POROSITY IN CONFORMAL INFINITE ITERATED FUNCTION
SYSTEMS

MARIUSZ URBANSKI

ABSTRACT. In this paper we deal with the problem of porosity of limit sets of conformal
(infinite) iterated function systems. We provide a necessary and sufficient condition for the
limit sets of these systems to be porous. We pay special attention to the systems generated
by continued fractions with restricted entries and we give a complete description of the
subsets I of positive integers such that the set J; of all numbers whose continued fraction
expansion entries are contained in [, is porous. We then study such porous sets in greater
detail examining their Hausdorff dimensions, Hausdorff measures, packing measures and other
geometric characteristics. We also show that the limit set generated by the complex continued
fraction algorithm is not porous, the limit sets of all plane parabolic iterated function systems
are porous, and of all real parabolic iterated function systems are not porous. We provide a
very effective necessary and sufficient condition for the limit set of a finite conformal iterated
function system to be porous.

1. INTRODUCTION, PRELIMINARIES

A bounded subset X of a Euclidean space is said to be porous if there exists a positive

constant ¢ > 0 such that each open ball B centered at a point of X and of an arbitrary radius
0 < r <1 contains an open ball of radius ¢r disjoint from X. If only balls B centered at a
fixed point x € X are discussed, X is called porous at x.
Obviously the following, formally weaker, requirement also defines porosity. There exist
positive constant ¢,k > 0 such that each open ball B centered at a point of X and of an
arbitrary radius 0 < xr <1 contains an open ball of radius ¢r disjoint from X. Fixing &, ¢ is
called a porosity constant of X.

It is easy to see that each porous set has the box counting dimension lesser than the dimension
of the Euclidean space it is contained in. Further relations between porosity and dimensions
can be found for example in [M2] and [Sa]. A much weaker property, called also porosity, was
introduced in [De]. For a survey concerning this concept see [Za]. In this paper we will only
be interested in the notion of porosity described in the first paragraph of this section.

We deal with the problem of porosity of limit sets of conformal (infinite) iterated function
systems. We provide a necessary and sufficient condition for the limit sets of these systems
to be porous. We pay special attention to the systems generated by continued fractions with
restricted entries. Let us describe the setting of conformal (infinite) iterated function systems
introduced in [MU1]. Let [ be a countable index set with at least two elements and let
S ={¢;: X = X : 1 € I} be a collection of injective contractions from a compact metric

Supported in part by the NSF Grant DMS 9801583.
1



2 MARIUSZ URBANSKI

space X into X for which there exists 0 < s < 1 such that p(¢;(x), di(y)) < sp(x,y) for every
1 € I and for every pair of points x,y € X. Thus, the system 5 is uniformly contractive. Any
such collection S of contractions is called an iterated function system. We are particularly
interested in the properties of the limit set defined by such a system. We can define this set
as the image of the coding space under a coding map as follows. Let I™ denote the space of
words of length n, I the space of infinite sequences of symbols in I, I* = |J,,», " and for
wel,n>1let ¢, =y, 0¢y, 0 -0a,,. If wc I*UI*® and n > 1 does not exceed the
length of w, we denote by w|, the word wyws ...w,. Since given w € [°°, the diameters of the
compact sets ¢y, (X), n > 1, converge to zero and since they form a decreasing family, the
set

) 0(X)

is a singleton and therefore, denoting its only element by 7(w), defines the coding map = :
I — X. The main object of our interest will be the limit set

J=x(I7)= J [ dum(X),
wel>® n=1
Observe that J satisfies the natural invariance equality, J = U;e; ¢:(J). Notice that if [ is
finite, then J is compact and this property fails for infinite systems.

An iterated function system S = {¢; : X — X : ¢ € [} is said to satisfy the Open Set
Condition if there exists a nonempty open set /' C X (in the topology of X) such that
&i(U) C U for every i € I and ¢;(U) N@;(U) = 0 for every pair ¢,5 € I, i # j. (We do not

exclude ¢;(U) N ¢;(U) £ 0.)

An iterated function system S satisfying the Open Set Condition is said to be conformal if
X C IR? for some d > 1 and the following conditions are satisfied.
la: U = Intga(X).
1b: There exists an open connected set V such that X C V C IR? such that all maps ¢;,
i € I, extend to C'' conformal diffeomorphisms of V into V. (Note that for d = 1 this
just means that all the maps ¢;, i1, are C'!' monotone diffeomorphisms, for d > 2 the
words C'! conformal mean holomorphic or antiholomorphic, and for d > 2 the maps ¢;,
i1l are Mobius transformations. The proof of the last statement can be found in [BP]
for example, where it is called Liouville’s theorem.)
lc: There exist v,/ > 0 such that for every 2 € X C IR? there exists an open cone
Con(z,v,l) C Int(X) with vertex x, central angle of Lebesgue measure v, and altitude
[.
1d: Bounded Distortion Property(BDP). There exists K > 1 such that

6L (y)] < Ko, (x)]

for every w € I* and every pair of points x,y € V, where |¢/ (2)| means the norm of the
derivative.
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Let us now collect some geometric consequences of (BDP). We have for all words w € I* and
all convex subsets C' of V

diam(¢.,(C')) < [|¢,||diam(C) (1.1)
and
diam(¢,(V)) < DI|6L ], (1.2)
where the norm || || is the supremum norm taken over V and D > 1 is a constant depending
only on V. Moreover,
diam(¢.,(X)) = D[ | (1.3)

and

Gu(B(z,)) D B(¢u(2), K4, [|r) (1.4)
for every € X, every 0 < r < dist(X,0V), and every word w € [*.

We want to end this section with a short description of the content of this paper. In Section 2
we provide a necessary and sufficient condition for the limit sets of conformal systems to be
porous and we provide a very effective necessary and sufficient condition for the limit set of
a finite conformal system to be porous.

In Section 3 we consider an arbitrary subset [ of positive integers IV and we investigate the
set J; consisting of all those x € (0,1) that in the continued fraction expansion

T =

each partial denominator z;,7 > 1, isin /. In Theorem 3.3 an effective necessary and sufficient
condition for the set J; to be porous is provided. This actually enables us to call I porous
if the corresponding limit set J; is porous. We examine some special subsets of IV as prime
numbers, arithmetic progressions, geometric progressions, powers with a fixed exponent from
the point of view of porosity.

In Section 4 we prove that the limit set generated by the complex continued fraction algorithm
18, not porous.

The Section 5 is devoted to study parabolic iterated function systems. We show that the limit
set of a plane parabolic system is porous, including the residual set of Apollonian packing,
whereas the limit sets of real parabolic systems are not porous.

2. GENERAL RESULTS

We keep the notation and terminology from the previous section and we start this section
with the following result whose natural place is in [MUI1].

Theorem 2.1. If S = {¢;}icr is a conformal i.f.s. and IntX \ J # 0, then J C IR? is a

nowhere-dense set.
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Proof. Consider an arbitrary point @ € J and a radius r > 0. By the definition of
the limit set there exists w € [* such that ¢,(X) C B(x,r). By the Open Set Condition
¢, (Int X \ J) C B(z,r) is then an open set disjoint from .J and we are done. O

The main result of this section is the following.
Theorem 2.2. Let S = {¢;}iner be a conformal i.f.s.. Then the following three conditions
are equivalent

(a): The limit set J is porous.
(b): c>0)IE>0)V(ee ) V(0<r <)
if r > diam(¢;(X)) then there exists x; € B(¢;(X),r) N X such that

B(z;,er)ynJ = 0.
(c): Ick>1)Ae>0)FHE>0)FB>1)Vie V(0 <r <)
if r > pdiam(¢i( X)) then there exists x; € B(¢i(X),kr) N X such that
B(z;,er)ynJ = 0.

Proof. 1t is obvious that (a) = (b) = (¢). So, suppose that condition (c) is satisfied.
Decreasing ¢ > 0 if necessary, we may assume that it holds with ¢ > 2K D?*3. Fix an
arbitrary z = m(w) € J, w € I*°, and a positive radius r < 2K D?3. Let n > 1 be the least
integer such that

Suppose first that n = 1. Then r > fdiam(¢,, (X)) and, as r < 2K D?/3, we conclude from
(c) that B(zy,,cr)NJ = 0. Since also B(z,,,cr) C B(x,er + kr) C B(z, (¢ + )r), we are
done in this case with the porosity constant < ¢/2. So, suppose in turn that n > 2. Then

7

diam(g,, (X)) < 753 5 and diam(6y), (X)) 2 550 (2.1)
Therefore by (1.2) and (1d)
diam(g, (X)) < DI|d.|| < D[x’% < DKl I Diam(puy, (X))
< DPKe(BE D), 17 = Bl I
Hence,
ol |7 > Adiam(6,, (X)), (22)

Also by (2.1)
el |7 < Drdiam™ (4., (X)) < 2KD°3. (2.3)
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Hence, condition (c) is applicable with i = w, and the radius r[[¢/,  [I7'. Using (2.2) we
get

Sutr (B (2w erllély, M) € bupy (B, (X)erlley, |17+ mrllély, II7Y) €
C Gupy (B(m (0" (w)), 870100, 117+ erlldly, 117+ wrllely, 7))
C Bz, (2+ k)r).

Since B(an,cqubwln i 1) may not be contained in X, we need the following reasoning

to conclude the proof. In view of (2.3) and the Cone Condition, we get for some y €
Con(an,oz,min{c,l(ZKD3ﬁ) 1}r||¢w|n 1|| 1),
Gt (B (2 er||6y,alI™)) D
S ¢upy (Con (20, a,min{er||e, [[7,1}))
D Gup,_y (Con iy, a,min{e, (2K D*8) " }rll¢l,, 1171))
D butos (B(y, ¢ minfe, 12K D*8)"}rl|ély,_, [171))
D B(¢w|n_1(y),K_ d min{e, (2K D*3)™" }r),

where 0 < ¢’ <1 is so small that each central cone Con(z, o, k) contains an open ball of radius
k. Since Con(an,oz min{er|[¢), [~ l,l}) C Int(X) and since J N B(an,cngbwln i 1) =
(), we conclude that JﬁB(qbwh_l( ), K= min{c, (2K D*3)~ }T) = (). The proof is complete.
0

Theorem 2.3. There exists a conformal system S = {¢;}ie; whose limil set is not porous
but the limit set of each proper subsystem of S is porous.

Proof. Let X =[0,1], let I = {1,2,...} and let ¢, : [0,1] — [0, 1] be given by the formula
z+1

sz(w) - 22 9

Then S = {¢;}ics is a conformal iterated function system and its limit set is equal to [0, 1].
So, it is not porous (as a subset of IR). If we now remove at least one element j from I, then

1> 1.

each set ¢ (Uk# qbk(X)) consists of two intervals and the gap between them has the length

277|¢;(X)|. Since, in addition % 1/2, it is not difficult to check that the condition (b)

of Theorem 2.2 is satisfied for the system [\ {j} (the balls B(x;,cr) disjoint from J; \ {j}
must be contained in in gaps of the sets ¢, (Uk# qbk(X)) The proof is complete. O

This Theorem shows that one cannot replace the set [ by any of its cofinite subsystems (i.e.
those whose complements in [ are finite) in Theorem 2.2. As an immediate consequence of
Theorem 2.2 we get however the following.
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Theorem 2.4. If I is infinite and there exists a cofinite subset F' of I such that one of the
following conditions is satisfied, then the limit set J; is porous.
(a): e>0)FE>0)Vie I\ F)VO0<r <)
if r > diam(¢;(X)) then there exists x; € B(¢;(X),r) N X such that

B(z;,er)ynJ = 0.

(b): (k> 1)Ic>0)I(E>0)I(B>NV(Ee I\ F)V0<r <)
if r > pdiam(¢i( X)) then there exists x; € B(¢i(X),kr) N X such that

B(z;,er)ynJ = 0.

(Infinity of [ was needed to have some holes (no matter how small for the set F'). The following
example shows that the limit set of a finite system does not have to be porous. Indeed, take
I = 1,2 and consider two contractions {¢; : i = 1,2} defined on the set X = [0, 1] by the
formulas

x x 1
d1(z) = 5 and a(z) = 5 + 5.

Then S = {¢; : ¢ = 1,2} is a finite conformal iterated function system and its limit, the
interval [0, 1] is not porous as a subset of IR. As an immediate consequence of Theorem 2.2
we get however the following.

Theorem 2.5. If S = {¢;}icr is a finite conformal i.f.s. and IntX \ J # (0, then the limit set

Jr is porous.

Note that this theorem is actually obvious since one can drag the "hole” in IntX to any scale
via the maps ¢, w € I*, (In an infinite case one does not hav to fill in in this way all scales).

3. REAL CONTINUED FRACTIONS

Following [MUZ2] let us consider an infinite subset [ of IV and then the iterated function
system {&; }ier, where X =[0,1], V = (—1/2,2) and for every i € I,

1
dilx) = 4+

The limit set J; of this iterated function system is the set of those numbers in [0, 1] whose all
continued fraction expansion entries are in /. Following [MU2] we call a subset F C I cluster
(or segment, subinterval of I) if £ = [min(F),sup(E)]. By |E|, the length of the cluster F,
we mean its cardinality, e.i. sup(F) — min(£) + 1. Our main goal in this section is to prove
Theorem 3.3 and, as an intermediate step, we prove the following first characterization of the
sets [ whose limit sets J; are porous. Already this characterization demonstrates that infinite
subsets of IN rather reluctantly give rise to porous limit sets.

Theorem 3.1. Let I be an infinite subset of IN. Then the following three conditions (a), (b)
and (c) are equivalent.

(a): The limit set Jy is porous.

(b): 30 <o< )Vie V(i< qg<i(i+1))

etther




POROSITY IN CONFORMAL INFINITE ITERATED FUNCTION SYSTEMS
(1): there exist k.l > 1 such that

Z’ngM

qk
g—(+1) T q—ok
and [k+ 1,1 -1 C IN\ [
or
(2): there exist k.l > 1 such that
T i<i k< al
g+ q+ ol
and [k+ 1,1 —1] C IN\ I.
(¢): IA>1)I0<o<)Vie V(A <qg< A ti(i+1))
either
(1): there exist k.l > 1 such that
i< p < 4t qk
T Tq—(+1) T q-ok
and [k+ 1,1 -1 C IN\ [
or

(2): there exist k.l > 1 such that

qi
q+1

<i<ik< 2

q+ ol

and [k+ 1,1 —1] C IN\ I.

Proof. (a) = (b)
i € I, and ¢ € [i,2

2
1 (-9t 1
(i+1 q ’ g +_

|—=

. Since J; is porous, condition (b) of Theorem 2.2 is satisfied. Fix
(1 + 1)]. By condition (b) of Theorem 2.2 there exists a point x; €
q

_c)—l) such that B (gci7 ﬂl_—qCLl) N7 = 0. Since 1/i € J, either

B (xi,w) C (1/i,00) or B (xi,w) C (—o0,1/1).

Suppose that the first case holds. Let k& > 1 be the largest integer such that 1/k > x;+ %W

(such an integer exists assuming that ¢ > 0 is small enough) and let [ > 2 be the least integer
such that 1/i < a; — % Then { <iand [k+ 1,0 —1] C IN\ I. Since

%Sxi_c(l—c)_1 1

1—e)t (1l =)t 1 1
S_.Jr( )7t dl—o) _L,r
q i q q tq
we get
1
I>—— =1
7‘|‘5 g+t
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. 2¢(1—c)~?
Since + — + > A—qCL, we get

L < 1 B ql
-1y 2c(l—¢)~t q+ 2c(1 _ c)—ll
¢ q

and we are done in this case. Suppose in turn that
1 — -1
B (:1; Q) C (=00, 1/i).
q

Let, similarly as above, & > 1 be the largest integer such that 1/k > z; +
[ > 1 the least integer such that

% and let

-t
lgmax{()’xi_u}
! q
(we allow | = 00). Then k> 7 and [+ 1,{ —1] C IV \ I. Since
lZl’rl-c(l_c)_lZ.l _(1—0)_1+c(1—c)_1
k q 1+1 q q
o1
| q7
we get
oo alitl)
Ta—(i+1)

It max{(),:z;i — #} = 0, then [ = oo and we are done. So, suppose that x; > %

By the definition of [, 1/l < x; — gl_—chl and therefore % — % > EI—ZCE Hence

[ > ak
T qg—2c(l —e)k
The proof of the implication (a) = (b) is thus complete.
The implication (b) = (¢) is obvious. So suppose that condition (c) is satisfied with some
A> 1 and some 0 < o < 1. Set

B = max{2)\, 144/c}, £ =37 (A +1)7?

and consider arbitrary ¢ € [ and ﬁ <r < & Suppose first that
Case A: 0 <r < % Consider the least ¢ > 1 such that 1/¢ < r. Then ¢ > r=! > Ai and,

since g > 2,

1 2
¢ = q_Ll(q —<2-< Ei(i +1) < AN+ ).
Hence, it follows from condition (c¢) that there exist & and [ produced either by case (1) or
case (2) of this condition. Suppose first that case (1) holds. Put

gk 1(1 1) 1(1 1)
b= = D) e andri=(—— ).
[q—ak]’x 2 w1 Tg) €0 and =5 e =3
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Then B(x;,r;) = (1 1 ), and since [k + 1,/ —1] C IN\ 1,

b k1
B(x,r)NJ =10 (3.1)
Also
.1 _l< .1 _q—ak:1—|—0<2r‘
14+ 1 b~ 141 qk qg
Since in addition klﬁ < H_Ll, we conclude that
v € Bei([0,1]),2r). (3.2)
In order to complete this case we need some auxiliary estimates. First, as § > 12/0,
L L r_ e (3.3)
kk+1) i+ -8 -12" '
and then, as b+ 1 > qfik >k,
1 2 2 4 o
< << — < =7 3.4
bb+1) ~ b+ 12 "k~ k(k+1) — 3 (3:4)

Using now the definition of ¢ along with (3.3) and (3.4), we get the following last estimate
we need in this case

1 1 (1 1 ) 1 1 1 g—0ck o o
———= |- — — > ——— — —r — —r
E+1 b B b+1 E(k+1) bb+1) — k qk 12 3

g—1 o o o o o o o
= — ——r—=r>—r—-—r——_r=-—r

¢ q—1 12 3 =2 12 3 12"
)

Combining this, inequalities (3.2) and (3.1), we see that in this case condition (c¢) of Theo-
rem 2.2 is satisfied with the constant ¢ = 2.
Suppose now that the case (2) holds. Put

_ |4 11 ._l<l+l)€[01] d _1<1 l)
“= q+ ol 7:]52_2 a | ’ an TZ_Z a 1)

Then B(x;,r;) = (1/l,1/a) and, since [k + 1,1 — 1] C IN \ I,
B(l‘i, Ti) nJ = @ (35)

Also
1 1<q—|—al l_qi—l—ail—ql<li—l—lq—ail—ql_(1—U)il_1—ail
B ' qil gl g

<Tr.

a i ql l qil
Since in addition 1/l > 1/i, we deduce that

v € B(ei([0,1]),7). (3.6)



10 MARIUSZ URBANSKI
In order to complete this case we also need some auxiliary estimate.

l q—l—alzl 0<i—|—q
a

1 1
S——+or=—-+~-+or
ql { q qt qg 1

1 1 3
< (1 - < (1 A1) < =
<( —I-a)r—l-l._(( + o) +)i<i

<

and therefore, as 3 > l;ﬁ,

Hence
1 1 1 1 1 g+ol 1 o o o o o

-_——_= — — - — ————r=— — -7 > —r — —r =

o
a | a—1 1 ala—1) = 4l [ 4 g 4 — 2 4 4

and we are done in this case too.
Suppose finally that we have
Case B: r > % Consider then the least j € [ such that % < 1 4. Then j < i and suppose

that j <4/r = 271 ((4/\);—17’) Since also

..ﬁ <£<ﬁ<l+r)2<ﬁ(()\—l-l)r)2<r

JjU+1) T 2T\ - -
the Case A is applicable with j, the element of I, and the radius ;5. Then

B xj—l‘+‘l—l <y iy
il gl i i T A g+ T2 T
which implies that
v; € B(4:((0,1]).3r).
Also
xz; €[0,1] and B (l‘j, 92%\7“) nJ=40.

So, we are done the constant ¢ < Z5. Thus we can assume that j > 4/r. Let m > 1 the

largest integer such that # > % + 7. Then, by the definition of 7 and m

1 1
- — | NJ= 3.7
[j,mH] 9 (3.7)
and
1 1 1 1 1 r 1 r 1 roor r
m—+1 37" 2m 3~ 20 2 32 32 4 4
Set



POROSITY IN CONFORMAL INFINITE ITERATED FUNCTION SYSTEMS 11
Then B(x;,r/8) C[1/7, mL_H] and therefore by (3.7)
Bxi,r/8)nJ =0. (3.8)

Moreover a; > 1/7 > 1/t and z; < mL_H < ++r. In particular z; € B(qbi([(), 1]),r). Combining
this and (3.8), we conclude the Case B, and consequently the entire proof of Theorem 3.1. O

Our main aim in this section is to prove Theorem 3.3 which provides a very effective condition
for an infinite subset [ of IN to generate a porous limit set J;. In order to make the proof
more readible we demonstrate first the following lemma which in fact is a part of the proof

of Theorem 3.3.

Lemma 3.2. Suppose that [ C IN is an infinite subset of IN such that the limit set is porous.
Then there exist 0 < 6 <1 and & > 0 such that for everyi € I and every x < p <1i/5 either
the interval [t — p,i] or [1,1 4 p] contains a cluster of IN'\ I of length > Op.

Proof. We have for every 1 > 1,

di(i +1) A +1) 4 4
4f—@+1)24p_@+1)_§“+4)2§1 (3.9)

and for every 1 > 24,

G+ DA+ B
P E B Py R (3.10)

In addition, for every 7 > 1 and every ¢ > 4(j — 1)

(¢+1)j a4 |_ J? j?

- — | = . =~ <

g+1—=j q—j| (¢+1=J)g—J) = 3j-3)

Since J is a porous set, condition (b) of Theorem 3.1 is satisfied. Let 0 < o < 1 be the
constant produced there. Set

=1/9<1 (3.11)

g

T 1607
Consider an arbitrary ¢ € [. Take then © < p < /5. Then ¢ > 5z > 5-160 > 24. Consider
among the numbers

X

u(i 4+ 1)
u—(1+1)
the largest element < 4 £. Such an element exists by (3.9) and (3.10) since p/2 > 2/2 > 6.
Denote the corresponding value of u by ¢. Let us now distinguish two cases according two

Theorem 3.1(b).

Case A: The Case (1) of Theorem 3.1(b) holds for our ¢. Since i+p—(k+1) > (i+p)— (z + %) =
P—12>1%8ifl—12>1+p, wethen have [k + 1,/ —1] D [k + 1,7 + p] and we conclude from
part (1) of Theorem 3.1(b) that the interval [z, 7+ p] contains a cluster of IN \ I of length p/4.
Thus, it is so far enough to take § = 1/4. So suppose that

[—1<i+p—1 (3.12)

c A <u<47NE+1)
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According to part (1) of Theorem 3.1(b) we have

S LR S S IS G SR L (3.13)
qg— ok q— ok q— ok qg— ok
Since i 4+ & < 117 < 24, it follows from the definition of ¢ and (3.11) that
+ 1
Pop_y it (3.14)
4 =2 g—(+1)
Our aim now is to find a universal constant n > 0 such that
oki g1 +1) .
> I 3.15
2w () )

This inequality can be rewritten in equivalent forms as follows.
okqi —oki(i 4+ 1) > n(qz(i +1)—okq(i+1) — iq> + oqgki + i(t+1)g—oki(i + 1))
or
ckqi > n(q2 —oqgk(i+ 1)+ ogki+i(i + 1)qg — oki(i + 1)) + oki(i+1).
Thus, (3.15) will be satisfied if ckqgi > n(q2 + ogki +i(i + 1)q) + oki(i+1). But

n(q2 + ogki +i(i + 1)q) +oki(i+1) < n(q4_1i(i +1)+i(i + 1)q)
= cki27'q < (27" + 2)qik + 27 o qha.
So, (3.15) will be satisfied if oqki > 3nqki + 27 ogki or equivalently if 27'o > 3. Therefore
(3.15) is satisfied provided that n = ¢/6. Combining now (3.13)-(3.15), we obtain
o p o
[—1—(E+1)>—-=—=2> —
(bt D) 2% =22 5P
where the last equality we wrote since p > > 2. Since by (3.12), [k+1,1—1] C [¢,i+p] and
by part (1) of Theorem 3.1(b), [k + 1,1 — 1] C IN \ I, we see that [¢,7 + p] contains a cluster
of IN'\ I of length Zp. Thus, up to now, it is enough to take § < min{1/4,0/48} = /48.
Case B: The Case (2) of Theorem 3.1(b) holds for our ¢. Put
o ati+l
q—(1+1)
Multiplying this inequality by ¢ — (i 4+ 1), we get qi + ¢ — qi +1* +1 = gs — si — s and, since
by (3.14) s > p/4 > x/4 > 1, we therefore get

=s(qg+1)—2st —1—s > s(q+1) — 4si. (3.16)

Z'2
Hence, using (3.14) again,
P2 451 4s1 s P

- > 5 — - > 8— == > —.
g+t~ qg+1 5 5 — 20
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Therefore

q1 02 ¥

i—l—q:i—l—q 20°

7 —

(3.17)

On the other hand, it follows from the first part of (3.16) and the definition of ¢ that
. 9
. . qr ? p 3
—(-1)<i- 1= 1< 1<=4+1< —p.
! ( )_Z i—l—q+ i—l—q+ S8+ _2+ _4p

Hence, if k+ 1 <i—p (so, we have [k + 1,l — 1] D [i — p,{ — 1]), we deduce from part (2) of
Theorem 3.1(b) that

. . . 3 1
#((IN\DN[i—pi+pl) > #([i—pl—1]) <p- P=P
and we are done in this case. So, suppose that
kE4+1>1—p. (3.18)
In view of part (2) of Theorem 3.1(b) we have
] .
l—k>l——L —f1-—L > 2 (-1 ) (3.19)
q+ ol q+ ol 1+ q q+ ol
Our aim now is to find a universal constant o > 0 such that
. 5
o 1) s (3.20)
1+ q q+ ol 1+ q
or equivalently ¢ ( — ﬁ) > ai. This inequality can be in turn equivalently rewritten in the
form ¢* + ogl — ¢* > aqi + acil, oql > a(qi + oil) and 0 > « (% + Ué). But
. S . . )
Lol <™yl i)l <1t (140)- <2
L a7 ¢ q q 4
Thus, (3.20) will be satisfied with a = ¢/3. Combining now (3.19), (3.20) and (3.17), we get
o p o
[—1—(k+D)=l-k—-2>—- - —=2>—
(k+1) =220 "= 8o

where the last inequality we could write since p > z = 2. Since, by (3.18), [k + 1, — 1] C
[t — p,¢] and, by part (2) of Theorem 3.1(b), [k + 1,1 —1] C IN \ I, we conclude that [i — p, ]
contains a cluster of IN \ I of length &p. Thus the proof is complete by setting § = ¢/80. [

Theorem 3.3. Let [ be at least two point subset of the set of positive integers IN. Then the
following two conditions are equivalent
(a): The corresponding limit set Jy (i.e. all the real numbers whose all continued fraction
expansion entries belong to 1) is porous.
(b): There exist 0 < 0 <1 and x > 0 such that for every i € I and every x < p < i, the
interval [t — p,i + p| contains a cluster of IN \ I of length Op.
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Proof. The implication (a)=-(b) follows immediately from Lemma 3.2, perhaps with a
smaller constant @ since we now require only p < ¢ and not p < ¢/3. In order to prove the
opposite implication suppose that condition (b) of our lemma is satisfied. We shall then prove
condition (c) of Theorem 3.1 holds with A = max{4,2z}. So, consider an arbitrary integer ¢
such that 4¢ < ¢ <47'(i 4+ 1). Set n = 6/2. Since q% <7 and since

qi 2 Ai? i A
5=

7 — .- - A= >
g+t g+ " ie+1) i+1

7

either the interval { v ,z} contains a cluster of IN \ [ of length > 77— or the interval

1,141 — q%} contains a cluster of IV \ I of length > nm. Suppose first that we have

Case A: The interval [ 2 } contains a cluster [k,l] C IN'\ I of length > 77% Then £ <1,
[>k> m and [ —k > nT This inequality means that £ <1 — 77— and in order to finish
the proof in this case, it suffices to find a universal constant o > 0 such that

2
<
qg+1 q+ ol
This equivalently means that l¢* + oql* + qil + oill* — ngi* — noli* < ¢*l + qil and ol*(g+1) <
ni*(q + ol). But al*(q + 1) < 20l%q < 20i*q < 201*(q + ol). So, we are done in this case if
only o < n/2. Consider now
Case B: The interval {z 21 — i} contains a cluster of IV \ I of length > 77(1% First notice

7 —

+1
that
o; qu q(i+ 1) 20%q — 2i(i + 1)qg — 2i*(i + 1) — ¢ - 200(1 + 1) + ¢* <0
g+i q—(i+1) (¢+i)(qg—(1+1)) (¢+i)(qg— (1 +1))
Hence, 21 — q% < qq—(zj——l—ll)) and consequently
i<k<i< ditD
T T =0+
We also know that [ — & > n-*=. Thus [ > k + UT, and in order to finish the proof in this
case, it suffices to find a unlversal o > 0 so small that
72 qk
k > .
+ nq +1 7 g— ok

This equivalently means that k¢®> + kiq — oqk® + ngi* — noki* > kq¢* 4+ qki and ngi* >
o(qk® + 1k* + nki*). But k < 1 < 21 — q% < 2i, and therefore o(gk* + ik? + nki?) <
o(4qi* + 4° 4+ 2°) < o(4qi* + 4qi* + 2gi*) = 100qi*. So, we are done in this case if only

o < n/10. The proof is complete.

O

We call two subsets of IN strongly equivalent if their symmetric difference is finite. We call
a subset H of [ cofinite if the difference I\ H is finite. As an immediate consequence of the



POROSITY IN CONFORMAL INFINITE ITERATED FUNCTION SYSTEMS 15

characterization of porosity of limit sets of continued fractions provided by Theorem 3.3, we
get the following.

Theorem 3.4. Let I be an infinite subset of positive integers. Then the following conditions
are equivalent.

(a): The limit set Jp is porous for every subset I of I.

(b): The limit set J; is porous.

(c): There exists a cofinite subsystem F' of I such that the limit set Jp is porous.
(d): The limit set Jg is porous for every set F' C IN strongly equivalent with I.

Given I C IN, we have defined in [MU2] pD(1), the upper density dimension of I, as follows.
For each t > 0,n € IN, set

ﬁt(]):sup{w:k<l,k,l€[} :sup{w:k<l}.
Notice that
inf{t:p,(I) < oo} =sup{t:p,(l)>0.}

This common value was called the upper density dimension of I and will be denoted by pD([I).
Theorem 3.5. [f I C IN and the limit set J; is porous, then pD(I) < 1.

Proof. Let = and # be taken according to Theorem 3.3. Fix 1 < k < <3k, [ >k + x.
We shall construct by induction for every 0 < n < ¢ (¢ will be determined in the end of the
inductive procedure) a sequence R, of at most 2* mutually disjoint segments of length < «
contained in the interval [k,{] and a nested sequence S, of at most 2"~! mutually disjoint
segments of length > = contained in [k, [] such that the union of all segments from the families

R, and S5, covers IN[k,[] and each element of S,, has the length bounded above by (1 — g)n '
multiplied by the length of the only element of S, _; containing it and bounded from below
by (2/9)*7'2(I — k). And indeed, as the initial step of our induction we declare B, = () and
S1 = [k,l]. Now suppose that n > 0 and that the sequences R, and S, have been already
defined. If S, = (), we set ¢ = n and the construction terminates. Otherwise, let us look
at all the segments Iy, I5,... , [,, u < 2"7!, forming the family S,. Fix 1 < j < u. If the
segment K; centered at the same point as [; but of length |I;]/3 is contained in IN \ I, we
look at the two segments forming the difference [; \ K. If the length of each of them is less
than z, we take these to intervals to the family R,.;. If however their length is > z, we
take these two intervals to the new family S,41. So, suppose that K; contains an element
y € I. Since |K;|/3 < 1-(l—k+1) < il <k <y, by Theorem 3.3 there exists an interval
L; C [y — K|,y + %|Kj|} C I; such that |L;| > ¢|K;| = ¢|I;] and L; N [ = (. We now look
at the two intervals forming the difference I; \ L;. Each of them of length < x is declared to
belong to the family R, i and each of them of length > z is declared to belong to the family
Sn_|_1. Note that #Sn_|_1 S Q#Sn S 2- 2n—1 == 2717 #Rn+1 S #Rn + Q#Sn—l—l S 2" + 2" = 2n—l—17
and the length of each element of the family 5,4, is bounded above by (1 — g) multiplied by
the length of the element of of the family S, containing it. The lower bound (2/9)"~'2(l — k)
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on the length of each element of the family S,, also follows immediately from the construction.
The inductive construction is complete.

Consider now a pair (k,l) with the same conditions as above, i.e. 1 < k <[ < 3k and
[ >k + x. Define p > 1 to be the largest integer such that (2/9)P~'2(l — k) > z. It follows
from the construction of sequences R, and 5, that ¢ > p. Since #U .5, < (1 — g)p ' (I —k)
and since #J R, < 2Pz, using the definition of p, we obtain

#In < #US+#UR < (1-7) -0+

0 2P IR

log(2/9 log(2/9
<(1-2) (= I—k)y+2(2
—( 9) (9) (I=k)+ (9) !

0\ (o L . s
< v + . _1) og(2/9 . (_ . _1) og(2/9
< (1 9) (2(5 k) (1= 1)+ 20 (20— k)

1°g(1_g) loe(1_8 1052

_ (1 B g) (g) log(2/9) (l _ k)l_ 1§£(2/:)) 4o (2)1 (l _ k)%ii_@

Putting now

2]
log(l—g)

a_(,_° (g)WJer(g)ﬁ%?—a)
b 9)\2 2
and
log (1 —¢
t = max log 2 , 1= g( 9) < 1,
oe(972)" "~ Toa(2/9)
we get

#(I N[k < Bi(1— k). (3.21)
If1<k<l<k+4x, then
#FUN[)<I—k=(U-k)"T1 -k <27 - k) (3.22)

Writing By = max{ By, x'~'}, combining (3.21) and (3.22), for every 0 < m < n, we get the
following

— n—1 B B
#(IN[3",3"]) Z A(IN[F, 3] <B, Y 39 = (3 —3™) < (3" = 3",
j=m jam o 1 -1 (303

where we could write the last inequality since b° — a® < (b — a)® for all b > a > 0 and all
0<s< 1

Consider now two arbitrary integers 1 < k < [ such that [ > 3k. Let m > 0 be the largest
integer such that 3™ < k and let n > 0 be the least integer such that 3" > [. In view of (3.23)
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we then have

m n B2 n m\t B2 1 ! t B2 t
FUO D) S FUAB"3) < 5223 =37 < o2 (3= 5k) <522 — k)

Thus p,(I) < By max{l, %} and consequently pD(I) <t < 1. The proof is complete. [

Let H* and P denote respectively the ¢-dimensional Hausdorfl and packing measures. See for
instance [Ma] for their definitions and further properties. Let h = hy = HD(J;) denote the
Hausdorft dimension of the limit set J;. As an immediate consequence of Theorem 3.5 and
Theorem 4.10 form [MU2] we get the following.

Corollary 3.6. If I C IN and the limit set J; is porous, then the strong equivalence class of
I contains an element F with H"F (Jg) > 0. More precisely, there exists a number ¢ > 1 such
that if F is strongly equivalent with [ and F' D ' U[l,q], then H"*(Jp) > 0.

Given I C IN let 8; be the number introduced in [MUI]. Its precise definition will not be
needed here. It immediately follows from Theorem 3.5 and Lemma 3.4 of [MU2] that if .J; is
porous, then §; < 1/2. Therefore, applying Theorem 5.4 of [MU2], we immediately get the
following.

Theorem 3.7. If I is an infinite subset of IN and the limit set Jr is porous, then there exvists
a number ¢ > 1 such that if I is strongly equivalent with I and F D [1,q], then P"F(Jp) = <.

In contrast to Corollary 3.6, Proposition 4.4 from [MU?2] says the following
Proposition 3.8. [fh = HD(J;) < 20, then H*(.J;) = 0.

We shall now provide an example of a porous set J; for which the hypothesis of Proposi-
tion prop3.8 is satisfied; in particular H*(J;) = 0. Recall from [MU2] that a subset I C IV
has strong density zero if

Z n~t < oo

nel
for all ¢t > 0. For other properties and equivalent definitions of sets with strong density zero
see Sections 2 and 3 in [MU2]. We begin with the following.

Theorem 3.9. There exists an infinite set I C IN which does not have strong densily zero
and the corresponding limit set Jr is porous.

Proof. We shall provide a concrete construction imitating the procedure of building the
middle-third Cantor set. We shall construct the set I by describing its intersections with
all the sets of the form [4",4"*1]. So, fix n > 0. We shall define by induction the families
Crg, 0 < k < p (p will be determined in the process of inductive construction) of finitely
many disjoint intervals of length between 1 and (1/3)¥3-4". The construction goes as follows.
We set C,, o = {[4™,4"t!]}. Suppose now that the family C, ; has been already defined and
let A be an arbitrary element of (), ;. If #A4; < 12, then Aj generates no members of
Crit1. Otherwise, we remove from Ay an interval By = [ay, bg] of length E(#Ay/3) such
that [ar — 1,by + 1] covers the interval of length #A,/3 and which is centered at the same
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point as Ag. We then declare the two intervals forming the difference Ay \ By as members of
the family €, x41. The inductive construction terminates at the first moment p when all the
segments in the family (', , have length < 12. We now define

N4 = Oy

For each n > 0, each k£ > 1 and each set A, € C, x, there exists exactly one element A, ;_4
such that A, C A, ;1. In the sequel A, ;_; will be called the parent of A, ; and A, ; a
child of A, ;_1.

We shall now show that I does not have strong density zero. Let i € I N[4", 4"*!] for some
n > 0 and let ¢ > 0 be the largest number such that 1 € A; € (), ,. Since by construction

(1/4)23 - 4™ < |A;| < 12, we get 47 > 4"! hence ¢ > n — 1. Thus #(Cnm_l) > gn-l

and since each segment of ), ,_; contains at least one element of I N [47,4"t] we get

#(I N [4",4"t]) > 271 Therefore

1 1 2n—1
(IN4" 4> =) —— = 0.

%kl 2 7%%# ])(4n+1)1/2 — 27%% omn
Thus I does not have strong density zero and we are only left to demonstrate that J; is porous.
So, consider 7 € [ and 49 < p < 4. There exists n > 0 such that 7 € [4",4"!]. Suppose
first that [¢ — p,7 + p] C [47,4"T!]. Since p > 49 > 12 and ¢ € I, there exists a least k > 0
such that 1 € A, C [t — p,t + p|, where A, is the only element of the family C,,  such that
i € A;p. Assume first that k = 0, i.e. that A;x = [4",4"T]. Then [i — p,7 + p] = [4",4"!].
So, p = %4” and, according to our construction, two intervals contained in [4", 4" %] at least
4" long, containing 4" and 4"t respectively, are disjoint from I. Therefore both intervals
[i —p,i] and [i,i+ p] contain a cluster of IV \ I at least 4" = 2p long. Thus we are done in this
case with § = 2/3. Assume now that k > 1 and let A, ;1 be the parent of A, ;. Then either
[t —p,i] C A1 or [i,i+p] C Air—1 (or both inclusions are true). In either case |A; ;_1| > p.

It also follows from the construction of the set [ that |A; x| > % —-1> %. Hence
|Ai k] > p/4. Tf |A; k] < 12, then p < 48 and this case is ruled out by the assumption that
p >49. Thus |A; x| > 12 and, according to our construction of the set I, there exist intervals
at least |A;x|/3 > p/12 long contained in |A,; ;| and disjoint from I. Since |A;x C [t — p, 1+ p]
and ¢ € [, each of these intervals is contained either in [¢ — p,i] or [i,7 + p]. Thus, we are
done so far with § = % So, suppose that p > %48 and that [¢ — p,7 + p| is not contained
in [47,4"*]. Then either 1 + p > 4" or i — p < 4". Suppose first that i + p > 4"+
Consider the subcase when 1 +p > 4"+ 4 1%. Since 47+ 4 1% < 4t 4 % < 4rtl o grtl
then [i,7 + p] D [4"T! 47+ 4 %], and by the construction of I, [4"T! 4n+1 4 12—6] NnIl=~7.
So, we are done with § = 1/16 in this case. We now keep on hold for a moment the case

P4 p < 47t iz and we consider the situation when 7+ —p < 4", If i —p < 4" — =, then

4" — o> qn — L > 47;;1 = 4" — 41 Hence [i — p,i] D [4" — £,4"] and, by the

167

construction of I, [4" — £.47]N [ = (). So, we are done with 0 = 1/16 in this case too. So, we

are left with the case when ¢ —|— p < 4"+ and mmultaneously 11— p > 4" which equivalently
means that {z — —p,@ + 16p} [47,47F1]. But since Ep > 1 e (% . 48) = 48, we may apply
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what we have already proved to find a cluster of length % . %p = % contained either in

i = Bp.i| A (IN\T) C[i—p.i] N (IN\ ) orin [iyi+ 2] A (IN\ 1) C[i.i+p]N(IN\ ). So,
we have checked that the assumptions of Theorem 3.3(b) are satisfied with = = % - 48 and
6 = 1/16. Thus, applying this theorem finishes the proof. O

Theorem 3.10. There exists an infinite set I C IN such that J; is porous and the assump-
tions of Proposition 3.8 are satisfied. In particular Hy(Jr) = 0.

Proof. Let F' be the set constructed in Theorem 3.9. By this theorem, F' does not have
strong density zero, and therefore, in view of Lemma 3.3 (g) from [MUZ2], 8p > 0. It conse-
quently follows from Theorem 3.23 of [MU1] that there exists a cofinite subset I of F' such that
hy < 207 = 20p. Thus, the assumptions of Proposition 3.8 are satisfied, and, in particular,

H"(J;) = 0. Since Jr is porous by Theorem 3.9, Jr is porous by Theorem 3.4. The proof is
finished. 0

We shall now examine from the point ov view of porosity some well-known infinite subsets of
positive integers. First notice that taking in Theorem 3.3(b), p = i, we get the following.

Proposition 3.11. If [ = {n,}32, is represented as an increasing to infinity sequence of
positive integers and the limit set Jr is porous, then

. NEt1
lim sup
k—o0 ny

(k+1)P
&P

> 1.

Since for every integer p > 1, limg_,, = 1, Proposition 3.11 implies immediately the

following.
Theorem 3.12. [fp > 1 is an integer and I, = {n?}°% , then the limit set J; is not porous.

As an immediate consequence of Proposition 3.11, we get also the following.

Theorem 3.13. [f [ = {ni}72, is an infinite subsequence of I with bounded gaps, i.e.
SUPgs1{nk+1 — Nkt < 00, then the limit set Jy is not porous.

Since, by Tchebyschev’s theorem, the upper density dimension of the set of prime numbers is
equal to 1, the following result is an immediate consequence of of Theorem 3.5.

Theorem 3.14. If [ is the set of all prime numbers, then the limit set Jr is not porous.

Ending this section with a positive example, as an immediate consequence of Theorem 3.3 we
get the following.

Theorem 3.15. [fa > 2 is an integer and I, = {a"}2,, then the limit set Jy, is porous.

4. CoMPLEX CONTINUED FRACTIONS

In this short section we deal with the iterated function system generated by the complex
continued fractions algorithm, the primary example in [MUI]. In order to describe this
system let I ={m+ni: (m,n) € IN x Z}, where Z is the set of integers and IN is the set of
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positive integers. Let X C (' be the closed disc centered at the point 1/2 with radius 1/2 and
let V' be an open topological disk containing X such that ¢,(V) C V for every b € I, where
&y : @' — @ is defined by the formula

1
() = b+ =

We call {&}rer the iterated function system of continued fractions. Let K > 1 be the Koebe
constant (see [Hi]) corresponding to the ratio of radii equal to 2/3. Let ¢ : @ — € be the map
g(z) = 1/z. As an immediate consequence of Koebe’s’ distortion theorem and i—Koebe’s7
distortion theorem (see [Hi]), we get the following

Lemma 4.1. Ifb € I, then |¢,(z)| = 1/|z + b]* and

-2

< diam(gp( X)) < K

| 12
K-+ = bt~
R *3

If, in addition B is a disk contained in g(B (b—l— 1. R(b) — %), then g(B) contains a disk of
diameter > iK‘l ‘b + %‘_2 diam(B).
The result of this section is the following.

Theorem 4.2. The limit set J of the iterated function system generated by the complex con-
tinued fractions is not porous.

Proof. For every b € I with sufficiently real part we will find a radius 1 > r, > diam(¢,(X))
such that if ¢; is the radius of maximal disk contained in B(¢,(1/2),2r;) and disjoint from .J,
then

lim = 0. (4.1)
[R(D)| =0 Tp
And indeed, given b € [ set
1 172 1
=Py (Ro-3).
ST =3

We get immediately from this definition that r, < 1/8 <1 and from Lemma 4.1 that

diam(gs(X)) < 16K (gre(b) _ %)_1 < 1y

if only R(b) is large enough. Suppose now that B is a disk contained in B(¢(1/2),r,) and
disjoint from J. This implies that B(¢y(1/2),7,) N J = . Since for every a € I, ¢,(0) € J,
we conclude that g(a) = ¢,(0) ¢ B or equivalently,

a ¢ g(B) (4.2)

L Koebe’s’ distortion theorem

1

o(Bln(1/2),2r) < g (B (b4 5.5 (R0) - 3)))

for all @ € I. Since, by
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and since B C B(¢y(1/2),2r), it follows from Lemma 4.1 that g(B) contains a disk
diameter > iK‘ldiam(B) ‘b + %‘2 Combining this and (4.2) we conclude that

2
< V2.

Hence diam(B) < 64K /2 (?R(b) — l)_l r, and therefore

2

" 3ok (éR(b) - %)_1 .

Ty

1
K_ldiam(B) ‘b + 5

Thus formula (4.1) is proved and this shows that .J is not porous.

5. PARABOLIC ITERATED FUNCTION SYSTEMS

21

of

In this section we explore the problem of porosity of parabolic iterated function systems

introduced in [MU3]. We begin with the following.

Definition 5.1. Let X be a compact topological disk in @' with a piecewise smooth boundary.

Suppose that we have finitely many conformal maps ¢; : X — X, 1 € I, where I has at least

two elements and the following conditions are satisfied.

(5pa): (Open Set Condition) ¢;(Int(X)) N ¢;(Int(X)) =0 for all i # ;.

(5pb): |¢i(x)] < 1 everywhere except for finitely many pairs (i,2;), 1 € I, for which «;

is the unique fived point of &; and |¢i(x;)| = 1. Such pairs and indices 1 will be called

parabolic and the set of parabolic indices will be denoted by ). All other indices will be

called hyperbolic.

(5pc): Vn > 1 Yw = (wi,...,w,) € I" if w, is a hyperbolic index or w,_1 # w,, then ¢,
extends conformally to an open topological disk V' C @' with a piecewise smooth boundary

and ¢, maps V into itself.

(5pd): If 1 is a parabolic index, then (,5o ¢in(X) = {2;} and the diameters of the sets

din(X) converge to 0.
(5pe): (Bounded Distortion Property) 3K > 1 ¥n > 1 Yw = (w1, ...,w,) € [" Ye,y € V
wy, is a hyperbolic index or w,_1 # w,, then

/
Ll _
|0L, ()]
(5pf): ds < 1Vn>1Vwe I" ifw, is a hyperbolic index or w,_1 # w,, then ||¢] || < s.

if

(5pg): (Cone Condition) There exist a,l > 0 such that for every x € X C IR? there exists
an open cone Con(x, o, 1) C Int(X) with vertex @, central angle of Lebesgue measure o,

and altitude [.
(5ph): There are two constants L > 1 and o > 0 such that

[16()] = ()] < LIy — 2,

for every v € I and every pair of points x,y € V.
(5pi): ¢i(X) C Int(X) for every hyperbolic element 1 € 1.
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Any system S satisfying the above conditions (5pa)-(5pi) will be called a plane parabolic iter-
ated function system.

We shall now recall from [MU3] how to associate with any parabolic iterated function system
S a canonical, infinite but hyperbolic, iterated function system S* which essentially has the
same limit set as S.

Definition 5.2. The system S* is by definition generated by the set of maps of the form ¢,
where n > 1, 1 € Q, 1 # j, and the maps ¢, where k € [\ Q. The corresponding alphabet
{"7:0€Qu#j,n>1 U\ Q) will be denoted by I..

The following fact has been proved in [MU3] as Theorem 5.2.

Theorem 5.3. The system S* is a (hyperbolic) conformal iterated function system in the
sense of Section 1.

Note that Jex = Js \ {ou(2;) : 1 € Q,w € [*}. In view of Lemma 2.4 in [MU3], every
parabolic point x;, i1l, lies on the boundary of X. It is easy to see that ¢i(x;) = 1 and the
Taylor’s series expansion of ¢; at x; has the form

bi(2) = z +a(z — ;)P 4
for some integer p; > 1. Changing the system of coordinates via the map ﬁ sending z; to

oo, one can easily deduce that for every j # ¢ and for every n > 1
pitl

diam(@in; (X)) < dist (@i (X), din (X)) < ||| < 0”7 (5.1)

and
dist(w, i (X)) = n 5 (5.2)

In addition, changing the system of coordinates via the map ﬁ we can easily see that the
following is true.

Lemma 5.4. If S is a parabolic iterated function system and x;, 1 € I, is a parabolic point,
then there exists a constant C' > 1 such that for every k > 1 and everyn > k, the sets ¢im;(X),
J # 1, are all contained in corresponding sectors centered at x; with angular measures bounded
above by Cn=1,

Once this lemma has been established, the following result becomes actually an immediate
consequence of Theorem 2.2.

Theorem 5.5. The limit set of each plane parabolic iterated function system is porous.
Proof. Indeed, after observing that by (5.1) and (5.2)
diam (60;(X))
dist (wz,szn](X)) a
the proof follows immediately by combining Theorem 2.2 and Lemma 5.4. O
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In particular, since the residual set of the Apollonian packing is the limit set of a plane
parabolic iterated function system (see [PU3]), this residual set is porous.

The situation however changes if we consider so called real parabolic iterated function systems.
The difference is that we assume now X to be a compact interval in the real line IR and V' C IR
is an open interval containing X. We assume in addition that for every parabolic point x;,
1 € I, there exists 3; > 0 such that

di(x)=a—alx — xi)ﬁ""'l + 0(|:1; — :1;2'|ﬁ+1). (5.3)

By the same method we then get formula (5.1)with p; replaced by ;. In this case that formula
almost immediately implies the following.

Theorem 5.6. If S is a real parabolic iterated function system and (5.3) is satisfied, then
the corresponding limit set Jg (considered as a subset of IR) is not porous.

Proof. According to (5.1), for every k > 1 all the gaps between points of Js in the ball
Bitl
B (:1;2', E77 ) are of length not exceeding const k7% . Since

B+l
ks
— = k7' = 0 when k — oo,
kB
the limit set Jg is not porous at any parabolic point z; € 2. The proof is complete. O
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