem 1.13
that v = . Recall that we have built the invariant measure v as v = A(G), G € G. Fix
Wi = ¢s(W) for some i € I. Consider two subharmonic functions in W: |¢}|* - G and G o ¢;.
The first function is subharmonic since |¢}| is constant in W. The Riesz measure of the first
function is |¢}|" - v, while for the second one we get v o ¢;. By our assumption these two
measures coincide. It follows from Riesz representation theorem that there exists a harmonic
function H; in W such that

Gogi =o' G+ H (5-1)

But both G and G o ¢; are equal to 0 in .J. This means that either
(1): G o ¢; = |#}"G for all i€lor )
(2): there exists i so that G o ¢; = |¢j|" - G 4+ H; for some harmonic function H; and,
consequently .J is contained in the analytic set H; = 0.

The case (1) is impossible, i. e. there is no function u € G such that u o ¢; = |¢!|"u. This
was already observed in [Vo]. Namely, the equation (1) allows us to extend G to the whole
plane. It will satisfy (5.1). The set of zeros of this extended function contains the image of
J under the group I' generated by all maps ¢;. But (see [Vo]) this group contains arbitrary

small shifts. On the other hand, G #0in W\ J. Thus, this case is ruled out.

In the case (2), J is contained in [;, a finite union of analytic curves (the set of solutions
to the equation H; = 0). Let z; € J be the only fixed point of the contraction ¢;. The set
[; forms around x; an analytic curve since otherwise the branching points of [ would spread
over a dense subset of J. Therefore for all n large enough [; N ¢?(X) is an analytic curve. But
then J C ¢;"(I; N ¢*(X)) which is also an analytic curve. So, (¢%)'(x;) is a real number and
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this curve must be a segment of a straight line. Without loss of generality we may assume
that this segment is contained in the real line. Let

G(z) = é(z) + é(?)
Since by symmetry H;(Z) = —H;(z), we get
G(di(2) = G(di(2) + G(¢:(2)) = |0}" G (2) + |6{]"G(2) + Hil2) + Hi(2) = |6}]" G (=)

(5.2)

Notice that the equation 5.2 is satisfied also with ¢; replaced by any ¢;, j € I, since we have

Gog; =" G+ H;
and Hj”i = 0. The conclusion is that, in this way, we have reduced the case (2) to the case
(1), which has been already excluded. O

If 7} is a Borel probability shift-invariant measure on I°°, the by h; we mean the Sinai-
Kolmogorov entropy of the dynamical system o : I*° — [* with respect to the measure 7. If
1 is a measure on the limit set such that no7r ! = 7, then we also write h,, = hz. In Section 6
we will replace (using some inducing procedure) the original non-hyperbolic dynamics by the
infinite iterated function system. We do not know if this new system is regular. Also, there
is an invariant measure equivalent with conformal measure, but we do not know if its entropy
is finite. For this reason, we prove now two technical theorems below. They will be used in
Section 6.

Theorem 5.2. If the system S is irreqular and H,(a) < oo or x, < oo, then HD(w) <
HD(J).

Proof. If H, (o) < o0 and x,, = 0o, then HD(w) = HD(v) = 0 < h := HD(J) by Theorem
4.3.2 from [MU4|. So, we may assume that x, < co. Since the system S is irregular, then by
Theorem 3.21 in [MU1], P(h) < 0. By the former fact, we can apply Theorem 1.5 in [MU3|
(comp. Theorem 2.1.6 in [MU4]), a version of variational principle, to get P(h) > h, — hx,.
By the same reason Theorem 4.3.2 from [MU4] is applicable and we consequently obtain.

HD(w) = HD(v) = % < h+@ < h.

The proof is complete. H

Let us now deal with the next case.

Theorem 5.3. If the system S is reqular, w-conservative, [ |log|¢! (m(o(7))|Fdv(r) < oo for
some real k > 2, but the entropy h, is infinite, and the limit set J is uniformly perfect, then
HD(w) < HD(J).

Proof. Suppose on the contrary that HD(w) = HD(J) and denote this common value by
t. Since, the system S is w-conservative, it follows from Proposition 4.4 that the collection
D = {log(D))}icr forms a summable Hélder family of functions on J and from Theorem 4.6
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that v = mp = up. Let ¢ be the amalgamated function of the family D, i.e. (1) =
log(D]' (m(o7)). Our assumption imply h;(0) = — [logdr < oo and since hj;(o) = oo, the
measures 7 and i do not coincide. let p : I°*° — IR be given by the formula
() = U(r) — t10g |6, (x(o7))].
Then
/pdﬁ - /wdﬂ —HD(v)xy = hi(0) — hs = 0.

Since [|log|¢., (w(o(7))|*di(7) < oo for some real k > 2 and since 7 # fi, it follows from
Theorem 6.4 in [Ur| that 62 > 0, where

n—1 2
A2 1s i _
o —nlLIgO (Zpoa) dv.

i=0
Then (see for ex. Section 5 of [Ur]) the process {po o™}, satisfies the central limit theorem
meaning that
P pod’
av/n
in distribution, where A(0,1) is the normalized Gaussian distribution. This implies that for
every A > 0

— N(0,1)

lim 7 ({T eI ni:lpo o'(1) < —A&ﬁ}) =c

n—00 4
=0

for some positive constant ¢ = ¢(A). Since v is supported on J and J = U;c; ¢i(J) there
exists a finite subset F' of I such that

v (g gbi(J)) S1— ic.

Thus, for every n large enough there exists at least one i = i(n) € F such that

7 ({r €I®:7,=1iand nz_:lpo o'(1) < —A&ﬁ}) > %cy(@(X)).

1=0

(Indeed, otherwise we would have

n—1 ) 1 1
v ({T €I®:) pod'(r) < —A5\/ﬁ}> < 50217{7' er*:m, :i}+Zc
i=0 icF
Now, the right hand side of the above inequality can be estimated form above by %c% = %c.

Since, for large n, the left hand side is close to ¢, this is a contradiction.)

Denote the set of 7's appearing in this formula by Z;,. We are going to define a collection
of disjoint discs . For every 7 € Z;,, consider the corresponding map ¢;,, = ¢, o---0¢, =
¢y 0---00; (since 7, = 7). Composing with ¢; we get the map ¢, = ¢;0¢p,, 0---0p; Obviously,



22 MARIUSZ URBANSKI AND ANNA ZDUNIK

In this way, we have chosen a family of maps ¢,. Denote it by G;,. It follows from our
construction that

v ( U mm) > L ev(6,(X)) in D, (5.3)

u€G; n

Since v(¢y (X)) < exp ( I oal (7')) for any 7 € I such that 7|, = u, we get for every
u € G, and corresponding 7 € Z; ,, that

/ t n— ! t
hll' S e (_ leogjm) inf{|¢}(r) [}

G (0) = sup{Dz }
O

> const exp (A&Jﬁ) .

Thus, using this and (5.3) we obtain

> ||¢;u||thonstexp(A6\/ﬁ) > v(gu(X))

ueGi(n),n UEGi(n),n
I : k . (5.4)
> constic IkIlEIII?I{l/((Z)k(X)) inf{D;}} exp (Aa\/ﬁ)
= Cexp (A&\/ﬁ)

for an appropriate constant C' > 0. Consider now a new iterated function system S, = {¢, :
Din) (X) = Pi(n) (X)}Ueg(Gi(n),n) where n is so large that Cexp(A&ﬁ) > K' and K is the

distortion constant of the system S. Then (comp. the proof of Proposition 10 in [Zd1]) using
(5.4) we get

1
Ps,(t) = lim ~log > [|¢|[

q—
> q TGU(Gi(n),n)q

qlggo IOg Z tq||¢7| ||t ||¢T n+1, 2n||t et ||¢T|I(q—1)n+1,qn||t
q TEU(Gi(n),n)q

q
= qlggo ; log ((Kt UE(,(Z | ||¢;||t> ) > qli_)rgo log (K*tC’ exp (A&\/ﬁ))

Gi(n),n
= log (K‘tC’ exp (Aﬁ\/ﬁ)) > 0

Hence HD(J(f)) > HD(Js) > HD(Js,) > t (the system S, is finite) and the proof is complete.
U
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Let us recall that the system S is 1-dimensional if X is contained in a closed real-analytic arc
M C X such that ¢;(M) C M for all i € I. Then of course the limit set .J; is contained in
M. We shall now prove our main result about 1-dimensional systems by reducing it to the
linear case above.

Theorem 5.4. If a 1-dimensional system S is regular, w-conservative, H,(a), H,(a) < o0,
and J is uniformly perfect, then HD(w) < HD(J).

Proof. Suppose on the contrary that HD(w) = HD(J). Then HD(v) = HD(.J), where v
is the invariant measure produced by Theorem 2.7. It then follows from Theorem 1.13 that
v = pi. Hence, in view of Theorem 1.14 all the Jacobians D! : J — (0, 00) have a real-analytic
extension on a common open neighbourhood of X. Decreasing it if necessary we may assume
that this neighbourhood is a topological disk. From Theorem 2.7 we get the following.

O D; O D; O D; .
8(Cos) ) dBCos) ) duod), py
v

Since the system S is conservative, w(J \ J) = 0. Denote the harmonic measure in €'\ M
by wyr. Obviously wy(J\ J) < w(J\ J) = 0 and wy, is equivalent with the 1-dimensional
Hausdorff measure H; on M. Hence H,(J \ J) = 0. Since, HD(.J) < 1 by Theorem 4.5 from
[MU1], and consequently H,(J) = 0, we conclude that #;(J) = 0. We therefore infer from
Lemma 4.8 with u = Go¢; and v = G that all the functions D!, i € I, are constant on X. So,
we can apply Lemma 4.7 to obtain an atlas {t, : Uy — @}, consisting of holomorphic maps
with the “affine” properties listed there. Fix now x € J, choose s € T such that x € Uy and
then p € I* such that = € ¢,(J) C ¢,(V) C U,. Consider now the iterated function system

Sy ={ts0¢,0¢;00," oh, }icr,
where the role of X is played by ¢,(¢,(X)) and the role of V' is played by v;(¢,(V)). It
follows from Lemma 4.7 that each map s o ¢, o ¢; o qf)p*l o1, i € I, is affine on each
sufficiently small neighbourhood of each point of 15(¢,(J)). Hence, as holomorphic, this map
must be affine on the whole connected domain 1,(¢,(V')). Therefore, due to Proposition 5.1,
HD(w,) < HD(Js,), where w,, is the harmonic measure of the domain €'\ Js,. Since Jg, =
¥s(¢,(J)) and since Jg, = 1h5(d,(J)), we get HD(J) = HD(Jg,) and HD(w) = HD(w,). Thus
HD(w) < HD(J) and the proof is complete. O

We would like to notice that we needed 1-dimensionality of the system S only to apply
Lemma 4.8 (harmonic rigidity).

Let 6(S) = inf{t > 0 : P(t) < oo}. Following [MU1] the system S is called hereditarily
regular if P(6(S)) = oo. Each system hereditarily regular is regular and it is easy to verify
(see the proof of Corollary 3.25 in [MU1]) H, (o) < oo for such a system. Therefore, as an
immediate consequence of Theorem 5.4, we get the following.

Corollary 5.5. If a 1-dimensional system S is hereditarily reqular, w-conservative, H,(a) <
oo and J is uniformly perfect, then HD(w) < HD(.J).
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The remainder of this section is devoted to describe the finer structure of harmonic measure
in the spirit of [PUZ,LII]. In order to do it we need some short preparations. We say that a
function A : [1,00) — (0, 00) is slowly growing if h(t) = o(t®) for all & > 0. A slowly growing
function A is said to belong to the lower class if

> h(t) L
and to the upper class if

> h(t) Lo
It is known (see the beginning of Section 6 of [Ur]) that if [ |d,|*dD < oo for some real k > 2,
where d, is the amalgamated function generated by the summable Holder family {log D}, }icr,
then

52 = 62(d,) = /w(d,, — 5(dy))2dp + 2 fjl /w(d,, —5(dy)(dy 0 o™ — #(d,)) di < 0.

Given a function A : [1,00) — (0, 00) define then for all sufficiently small ¢ > 0

~ o
h(t) = t" exp (—h —logt —logt) ,
(1) g ( )V
where kK = HD(v) = HD(w). Finally given a function ¢ : [0,€) — [0,00), continuous at
0, by HY we denote the generalized Hausdorff measure with the gauge function g. As an
immediate consequence of Theorem 6.3 from [Ur] along with [Ur, Theorem 6.4], Theorem 5.4
and Theorem 4.6 we get the following.

Theorem 5.6. Let S be a regular 1-dimensional w-conservative system such that H, (o) < oo,
and [ |d,|*dv < oo for some real k > 2. Suppose in addition that J is uniformly perfect. If
h:[1,00) = (0,00) is a slowly growing function, then
(a): If h belongs to the upper class, then the measures w and H" on J are singular.
(b): If h belongs to the lower class, then w is absolutely continuous with respect to the
Hausdorff measure H".

In particular w and H" are singular.

6. Examples

Definition 6.1. (conformal expanding repellers) Let Y C @ be a topological Cantor set and
let W DY be an open set. A holomorphic map f : W — @ is said to be a conformal expanding
repeller if the following conditions are satisfied.
(6.cl): fF(Y)=Y = f7(Y).
(6.c2): There exists p > 1 such that inf{|(f?)'(2)]: z€ Y} > 1.
(6.c3): f:Y — Y is topologically transitive, meaning that there exists a point y € Y such
that {f*(y) :n >0} =Y.
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Frequently the name conformal expanding repeller is attributed also to the set Y.

The best known examples of conformal expanding repellers are hyperbolic rational functions
with Y being the Julia sets. For a systematic treatment of these repellers the reader may
consult the book [PU]. The uniform perfectness of YV is a straightforward consequence of the
bounded distortion theorem which can be proved in this context. We will however provide a
different simple indirect proof whose idea is applicable also in other contexts.

Theorem 6.2. Each conformal expanding repeller (not necessarily homeomorphic with a
Cantor set) is uniformly perfect.

Proof. Let h = HD(Y). It is well-known (see [PU] for a proof for instance) that the h-
dimensional Hausdorff measure H" on Y is finite, positive and there exists a constant C' > 1
such that

L HN(B)

C <C (6.1)

rh
for every x € Y and every 0 < r < 1. Fix now x € Y and 0 < r < 1. We then get

H (A, (20%)7 ", 1)) = HY(B(w,7)) — HM(B(x, (207)71/"r))
_ _ _ L
> C~ it — C((20?) V) = 0 — 50 Lph (6.2)
= %C’lrh > 0.
In particular A(z, (2C%)"hr,r)NY # () and the proof is complete. O

We shall now temporarily restrict our attention to the special class of conformal expanding
repellers mentioned above, namely to hyperbolic rational functions. Surprisingly enough,
checking the requirements of the previous sections for general conformal expanding repellers
turns out much more difficult than for the class of hyperbolic rational functions. The crucial
fact is provided by the following.

Proposition 6.3. If f : @ — @ is a hyperbolic rational function such that the Fatou set
@\ J(f) is connected, then there exists a closed topological Jordan disk X D IntX D J(f)
with a piecewise smooth boundary such that f~'(X) C IntX and X is disjoint from the closure
of the forward orbit of all critical points of f.

Proof. Since the Fatou set @'\ J(f) is connected and since f is hyperbolic, @'\ J(f) is the
basin of immediate attraction to an attracting fixed point a. Therefore there exists a closed
topological Jordan disk B C @'\ J(f) with a piecewise smooth boundary (in this stage B can
be chosen to be a geometric disk) such that

f(B) C IntB.

Fix ¢, a critical point of f. Since lim,_,, f"(c) = a, there exists ¢ > 0 such that f"(c) € IntB
for every n > ¢. Choose 7, a closed topological smooth arc (homeomorphic with a closed
segment of the real line) with the following properties.
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(a): The initial point of 7 is f(c) and its terminal point is f97!(c).
(b): % NUps1 f™(70) = 0. (This can be done by taking ¢ large enough and looking at the
linearized coordinates.)

(c): Except for f9(c) and f9%!(c) 7y contains no other critical values of any order.
Then, even though ¢ is a critical point, we can define by induction a sequence {v;}{_, of
topological smooth arcs contained in @'\ J(f) and such that f(v;) =, 1 forall 1 <i < g, the
initial point of v; is f97%(c) and the terminal point of ~; is f7~@*1(c). Since f is continuous
and analytic we can define by a straightforward induction with respect to i = 1,... ,q, a
sequence F;, i =1,...,q, of closed Jordan disks with smooth boundary such that

v; C IntF; for every i =1,... ,q,

f(F) C IntB,
f(F;) C Int(F,_y) forevery i =2,... ,q

and U§:1 F; U B is a closed topological Jordan disk with a piecewise smooth boundary for
every ¢ = 1,...,q (this is due to the fact that the family {~;}7_, has no points of intersection
except endpoints of the curves g; which in turn follows from property (b). Hence

f (B U qu E) C f(B)U CJ f(F;) C IntBU IntB U LqJInt(Fi_l)
=1

i=1 =2

q q
C IntBU | Int(F;—;) C Int <B uly F,) :

1=2 =1

Since BUUL, F; C @\ J(f) is a closed topological Jordan disk with a piecewise smooth
boundary, we can repeat the above construction with another critical point of f and the disk
B replaced by BUUY_, F;. Moving on with this procedure inductively over all critical points
of f, we finally end up with a closed topological Jordan disk Y C @'\ J(f) with a piecewise
smooth boundary such that f(Y) C IntY and {f™(¢) : ¢ € Crit(f),n > 0} C IntY. Therefore

(@\IntY) N {f™(c) : c € Crit(f),n >0} =0,
T\ IntY > J(f),

and
FH@\IntY) =@\ f~'(IntY) C @\ Y C Int (70\ IntY).

Since, in addition, €'\ IntY is a closed topological Jordan disk with a piecewise smooth
boundary, the proof is complete by taking X = @'\ IntY. O

Theorem 6.4. If f : @ — @ is a hyperbolic rational function such that the Fatou set @\ J(f)
s connected and the Julia set is contained in a real-analytic curve, then for every rational
function g sufficiently close to f, HD(w) < HD(J(g)), where w is the harmonic measure on

J(9)-
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Proof. Since J(f) is a conformal expanding repeller, it follows from Theorem 6.2 that
J(f) is uniformly perfect (this is in fact known for all Julia sets, see [CG] for ex.). Let
d = deg(f) be the degree of f. In view of Proposition 6.3 all the holomorphic inverse
branches fi ', ..., f;7': X — IntX of f are well-defined on X. Since additionally all the sets
fi'(X),i=1,...,d, are mutually disjoint, S = {f; '}¢_, is actually a conformal iterated
function system satisfying conditions (1.1) and (1.2). We wrote “actually” since the maps
fit,i=1,...,d, do not have to be contractions. Due to the Koebe distortion theorem and a
simple area argument this can be however remedy by fixing n large enough and considering the
system S, consisting of all compositions of n mappings from the system S. Since the system
Sy is finite, the entropies H,(c) and H, («) are finite. Since J(f) obviously coincides with the
limit set Jg, the proof is completed for the function f itself by invoking Theorem 5.4. To see
this for ¢ sufficiently close to f notice that the Hausdorff dimension depends continuously on
g (use Bowen’s formula ([Bo] and [PUZ,I] and J-stability of f) and also that the Hausdorff

dimension of harmonic measure depends continuously on ¢ (see [B1], [B2]). O

Remark that having Proposition 6.3 one could also use results from [Vo] to establish this
theorem for f.

Let us come back to the class of general conformal expanding repellers f : Y — Y. It is
known (see [PU]) that the map f : Y — Y admits Markov partitions of sufficiently small
diameters. For us it means that there exists a finite cover R = {R;};er of Y consisting of
mutually disjoint closed disks such that R, N'Y = ) for every t € T. Moreover, we may
require the existence of an integer ¢ > 1 and ¢ > 0 such that the following holds:

If z € Y, say v € R, and f?(x) € Ry, then there exists a unique holomorphic inverse
branch f, 9" : B(R;,26) — @ of fi" sending f9(x) to . Moreover f, " (R;) C R, and, taking
¢ sufficiently large, we may require, due to (6¢.2) that

f-™(B(R,,20)) ¢ BOU N Ry, 0) C Int(R,). (6.3)

For every ¢ € T" we now build recursively our conformal iterated function system S; as a
disjoint union of the families S7, 7 > 1, as follows. S} consists of all the maps f ¢, where
z, f4(x) € Y N R,. Suppose that the families S}, SZ,..., SP~! have been already constructed.
Si" is composed then of all the maps f, 9" such that y, f"(y) € Y N R, and f%(y) ¢ R, for
every 1 < j <n — 1. We shall prove the following.

Theorem 6.5. For eacht € T, S; = {¢1,}icr, is a conformal iterated function system, i.e.
the conditions (1.1) and (1.2) are satisfied.

Proof. Condition (1.1) follows immediately from (6.3). In order to prove (1.2) which is
a stronger version of the open set conditions (1la), take two distinct maps f, ™ and fy "
belonging to S;. Without loosing generality we may assume that m < n. Suppose on the
contrary that

fo ™ (R) OV [ (Ry) # 0.
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Then

0 (£ (R) O ;™ (Re)) © R0 (7 (R)) = Ren) [ (Ry).

Hence ff_q?,g?y_)m)(Rt) C Ry, and therefore f9™(y) € R;. Due to our construction of the system
Si, this implies that m = n. But then f7?"(R;) N f,"(R;) = (0 since f" and f 7" are
distinct inverse branches of the same map f?". This contradiction finishes the proof. O

Our next aim is to demonstrate that the systems R; are regular. By J; we denote the limit
set of the system S;. We will need the following.

Lemma 6.6. If n is a Borel probability ergodic f-invariant measure on 'Y positive on open
sets of Y, then n(J;) =n(Y N Ry) > 0 for everyt € T.

Proof. By the construction of the system Sy, the set
tlo)={z€Y :#{n>0:f"(2) e RyNY} =00}

is contained in J;. By Birkhoff’s ergodic theorem n(t(occ)) = n(R; N'Y) and this number is
positive since R; N'Y is an open subset of Y. O

As we have already mentioned, the A-dimensional Hausdorff measure on Y is positive and
finite. Its normalized version m (giving mass 1 to Y) is an h-conformal measure on Y in the
sense that

m(f(4) = [ 1f'dm

for every Borel set A C Y such that f|4 is injective. Moreover (see [PU]), m admits a Borel
probability f-invariant ergodic measure p equivalent with m with bounded Radon-Nikodym
derivatives. In view of (6.1) m and p are positive on open sets. We can give now a simple
proof of the following.

Lemma 6.7. For each t € T the system S; is reqular. Moreover HD(.J;) = HD(Y)(= h) and

the h-conformal measure my for S; is equal to ﬁmm.

Proof. By the previous lemma pu(.J;) > 0 and, consequently, m(J;) > 0. Since m is the
normalized Hausdorff measure on Y, the rest of this lemma is immediate (existence of a
conformal measure means regularity). 0

Lemma 6.8. For everyt €T, J, =Y NR,.
Proof. Obviously .J; C YNR,. The opposite inclusion follows immediately from Theorem 6.6
and positivity of 1 on non-empty open sets of Y. O

From Section 1 we know that for every ¢ € T there exists an S;-invariant measure equivalent
with m|;, (see Lemma 6.7) with bounded Radon-Nikodym derivatives. Combining this fact
and the properties of the measure pu listed before Lemma 6.7, we get the following.
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Lemma 6.9. For every t € T the measures p; and p|;, are equivalent, and even more

d
sup{ ﬁ}<oo.
Ji 1%

1

0g —
The same reasoning as in Lemma 4.1 and Proposition 4.2 shows that for every z € J(f) there
exists the limit

. Go f(z)
its logarithm is Holder continuous and this limit is the Jacobian of the harmonic measure w.
So, its Gibbs state provides us with a unique f-invariant probability measure v equivalent
with the harmonic measure w. On the other hand, it follows from Theorem 2.7 that for every
t € T there exists an S;-invariant Borel probability measure v; on .J; equivalent with the
harmonic measure on .J;. Since the map f is conformal and 7' is finite, we get the following.

v €T\ J(f),

Lemma 6.10. For every t € T the measures v, and v|;, are equivalent, and even more

{ th }
sup < 0.
Ji 14

log —
54
Now, we want to use Theorem 5.4. Below we check that the assumptions of this theorem
are satisfied in our case.

Lemma 6.11. Ifn is a Gibbs state for the map f : Y — Y and a Holder continuous potential
p:Y — IR, then H,(oy) < 0o, where oy is the partition of R, into the sets {¢ii(Ry) bier, -

Proof. Adding an additive constant (= —P(p)), we may assume that P(p) = 0. Since p is
a Holder continuous function, f : ¥ — Y is expanding and 7 is the Gibbs state for p, there
exists a constant C' > 1 such that for every i € I;

n;—1

([ (Br)) = Cexp (Z po fj(:ci)> > C exp(—|lplloms).

=0

Hence

= 3" (/" (Ro)) log (n(/,,"(R.)))

i€l

< Y (Re) (log C + ol oom:)

i€l
=1log C' +|lplloo > n(fs" (Re))ni
1€l

But, by the construction of the partition {f " (R;)}icr,, each integer n; is the first return
time to the set R; of all the points in f_ " (R;) under iterations of f. Hence, applying Kac’s
formula we get
11pllso

n(Ry)
The proof is complete. O

H,(ay) <logC+ ——~
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Recall that a conformal expanding repeller f : Y — Y is called 1-dimensional if there exists
a real-analytic curve M such that Y C M. It is clear that then the systems S; defined above
are all 1-dimensional. We have now all the ingredients needed to provide a short proof of the
following.

Theorem 6.12. If f : Y — Y is a 1-dimensional conformal expanding repeller, then HD(w) <
HD(Y'), where w is the harmonic measure on Y .

Proof. Since f is conformal and transitive, HD(1;) = HD(w) and, by Lemma 6.7, HD(.J;) =
HD(Y) for all t € T. By Theorem 6.2 Y is uniformly perfect. Fix ¢t € T. It then follows from
Lemma 6.8 that J; is uniformly perfect. By Lemmas 6.10 and 6.11, the entropies H,,(ay)
and H,, (a;) are both finite. Since, by Lemma 6.7, the system S; is regular, it follows from
Theorem 5.4 that HD(w) = HD(1;) < HD(J;) = HD(Y"). The proof is complete. O

We have already seen that hyperbolic rational functions with connected Fatou set provide
good examples of conformal expanding repellers. Another natural class of examples is given
by the limit sets of Kleinian groups of Schottky type. Here (see [Be|, [Ts|) a finite set of
generators {gi,...,gx} can be found along with finitely many mutually disjoint geometric
disks Dy, ..., Dy covering the limit set and such that

m<1]£1{1nf{|g;(z)| 1z € Bi}} > 1.
Hence, as an immediate consequence of Theorem 6.12 we get the following.

Corollary 6.13. If G is a Fuchsian group of Schottky type, and its limit set L(G) is contained
in a real-analytic curve, then HD(w) < HD(L(Q)), where w is the harmonic measure on L(G).

Following [MU2] we shall now recall the definition of parabolic iterated function systems
slightly modified to fit better into our needs. We shall then prove that they satisfy the
assumptions of Theorem 5.4 and afterwards, we shall show that parabolic rational functions
and parabolic Fuchsian groups (respectively with the Julia sets and limit set homeomorphic
with the Cantor set) can be treated as parabolic iterated function systems.

Definition 6.14. Let X be a compact topological disk in @ with a piecewise smooth boundary.
Suppose that we have finitely many conformal maps ¢; : X — X, i € I, where I has at least
two elements and the following conditions are satisfied.

(6pa): (Strong Open Set Condition) ¢;(X) N ¢;(X) =0 for all i # j.

(6pb): |pi(x)| < 1 everywhere except for finitely many pairs (i,x;), i € I, for which x;
is the unique fized point of ¢; and |¢i(z;)| = 1. Such pairs and indices i will be called
parabolic and the set of parabolic indices will be denoted by Q. All other indices will be
called hyperbolic.

(6pc): Vn > 1 Vw = (wq,...,wp) € I™ if w, is a hyperbolic index or w,_1 # wy,, then ¢,
extends conformally to an open topological disk V' C @ with a piecewise smooth boundary
and ¢, maps V' into itself.
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(6pd): If i is a parabolic index, then N,>¢ ¢in(X) = {x;} and the diameters of the sets
¢in (X)) converge to 0. -

(6pe): (Bounded Distortion Property) 3K >1Vn > 1 VYw = (w1, ...,w,) € I" Va,y € V if
Wy 1S a hyperbolic index or w, 1 # wy, then

|9, (y)]
|04 ()]
(6pf): ds < 1Vn>1Vw e I" if wy, is a hyperbolic index or w,_1 # wy, then ||| < s.
(6pg): (Cone Condition) There exist o,l > 0 such that for every x € 0X C @ there exists
an open cone Con(z,a,l) C Int(X) with vertex z, central angle of Lebesgue measure o,
and altitude (.
(6ph): There are two constants L > 1 and a > 0 such that

81| = ei(@)]| < LIy - =,
for every i € I and every pair of points x,y € V.
(6pi): ¢;(X) C Int(X) for every hyperbolic element i € 1.

Any system S satisfying the above conditions (6pa)-(6pi) will be called a parabolic iterated
function system. Notice that conditions (6pe) and (6ph) are satisfied because of Koebe’s dis-
tortion theorem.

< K.

We shall now recall from [MU2] how to associate with any parabolic iterated function
system S a canonical, infinite but hyperbolic, iterated function system S* which essentially
has the same limit set as S.

Definition 6.15. The system S* s by definition generated by the set of maps of the form
Ginj, wheren > 1,4 € Q, i # j, and the maps ¢y, where k € I\Q. The corresponding alphabet
{i"j i€ Qi#j,n>1}U(I\Q) will be denoted by I,.

The following fact has been proved in [MPU] as Theorem 5.1.

Theorem 6.16. The system S* is a (hyperbolic) conformal iterated function system in the
sense of Section 1. Increasing X a little bit to X* we may make condition (1.1) satisfied for
the system S* (but not S) and to keep condition (1.2) satisfied for S*.

Note that Jg- = Jg \ {d,(7;) : i € Q,w € I*}. By (6pa), Jg- = Jg = Jg is a topological
Cantor set. Since each finite (parabolic or hyperbolic) iterated function system is regular, the
following is an immediate consequence of Corollary 5.8 from [MU2].

Proposition 6.17. The hyperbolic system S* is reqular.

In view of Lemma 2.4 in [MU2], every parabolic point p lies on the boundary of X. It is easy
to see that ¢;(p) = 1 (i is the corresponding parabolic element of I) and the Taylor’s series
expansion of ¢; at p has the form

¢i(2) =z +a(z — p)PT 4+ ...
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for some integer p > 1. Changing the system of coordinates via the map lep sending p to oo,
one can easily deduce that for every j # ¢ and for every n > 1

ptl

diam (¢ (X)) = dist (dgn1; (X*), $in i (X)) < [| @y ]| <0 7. (6.4)

It immediately follows from (6.4) that the assumptions of Theorem 3.5 are satisfied for the
system S*. Thus, we get the following.

Theorem 6.18. If S is a parabolic iterated function system, then Jg, the closure of the limit
set Jg, is uniformly perfect.

Let
0= {mi(J) i € Qi#jin>1}U{G(]) i€ I\ Q).
We shall prove the following.

Lemma 6.19. The entropy H, () is finite, where p is the unique S*-invariant measure equiv-
alent with the h-conformal measure m for S*.

Proof. Since p and m are equivalent with bounded Radon-Nikodym derivatives and since
I is finite, it suffices to demonstrate that for every i € 2 and every j € T\ {i},

> —m(gin; () log(m(in;(J))) < o0.

n>1

Since the sets ¢;;(.J), n > 1, are mutually disjoint, using (6.4) and conformality of m for the

system S*, we get
§:71 p = 2: Qﬁﬂ' )__ 1.

n>1 n>1

Hence ’%lh > 1 and therefore
p+1 p+1
> —m(gin () log(m(gin;(J)) < Yon " p ~ _hlogn < .
n>1 n>1

The proof is complete. O

Developing the calculation done in [PSV] we shall prove the following.

Lemma 6.20. The entropy H,(«) and the Lyapunov exponent x, is finite, where v is the
unique S*-invariant measure equivalent with the harmonic measure w on Jg.

Proof. In view of Corollary 1.12 it is sufficient to demonstrate that the Lyapunov exponent
X, is finite. A straightforward calculation shows that the Lyapunov exponent y, is equal to

Z/ log |( ¢b |dv.

bel.
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Using (6.4) we can estimate this integral from above by

Y>> sup {log| $ink) [y (Gins () + const

1€Q jAin>1 Pinj (X

<> 3 (const—i—p 1

1€Q jAIn>1

log n) (¢in;(J)) + const

<222

1€Q jAin>1 Di + 1

= ZZ + 1 (i ((log(k +1) — Ing)( io: W(@'qj(ﬂ)))) + const

i€q j#i Pi g=h+1

- k+1
_ g%&;pz +1 (Z (10g< L ) (qzk;rlw(¢iqj(J)))>) + const

< consty_ Y Z (log < 1) w(B(p;, const k‘p))> + const

1€Q j#i k=1

(nz:l log(k + 1) — log k)w(¢zn](J))> + const

< consty > Z B(pi, const k™?)) + const,

1€Q jF#t k= 1

where p; is the parabolic fixed point associated with the parabolic index 4. Since .J is uniformly
perfect and (2 is finite, there exists 0 < k < 1 such that w(B(p;,r)) = O(r*). Therefore the
last series in the above display converges, and consequently the Lyapunov exponent Yy, is
finite. O

We would like to remark that another method of estimating the entropy for parabolic rational
functions with Julia sets contained in the real line has been proposed in [PV].

Combining now Proposition 6.17, Theorem 6.18 and Lemmas 6.19 and 6.20, as an immediate
consequence of Theorem 5.4, we get the following.

Theorem 6.21. If S is a parabolic 1-dimensional iterated function system, then HD(w) <
HD(Js), where w is the harmonic measure on J.

Recall from [DU] that a rational function f : @ — € is said to be parabolic if the Julia set
J(f) contains no critical points but it contains at least one rationally indifferent periodic
(abbr. parabolic) point. If the Fatou set @\ J(f) is connected, then @'\ J(f) is the basin of
immediate attraction to a unique parabolic point a which, in fact, is a fixed point of f. We
shall prove the following.

Proposition 6.22. If [ : @ — @ is a parabolic rational function such that the Fatou set
@'\ J(f) is connected, then there exists a closed topological Jordan disk X D Int(X)U {a} D
J(f) with a piecewise smooth boundary such that f~'(X) C Int(X) U {a} and X is disjoint
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from the forward orbit of all critical points of f. The point a appearing here is a unique
parabolic fixed point of f.

Proof. Since @'\ J(f) is connected, f has only one petal. By the Fatou’s flower theorem
there exists a closed topological disk B such that a € 0B, 0B is a Jordan curve smooth
everywhere except at the point a,

f(B) C {a} UInt(B),

and if ¢ is a critical point of f, then lim, , f"(¢) = a and the intersection {f™(c) : n >
0} N (@\ B) is finite. Following now step by step the inductive construction from the proof of
Proposition 6.3, we end up with Y C (@'\ J(f)) U {a}, a closed topological Jordan disk with
a piecewise smooth boundary such that

f(Y) C {a} UInt(Y)

and
{f"(c) :ce Crit(f),n > 0} C Int(Y).
Therefore
(@\Int(Y))N{f"(c) : c € Crit(f),n >0} =0,
C\Int(Y) > J(f),
and

FHE\It(Y)) = @\ f H(Int(Y)) € @\ (V\ f ' ({a}) = @\ (Y \ {a})
= (C\Y)U{a} C Int(C\ Int(Y)) U {a}.
Since, in addition @'\ Int(Y) is a closed topological Jordan disk with a piecewise smooth
boundary, the proof is complete by taking X = @'\ Int(Y). O

Since X is a closed topological Jordan disk disjoint from the forward orbit of all critical points
of f, all the holomorphic inverse branches f; *,..., f; ' : X — @ of f are well-defined, where
fi" is the inverse branch fixing the parabolic point a. By Proposition 6.22, f7'(X) C X
for every j = 1,...,d; so we get an iterated function system. Since f;' ..., f; ' are all the
analytic inverse branches of the same analytic map f, all the images f; *(X), i = 1,... ,d,
are mutually disjoint. It also follows from Proposition 6.22 that f; '(X) C Int(X) for every
i =1,...,d — 1. Thus the iterated function system S = {f;"',..., f;'} actually satisfies
all the requirements (6pa)-(6pi). We wrote “actually” since the maps f; ', i =1,...,d — 1,
do not have to be contractions. Due to the Koebe distortion theorem, the observation that
limy 0o diam(f;*(X)) = 0, and a simple area argument, this can be however remedy by fixing
n large enough and considering the system S,, consisting of all compositions of n mappings
from the system S. Since Jg = J(f) \U,>o f "({a}), we finally obtain the following result as
an immediate consequence of Theorem 6.21.

Theorem 6.23. If f : @ — @ is a parabolic rational function such that the Fatou set @\ J(f)
is connected and the Julia set is contained in a real-analytic curve, then HD(w) < HD(J(f)),
where w is the harmonic measure on J(f)).
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Remark that the maps f,,(2) = 2 —a + g with big positive a and small real b provide
examples of maps satisfying the assumptions of Theorem 6.23 which are not conjugate to
Blaschke products, the case explored in [PV].

We shall now turn our attention to the class of examples generated by continued fractions
with restricted entries. So, we fix I = {n;};>1, an infinite subset of positive integers repre-
sented as an increasing to infinity sequence of positive integers. We will assume that I has
bounded gaps. More precisely, we assume that there exists a positive integer b > 2 such that

2 S N1 — 1Ny S b (65)
for all 2 > 1. Consider the iterated function system

S=5r= {dn(x) - }izl

n; +x

defined on the closed disk X = B(1/2,3/4). It is easy to see that S; (actually the system
of compositions of sufficiently long length) is a conformal system in the sense of Section 1,
satisfying conditions (1.1) and (1.2) (this is the place where we need the left-hand side of
inequality (6.5). Observe that the interval [0, 1] C IR is invariant under all the maps ¢;, i > 1,
and the limit set .J; consists of all numbers in [0,1] whose continued fraction expansions have
all entries in the set I. We shall prove the following.

Theorem 6.24. If I is an infinite sequence of positive integers satisfying the right-hand side
of (6.5), then the corresponding iterated function system Sy is hereditarily reqular and the
limit set Jy is uniformly perfect.

Proof. A straightforward calculation shows that
1
: = — 6.6
(o)) = = (6.6
independently of 4 > 1 and x € B(1/2,3/4). For every t > 0 consider the series

1
D(t) =Dl = D°
i>1 i>1
Since the right-hand side of (6.5) is satisfied, § := inf{t : ¥(t) < oo} = 1/2 and ¥(1/2) = oc.
Hence, in view of Theorem 3.20 from [MU1]|, the system S; is hereditarily regular. It follows
from (6.6) that

1
d- P X = BGE
m (04()) =
1 1 2 1 1
- < = di i1(X)) X 5— < —
(402 + 1)n? — (n +b> 1am(¢ (&) ni T ong
and 1 1 1 1 b b
1S (¢ +1( ) ¢( )) n; + 1 Mig1 n; ni—i—b nz(nz+b) nz2

Hence, the assumptions of Theorem 3.5 are satisfied and it implies that the limit set .J; is
uniformly perfect. O
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We shall prove the following.

Lemma 6.25. If I is an infinite sequence of positive integers satisfying (6.5), then both
H,(«) and x, are positive, where v is the S-invariant probability measure equivalent with the
harmonic measure on Jr and o is the partition into sets {¢;(J)}i>1

Proof. Our assumptions imply that 2i < n; < bi. Thus

. 1 1 ) 1
||| < diam(¢; (X)) =< 3= and dist(¢;(X),0) < -

Hence we can proceed similarly as in the proof of Lemma 6.20 Again, in view of Corollary 1.12
it is sufficient to demonstrate that the Lyapunov exponent y, is finite.
A straightforward calculation shows that the Lyapunov exponent y, is equal to

S [ togl(6; Yl
bel, 7 P(X)
Using (6.5) we can estimate this integral from above by
Z sup {log @ }w(p;(J)) + const
i>1 ¢i(X)

<> (const + 21ogi)w(¢pi(J)) + const
i>1

<y 2 (S (log(k + 1) — log k)w(qﬁl(J))) + const

i>1

=2 Z ( log(k +1) logk)( i w(%(J)))) + const

q=k+1

= Zlog <k ;: 1> ( Z w(qﬁq(J))) + const

q=k+1

1
< const Z log (k;; ) w(B(0, const k™)) + const

k=1

=1
< const y %w(B(O, const k™)) + const.
k=1
Since J is uniformly perfect, there exists 0 < x < 1 such that w(B(0,7)) = O(r®). Therefore

the last series in the above display converges, and consequently the Lyapunov exponent Yy, is
finite. 0

Notice that in order to prove this lemma one could employ the much more complicated
reasoning taken from [PV].
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Combining now Theorem 6.24 and Lemma 6.25, we obtain the following result as an immediate
consequence of Corollary 5.5.

Theorem 6.26. If I is an infinite sequence of positive integers satisfying (6.5), then HD(w) <
HD(J;), where w is the harmonic measure on J;.

Our last class of examples is provided by all generalized polynomial-like (non-hyperbolic)
maps. We follow the definitions, notation and terminology from [Zd2]. So, let

q
i=1
be a generalized polynomial-like map, i.e. W and U;, 7 =1,2...,q, are open topological disks

with smooth boundaries and f|y, are proper holomorphic maps. We show how to associate
with f a conformal infinite iterated function system S = {¢;} such that Jg = J(f) and S
has other useful properties which will be discussed later. Next, we show how to answer the
question about the Hausdorff dimension of harmonic measure on J( f) using the new dynamics
S = {¢;}. It has been proved in [Zd2] that there exists an ergodic invariant measure v on
J(f) equivalent with harmonic measure w and with positive entropy. Let v = OW. Let

J={(x,)® o xn € J(f) and f(x,) = 2ppq for alln € Z}

n=-—0oo

be the natural extension of .J(f) associated with the map f : J(f) — J(f) and let f : J — J
defined by the formula

Fl(@n)n2lee) = ((Tns1)a22 o)
be the canonical lift of f : J(f) — J(f) to the natural extension .J. Finally let mo : J — J(f)
be the projection onto 0" coordinate, that is

o ((xn)r—i;io_oo) = Zy.

It is well-known (see Chapter 1 of [PU] for ex.) that there exists a unique f-invariant measure
7 such that v = vor™!. From now on throughout the entire section we assume that J(f) is not
connected. Following the notation of [Zd2] we choose the curve 7,, a component of f~" (7).
Let X (7,) be the part of J(f) surrounded by =, and let D,, be the domain (a topological
disk) bounded by 7,,. Lemma 4.4 from [Zd2] yields the following.

Lemma 6.27. There exist a set F C J, an integer ng > 1, and a constant 0 < XA < 1 such
that
(a): D(F) > 0.
(b): There exists a curve vy, defined above such that m(F) C X (v,,)-
(c): Ifz € F, then for every n < 0 there exists a holomorphic branch f;‘:ﬁfo of f*° defined
on D,, and sending xo to Tpp,.
(d): All the holomorphic inverse branches of f™ are well defined on the disk D,,.

Proof.(Sketch) Since J(f) is not connected, the number of “cylinders” X(v,) grows expo-
nentially fast with n. Indeed, there exists N > 1 such that there are at least two disjoint
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disks Dy bounded by curves vy and each of them is mapped onto W by some positive iterate
of f. Then

#X (yan) > 2. (6.7)

Since the number of critical values of f" is < (d — 1)n, where d > 2 is the degree of f,
and 2" > (d — 1)n, for all n large enough, it follows from (6.7) that there exists a cylinder
Xy = X (7n,) such that there are no critical values of f™ in D, . All holomorphic branches
of f~" are then well-defined on D,,,. Consider now the collection of all topological disks
f7"(Dy,), the images of Dy, under all holomorphic branches of f~"°. Next we remove from
this collection those disks which contain critical values of f™°. In view of Proposition 4.3.
in [Zd2] (which says precisely that there exists x > 0 such that for every component X (v,),
v(f(X(vn))) > exp(kn)v(X(7,)) and consequently v(X (v,)) < exp(—rn)) the total measure

of the removed set can be estimated from above by
6, == (d — 1)nge "™ u(D,,)

for some b > 0. We call the remaining disks and remaining branches of f~"° admissible.
Now, one can apply all holomorphic branches of f~™° to all admissible disks, and remove
again those components of f~2"° that contain critical values of f™. In this way we obtain
a collection of admissible components of f~2"(D,, ) and admissible holomorphic branches of
f~2m0_ At this step of the construction the measure of removed components can be estimated
from above by
(52 = (d — 1)n0(e*ﬁ”° + ei2ﬁn0)Z/(Dn0).
We continue this procedure inductively. After the nth step one obtains the set
F, C 1y (Dy,) C J

consisting of sequences {z;}% € J such that 2o € D, and for every k < n, z_py, is the

image of zo under an admissible holomorphic branch of f~*" defined on D,,,. Put
F=NF,
n=1

Since the sets F;,, n > 1 form a descending family and for every n > 1, v(F,) > v(Dp,) — 0y,
where 0, = (d — 1)ng X_, e/ we have
oo

U(F) > v(Dy,) — (d—1)ng Y_ e ¥ uy(D,,)

k=1
and the above series is less than 1 for ng large enough. This takes care of properties (a)
and (b) of our lemma. The properties (c¢) and (d) are obviously satisfied by the way our
construction was carried out. O

Now, for all m,n > 1 fix arbitrary sets of the form X (v,,) and X (v,) and consider Y}, ;,, the
union of all sets of the form X (7,,4,,) such that X (v,1m) C X (7,) and f™"(X (Yo1m)) = X (vm)-
For reader’s convenience let us state now Proposition 4.1 from [Zd2].
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Proposition 6.28. For all n and m

W(Ynim)
w(X (7))

Now, all the inverse branches described in part (c) of the previous lemma will be called
admissible. Denote

w(X (m)) =

FW ={zeF:f™¢Fforalli=1,2,---,n}.
Lemma 6.29. There exists v > 0 such that for all n > 0
p(F™M) < exp(—yn).

Proof. Fix k > 1, take F®) and consider the collection of all topological disks ¥ =
I kno(D,,.), where we use all the admissible branches of f=#"0 corresponding to the points
from F®). Thus all the inverse branches of f" are well-defined on the disks Y. Since
f™(D,,) = W, for every disk Y some components of f~"°(Y) fall into D,,,. Denote them
by Y1,Ys, ..., Y, (comp. the paragraph proceeding Proposition 6.28). Using this Proposition
one deduces that

y((V1UY2U...UY.) N Dyy) < v(Y)1(Dyy). (6.8)

Composing now appropriate branches of f™ and f~*" we get a collection of holomorphic
branches f,° (k+1)no mapping D, into some Y; C D,,,. But we have the starting collection F
of (infinite) sequences of backward branches which are defined on the whole disk D,,,. This
gives a subset G ¢ F(*) \ F*+1 consisting of backward branches which are built as follows.
Each inverse branch f- (k+1)n0 defined above is continued using all sequences of backward

trajectories belonging to F. Moreover
p(FEN\FED) > 5(G) 2 6 Y v(Y) = si(F®),

where the second inequality is a combined consequence of (6.8) and Proposition 6.28; ¢ is
independent of k. This gives

p(FEHDY < (1 = 6)p(F®)

and we are done. O

Fix D to be an arbitrary closed disk with smooth boundary containing in its interior X (v,,)
and contained in D,,,. By Poincaré’s recurrence theorem for # a.e. & € F there exists a
least n(Z) > 1 such that f~"@m(F) € F. After removing a set of ¥ measure 0 from F
we may assume that this holds for every # € F. Denote by T the first return map, i.e.
T(z) = f"@no(z). For every & € F consider the map f; "™ : D — W. It is easy to see

—n(&)ng

that for any two points #,§ € F, the images f;i(g’zg (D) and f,” Z((Zgzg(D) either are equal or
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are disjoint. Since in addition each set f "((5?))”0 (D) is contained in D, we obtain in this way
—nlT nO
the following new family of maps

S={¢i: D = D}ics

composed of (countably many) all maps of the form f;ﬁ"jgno, # € F. We shall prove the
following.

Lemma 6.30. The family S = {¢; : D — D} (actually the family {¢, : w € I"} for alln
large enough) is a hyperbolic conformal iterated function system.

Proof. By the Koebe distortion theorem and the choice of D we have uniformly bounded
distortion for all maps ¢,, w € I". Thus, in order to demonstrate that an iterate of the
system S is hyperbolic, it suffices to show that

lim sup{diam(¢,, (D)) :w € I"} = 0.

And indeed, by the choice of D, for every w € I*, the disk ¢, (D) is enclosed by a nested
family of |w| annuli conformally equivalent with the annulus D,,, \ D. Thus, by the Grotzsch’s
inequality the modulus D \ ¢,(D) > Mod(D,, \ D)|w|. We are done.

Corollary 6.31. There exist constants C, 3 > 0 such that for every q > 1

V( U ¢i(D)) < Cexp(—fq).

{iel:n(i)=q}
Proof. For every k > 1 we have
U &iD) =1y (FE\NFW), (6.9)
{iel'n(i)=k}

where for every n € Z, m, : J — J denotes the projection onto nth coordinate, i.e.
Tn({x;}jez) = x,. By the definition of the measure

,/(W_]mo (F(k—l) \ F(k)) > g(F(k—l) \ F(k)).
But what we need is the opposite inequality

ﬁ(F(k_l) \F(k)) > const 1/(7T_;m0 (F(k_l) \F(k))).

In order to prove it, notice that for all disks Y = f,*"0(D) C m_gp, (F(k_l) \F(k)), taken over

k)

all admissible branches fp_’m0 corresponding to elements in F*—1) \F( one can "attach” all

(infinite) backward trajectories belonging to F' producing as the result a set Y C 7~ 1Y) N
FE=D\ F) Now

NAp

P(V) = lim v (U (f,,””O(Y))) ,
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where the union is taken over A,, all admissible branches of length n. Since from Proposi-
tion 6.28 and Lemma 6.27 we have for every n > 1

—nng - v (UnAn (f{nno (D))) (F)
v (U (; (Y>)) < ey 2 D),

NAR

AN

we conclude that
- v(F
o) > 2

Taking now the union over all defined above disks Y C 7_p, (F(k’l) \ F(k)), we get

P (FU-D\ F) > p(UY) > %uw) - g)(ﬁ (F&-1\ F®)).

So, applying (6.9) and Lemma 6.29 completes the proof. O

We shall prove the following.

Proposition 6.32. We have
(8): v (User (D)) = v(D).
(b): Js =J(f)nD.
(c): If wg is the harmonic measure on Js and w is the harmonic measure on J, then the
measures wg and w|;, are equivalent and the system S is w conservative. Thus there
exists n, the S-invariant measure equivalent with wg.

(d): The Jacobian ¢ : Jg — (0,00), i € I, defined by the formula

g GO )
1/)(‘%.) - l—)x G(Z) ( S ¢Z(‘]5))

satisfies [, |log|*dn < co for every integer k > 0.

(e): The system (S,n) has finite entropy.

(£): xn = [ &dn < 0o, where £ is the amalgamated function of the family = (ascribed to the
system S = {¢;}ier introduced just after Lemma 1.9.

Proof. Since Uc; ¢5(D) = mo(T(F)), it suffices to show that v(B) = 0, where B = D \
pio(T(F)). If, on the contrary, this measure is positive, then the inequality #(m; '(B)NF) > 0
follows from the construction of the set F. But my ' (B)NF C F\T(F) and #(F\T(F)) =0
since T', as an induced map preserves the measure v. This contradiction finishes the proof of
(a). Properties (b) and (c) are immediate consequence of (a) and the remark that v is positive
on open sets. Since (e) follows from (d) in order to prove both we only need to verify (d).
Since the measures v, w and n are mutually equivalent on Jg with Radon-Nikodym derivatives
bounded away from zero and infinity, we can write

[ Nogultdy < [ Jloguldy < 3 u(@i(D) sup log ]
Js Js ¢71(D)

i€l
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Now, by Lemma 2.2
-1

log < sup |logG|+ M =< |log(v(¢i(D))| + M,

9(¢i(D))

sup
9(¢i(D))

won

where M = supy, |logG| < oo and the “<” sign in the formula above has the additive
meaning. So, using Corollary 6.31 we get

/ |log y|Fdv < const Y v(¢i(D))|log(v(¢:(D))|* + const
Ts i€l
<consty. Y v(ei(D))g" + const
q>1 {iel:n(i)=q}

< const Y C exp(—fBq)q* + const < oo.
g1

Since Lemma 6.30 gives that ||¢}|| < const \»®" for every i € I and some A < 1, the same
calculation proves the part (f). O

Now to compare the Hausdorff dimension of harmonic measure and the Hausdorff dimension
of J(f) is a straightforward consequence of the results obtained in Section 5. Combining
Theorem 5.2 and Proposition 6.32 we get the following.

Proposition 6.33. If the system S is irreqular, then HD(w) < HD(J(f)).
As a corollary from Theorem 5.3 and Proposition 6.32 we get the following.

Proposition 6.34. If the system S is reqular and the entropy of p, the invariant measure
equivalent with the conformal measure m is infinite, then HD(w) < HD(Js) < HD(J(f)).

Propositions 6.32 - 6.34 allow us to reduce the question of whether HD(w) < HD(J(f)) for an
arbitrary generalized polynomial-like mapping to the corresponding result for regular infinite
iterated function systems. We find this reduction interesting itself. In order to make use of
Theorem 5.4 we need the additional assumption that the generalized polynomial-like mapping
f Ui, Ui = W is 1-dimensional. Thus, at the moment we only have the following.

Theorem 6.35. If the Julia set J(f) of the generalized polynomial-like mapping f : Ur_, U; —
W is 1-dimensional, then HD(w) < HD(J(f)).

7. Hausdorff dimension of harmonic measure < 1

Although the subject of this section is closely related to the contents of the previous sections,
it is however out of the mainstream of this paper which is the relation between the Hausdorff
dimension of harmonic measure and the Hausdorff dimension of the limit set. This is why we
have decided to locate it as the last section. We deal here with the problem of under which
conditions the Hausdorff dimension of harmonic measure of a uniformly perfect limit set of
a conformal IFS (not necessarily 1-dimensional - just conversely) is strictly less than 1. Our
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approach is to formulate checkable conditions for the assumptions of Theorem 2 from [JW]
to be satisfied.

Following [JW] we recall that given € > 0 and 7o > 0 a point  in a compact set F' C ¢
satisfies the (¢, rp)-annulus condition if for every r > ry the annulus A.(z,r) ={z € C:r <
|z — x| < e7'r} contains a topological annulus T, (z,r) C €'\ F such that x belongs to the
bounded component of €'\ F' and the modulus of T,(x,r) C @'\ F is greater than or equal
to . We simply say that the point z satisfies the e-annulus condition (with respect to the
compact set F) if rp = 0. If each point of the set F' satisfies the e-annulus condition for
some common € > 0, then the set F'is said to satisfy the annulus condition. Jones and Wolff
have proved in [JW] that if a uniformly perfect set F satisfies the annulus condition, then the
Hausdorff dimension of its harmonic measure is strictly less than 1 (comp. the article [Wo|
where although this result is not explicitly stated, however its methods lead to the proof). As
a matter of fact Jones and Wolff were assuming so called capacity density condition instead
of uniform perfectness but it is well-known that these two conditions are equivalent. We shall
provide now some sufficient conditions for the annulus condition to be satisfied by .J.

Lemma 7.1. If there exists € > 0 and v > 1 such that for all © € I there exists z; €
¢i(X) such that x; satisfies the (e, vdiam(¢;(X))-annulus condition, then the set J satisfies
the annulus condition.

Proof. Fix 0 < § < € so small that

S'—-K K
© R, R (7.1)
1+e 0%
where, let us recall, K is the Koebe distortion constant. Rescaling, if necessary, the system

by a sufficiently big factor, we may assume that
D '6e Mdist(X,0V) > v, (7.2)

where D comes from (1.4) and (1.5). In order to prove the lemma it obviously suffices to
demonstrate that for every r > 0 sufficiently small, each point z = w(7) € J, 7 € I, satisfies
the d-annulus condition. So, fix 0 < r < de 'dist(X,0V) and consider the least n > 0 such
that

Kr|lgy, |17 = ydiam(¢r,,, (X)) (7.3)

T|n

Using (7.1) this implies that (1 + ¢)diam(¢s,,, (X)) < (67" — K)r[|¢} [|7! or equivalently

Kr||¢5), 117" + diam(¢r,,,, (X)) < ed™'r[|d) [I7F — ediam(¢r,,,, (X)).

T|n

Fix an arbitrary R such that
Kr||¢., |I7" + diam(¢,, (X)) < R < 65*1r||¢;‘n||*1 — ediam(¢-,,,, (X)). (7.4)

T|n

Then
Gr), (B, e 'R) C b7, (B((m(0"T), e 'R+ diam(¢r,,,(X)))

C B(z ¢}, |I(¢ 'R + diam(¢r,.., (X)))) € B(z,6'r) (7.5
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Suppose now that R > dist(X,0V). Then i 'r||¢}, ||! > dist(X,0V'). Hence, by our choice
of r, n > 1 and using (7.2), we get

Krllgr, I = rllgp, [0 11 = Do (edtrl[ @), || diam(gr, (X))
> D 'oe tdist(X, 0V )diam(¢,, (X))
> ydiam(¢,, (X)).

This however contradicts the definition of n and shows that R — diam(¢-,,, (X)) < R <
dist(X, 0V'). Therefore, using (7.4), we get

71, (B(27, 115 B) D o1, (B((m(0"7), R — diam(¢-,,, (X)))
> B(z |6y, 1K~ (R — diam(¢,, ,,(X)))) D B(z,7).
Combining this and (7.5) we deduce that
Gr (A(2s 1, Rye ' R) C A(z,7,67'r)

and the bounded component of @\ ¢, (A(7~,,,, R) contains B(z,r). Now, by our assumptions
there exists a topological anuulus

T(2s, ,R) C A(z,,,,, R,e '"R)\ T

with modulus > € and such that ., belongs to the bounded component of €'\ T (z,.,, R).
Then ¢, (Te(zs,,,,R)) C A(z,707'r) \ J is a topological annulus with modulus equal to
Mod(T¢(,,,,R)) > € > 6. In addition z belongs to the bounded component of €'\
¢r,(Te(2r,.,, R)). The proof is complete. O

Theorem 7.2. Suppose that the (UP) condition from Theorem 3.5 holds, that each point in
X (c0) satisfies the annulus condition with some common € > 0, and that

- diam(¢; (X))
%Eﬁ{dist(@()(),)((oo))} > 0. (7.6)

Then HD(w) < 1.

Proof. Since, by Theorem 3.5, the (UP) condition implies uniform perfectness of J, in
view of Theorem 2 from [JW] it suffices to prove that J satisfies the annulus condition. And
in order to check this condition it suffices to verify the assumptions of Lemma 7.1 for some
0 > 0, corresponding to € appearing in this lemma, and v = 1. And indeed, let T be the
infimum appearing in formula (7.6). Fix 6 > 0 so small that

61 > AT + €1 (1+47) (7.7)

and for every i € I choose an arbitrary z; € ¢;(X). Fix then z; € X (00) so close to x that
|2i — ;| < 2dist(x;, X (00)). If r > diam(¢;(X)), then using (7.6) we get
B(z, 1) C B(zi, 7+ |x; — 2i]) C Bz, 7 + 2dist(z;, X (00))) C B(z;, r + 4Tdiam(¢;(X)))

C B(z,r +4Tr) = B(z, (14 4T)r). (7.8)
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Using (7.6) again and and (7.7) (when writing the last inclusion), we also get
B(zi, 6 'r) D B(z,6 'r — |z — z|) D B(z, 0 'r — 2dist(x;, X (00)))
D B(z, 0~ 'r — 4Tdiam(¢;(X))) D B(z;, 6 'r — 4T7) (7.9)
D Bz, (07" — 4T)r) D B(z;, e (1 + 4T)r).

3

)

By our assumptions there exists a topological annulus separating the balls B (2i, (1 +4T)
and B(z;, e (1 + 4T)r), disjoint from J and of modulus > € > §. Since, by (7.8) and (7.9

~—

Y

this annulus separates also B(z;, ) and B(z;, ¢ 'r), we are done. O
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