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ABSTRACT. In this paper we consider rational functions f : @ — @ with parabolic and
critical points contained in their Julia sets J(f) such that > 2 | |(f™)'(f(¢))| ™ < oo for each
critical point ¢ € J(f). We calculate the Hausdorff dimensions of subsets of J(f) consisting
of elements z for which inf{dist(f"(z), Crit(f)) : n > 0} > 0 and which are well-approximable
by backward iterates of the parabolic periodic points of f.

1. Introduction and Statement of Main Results

n [S1] [S2] [SU1] [SU2] [SU3| we developed a certain type of Diophantine analysis for geo-
metrically finite Kleinian groups with parabolic elements, parabolic rational maps and tame
parabolic iterated function systems. In this paper we extend this analysis to rational maps
f : @ — @ with parabolic points and with Julia sets J(f) containing critical points such that
for each of these critical points ¢ € J(f) we have that

il (Y ()] < .

The idea is to perform this Diophantine analysis on the set of points z € J(f) for which we
have, with Crit(f) denoting the set of critical points of f, that

inf{dist(f"(z), Crit(f)) : n >0} > 0.

We give a further development of the techniques elaborated in the afore-mentioned papers,
mainly by using results obtained in [DU] and [Pr] (see also [PU1]). In particular, a crucial
quantity in our main theorem (Theorem 1.1) is the so-called dynamical dimension DD(.J(f))
of J(f), in the literature occasionally also referred to as the essential dimension, which is
given by ([DUJ; see also [Pr] [PU1))

DD(J(f)) := sup{HD(p)}.

Here, the supremum is taken with respect to all f-invariant, ergodic Borel probability mea-
sures p of positive entropy, and HD(u) denotes the Hausdorff dimension of p. In [DUJ it
was shown that DD(J(f)) coincides with the least possible exponent for conformal measures
associated with f. Also, in [PU1] we obtained that DD(.J(f)) coincides with the hyperbolic
dimension of f in the sense of Shishikura ([Sh]).
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In order to state our main result, we first have to introduce some notation. Let {2 be the set
of all parabolic periodic points of f, that is

Q={wel: fl(w)=w and (f?)'(w) =1 for some ¢ > 1}.

[t is well-known that  is a finite subset of .J(f). For fixed w € 2 and for every pre-parabolic
point z € U,so f~"(w), let n(z) denote the least integer such that f"*)(z) = w. Since the set
of critical points of f is finite and since critical points are not periodic, there exists a number
¢(w) > 2 such that for every pre-parabolic point = for which n(x) > ¢(w), we have that
Crit(f)n | f "(z) =0.
n>0

In the following let x = x(w) denote some fixed element of this type. Then for every y €
Unso f~"(x) there exists a unique integer k(y) such that f¥®(y) = z. If B(w,r) denotes the
closed ball centred at w of radius r, then for some fixed py > 0 and every x > 0 we define

By == B(y, (po [(F**) ()| 71)*").
Furthermore, for € > 0 let

72o= N U UBS

g>ln>q *

where the union U, is taken with respect to all elements z € U;sq f ' (2)\U;50 f 7/ (B(Crit(f), €))
for which k(z) = n. Our main interest in this paper will be focused on the sets

Ji=U I, IS = U J¥ and J* = J JL

z,€)

>0 {zin(2)=q(w)} weN
We are now in the position to state the main result of this paper. Here, we have used the
common notation p(w) to denote the number of petals of w € €.

Theorem 1.1. Let f : @ — @ be a rational map with parabolic periodic points and critical
points such that for each critical point ¢ € J(f) we have that Y21 |(f")' (f(c))| ™! < co. Then
for every parabolic point w € €2 and each k > 0 it holds that

S @%gﬁ if x>DD(J(f)) -1
w) = § DDJ(f)+Ep(w i
% if K <DD(J(f))—1.

Hence in particular, we have with pyi, = min{p(w) : w € Q} that

) DD (/) if kK > DD(J(f)) — 1
HD(J®) = § b0 ) rpamin if K <DD(J(f))—1.

1+H(1+pmin)

We remark that a similar type of Diophantine analysis could also be given for repelling periodic
orbits rather than parabolic periodic points. In fact, in that case the arguments and also the
results would be far less involved, mainly due to the lack of ‘conformal fluctuation’ of the
conformal measure at repelling periodic orbits.
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Finally, we remark that Theorem 1.1 represents a generalization of the following classical result
in metrical Diophantine analysis by Jarnik [Ja] and Besicovitch [Be] on well-approximable
irrationals.

({f eR: € —p/q| < ¢~20F for infinitely many (p, q) = 1}) =(1+0)™"
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2. Proof of the Theorem 1.1

In this section we give the proof of Theorem 1.1. It will be prepared first by giving a series
of separate statements. From now on we assume that the preliminaries in Theorem 1.1 are
satisfied. For € > 0, we define the set

AN U f(B(Crit(f), ).

n>0

Observe that by [PU2] (Appendix B, Theorem B.1), for each ¢,0 > 0 there exists 7.(6) > 0
with the property that if z € K, such that f"(z) ¢ B(£2, ), then for every 0 < k < n we have
that

diam (£¥(Co(2, f"(2), 27(0))) < €.

Here C,,(z, f"(2),27.(0)) refers to the connected component of f~"(B(f"(z),27.(#))) which
contains z. Note that this implies in particular that f*(C,(z, f*(2),27.(0))) N Crit(f) = 0.
This observation is summarized in the following lemma.

Lemma 2.1. For every e > 0 and every 6 > 0 there exists 7.(6) > 0 such that if z € K, and
f™(2) ¢ B(Q,0), then
Cn(z, ["(2), 27(0)) N Crit(f") = 0.

The next step in the proof of Theorem 1.1 is to verify the following upper bound for the
Hausdorff dimension.
Lemma 2.2. For eachw € Q, v € U,,>¢ f"(w) such that n(x) > q(w), and for every e,k > 0

we have that
DD(J(f)) DD(J(f)) +/~€p(w)}
1+ 7 1+x(l+pw)) |

HD(J; ) < min{

Proof. Throughout we shall always assume that

0 = dist(z, Q2).
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In view of Lemma 2.1, for every n > 0 and each z € f~"(x) N K, there exists a unique
holomorphic branch f," : B(z,27.(0)) — @ of f~™ which maps z to z. Since the family
{f;":B(x,27.(0)) > C:n >0,z € f"(x) N K.} is normal and since x € J(f), all the limit
functions of this family are constant. Thus, it follows that

Tim sup{|(£,") (4)] : y € Bla, 7(6))} = 0. (2.1)
Hence in particular, we have that
M = sup{[(f7")'(y)| : n > 0, y € Bz, 7(0))} < o0,

and also, that there exists s > 1 sufficiently large such that |(f")'(z)| > 2K? for all n > s and
z € f~™(x) N K. Here K > 1 refers to the Koebe constant corresponding to the scale 1/2.
For every [ > 0 we define

Zy={ze | fMa)n K : 27DM < |(fFEY ()7 < 27
n>0
We claim that for each [ > 0 the family
R, = {/7*O(B(z,7.(0))) : z € Z}

has multiplicity bounded above by s. In order to see this, suppose that for some [ > 0 and
for distinct z, w € Z; we have that

[ OB, 7(0))) N £, " (B(x, 7(0))) # 0.

Let y be an element of the latter intersection. Without loss of generality we can assume that
k(w) < k(z). Using Koebe’s distortion theorem, it follows that

[(F*) ()] < KI(fF) (2)] < KM~12MH
and
(S5 ()| < K () (w) 7 < K2

Consequently, applying Koebe’s distortion theorem once again, we obtain

|(FFER (R ()] < K|(fEOFDY (R )| = KO ()] - () ()] < 255
Hence, it follows that k(z) —k(w) < s. Since for every n > 0 and distict z,w € f~"(z)NK, we
have that f, "(B(z, 7.(0)))Nf,™(B(z,7.(0))) = 0, it follows that the family %, has multiplicity
at most s.

By [DU] (comp. [PU1]), there exists a DD(.J(f))-conformal measure m for f: J(f) — J(f).
Hence, using Koebe’s distortion theorem again, we get for every [ > 1 that

> () (2) 7PV < KPP (B, 7.(0)) ™ 3 m(f7M (B(w, 7(0)))) < sKPPUUD,

z
Z2E€Z; Z2E€Z;

(Here, a < b (for a,b > 0) means that the quotient a/b is bounded from above by some
constant.)
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In the sequel, let ¢ > DD(J(f)). Using the latter estimate, we first make the following
computation.

TSm0 > M@ = 1)
n>1zeKNfn(z) 1>0 z€7

) )| —DD(J |(fk )( )| (t=DD(J(f)))

1>0 2€7; (2‘2)
<3 T (DY ()| PPUW!) ppt=PPU) 9=llE=DDU!))

>0 2€Z;
< sMI=PPUN) (PP §7 9=l=DDUN) < o,

>0

Now observe that for each k > 1, the family {Bf : z € K. N f~™(z),n > k} represents a
covering of J; ., and that for k increasing the upper bound for the radii of this covering tends
to zero (this follows since by (2.1) we have lim,,_,., max{|(f")'(z)| : 2 € K. N f"(x)} = 00).
Furthermore, by the computation in (2.2), for every k£ > 1 we have for the radii of the elements

of this covering that

S OY (et T <Y S e =S <

n>k ze K.Nf~"(x) n>k ze K.Nf~"(x)

This immediately gives for the {—-dimensional Hausdorff measure H T that H = (J5.) < o0,
and hence that HD(J ) < 1. By letting ¢ tend to DD(J(f)), we obtain

Hp(z,) < 22UU)),
’ 1+k

In order to obtain the second upper estimate of the lemma, note that Fatou’s flower theorem
implies that for each n > 1 and z € K. N f~"(z) the ball B(w, (po|(f™)'(2)]"1)*) admits a
covering by balls of radii (po|(f™)'(2)|~")*®“+D) such that the cardinality of this covering is
comparable to |(f")'(z)|""“). Consequently, by Lemma 2.1 and Koebe’s distortion theorem,
each ball BY with z € K. N f "(z) can be covered by at most a number comparable to
[(f™)(2)]"") of balls with radii comparable to (po|(f™)'(2)|~1)'+*0+P)  Hence, using this
observation and (2.2), we obtain for each A > 0 that

(2.3)

%D?i‘;((fllz;&)p)()w)+/\ JK] << llm Z Z | 1) (1+k(1+p(w )))(W«FA)KJ@“)/(Z”NP(M)
n>lc 2€KNf~"(x )
< hm Z Z —(DDUI(MN+HAA+R(1+p(W))) — ().

>k zeKNf " (z )

This implies that HD(J} ) < % + A. Hence, by letting A tend to 0, we conclude
that

<\ - DD(J(f)) + rp(w)
HD(J7,) < 1+ k(l+p(w))
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As an immediate consequence of this lemma we have the following corollary.

Corollary 2.3. For each w € Q) and for every k > 0 we have that

. {DD(J(f)) DD(J(f)) + mp(m}
1+r 7 1+&(1+pw))

HD(J3) <

and

HD(J,) < min {DD(J(f)) DD/ (/) + mpmm} |

1+ " 14+ &1+ puin)

For the remaining part of the proof of Theorem 1.1, we assume additionally that 6 > 0 is
chosen so small that for every z € (J(f)\Q)NB(,0) there exists n > 1 with f"(z) ¢ B(,0).
For fixed € > 0 and for 2 € K.\ U,>o f7"(Q2) let {n;}52, denote the increasing sequence
of natural numbers which is given by f%(z) ¢ B(f,0) for all j, and f*(z) € B(£,6) for
all k£ ¢ {ni,ng,---}. Clearly, such a sequence is infinite. Also, for every j > 1 we let
ri(z) :==|(f")' ()|, and for every r > 0 sufficiently small we define

Fmin(2) = min{ri(z) : r(2) > r} and 7rp0.(2) == max{ry(z) : ri(2) < r}.
Furthermore with © = x(w) chosen as before for w € Q, if z € K. N f~"(z) for some n > 0,

then we define
ro(2) = (") (2)|

For each € > 0 sufficiently small such that K, # (), we obtained in [DU] that there exists a
Borel probability measure m, supported on K, and a number h. < DD(J(f)) such that the
following properties are satisfied.

lim he = DD(I(); (2.4)
e for every Borel set F C J(f) such that f|g is injective, we have that

)= [ 1)

e for every Borel set F' C K, \8B(Cr1t(f) €) such that f|r is injective, we have that

=/ 1£

Finally, the conformal fluctuation function (. of m, is defined for z € K, and r > 0 by
mG(B(Za T))
Ce(z, T) = T
Now, the remaining part of the proof of Theorem 1.1 is completely analogous to the construc-

tions in [SU3|, and we refer to this paper for the details. More precisely, in order to obtain
uniform estimates for the conformal fluctuation function, we can now proceed as in section 3

hedme(z); (2.5)

hedme ().
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of [SU3]. Note that the proof of these estimates uses (2.5), Lemma 2.1, Corollary 2.3 and the
local properties of f around parabolic points.

Lemma 2.4. e If z € K.\ U, f"(Q) and r > 0 such that rmin(z) = rj(2) and
f"it(2) € B(w, ) for some j € IN and w € Q, then we have that

1
r ) P o Pnin (2) =1 > Tipin (2) (“""””(Z))M+1

Tmin (z)

(Tm D" for Ta(2) S 1 € ryn(2) (2202) P

Tmin (2)

o Ifz€ K.N f"(x) for somen >0 and w € Q, then we have for all 0 < r < ry(z) that
ez, 1) x plhe Dp@),

Furthermore, on the basis of Lemma 2.1, Lemma 2.4 and the local properties of f around
parabolic points, we can then proceed as in section 4.1 of [SU3] to obtain the following result.
Note that in [SU3], in order to derive these lower estimates for the Hausdorff dimension, we
employed precisely the type of estimates for the conformal fluctuation function, which we
have just derived for (. in Lemma 2.4 above.

Lemma 2.5. For each w € ) and every € > 0 we have that

h .
< if k>h.—1
HD(J%) > {I-ZTJFW(W) . -
v m if & S h'e — 1.
Consequently, it follows that
h .
: ifk>h.—1
HD(J*) > {lm L o
71%(1’%“1]) if Kk <h,—1.

Finally, the proof of Theorem 1.1 now follows from Lemma 2.2 and Lemma 2.5, where we let

e tend to 0 and use the limit behaviour as stated in (2.4). [ |
REFERENCES

[Be] A.S. Besicovitch, ‘Sets of fractional dimension(IV): On rational approximation to real numbers’,
Journ. of the London Math. Soc. 9 (1934) 126-131.

[DU] M. Denker, M. Urbanski, ‘On Sullivan’s conformal measures for rational maps of the Riemann
sphere’, Nonlinearity 4 (1991) 365-384.

[Ja] V. Jarnik, ‘Diophantische Approximationen und Hausdorff Mass’, Mathematicheskii Sbornik 36
(1929) 371-382.

[Pr] F. Przytycki, ‘Conical limit set and Poincaré exponent for iterations of rational functions’, Trans.

AMS 351 (1999) 2081-2099.

[PU1] F. Przytycki, M. Urbanski, ‘Fractals in the plane-ergodic theory methods’, to appear in Cambr.
Univ. Press, available on http://www.math.unt.edu/~urbanski.

[PU2] F. Przytycki, M. Urbanski, ‘Porosity of Julia sets of non-recurrent and parabolic Collet-Eckmann
rational functions’, Ann. Acad. Sci. Fenn. 26 (2001) 125-154.



8 BERND O. STRATMANN, MARIUSZ URBANSKI, AND MICHEL ZINSMEISTER

[Sh] M. Shishikura, ‘The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets’,
Ann. of Math. 147 (1998) 225-267.

[S1] B.O. Stratmann, ‘Fractal dimensions for Jarnik limit sets; the semi-classical approach’, Ark. for
Mat. 33 (1995) 385-403.

[S2] B.O. Stratmann, ‘Weak singularity spectra of the Patterson measure for geometrically finite
Kleinian groups with parabolic elements’, Michigan Math. J. 46 (1999) 573-587.

[SU1] B.O. Stratmann, M. Urbanski, ‘Jarnik and Julia; a Diophantine analysis for parabolic rational
maps’, preprint in Mathematica Gottingensis 02 (1999); to appear in Math. Scan. (2003).

[SU2] B.O. Stratmann, M. Urbarnski, ‘The geometry of conformal measures for parabolic rational maps’,
Math. Proc. Cambr. Phil. Soc. 128 (2000) 141-156.

[SU3] B.O. Stratmann, M. Urbanski, ‘Metrical Diophantine analysis for tame parabolic iterated function

systems’, submitted, preprint in Mathematica Gottingensis 11 (2000) 1-30.

BERND O. STRATMANN; MATHEMATICAL INSTITUTE, UNIVERSITY OF ST ANDREWS, ST ANDREWS
KY16 9SS, SCOTLAND. http://www.maths.st-and.ac.uk/~bos
bos@maths.st-and.ac.uk

MARIUSZ URBANSKI; DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, DENTON, TX
76203-1430, USA. http://www.math.unt.edu/~urbanski
urbanski@Qunt.edu

MICHEL ZINSMEISTER; MAPMO, MATHEMATIQUES, UNIVERSITE D’ORLEANS, BP 6759 45067 ORLEANS
CEDEX, FRANCE. http:// www.labomath.univ-orleans.fr/descriptions/zins
Michel.Zinsmeister@labomath.univ-orleans.fr



