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Abstract. We introduce and establish some basic properties of the tame rational func-
tions. The class of these functions contains all the rational functions with no recurrent
critical points in their Julia sets. For tame non-exceptional functions we prove that the
Lipschitz conjugacy, the same spectra of moduli of derivatives at periodic orbits and con-
formal conjugacy are mutually equivalent. We prove also the following rigidity result: If
h is a Borel measurable invertible map which conjugates two tame functions f and g a.e.
and if A transports conformal measure m; to a measure equivalent to mg, then h extends
from a set of full measure m; to a conformal homeomorphism of neighbourhoods of re-
spective Julia sets. This extends D. Sullivan’s rigidity theorem for holomorphic expanding
repellers. We provide also a few lines proof of E. Prado’s theorem that two generalized
polynomial-like maps at zero Teichmiiller’s distance are holomorphically conjugate.
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§1. Tame maps. Let f : @ — @ be a rational function of degree > 2 and let J(f) be its
Julia set. We recall (see [DU1] for ex.) that given ¢ > 0 a Borel probability measure m
supported on J(f) is called (Sullivan’s) t-conformal if

m(f(A)) = /A F|tdm

for every Borel set A C J(f) such that f|4 : A — f(A) is injective. By Crit(f) we denote
the set of all critical points of the map f : € — @ and by Sing(f), Ur—, f™(Crit(f)),
the closure of its forward orbit. Notice that Sing(f) includes all parabolic periodic points
(other name: rationally indifferent, i.e. such that (f?)'(z) is a root of 1, where p is a period
of ). Indeed, such points are in the forward limit set of critical points from outside of

J(f).
Finally, by T'(f) denote the set of all points in J(f) for which

lim sup dist(f" (%), Sing(f)) > 0.

n— 00

Definition 1.1 We say that a rational function f : @ — @ is tame if Sing(f) N J(f) is
nowhere dense in J(f) and there exists a t-conformal measure m (sometimes to be more
specific denoted by m¢) such that m(T(f)) = 1.

Remark 1.2. The set T'(f) was already considered in [GPS] (called there the transverse
limit set). In fact its origin goes back to [Ly].

Remark 1.3. Notice that if the singular set Sing(f) of an arbitrary rational function f is
nowhere dense in J(f), then T'(f) contains the set of all transitive points of f (i.e. points
with dense forward orbit). Therefore for such a function to be tame it is sufficient to have
a conformal measure m supported on the set of transitive points.

Remark 1.4. It is possible to define tame conformal repellers which generalize the class
of tame rational functions. Namely a triple (X, U, f) is called tame conformal repeller if
U is an open subset of @, X is a compact subset of U and f : U — € is an analytic map
such that

(a) f(X)=X.
(b) Npso /7"(U) = X.
(¢) The requirements of Definition 1.1 are satisfied with J(f) replaced by X.

Actually to get a proper extension of tame rational functions one should weaken the items
(a) and (b) by allowing the existence of parabolic periodic points in X as it has been
done in [U4] and [DU2]. For these objects all the theorems proven in this paper remain
valid (wherever it makes sense) replacing only in Theorem 1.9 the property "not critically
finite with parabolic orbifold for which J(f) = J(g) = @ by "non-linear” and removing
condition (1).



Clearly T'(f) is a subset of the set of conical points of f (for the definition of the latter see
[U3], comp. [DMNU] and [Mc2]) and therefore as an immediate consequence of Theorem
1.2 in [DMNU] we get the following.

Theorem 1.5. If f : @ — @ is tame, then there exists at most one value ¢ for which
a t-conformal measure exists and is supported on T(f). Additionally, for such a t there
exists exactly one t-conformal measure supported on T'(f) and this measure is ergodic.

Thus the measure m = m; and the exponent ¢ = ¢ are determined uniquely. It is easy to
see that m¢ is nonatomic. We can say something more about the exponent ¢t = ¢;. Indeed,
with considerations similar to those in [U4], we can prove the following.

Theorem 1.6. If a rational function f : @ —  is tame, then the t -dimensional Haus-
dorff measure of T'(f) is finite. In particular ¢t > HD(T'(f)) (HD abbreviates Hausdorff
dimension).

Employing the method introduced by M. Martens in [Ma] and proceeding in the same way
as in the proof of Proposition 4.2 in [U2], we can demonstrate the following.

Theorem 1.7. Up to a multiplicative constant there exists exactly one f-invariant o-finite
measure /. = ¢ absolutely continuous with respect to m. Moreover, p is equivalent with
m, conservative and ergodic.

In fact it follows from [U2] that there exists a set Xy of positive conformal measure such
that Ypo ymo f7%(Xp) = oo and up to a multiplicative constant the measure p¢ is given

by the formula

g (F) = Tim 2ok=0™ )

f n—00 ZZ:Omof_k(Xo)

for every Borel subset F' of J(f). Notice that as Xy one can take any open ball such the
the ball centered at the same point but with radius twice as big is disjoint from Sing(f).
So, Xp and F' are not related one to each other; in particular F' does not have to be a
subset of Xj. A straightforward computation using the above display and conformality of
m shows then that for every x € J(f) \ Sing(f) the limit below exists and for m¢-a.e.

(1) W @) = Jim S WY

dms k=0 yefF(a)

—1
_ N\ —k : dp g dpy
where a, =) ,_,mo f7%(Xo). Moreover the functions dmy and dm; e bounded on

every compact subset of J(f) \ Sing(f).

In [U1] and [U2] the second author explored the class of rational functions with no
recurrent critical points in their Julia sets, abbr. NCP. This class comprised expanding
(on Julia set), subexpanding and parabolic maps. Its properties most interesting for us at
the moment are collected in the following.



Theorem 1.8. Each NCP rational function f is tame and t; = HD(J(f)). Morover the
t p-conformal measure is supported on the set of transitive points.

Other examples of tame rational functions are provided by Collet-Eckmann-Tsujii
polynomials with real coefficients and all critical points in the real axis, see [Przy3|, with
the conformal measure m defined in [Przy3]. Indeed it was proved there that there exists
an invariant ergodic probability measure p equivalent to m. So since m is positive on open
sets, it is supported on transitive points by Birkhoff Ergodic Theorem applied to pu. Hence
by Remark 1.3 f is tame.

The main result of our paper is the following.

Theorem 1.9. Suppose that f and g are two tame rational maps. Let h be an invertible
map from a full measure my subset of J( f) onto a full measure m, subset of J(g), preserving
the algebras of measurable sets for my and m, and conjugating f to g, namely ho f = goh.
Then the following conditions (1)-(6) are equivalent.

(1) h extends to a Mobius conjugacy between f: @ — € and g : @ — .

(2) h extends to a conformal homeomorphism conjugating f and g on neighbourhoods of
J(f) and J(g) in € .

(3) h extends to a real-analytic diffecomorphism conjugating f and g on neighbourhoods
of J(f) and J(g) in .

(4) h extends to a homeomorphism from J(f) to J(g) such that h and A1 are Lipschitz
continuous.

(5) h extends to a homeomorphism from J(f) to J(g) such that for every periodic point
x of f, say of period p, [(f7)(z)] = [(¢7)' (h(x))].
(6) The measure class of my is transported under h to the measure class of my.

Here for the implication (6) = (2), f and ¢ are assumed not to be critically finite with
parabolic orbifold (see [Thu, Ch.13], [DH, §9] or [Zd] for the definition) for which J(f) =
J(g) = €. We call such maps exceptional.

Remark 1.10 The implication (5) = (2) was in fact proved by E. Prado in [Pra] for all
rational maps. The only missing point, the non-linearity (see §3 for the definition) caused
by parabolic points will turn out to be easy (see Theorem 3.5). Prado’s proof of the only
hard part (5) = (2) was done by approximating J(f) by forward invariant expanding
repellers inside J(f), where h extends conformally, see [Su], [Przyl]. Our proof of the
implication (5) = (2) is different and goes via (6). This requires the assumptions that f is
tame. Thus the main new result in our paper is the implication (6) = (2) which extends
Sullivan’s result for non-linear repellers, see [Su] and [Przyl]); we use the same scheme of
proof. This implication is called rigidity.

Note that the implication (2) = (1) is straightforward (see §5, Proposition 5.4). This
holds even in a general, not just tame, situation. Any conformal conjugacy on neigh-
bourhoods of Julia sets for any two rational functions extends to a conformal conjugacy
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(Mobius map) to the whole sphere. In particular by Theorem 1.9 the measure theoretic
conjugacy class of a tame map coincides with its conformal conjugacy class. In other words
one cannot perturb a tame map inside the measure theoretic conjugacy class changing its
conformal conjugacy class. Equivalence classes of measures classify tame maps.

Remark on notation. We write derivatives in the euclidean metric in @ which is correct
if we assume J(f) # @, because then we can change holomorphically coordinates on @ so
that oo ¢ J(f).

If J(f) = @ one should consider the spherical metric. Then Koebe’s Distortion Theo-
rem will be used for families of functions on a disc whose values omit a set of a diameter €.
The Koebe’s constants depend on €. Our functions will be branches of f~". If the disc is
small enough, the images omit a periodic orbit of period at least 2, so have complements
of a definite positive diameter.

To simplify notation we always assume in proofs that Julia sets are in T,

§2. Analiticity of Jacobian.

Definition 2.1. A rational function f : @ — @ is said to be Julia real-analytic if its
Julia set is contained in a finite union of pairwise disjoint real-analytic curves which will
be denoted by I' = I'y. Frequently in such a context we will alternatively speak about real
analyticity of the Julia set J(f).

Remark 2.2. [Przyl] If there exist z € J(f) a real-analytic arc v and 6 > 0 such
that J(f) N B(x,d) C v then f is Julia real-analytic. This follows from the topological
exactness of f on J(f), i.e. (YU) open in J(f) (In > 0) such that f™(U) = J(f). Indeed
J(f) € T := f™(y). The set I" has no branch point in J(f), otherwise I' would have
infinitely many branch points at J(f) at preimages for iterates of f¥ k=0,1,....

We shall prove the following.

Proposition 2.3. If f : @ — € is a tame mapping, then the Radon-Nikodym derivative
p = dp/dm has a real-analytic real-valued extension on a neighbourhood of J(f) \ Sing(f)
in €. If f is Julia real-analytic, then p has a real-analytic extension on a neighbourhood
of J(f) \ Sing(f) in T

Proof. Suppose first that f is Julia real-analytic. We need to show that there exists a
holomorphic complex-valued extension of p on a neighbourhood of J(f) \ Sing(f) in .
Taking an appropriate atlas we may assume that J(f) is contained in a real axis (if a
closed curve is a component of I' we can use Arg). Then for every = € J(f) \ Sing(f)
there exists r > 0 such that B(z,r) N Sing(f) = 0. For all k > 1 and all y € f=%(x) let
v(k,y) =1 or —1 depending as f,° k preserves or reverses the orientation. So

(£ ") ()| = vk, y) (f;7) (2))

for all z € J(f) N B(x,r). Here f; % : B(z,r) — € are the inverse branches of f* sending
T to y.



Consider the following sequence of complex analytic functions on z € B(x,r)

m@ =3 Y (k@)

" k=0 yef-F(x)

There is no problem here with raising to the ¢-th power since B(z,r), the domain of all
v(k,y) (fy_k)’ is simply connected. Since the latter functions are positive in IR, we can
choose the branches of the t-th powers to be also positive in IR. By Koebe’s Distortion
Theorem for every z € B(x,7/2), every k > 1 and every y € f~%(x) we have |(f,*)'(z)] <
K|(f,; %) (x)|. Hence |gn(2)] < Kgn(x). Since the sequence gn(z) converges, see (1.1),
the functions {gn|p(z,r/2) }n>1 are uniformly bounded, so they form a normal family in the
sense of Montel. Since g, (z) converges for all z € JNB(z,r/2), it follows that g, converges
to an analytic function g on B(x,r/2) which by our construction is an extension of p.

Let us pass now to the proof of the first part of this proposition. That is, we relax the
Julia real analyticity assumption and we want to construct a real-analytic real-valued
extension of p to a neighbourhood of J(f) \ Sing(f) in @. Our strategy is to work in @2,
to use an appropriate version of Montel’s theorem and, in general, to proceed similarly
as in the first part of the proof. So, fix v € J(f) \ Sing(f) and take r > 0 so small
that B(v,2r) N Sing(f) = 0. Thus for every k& > 0 and every vy € f~%(v) there exists
1;’“ : B(v,2r) — @, a holomorphic inverse branch of f¥ defined on B(v,2r) mapping
v to vg. Identify now @ where our f acts, to IR? with coordinates x,y, the real and
complex part of z. Embed this into €% with z,y complex. Denote the above €' = IR? by
@y. We may assume that v = 0 in @). Given k& > 0 and v, € f~%(v) define the function

Pu. : Bay (0,2r) — @ (the ball in @) by setting

(fF) (2)
(fa")(0)

Since Bgy (0,2r) C @ is simply connected and p,, nowhere vanishes, all the branches of
logarithm log p,, are well defined on Bg (0,2r). Choose this branch that maps 0 to 0 and
denote it also by log p,, . By Koebe’s Distortion Theorem |p,, | and |Argp,, | are bouned on
B(0,7) by universal constants K1, Ky respectively. Hence |logp,, | < K = (log K1) + K.
We write

Py, (Z) =

oo
log p,,, = Z am 2"
m=0
and note that by Cauchy’s inequalities
(2.1) lam| < K/r™.

We can write for z = x 4 1y in @

o0 o0
Relog p,, = Re Z am(z +iy)™ = Z Re (ap+q (p * q> iq)xpyq = Z cp gl y.
q
m=0 p,q=0
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In view of (2.1) we can estimate |cp 4| < |apyq2PT? < Kr~®+02P+4 Hence Relog p,,
extends, by the same power series expansion Y ¢, ,2Py?, to the polydisc D¢ (0,7/2) and
its absolute value is bounded there from above by K. Now for every n > 0 consider a
real-analytic function b, on Bg,(0,2r) by setting

Z > N @I

" k= O v, ef~—*(0)

By (1.1) the sequence b,(0) is bounded from above by a constant L. Each function b,
extends to the function

|(f—k)/(0)|tetRelogpvk(z).
2 : § : Vg
" k=0v,ef*(0)

whose domain, similarly as the domains of the functions Relog p,,, contains the polydisc
D¢ (0,r/2). Finally we get for all n > 0 and all z € IDgz(0,7/4)

|Bn<Z>l=—Z ST (o) (0)feRetRetox o, (D)

™ k=00, €fk(0)

—Z SO [(FY (0) tetiReos o ()

" k=0 v,efk(0)

Z SR )] < eFPL.

" k=0, €fk(0)

| N

Now by Cauchy’s integral formula (in D¢z (0,7/4)) for the second derivatives we prove that
the family B, is equicontinuous on, say, Dgz(0,7/5). Hence we can choose a uniformly
convergent subsequence and the limit function G is complex analytic and extends p on
J(f)n B(0,r/5), by (1.1). Thus we have proved that p extends to a complex analytic
function in a neighbourhood of every v € J(f) \ Sing(f) in @2, i.e. real analytic in @.
These extensions coincide on the intersections of the neighbourhoods, otherwise J(f) is
real analytic and we are in the case considered at the beginning of the proof. [ )

Denote the Jacobian of the map f : J(f) — J(f) with respect to the measure p by D, f.
As an immediate consequence of Proposition 2.2, the following computation

dugo f  dugof dmf of dmf dpy
d,uf dmf Of dmf d,uf dmf

dm
e 28
Fre-
and the observation that |f’|* is real-analytic on @ we get the following.
Corollary 2.4. If f : @ — @'is tame, then the Jacobian D, f has a real-analytic extension
on a neighbourhood of J(f) \ Sing(f) in €. If the map f is Julia real-analytic, then the

Jacobian D, f has a real-analytic extension on a neighbourhood of J(f) \ Sing(f) in T'.
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From now on we will keep for these extensions the same symbol D, f and the same name:
the Jacobian of f.

§3. Non-linearity. We begin this section with the following.

Definition 3.1. The tame rational function f : @ — € is said to be non-linear if there
exists a point w € J(f)\Sing(f) such that if f is Julia real-analytic, then D, f is invertible
on a neighbourhood of w in I'y and if f is not Julia real-analytic, then the map F'(z) =
(Duf)(2), (Duf) o f*(2)) is invertible on a neighbourhood of w in @ for some k > 1.
Otherwise, the map f is said to be linear.

Theorem 3.2. The following five conditions are equivalent.
(a) The tame map f is linear.
(b) The Jacobian D, f is locally constant on J(f) \ Sing(f).

(¢) The function log | f’| is cohomologous in the class of real-analytic functions to a locally
constant function on J(f) \ Sing(f).

(d) The conformal structure on J(f) \ Sing(f) admits a conformal affine refinement so
that f becomes affine, i.e. there exists an atlas {¢; : Uy — @}, U, Uy D J(f)\ Sing(f),
consisting of conformal injections such that the compositions ¢; o ¢; ! and ¢y o fop; !
are affine.

An analogous theorem holds for conformal expanding repellers, [Su], [Przyl, Prop.7.1.2].
Proofs are similar.

It occurs that the only rational function which may be linear are the exceptional ones
(criticaly finite maps with parabolic orbifold).

Indeed, for f expanding on .J(f) linearity implies f(z) = 2% or f is a Tchebyshev
polynomial, see [Zd]. In fact Zdunik assumed log |f’| cohomologous to a constant, but the
same proof holds for locally constant.

For nonexpanding case this immediately follows form the following two theorems, the
first one also following from [Zd] or E. Prado’s paper [Pra].

Theorem 3.4. If the Julia set of a tame non-exceptional rational function contains a
critical point, then f is non-linear.

In fact it follows from Prado’s proof that there are non-linear invariant hyperbolic Cantor
sets contained in J(f)\Sing(f). Prado proved this for all non-exceptional rational functions

with a critical point in Julia set, not only for the tame ones.

Adapting the general idea of Prado’s argument we shall prove the following.



Theorem 3.5. If the Julia set of a tame rational function contains a periodic parabolic
point and no critical points, then f is non-linear.

Proof. Passing to a sufficiently high iterate we may assume that each periodic parabolic
point is fixed under f and that the derivative of f evaluated at any parabolic fixed point is
equal to 1. Take one such a point and call it w. Suppose on the contrary that f is linear.
Since f is tame and topologically exact, there exists n > 1 such that f~"(w) \ Sing(f) # 0.
Let z € f~"(w) \ Sing(f) and let ¢, : U, — € be a map from an affine atlas A = {¢; :
Ui — @: i € I} such that x € U,. Since J(f) contains no critical point, shrinking U, if
necessary, we may assume that ™|y : U, — €'is injective. Denote by f. " : f*(U,) — U,
the inverse map (f™|y,)~! and consider the composition

ppofiofoflog,t

defined on ¢, (U, N f~+D(f7(U,))). Since z € U, and f*i(z) = f(f(z)) = f(w) =
w € fM(Uy), x € Uy N f~+D(f7(U,)), and therefore it makes sense to consider Vj, the
connected component of U, N f~*Y(f*(U,)) containing z. Since f"(V,) is an open
neighbourhood of w, using again the fact that Sing(f) is nowhere dense in J(f), we find
a map ¢, : U, = € from A such that f*(V,) NU, # 0 and (shrinking U, if necessary)
f(U,) C Uj for some ¢; : U; — € from A. Now notice that ¢, o f7™ o fo f"od,?
and (¢, o f;" o ¢3_1) o(pjofo ¢;1) o (¢, 0 f"o ¢w_1) coincide on (ﬁw(Vw N f;”(Uw)).
Since the latter map is affine, the map g = ¢y 0 fo" o fo ffodt: ¢pp(Vy) = ¢u(Uy) is
also affine and extends uniquelly to an affine map from € to €. Since g(¢.(z)) = ¢ (x),
g’ (¢z(z)) = 1 and assuming without generality that ¢, (x) = 0, we therefore conclude that
g is an identity map. Hence ¢, o fo™ o f = ¢, 0 f™ on f*(V,), and since ¢, o f ™ is
injective, f|sn(v,) = Id|n(v,). Consequently f =1Id on T, a contradiction. &

Remark that again the same proof works for general rational functions, proving the exis-
tence of expanding non-linear subsets as in [Pra]. In parabolic case Zdunik’s proof [Zd,
Lemma 3] does not work because the locally constant function ® cohomologous to D, f
can be a priori equal to 0 in a neighbourhood of w so |f'(w)[!f = exp ®(w) = 1 and we do
not get any contradiction. (If ®(w) > 0 the formula implies that w is a source.)

Let us repeat that we have proved the following.

Theorem 3.6. All tame linear functions are exceptional (critically finite with parabolic
orbifold).

Remark 3.7. In contrast to Theorem 3.5 there exist of course an abounda&ce of linear
conformal expanding repellers but their domains are proper open subsets of .

64. The chain of implications. In this section we will prove the chain of implications
(2) = (3) = ... = (6) of Theorem 1.9. The implications (2) = (3) and (3) = (4) are
obvious. For the sake of completeness we provide now an easy proof of the implication
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(4) = (5). So, suppose that x € J(f) is a periodic point of period p and |(fP)'(x)| #
|(g?) (h(x))]. Without loosing generality we may assume that |[(f?)'(z)| < |(g?)'(h(z))].
Fix |(f?) (z)] < p < XA < |(¢P)"(h(z))]. Let U be a neighbourhood of = such that both
inverse branches f_? : U — U of fP and g,:({’” y 2 h(U) = h(U) of g” sending respectively
x to x and h(x) to h(z) are well defined. Taking U sufficiently small we may assume that
[fz7"(2) — x| = p~" and |g, oy (w) — h(z)] < A" foralln > 1, 2 € U and w € A(U).

Hence n
e (N
h(fa7"(2)) = h(z)] — A7"  \p
if n — oo. So, the implication (4) = (5) is proved.
Given a set A C C'and r > 0 let

B(A,r) = {z € @:dist(z,A) < r}

be the closed ball centered at A and of radius r. In order to show that (5) = (6) we need
first the following version of the closing lemma (or shadowing lemma).

Lemma 4.1. Fix s > 0. Then for all 0 < py < s there exist p; > 0 and an integer n; > 1
such that for every n > nq if f™(x) € J(f) \ B(Sing(f),s) and if f™(z) € B(x, p1), then
there exists y € J(f) such that f*(y) = y and |f/(y) — f/(x)| < pz forall 0 < j < n —ny
and |y — f"(z)| < p2.

Proof. It easily follows from the normal family argument that

lim sup{diam(P,)} =0,
n— 00

where P, range over all connected components of f~"(B(z, p2)), z € J(f) \ B(Sing(f), s).
Take nq so large that diam(P,) < p2/2 for all n > nq. Take p; < p2/2. Let By, n > ny, be
the connected component of f~"(B(f"(x), p2) containing x. Let " : B(f™(x), p2) — Bp
be the holomorphic inverse branch of f™ sending f™(x) to . We then have

1 (BU ), 2)) € Bl pa/2) € B (@), o1+ 2) C B @), p2),

Hence by the Brouwer fixed point theorem there exists y € B(f™(x), p2) such that £ "(y) =
Y w_h1ch implies that f”(y) = y. Finally note that |f_ 7 ( "(z)) — fo J( ) = |f7 ( " (1)) —
27 (f"(y))| < p2/2 < po for all j > ny. &

By topological exactness of f the set of transitive points is dense in J(f). Choose one such
a point, say x. For every z € J(f) define

n(z) = loglg'(h(2))| — log|f'(2)]

and for every n > 1 set

I
—

n

(4.1) u(f"(2)) = ) n(f! ().

<.
I
(@]
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Similarly as the preceding result the next one has its origins in [Bo]. In Bowen’s expanding
case Holder continuity of the function log|f’| on J(f) \ B(Sing(f),s) is sufficient. Here
instead, we use the Koebe’s Distortion Theorem to control the distortion.

Lemma 4.2. Suppose that condition 3 of Theorem 1.9 holds. Then for every s > 0
the function u restricted to the set (J(f)\ B(Sing(f),s)) N {f™(z) : n > 0} is uniformly
continuous.

Proof. Fix 0 < p2 < s and choose p; and n; according to Lemma 4.41. Consider two
points f™(x) and f™(z) in J(f)\ B(Sing(f), s) such that n > m and |f™(z) — f™(x)| < p1.
Then in view of Lemma 4.1 there exists a point y € J(f) such that f*~"™(f™(y)) = f™(y),
| (z) — fmHi(y)| < pg for all j = 0,1,n —m —ny, and |f*(z) — f*(y)| < p2. Since by
the assumption Z;L:_;L n(f7(y)) = 0, we therefore get

u(f7(@) — ("o Z D=3 (@) - n(F W)

i: (log g (R (f? ()))| = log |g" (R( (1)))]) — (log |(f'(? ()| = log | f'(* ())])

(g"~™)"(h(g™(x))) ‘ og | LT () ‘
(gm=m)"(h(g™(¥))) (fr=m)y ()|

We want u(f™(x)) and u(f™(z)) to be close one to the other if f™(z) and f™(z) are.

For this it suffices to know that each term log ‘ Egi::;:gzgg:g;gg and log ‘W%

is small. But for the latter term this follows from the Koebe’s Distortion Theorem since

|f™(z) — f™*(y)| < p2 and the inverse branch ff,,(l?w)m) sending f™(z) to f™(x) is defined

on B(f™(x),s). A similar argument works for the former term. The proof is finished. &

= log

Consequently the function u extends continuously to each set J(f) \ B(Sing(f),s), s > 0,
and therefore to the set J(f) \ Sing(f).

Lemma 4.3. The functions log |f'(2)| and log |g'(h(2))| are cohomologous in the class of
continuous functions on (J(f)\ Sing(f)) N f=1(J(f)\ Sing(f)). More precisely there exists
continuous u : J(f) \ Sing(f) — IR such that

log|g'(h(2))| — log | f'(2)| = u(f(2)) — u(2)

for all z € (J(f) \ Sing(f)) N f~(J(f) \ Sing(f))-
Proof. Subtracting (4.1) from (4.1) written for n — 1 we get n(f"(z)) = u(f"™(z)) —
u(f*~1(x)). Since the set {f™(x) : n > 1} is dense in (J(f)\Sing(f))ﬂf‘l(J(f)\Sing(fzz

and all the functions 7, u, uwo f are continuous in this set, the lemma is proved.

Lemma 4.4. Let 4 and v be Borel probability measures on Y, a bounded subset of a
Euclidean space. Suppose that there are a constant M > 0 and for every point x € Y a
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decreasing to zero sequence {r;(x) : j > 1} of positive radii such that for all j > 1 and all
reY
p(B(z,rj(z)) < Mv(B(z,7;(x)).

Then the measure p is absolutely continuous with respect to v and the Radon-Nikodym
derivative du/dv < CM, where C' is a universal constant depending only on the dimension
of the Euclidean space under consideration.

Proof. Consider a Borel set £ C Y and fix ¢ > 0. Since lim;_,o, 7j(z) = 0 and since v
is regular, for every x € E there exists a radius r(z) being of the form r;(z) such that
v(Uzer B(z,r(x)) \ E) < e. Now by the Besicovi¢ theorem (see [Gu]) we can choose a
countable subcover {B(z;,r(x;))}52, from the cover { B(z,r(z))}zecr of E, of multiplicity
bounded by some constant C' > 1, independent of the cover. Therefore we obtain

n(B) <Y p(Blwiyr(x:)) < MY v(B(ag,r(z:)))

MC’I/(U B(z;,r(z;)))

< MC(e +v(E)).

IN

Letting € N\, 0 we obtain u(F) < MCv(E). So u is absolutely continuous with respect to
v with the Radon—Nikodym derivative bounded by MC. [ )

Proof of the implication (5) = (6). Given n > 1 let

T, (f) = {z € J(f) : limsupdist(f’(2), Sing(f) > 2/n} C T(f).

J—00

Since h(Crit(f)NJ(f)) = Crit(g) NJ(g), since, in view of (5), indifferent periodic points of
f are mapped to indifferent periodic points of g, and since a topological conjugacy on Julia
sets cannot send a rationally indifferent periodic point to an irrationally indifferent periodic
point of g and vice versa (”snail”argument), we conclude that h(Sing(f)) = Sing(g). (By
the way irrationally indifferent periodic points in J(f) also belong to Sing(f), see [GPS].)
Therefore, since Sing(f) and Sing(g) are respectively f and g invariant and since A1 :
J(g) — J(g) is uniformly continuous, there exists k,, > 1 such that dist(x, Sing(f)) > 2/n
implies dist(h(z), Sing(g)) > 2/k,. In particular h(T,(f)) C Tk, (g). Fix now z € T,,(f).
Then there exists an infinite sequence n; = n;(z) such that dist(f" (z), Sing(f)) > 2/n
for all 7 > 1. Applying now Lemma 4.3 and Lemma 4.2 we see that there exists a constant
@, > 1 such that

|(g™)"h((2))]
|(fm7)"(2)]

In view of uniform continuity of h there exists 7, < 1/n such that h(J(f) N B(x,v,) C
B(h(x),1/ky) for all z € J(f). By the choice of the sequence n; = n;(z) for every

(4.2) Q' < < Qn.
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4 > 1 there exists an inverse branch f, " : B(f.”(2),2/n) — @ sending f™ () to z. Set
ri(z) = 3|(f=")' (f™ (2))|7n- Then by the Koebe Distortion Theorem

B(z,r(2)) > f™(B(f™ (), K~ a/4),

where K is a universal constant, and therefore

mg(B(z,75(2))) = K= |(F7) (F7 () m(B(f" (2), K~ /4)
(4.3) > Mo K7H|(f77) (7 (2)],

where M,, = inf{my(B(z, K~'y,/4) : « € J(f)} > 0. Similarly by the ;-Koebe Distortion
Theorem B(z,7(z)) C f= "7 (B(f" (2),¥n). Hence

h(J(F) N Bz ri(2))) € h(F7™ (B(™ (2).7) 0 T (£))
= gn (B (2).7) N T () € gttt (BOS™ (), 1/ k)
= g7 (B(g™ (h(2)). 1/kn)

Therefore using (4.2), (4.3) and the Koebe distortion theorem, we get

mg o h(B(z,7(2))) < my (g, (B(g" (1(2)), 1/kn))))
< K"(g,(:}) (9" (h(2)))['rmy (B (g™ (h(2)), 1/kn))))
< K'|(g™) (h(2))| 7 < K'Qu|(F7)' (z)| 7+t =t)
< MK Quomy (B(z, 1 (2)[(F™) (2)[ 7

Ift;—t4, < 0 then it would follow from Lemma 4.4 and the fact that lim,, o [(f™)'(2)| = o0
that mg o h(T,,(f)) = 0 for every n > 1. Since |J,,»; Tn(f) = T(f), it would imply that
mg(h(T(f))) = 0. But since h(Sing(f)) = Sing(g), using uniform continuity of h and
h~!, we conclude that h(T(f)) = T(g). Hence my(T(g)) = 0 which would contradict the
definition of tame maps. Thus for every n > 1 and every z € T,,(f)

mg o h(B(z,7;(2))) < My K Quomy(B(z,75(2))).

Therefore, applying Lemma 4.4 we conclude that mgoh|r, () is absolutely continuous with
respect to my¢|7, () for every n > 1. Since | J,,~; Tn(f) = T'(f), this implies that mgoh|ry)
is absolutely continuous with respect to my|p(sy. Since mgoh(Sing(f)) = mgy(Sing(g)) = 0
and m¢(Sing(f)) = 0, we obtain that m, o h is absolutely continuous with respect to my.
By symmetry my¢ o h~! is absolutely continuous with respect to mg and consequently the
measures mgoh and my are equivalent. The proof of the implication (5) = (6) is finished.

L )

§5. Closing the chain of implications: rigidity.
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The main result of this section is the following.

Theorem 5.1 (Rigidity Theorem). Suppose that f and g are two tame rational func-
tions not critically finite with parabolic orbifold. Suppose they are conjugate in measure-
theoretic sense by an isomorphism A : J(f) — J(g) mapping m¢ to a measure equivalent
to my. Then h extends from a set of full measure m to a conformal homeomorphism from
a neighbourhood of J(f) to a neighbourhood of J(g).

To prove this Theorem we proceed as in [Su], [Przyl]. We do not write down all details,
they can be found in [Przyl]. We start with

Lemma 5.2. Under the above assumptions there exists an open subset of J(f) where
h extends from a set of full measure my to a biLipschitz homeomorphism. Moreover h
extends from a set of full measure in J(f)\Sing(f) to a locally biLipschitz homeomorphism

from J(f) \ Sing(f) to J(g) \ Sing(g)-

Proof. Assume t; < t,. In view of Theorem 3.6 f and g are non-linear. Since g is
non-linear there exists w € J(g) \ Sing(g) and a neighbourhood W C @ of w such that
G is invertible on W, where G(z) = (D,,g)(z) in the Julia real-analytic case and G(z) =
((Dy,9)(2), (Dp,g) © g(2)), for some k > 1, otherwise. By ergodicity of my and mg and
since m¢(Sing(f)) = my(Sing(g)) = 0, there exists Y C J(g) of positive measure m, and
§ > 0 such that Y ¢ W \ B(Sing(g),d) and h=1(Y) C J(f) \ B(Sing(f),d) and for every
y € Y there exists n; = n;(y) — oo such that g"i(y) € Y.

Let € T(f) be a density point with respect to ms of the set h='(Y) and z €
h=1(Y). Write F(z) := (D, f)(2) if g is real-analytic and F(z) = ((Dy, f)(2), Dy, f o
f¥(2)) otherwise. The measures pus o h™' and pg coincide (up to multiplication by a
constant) because they are both equivalent and ergodic. Hence we obtain the crucial
equality

(5.1) (D F)(f™(2)) = (Do) (g™ © h(2))

for every n = 0, 1, .... Therefore
h=G 'oF
_ m¢(Ar
on A, := B(z,7r)Nh~1(Y), where % —lasr—0.

By ty <tg4, due to (5.1) and

(Duy I7)(&) = GEL @I @) 2 (@)

(D, g™ (h(x)) = 29 (g ()| (g7 (h(a)) o 22 (h(ar))

dmy dmy
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we obtain

(5.2) (f79) ()] = Cy[(g™) (h())],
for CY = min{inth(y) dd;;—’;,infh,l(y) (#‘L_?_l,infy j::i,infy jf;i _1}.

Since z € h='(Y) for an arbitrary &’ > 0 there exists #’ € J(f) such that B’ :=
B(z',0") C @\ B(Sing(f),d) and there exist branches ¢; of f~" on it, satisfying ¢,;(B’) > =
(this may require passing to a subsequence of n;). Then by (5.2) and Koebe’s Distortion

Theorem for §" small enough G™'F¢;(B’) C g,:(zjj (B(g™ (h(x)),d), where the branch g;(%
is the branch of g™ mapping ¢™ (h(z)) to h(z). Hence the functions h = g™ h¢; are
uniformly Lipschitz continuous on sets f™ (A, ), where r; are such that f™ are subsets of
B’ of diameters > Constd’. Hence h is Lipschitz continuous on subsets of a disc B” in B’
whose m g-measures converge to my(B"), with the same Lipschitz constant. Therefore h
is Lipschitz continuous on a dense subset of B”. We obtain also t; = t,, because t5 < t,
would lead to a subset of full measure in B” mapped by h to a point. Therefore we can
exchange the roles of f and g in the above proof. Finally h is Lipschitz on a full measure
subset of one disc B implies that h is Lipschitz on a subset of full measure on a disc
centered at an arbitrary point x € J(f)\ Sing(f). Just choose a backward trajectory from
x to B. This in particular allows to find B such that h and h~! are Lipschitz on B and
h(B) respectively (on subsets of full measure) perhaps with larger Lipschitz constants.
Since my is a measure of full support on J(f), we are done. [ )

Lemma 5.3. If the conjugating mapping h in Theorem 5.1 is a homeomorphism from
J(f)\Sing(f) to J(g)\Sing(g) then the Julia real analytic of f implies Julia real analycity
of g. In case they are both Julia real analytic, h extends to a real analytic diffeomorphism
mapping a neighbourhood of J(f) \ Sing(f) to a neighbourhood of J(g) \ Sing(g) in re-
spective real analytic curves, hence complex analytic in neighbourhoods in €. If f and g
are not Julia real-analytic, h extends to a real-analytic diffeomorphism in neighbourhoods
in .

Proof. Suppose that f is Julia real-analytic. Then h = G~! o F in an open set W' :=
h=1(W), see the beginning of Proof of Lemma 5.2. So h is real-analytic in this set and if
J(f)N W' is contained in I" the union of real-analytic curves. Then J(g) N W is contained
in h(T' N W'), also the union of real analytic curves. So, using topological exactness of
g:J(g) = J(g) we conclude that g is Julia real-analytic. The same formulas h = G=1o F
and h~! = F~1 o G prove real analyticity of h and h~". s

Proof of Theorem 5.1. Let z € Sing(f). There exists y € J(f) \ Sing(f) and a
positive integer n such that f™(y) = z. By Lemmas 5.2 and 5.3 there exists 6 > 0 such
that h extends real-analytically (or complex analytically for Julia real analytic f) to the
component B’ of f~"(B(z,0)) containing y. Moreover we can take § so small that f"
has no critical points in B’ maybe except the point y. Hence h = g" oho f~™ on a
dense subset of B(z,d) N J(f) extends to B(z,d) by the same formula, to a real analytic
(complex analytic) diffeomorphism. Formally the extension depends on the branch of f~—™
(i.e. the resulting h is multivalued) but two extensions must coincide on a real analytic set
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containing J(f) N B(z,0). If they did not coincide in the entire B(xz,d) then f would be
Julia real-analytic. But in this case the extensions h are complex analytic so they coincide.
The singularity « (in the nontrivial case where deg f™ > 1 on B’) is therefore removable.
Thus the proof is finished for Julia real-analytic case: h extends to a biholomorphic map
on a neighbourhood of J(f), real-analytic from I'¢ to T',,.

If f and g are not Julia real-analytic we first notice that h, the real analytic extension of A to
a neighbourhood of J(f)\ Sing(f) is in fact conformal. The proof is the same as in [Przyl,
Lemma 7.2.7]. The idea of the proof is that otherwise (in case h preserves orientation)
there would exist an invariant line field, with arguments o = $Arg(% /42) mod 7. This
is possible only if f is linear. Indeed locally we can consider functions 8 conjugate to «
and exp(( + ia) will be charts ¢; satisfying the condition (d) in Theorem 3.2. Again as in
Julia real-analytic case we extend h conformally to B(z,d) \ {z} for any x € Sing(f) and
remove the singularity x. L]

The implication ((6) = (2)) has been proved except for f and g critically finite with
parabolic orbifold. Such maps for J(f) and J(g) not being the whole @ must be of the
form z +— 2", |n| > 2, or Tchebyshev polynomials (up to conformal changes of coordinates).
For such maps m; and m, are length measures and the conjugacy is real analytic because
the densities of invariant measures are real-analytic, see for example [SS]. So, in order to
conclude the proof of Theorem 1.9 we only need to show that (2) = (1). This follows from
the following proposition which is interesting itself.

Proposition 5.4. For any rational functions f, g any conformal conjugacy on neighbour-
hoods of Julia sets extends to a Mobius map conjugating f and g on .

Proof. For every x € @ except at most two points there exists y close to J(f) so that h
is defined in a neighbourhood of y and there exists n > 0 such that f"(y) = . Assume
additionally that {f7(z),7 = 0,...,n — 1} N Crit(f) = 0. So we can define conformal
h := g"h¢, on a neighbourhood of x, where ¢ is the branch of f~" mapping = to y. This
does not depend on the choice of the branch (i.e. the choice of y and n) because the
formula extends the formula for z close to J(f) where it does not depend on the branch.
A countable number of singularities at f™(Crit(f)) are removable. Similarly extend h~1.
The compositions which are identities on neighbourhoods of J(f) or J(g) are therefore
identities on @, so the extensions are invertible on @ &

In Proof of Theorem 5.1 a proof of the following general fact is contained.

Lemma 5.5. Let f, g be two arbitrary rational functions. If a homeomorphism h : J(f) —
J(g) conjugates f to g and extends conformally to an open disc intersecting J(f) then h
extends to a conformal homeomorphism from a neighbourhood of J(f) to a neighbourhood
of J(g).

The proof goes through as above via g"hf~". In fact it is sufficient to assume that f and
g are defined only on neighbourhoods of their invariant sets, here J(f), J(g). Lemma 5.5
gives a very simple proof of the following.
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Theorem 5.6 (E. Prado [Pra]). If f,g are generalized polynomial-like maps at zero
Teichmiiller distance, namely there exists a sequence h,, : U,, — V,, of K, -quasiconformal
conjugacies between neighbourhoods U,, and V,, of Julia sets and K,, — 1, then there is a
biholomorphic conjugacy between domains of f and g.

Proof. Fix a periodic source x € J(f) of period, say p and a disk B(z,d) with 6 > 0 so
small that all k = 0,1,...,p — 1 the components of f~%(B(x,)) intersecting the periodic
orbit of x are disjoint from Crit(f) and their diameters shrink (exponentially fast) to 0.
Let 6, > 0 be such that B(x,24,) C U,. Write B,, := B(z,d,). Then there exist sequences
kj,mj such that f* (B,,) C B(z,6/2) and the diameters of are f*/(B,,) are comparable
to 6/2. Since sup K,, < oo there exists B’ = B(x,6') C f*i(By,) for all j. Hence

H; = gkj o hn,- o bj

for ¢; the branches of f —%; fixing x, are all well defined on B’ and K,;-quasiconformal.
They all coincide on J(f)NB’ so a limit, which is conformal by K,, — 0, exists. There is no
problem with the domain of definition of g¥ above and also all H ;j are uniformly bounded
because gFhy,;¢;((J(f) N B') for all k < k; have small diameters and all g*hy,, ¢;(B’) are
uniformly distorted. Finally A extends holomorphically from B’ to a neighbourhood of
J(f) by Lemma 5.5. &

Remark 5.7. In the literature there exist a large number of papers devoted to various
kinds of rigidity theorems. Let us list here only those which seem to be the closest to what
is contained in this paper: [Co], [Mcl], [Pral, [Przyl], [SS], [Su] and [U5].

Remark 5.8. It follows from [FU] that if the Julia set of a Julia real-analytic rational
function is connected, then, in fact, it is equal to a geometric circle or an interval.
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