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Abstract

We show that in order to estimate the Hausdorff dimension of conformal
infinite iterated function systems (IFS) it is completely sufficient to con-
sider finite subsystems with N < oo generators. We give estimates on the
accuracy of this approximation and present a simple straightforward algo-
rithm which allows to reduce this setting further to finite iteration time n.
Our method allows to calculate the Hausdorff dimension of an IFS with the
same speed of convergence as the algorithm proposed by McMullen in |7]
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(i.e. the distance of the approximation to the actual value is ~ 1/n, where
n is the iteration depth, hence corresponding to ~ N™ calculation steps).
This is much slower than Jenkinson/Pollicott’s method for bounded contin-
ued fractions (which gives superexponential accuracy ~ exp(—n?®/?) for the
same depth) but does not require extensive knowledge about the periodic
points of the involved transformations and is applicable in a more general
setting. The method is applied in order to perform numerical calculations
for certain classes of examples.

1 Preliminaries

In this paragraph we collect some useful facts concerning (infinite) iterated func-
tions systems (cf. [4], [5], [6], [9]).

1.1 Iterated Functions Systems

We consider an iterated function system (IFS) on a compact subset X of the d-
dimensional Euclidean space R?, where d € N. We denote the Euclidean metric
on R?, X, resp. with o. The IFS is generated by a countable family S of injective
contractions {p; : X — X };er, where the alphabet I is given by N = {1,2,...}
or by {1,...,N} for some N € N, N > 2. We shall assume that S is uniformly
contracting i.e. there is 0 < s < 1 such that for all x,y € X and ¢; € S we have
that {roto(p:(z), pi(y)) < s o(z,y).

An IFS of this type induces a limit set J C X which can be interpreted as the
image of the coding space I*° under a canonical coding map w : [*° — X which
is obtained as follows. Let I* := [ ., I" denote the space of finite words. For
w=wiwy, €I" neN, we define p, := p, 0,0 0@, .

For w € I*UI*® and n € N, n < length(w) we set w[n := wjws - -w,. We
shall also use the notation of the shift operator o which is defined by mapping
W= wiWs Wy 10 0(w) 1= wows -+ Wpy1----

Since the family S is uniformly contracting, we have that for any w € I and
n — oo the diameter of ¢, (X) is converging to 0, thus the set

m(w) = ﬂgpw(n(X) (1)

n>1

is a singleton and we can use (1) in order to define the coding map = : I —
X. Tt is straightforward to see that for finite I the limit set J = 7(I*) =
Useree [po1 @urn(X) is compact. However, we are mainly interested in infinite
systems.



1.2 Conditions and Properties

We call an iterated function system conformal if X C R? for some d > 1, X is
connected, and the following conditions are fulfilled.

(1a) the open set condition: for each pair i,j € I, i # j we have that
i (int(X)) N p;(int(X)) = 0;

(1b) conformality: there exists an open connected set X C V C R? such that
all maps ¢; extend to C! conformal diffeomorphisms of V into V (for d = 1
this equivalent to the fact that the ¢; are monotone diffeomorphisms, for
d = 2 this means that the ¢; are holomorphic or antiholomorphic, for d > 3
the maps must be (restrictions of) Mébius transformations (cf. [1], [10]));

(1c) the cone condition: there exists a, £ > 0 such that for every r € 9X C RY
there is an open cone Con(z,u,«) C int(X) with vertex x, symmetry axis
u € R? of length ¢ and angle a, i.e.

Con(z,u,0) = {ye X: 0< (y—xz,u) <cos(a)-|ly—z| <}

(1d) the bounded distortion property: there is 1 < K < oo such that

(W) < K- lo()]
for every 7 € I'* and each pair z,y € V (cf. (1b)).

Throughout this paper we shall even assume that the following stronger condition
holds.

(le) There are two constants L > 1 and « > 0 such that
ltto)l - | < - el by ot

We note that for d > 3 the conditions (1d) and (le) are always satisfied (with
a = 1), for d =2 at least condition (1d) is always fulfilled. Finally, we set

_ — : it
0 = s = tel[gl,(f)o}{t' Z“(,OZ“ <oo}.

el



1.3 Holder Families

A family G := {g(i’) X — ]R}iel of continuous functions is called a Hélder family
of order > 0 if

Vs(G) = supV (G) < 00, (2)

neN
where V" (G) := Sup sup. {9 (o) () = 9 (o) (9))| - exp(B - n) }.
welm zye X

If in addition we have that )., exp (Hg HX) < o0, then G is called a summable
Hélder family. The associated Perron-Frobenius-operator Lg is given by

2}@ »(pi())

for ¢p € C(X). Clearly, for a summable Holder family G, Lg is well defined,
preserves the Banach space C(X) and is continuous. Its norm is bounded from

above by > . exp (Hg(i)HX), where ||g||x = sup,cx{|g(z)|}. In [9] the pressure
of G was defined as

1
P(G) := JLI&EIOgZ

exp (Z 9“1 0 g (w)>

j=1

|w]=n X
_ 1 (@)
ti s 3 o (20

If we denote with £}, the dual of Ls then equation (2.2) and lemma 2.2 in [9]
guarantee that there exists a Borel measure mg supported on the limit set J such
that

Li(mg) = exp(P(G)) - mg.

Applying theorem 2.4 from [9] one shows in the same way as in lemma A.6 in [5]
that Lo : C(X) — C(X) is almost periodic, i.e. for every ¢ € C(X) the family
{LE(¥) : X — R}, oy is equicontinuous. Using this fact one proves the analogue
of theorem 4 in [6].

Theorem 1.1
There exists a (uniquely determined) continuous function gg : X — (0, 00) such
that La(oc) = exp(P(G))oc and [ pgdme = 1. Moreover, C(X) splits into

C(X) = Roc ®Ce(X), (3)
where C2(X {w eC(X): [¢dmeg = O} Obviously, this splitting is Lg-
invariant as the operator exp( P(G)) - L preserves integrals w.r.t. the measure
meq. O



2 The First Reduction Step: Finite Time

In order to be able to perform numerical calculations, we have to reduce the
setting from infinitely many calculations to finitely many. In this paragraph
(cf. (4) below) we shall show that one can reduce the number of iterates to
finitely many in order to obtain estimates for the Hausdorff dimension of the
limit set.
We have been assuming that our system is contracting, more precisely, we
have that
Bn = max|¢ (z)] < s".

lw|=n -
zeX

We define o, and [, as the extremal values of the derivatives of ¢,

[y— 3 I
@, = min o, ()]

and

B = max el (1)

We should note here, that it is particularly easy to determine [, for maps which
fulfill some monotonicity condition such that the chain rule also holds for extrema
of derivatives (cf. [5]), thus the number of steps does not increase the order N".
However, this estimate does not apply to the general case. Using the above

notation we set
U(n,s) = Z o

|w|=n

and

®(n,t) = Zﬁi

|w|=n

Recall (see [5]) that the Hausdorff dimension A of the limit set of the IFS is given
by the uniquely determined value h such that, for all n € N we have that

1 < ®(n,h) < K< (4)

We know that for any ¢ > 6 we have that ®(1,¢) < co.

2.1 The full set of generators

We define t,, as the solution of ®(n,t) = 1 and analogously s, as the solution of
U(n,s) = 1.

Lemma 2.1
For the values s,, and t, we have that

sp < h < t,.



Proof: The left hand side follows from relation (4) and the fact that ®(n,t) is
decreasing in ¢t. For the right hand side we note that

U(n+k,s,) > ¥(n,sy,) - Yk, sy,)
which implies that
U(kn,s,) > U(n,s,)" = 1,
hence
o (kn,s,) > K .

It follows that

1
P(s,) = leIEOElog@(kn, $n) > 0,

which implies that

Proposition 2.2
We have that

t,— s, < — 5
_log(ﬂn) ( )
Proof: We have
9
d(n,s,) — ®(n,t,) = — 5 5@(%,7’)(17’
tn
= [ s gr)ar
Sn |w|=n
tn
> [ min ~log(6) - @(n. 7)dr

tn
> / —log(B,) - 1dr
= - log(ﬁn) ) (tn - Sn)a
which implies the assertion of the proposition. O

Combining the preceding results we obtain the following fact.

Corollary 2.3
The sequences s,, and t, converge to the Hausdorff dimension A of the limit set,
more precisely,

Kin —1

th —h < ———
—nlog(s)



and

s, < KoL KO- (6)
— s

"= —nlog(s) — —nlog(s)’
where s is the contraction constant defined in paragraph 1.1. O

Thus, we are able to calculate estimates for the Hausdorff dimension of the limit
set, with prescribed accuracy by performing iterations with finite iteration time.

Remark 2.4

We should note here that for particular finite systems (see section 4) there are
algorithms which yield much faster convergence than (6) to the actual dimen-
sion (cf. e.g. [3] for continued fractions with bounded entries). However, we were
mainly interested in proving a statement valid for general IFS without any addi-
tional knowledge about the distribution of periodic points.

3 The Second Reduction Step: Finitely Many Gen-
erators

Evidently, condition (1e) implies that for every ¢t > 0 the family

G = {t-logleil}icr

is Holder in the sense of (2) and for ¢ > 6 it is even summable. For simplicity we
shall write £y, P(t), mq, o, and C}P(X), resp. instead of L¢,, P((;), me¢,, o¢,, and
C¢ (X)), resp.

In the previous paragraph we showed that it is possible to reduce the setting
to finitely many iterations if one wants to obtain estimates for the Hausdorff
dimension of the limit set J. Still, if the system has infinitely many generators,
there are infinitely many calculation steps to perform. Thus, we shall investigate
if it suffices to consider suitably chosen finite subsets F° C I. We denote the
terms obtained from these reduced sets of generators by Lg;, Pr(t), mp:, 0Ft, and
CY%.(X). The distortion property (1d) immediately implies that for all F' C I,
welandall x, y € X

exp(Pr(t)) - ¢'(y)
exp(Pr(t)) - ¢'(z)
In the sequel we shall use the abbreviations A; := exp(P(t)), Ar: := exp(Pr(t)),

resp. With theorems 7 from [6] and 2.4 from [8] we deduce the following propo-
sition.

> K.

Proposition 3.1
For #s <t < d and any F' C I we have that

K™ < op(t) < K.



We are now in a position to prove the following theorem.

Theorem 3.2
For FF C I and t € (0s,d] we have that

|)‘t — )\Ft| S Kgd (2 + Kd) . ||£t - £Ft||
Proof: Consider a function v of form
Y =10 tu

where r € R and v € C?(X) and assume that ||¢|| = 1. This implies that

= Irl- [ ot = ol

Thus, using proposition 3.1, we conclude that

L= ) = ‘ / pdm,

lull < 1ol +Irl- lled < 14+ K7
Hence we have that
lros+ull =1 = 1+K+1)/(2+ K > (Jull +|r]) /(2 + K7) .

Since (7) is linear in the components of ¢, this relation holds for arbitrary ).
According to (3) the function gg; has a unique representation

Ort = T -0t +u

with 7 € R and u € CP(X). Again, using proposition 3.1, we see that

K1 < /thdmt = /(rgt+u)dmt = r/gddmt:r. (7)

Now application of proposition 3.1 and theorem 1.1 together with £ -invariance
of C)(X), and relations (7) and (7) give that

KLy = Ll = (£ = Lrt) orl]
= |IrLi(os) + Li(u) — Arror|]
(A = Are)or + Lo(u) — Argul|
(rlXe = Apel - loel| + [1£e(u) — Apeul]) /(2 + K7)
(KX = Al - Mleell) /(2 + K7)
(KA = Ape| - K79) /(2 + K7)

AVARAVARIY



We call a system S strongly reqular if there is ¢ > 0 such that we have that
0 < P(t) < oo. For example, each finite system is strongly regular. For a
strongly regular system there exists a unique h = hg such that P(h) = 0 and (see
e.g. |5]) equals the Hausdorff dimension of the limit set J. We define

x = sup inf {—log(f,)/n} = — inf {log(f)/n}.

Theorem 3.3
Let v > 05 and for some finite F' C [ assume that hr > 7. Then we have that

0 < h—hp < K2+K") Y B/ x (8)
ieI\F

Proof: Application of proposition 6.5 from [2] (cf. proposition 2.6.13 from
[4]) together with Birkhoff’s ergodic theorem applied to the functions ¢f(w) :=
log |pw, (m(o(w)))] for w € I yields that

%Et) _ /1og|¢w1(7r(a(w)))|dﬁt < —x,

where fi; denotes the lift of g;m; to the coding space I (cf. [2],[4] or [8]). Thus,
on the hand hand we have that

exp(P(he)) —1 = exp(P(hr)) — exp(P(h))

_ AF%exp(P(t))dt
_ /h " PI(1) exp(P(1))dt
_ /h P/ () exp(P(8)dt

hr
> / xdt
h

= X (h—hp). (9)
On the other hand, theorem 3.2 implies that
exp(P(hr)) =1 = exp(P(hr)) — exp(P(h))
< KM2+ K |[Lny — Lengll
— K¥(24 K1) Zﬂhp
iel\F
< K24+ K%Y B (10)
i€l\F
Comparison of (9) and (10) finishes the proof. O

Let us note that the s, are of course canonical values for ~.

9



4 Examples

Combining the results from the two preceding paragraphs, in order to calculate
the Hausdorff dimension of an ‘actual’ limit set with precision € > 0, we can
proceed as follows. Given ¢ we choose a reduced set of generators F' C [ such
that (10) is strictly smaller than e, then using corollary 2.3 we can find a finite
iteration depth n such the difference between sg,, for the reduced system and the
Hausdorff dimension A of the original system is smaller than e, more precisely, 0 <
h—hp+hp—spg, < €. Let us note that one might want to apply more sophisticated
(and faster) algorithms (cf. e.g. [3]) than the one described in paragraph 2 in order
to calculate the Hausdorff dimension of the reduced system. In this section we
show that it is possible to apply this procedure to two classes of examples.

4.1 Continued fractions with even entries

We consider the IF'S on the unit interval [0, 1] generated by ¢;(x) : x — 1/(2i+x)
for i € N. Clearly we have that K = 9/4. The «,, are given by

ay = 4/((1 +V2) 4 (1 \/5)”“)2 :
the 3, are obtained as
8, = 8/((1 4 ﬁ)n-l—l (1- \/§)n+1)2

Thus we have that
x = 2log(1++V?2).

Moreover, we have that @ = 1/2, and we calculate for v > 6 and N € N that

S = Yy

>N n>N

= 4—172 1/n*

n>N

((2y) - er:le 1/n*
4v
1 [ dk
47 Jy k¥
N1—2'y
2y —1)

First let us note that an sg,, is always a lower estimate for h. Thus, it remains to
apply (8) in order to calculate estimates from above (for some numerical results,
cf. table 1 on page 12). We conclude that the Hausdorff dimension of the attractor
is between .7084 ... and .7458...

10



4.2 Complex continued fractions

We consider the IFS on the ball {z € C: |z — 1/2| < 1/2} induced by the maps
Omn @ 2 m for m € N* and n € Z. For some information about the
geometry of the limit set of this system cf. [5]. Here we have that K = 4 and
f = 1. Moreover, we calculate the following estimate.

D — / / R*“¥'dedR
Im +ni+ 2| R>N—1J pe[—n/2,7/2]

|(msn)||>N
T(N —1)>2

27 — 2

Combining the upper estimate A < 1.9 from Theorem 6.6 in [5] with the numerical
results from table 2 on page 12 we conclude that the Hausdorff dimension of the
attractor is between 1.7267... and 1.9.

11



‘ N ‘ SFn ‘ ten ‘ resulting interval for A ‘

10 | 0.5753... | 0.6242... [0.5753...,1.0000. ..

100 | 0.6712... | 0.7069... 0.6712...,1.0000. ..

1000 | 0.6939... | 0.7249... 0.6939...,1.0000...

10000 | 0.7009... | 0.7300. .. 0.7009...,1.0000...

100000 | 0.7033... | 0.7316... 0.7033...,0.9671. ..

1000000 | 0.7042... | 0.7322... 0.7042...,0.8217. ..

10000000 | 0.7046. .. | 0.7324. .. 0.7046. .. ,0.7669. ..

1000 | 0.7028... | 0.7164. .. 0.7028...,1.0000. ..

2000 | 0.7055... | 0.7189... 0.7055...,1.0000. ..

3000 | 0.7068... | 0.7199... 0.7068. ..,1.0000. ..

4000 | 0.7075... | 0.7206... 0.7075...,1.0000. ..

5000 | 0.7080... | 0.7210... 0.7080. ..,1.0000. ..

[N I N I T G e e e e e S Y WS | s

|

[ |
[ |
[ |
[ |
P
100000000 | 0.7047... | 0.7324. .. [0.7047...,0.7458. . .|
[ |
[ |
[ |
| |
[ |
[ |

6000 | 0.7084... | 0.7213... 0.7084...,1.0000. ..

Table 1: Numerical results for even continued fractions

(n [ N|  sea]  ten]
2110 | 1.6752... >2
2120 | 1.7013... >2
2130 | 1.7082... >2
2140 | 1.7112... >2
2150 | 1.7128... >2
31 11]0.9061... | 1.2350...
31 2|1.3996... | 1.7435. ..
3 3| 1.5499... | 1.8728...
3| 4| 1.6171... | 1.9239...
3| 5| 1.6537... | 1.9498...
31 6] 1.6762... | 1.9647...
31 71]1.6912... | 1.9740...
31 81| 1.7017... | 1.9803...
31 9| 1.7095... | 1.9847...
3|10 | 1.7154... | 1.9880...
3|11 | 1.7200... | 1.9904...
312 | 1.7237... | 1.9923. ..
31 13| 1.7267... | 1.9938...

Table 2: Numerical results for complex continued fractions

12
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