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§1. Introduction, Preliminaries. The main goal of this paper is to develope the ergodic
theory of Holder systems of functions (comp. also [HU] and [HMU]) and to demonstrate
in the context of conformal infinite iterated function systems the existence of phenomena
observed in [PUZ,I] and [PUZ,II] (comp. also [DU1] and [DU2]) in the setting of rational
functions of the Riemann sphere. Let us recall now that in [MU1] we have provided the
framework to study conformal infinite iterated function systems. In order to recall this
notion and its basic properties let X be a nonempty compact subset of a Euclidean space
IR, Let I be a countable index set with at least two elements and let S = {¢; : X —
X : i € I} be a collection of injective contractions from X into X for which there exists
0 < s < 1 such that p(¢;(z),¢i(y)) < sp(x,y) for every i € I and for every pair of
points =,y € X. Thus, the system S is uniformly contractive. Any such collection S of
contractions is called a hyperbolic iterated function system. We are particularly interested
in the properties of the limit set defined by such a system. We can define this set as the
image of the coding space under a coding map as follows. Let I* =J,,~, I", the space of
finite words, and for w € I, n > 1, let ¢, = @, © Py, 00 Py, T w € I*UI® and
n > 1 does not exceed the length of w, we denote by w|,, the word wjws . ..w,. Since given
w € I, the diameters of the compact sets ¢, (X), n > 1, converge to zero and since
they form a descending family, the set

M bur. (X)

is a singleton and therefore, denoting its only element by 7(w), defines the coding map
7w : I°*° — X. The main object of our interest will be the limit set

J:ﬂ-([oo): U m¢w|n(X)7

wEI>* n=1

Observe that .J satisfies the natural invariance equality, J = (J;c; #:(J). Notice that if
I is finite, then J is compact. However, our main interest concerns systems S which are
infinite.

An iterated function system S = {¢; : X — X : 4 € I}, is said to satisfy the Open Set
Condition (abbreviated (OSC)) if there exists a nonempty open set U C X (in the topology
of X) such that ¢;(U) C U for every i € I and ¢;(U) N ¢;(U) = 0 for every pair i,j € I,
i 47

A hyperbolic iterated function system S satisfying (OSC), is said to be conformal (c.i.f.s.)
if the following conditions are satisfied.

(a) X is a compact connected subset of a Euclidean space IR? and U = Int g4 (X).

(b) There exist a,! > 0 such that for every x € X C IR? there exists an open cone
Con(z, ug, a,l) C Int(X) with vertex x, direction vector u,, central angle of Lebesgue
measure «, and altitude [.

(c) There exists an open connected set X C V C IR? such that all maps ¢;, i € I, extend
to C'1*¢ diffeomorphisms on ¢; : V. — V and are conformal on V.
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(d) Bounded Distortion Property(BDP). There exists K > 1 such that

b0 (W)| < K|, (2)|

for every w € I'* and every pair of points =,y € V, where |¢/ (z)| means the norm of
the derivative.

We provide below without proofs all the geometrical consequences of the bounded distor-
tion property (d) derived in [MU1]. We have for all words w € I* and all convex subsets
CofV

(BDP1) diam(¢,,(C)) < |4}, ||diam(C)

and

(BDP2) diam(¢., (V) < DIl |l;

where the norm ||-|| is the supremum norm taken over V and D > 1 is a universal constant.
Moreover,

(BDP3) diam(¢, (X)) > D71 ||¢, ||

and

(BDP4) $u(B(z,7)) D B(¢u (), K~ ||¢5,Ir),

for every x € X, every 0 < r < dist(X,0V), and every word w € I*. Also, there exists
0 < 8 < a such that for all x € X and for all words w € I*

(BDP5) ¢, (Int(X)) > Con(¢u (), B, D~"|4,]]) > Con(¢u(x), B, D~*diam(du(V))),

where Con (¢, (), 3, D7 |¢,,]|) and Con(¢ (), 3, D~2diam(¢,(V))) denote some cones
with vertices at ¢, (z), angles 3, and altitudes D~1||¢/ || and D~2diam(¢,, (V)) respectively.
Frequently, refering to (BDP) we will mean either (BDP) itself or one of the properties
(BDP1)-(BDP5). We will need also the following result stated in [MU1] as Lemma 2.6,
where S% ! is the d — 1-dimensional unit sphere containd in IR* and A\4_; is the d — 1-
dimensional Lebesgue measure in IR%.

Lemma 1.1. If S is a conformal iterated function system, then for every z € X and every
integer n > 1, we have #m, 1(x) < A\g_1(S?1)/B. In particular, S is uniformly pointwise
finite. More precisely sup,cx #{i € I 1z € ¢;(X)} < A\g—1(S41)/B < .

Our paper is organized as follows, In the second section which is introductory but interest-
ing itself, similarly as in [HU] and [HMU], we introduce and develope the ergodic theory
of Holder systems of functions proving basic theorems concerning topological pressure,
Perron-Frobenius operator, conformal and invariant measures and equilibrium states. The
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third section, similarly as in [HMU] is devoted to prove the volume lemma in our set-
ting, the result proved many times in various contexts beginning from the classical work
of Billingsley. The 4th section dealing with the Ionescu-Tulcea and Marinescu theorem
and its spectral consequences improves on some considerations from [DU1] and [DU2J.
Section 5 is modelled mainly on Section 3 of [DU1] and is devoted to derive stochastic
consequences of the Ionescu-Tulcea and Marinescu theorem. The last section, Section 6,
containing central conclusions combines and developes the approach from [DU1], [PUZ,I],
and [PUZ,II] and adjusts it to the context of conformal iterated function systems.

§2. Thermodynamic formalism for iterated function systems. As in the pre-
vious section let I be a countable alphabet, let I* = |J, -, I" be the space of all fi-
nite words and let ¥ = I°° be the infinitely dimensional shift space equipped with
the product topology. Denote by o : ¥ — X be the shift transformation (cutting out
the first coordinate), o({z,}52,) = ({zn}52,). We also consider o : I* — I* U {0}
defined similarly, o(wiws,...,w,) = (w2,...,wn), o(w;) = 0. Fix f > 0. In this
section S = {¢; : X — X : ¢ € I} is a hyperbolic iterated function system and
¢={¢p® : X = IR:icI}isa family of continuous functions such that if

Viu(¢) = sup sup{[0“) (¢, () () — 6“1 (do () (1)) |},

wel™ xeX

then

(2.1) Vs(9) = igr;{Vn(aﬁ)} <00

and L4(11) € C(X), where 1 is the function identically equal to 1 and
@) (g
Lo(@)(@) =D e Dy(gi(w), ¥ € C(X),
iel

is the associated Perron-Frobenius operator. The family ¢ is then called a Holder system
of functions of order . Notice that then L4 acts on C(X) as a continuous operator and
[Lollo < Ly(L). Let L3 : C(X)* — C(X)* be the dual operator and following [Bo] define
the following map on the space of probability measures on X:

L)

Y L) (1)

This map is continuous and therefore in view of the Shauder-Tichonov theorem it has a
fixed point, say mg. Thus

(2.2) L3(mg) = Amg,
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where A = L3 (mg)(11). Following the classical thermodynamic formalism we define the
topological pressure of ¢ by setting

1 "o
P(¢) = lim ~log }  |lexp | > ¢’ 0 dos

jwl=n j=1 0

pu— h— wj
i s 3 o (p 35 o)
wl=n

where || - ||o denotes the supremum norm. Notice also that the limit above exists indeed
since the partition function

=log D |exp quoqsm

|wl=n 0

is subadditive. Given n > 1 and w € I™ denote 2?21 ¢“i) o doin : X — IR by S,(¢) :
X — IR. Let us then prove the following.

Lemma 2.1. If z,y € ¢,(X) for some 7 € I'*, then for all w € I*

V() e

Su()(@) ~ Su(d)(y)] <

Proof. Let n = |w|. Write z = ¢, (u), y = ¢-(w), where u,w € X. By (2.1) we get
D 09 (hin(@) = D 0“9 (boiw®))] = D 6“7 0 Goir () = > T 0 hir (w)
j=1 j=1 j=1 j=1
< Z ‘QS(WT)j © Qsafwr (U’) - QS(WT)j © Qsajwr (w)
j=1

< znjv(qg)e—ﬁ(nﬂﬂ—j)

The proof is finished. l
Remark. We allow in Lemma 2.1 7 to be the empty word (). Then ¢y = Idx and |}] = 0.
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We shall prove the following.

Lemma 2.2. The eigenvalue A (see 2.2) of the dual Perron-Frobenius operator is equal to
P(¢)
e 9,

Proof. Iterating (2.2) we get

A" )\"m¢( / £¢ dm¢
/ Z exp(S Z || exp(Sw(4))]o-
|lw|=n |w|=n

So,
1
logA < lim —log »  ||exp(Su())|lo = P(#).

|lw|=n

Fix now w € I"™ and take a point z,, where the function S, (¢) takes on its maximum. In
view of Lemma 2.1, for every x € X we have

Z exp(Sy () (z)) > Q1 Z exp(S, -1 Z || exp(Sw (é))]]o-

|lw|=n |lw|=n |lw|=n
Hence, iterating (2.2) as before,
3= [ 37 exp(Su@Dms = Q7 3 llexp(Su @)
|lw|=n |w|=n

So, log A > lim,, o0 + log > wj=n |1€xP(Su(9))|lo = P(4). The proof is finished. W

Let Ly denote the normalized Perron-Frobenius operator, i.e. Ly = e_P(¢)£¢. We shall
prove the following.

Proposition 2.3. my(J) = 1.
Proof. Since by (2.2) and Lemma 2.2

(2.3) Lo(mg) = my

and consequently L£§"(mg) = mgy for all n > 0, we have

(2.4 [ 3 exp(Su(0) = P@m) - ( o d)dmy = [ pm
|w|=n

for all n > 0 and all continuous functions f : X — IR. Since this equality extends to all
bounded measurable functions f, we get

(2.5) m Z /exp (qﬁ)n)-]1¢w(A)o¢Tdm¢Z/exp(Sw(¢)—P(¢)n)dm¢
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for alln > 0, all w € I, and all Borel sets A C X, where 1l g is the characteristic function
of the set E. Now, for each n > 1 set X, = U=, #w(X). Then lx, 0 ¢, = 1 for all

w € I™. Thus apllying (2.4) to the function f = I x, and later to the function f = 1, we
obtain

D= [ X () = Pom) - (L, o )dmg
/ Z exp (S — P(p)n)dmy = /lldm¢ =1.

Hence my(J) = my(),>; Xn) = 1. The proof is complete.

Theorem 2.4. For alln > 1
Q7' < Ly(1) < Q.

Proof. Given n > 1 by (2.4) there exits z,, € X such that £{(1)(x,) < 1. It then follows
from Lemma 2.1 that for every x € X, Lj(11) < Q. Similarly by (2.4) there exists y, € X
such that £8 (1) > 1. It then follows from Lemma 2.1 that for every x € X, L5 (1) > Q1.
The proof is finihed.

If we I set [w] = {7 € I*®: 7||,| = w}. We shall prove the following.

Lemma 2.5. There exixts a unique Borel probability measure mg on I°° such that
mg([w]) = [ exp(Su (@) — P(¢)|w|)dmy for all w € I*.

Proof. In view of (2.4), [ exp(S,(¢) —P(¢)n)dmg =1 for all n > 1 and therefore one can
define a Borel probability measure m,, on C},, the algebra generated by the cylinder sets
of the form [w], w € I", putting m, ([w]) = [exp(S,(¢) — P(¢)n)dmy. Hence, applying
(2.4) again we ge for all w € I™.

Mpt1 ([ Zmnﬂ wi)) Z/exp wi(®) — P(d)(n + 1))dm¢

1€l i€l

/Zexp ZQSWJ) ° p, I (wi) — P(¢)n + ¢(i) — P(¢) dmg

1€l

- / > " exp(S. 0 ¢i — P(¢)n) exp(p?) — P(¢))dmy

i€l

= /Eo (exp(Sw(qﬁ) — P(¢)n))dm¢ = /exp(Sw(QS) — P(¢)n)dm¢ = my, ([w])

and therefore in view of Kolmogorov’s extension theorem there exists a unique probability
measure 17 on I°° such that mg([w]) = My, ([w]) for all w € I*. The proof is complete. W



As an immediate consequence of this lemma and Lemma 2. 1we see that if R is a collection
of incomparable words such that (J,,cp[w] = I°°, then we have
(2.5)
1<) llexp(Su(@®) = P(9)lwl)llo < Q and Q71 < ) infexp(Su(¢) — P()|w]) < 1.
weR wER

1

Lemma 2.6. The measures mg and mg o7~ are equal.

Proof. Let A C J be an arbitrary closed subset of J and for every n > 1 let A, = {w €

I" : ¢, (X)NA#0}. In view of (2.4) applied to the characteristic function 14 we have
foralln>1

ma) = 3 [ exp(Su(0) - P@)wl) (L 0 6.) dmy

-y /exp(Sw(qb) ~P(¢)[w]) (L © bu) dimy
wEA,

<Y [ en(5u(6) - P@el) dmy = 3 (i) = o U o)
w€EA, wEA, wEA,

Since the family of sets {{J,c4 [w]: n > 1} is descending and (,,51 U, 4, [w] = 77 (A)
we therefore get mgy(A) < limy,_ o0 My (UwEAn [w]) = mg(m7(A)). Since both measures
mg and mg o n~1 are regular (as J is a metric separable space), this inequality extends

to the family of all Borel subsets of J. Since both measures are probabilistic we get
mg = mg o m~ . The proof is finished. W

Let us recall that in the beginning of this section by o : I*° — [°° we have denoted
the left shift map (cutting out the first coordinate) on I°°. We also recall that a measure
preserving endomorphism is said to be totally ergodic if and only if all its (positive) iterates
are ergodic. Now we shall prove that the shift map ¢ : I°° — I°° has a unique invariant
(totally ergodic) probability measure equivalent with 1.

Theorem 2.7. There exists a unique o-invariant probability measure fi4 absolutely con-
tinuous with respect to m,. Moreover fi, is equivalent with mg, Q™1 < dfiy/dmy < Q
and the dynamical system o : I°° — I°° is totally ergodic with respect to the mesure fi,4.
Proof. First notice that, using Lemma 2.5 and Lemma 2.1, for each w € I* and each
n > 0 we have

mg(o (W) = Y mg(frw]) = Y /Iexp(Sm(¢) = P(¢)|rwl) dmy

> 57 QY[ exp(S- (#) — P(8)[7]) / exp (S (¢ — P(B)|w]) dmg
— Q! / exp(Su (@ — P(@)w]) dmg 3 [lexp(S+(6 — P()[7]) lo

> QMg ([w])mg(I°°) = Qg ([w])
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and

ip(o (W) = 3 gl = 3 [ exp(Su6 ~ P@)rel) dmg

< > llexp(S+(6 ~ P@)Ir)llo / exp (S (@) = P(¢)lwl) dmy

_ / exp(Su(9) — P(9) w]) dmy 3 | exp(S-(#) — P()[7]) lo

< Qg ([w]).

Let now L be a Banach limit defined on the Banach space of all bounded sequences
of real numbers. We define p([w]) = L((mg(c™([w])))n>0). Hence Q 'y ([w]) <
p(lw]) < Qmg([w]) and therefore it is not difficult to check that the formula p(A4) =
L((mg(c7™(A)))n>0) defines a finite non-zero finitely additive measure on Borel sets of
I satisfying Q@ 'my(A) < p(A) < Qmy(A). Using now a Calderon’s theorem (see The-
orem 3.13 of [Fr]) and its proof, one constructs a Borel probability (o-additive) measure
fig on I°° satisfying the formula

Qg (A) < fig(A) < Qring(A)

for all Borel sets A C I*° with perhaps a larger constant (). Thus, to complete the proof of
our theorem we only need to show the total ergodicity of fi4 or equivalently of m,. Toward
this end take a Borel set A € I°® with mg(A) > 0. Using Lemma 2.5 and Lemma 2.1
it is straightforward to check that for every w € I*, mg(wA) > Q7! exp(S.(¢) —
P(¢)|w|)||ome(A) > 0, where wA = {wp : p € A}. Hence, since the nested family of
sets {[7] : 7 € I*} generates the Borel g-algebra on I°°, for every n > 0 and every w € I"
we can find a subfamily Z of I* consisting of mutually incomparable words and such that
AcU{lr]:7e Z} and ) ., my(JwT]) < 2mg(wA). Then

g (07" (A) N [w]) = mg(wA) Zm¢ wT)) Z/|exp wr (¢ — P(¢)|wT]) dmy

TEZ
1
> 5@ e (8.0~ P@el)llo X [ lexp(S,(0 - P@)Ir) dmg
TEZ
Z%Q /exp w(® = P(P)|w]) dm > g ([r])
TEZ
1

> 2@ Mg ([@Ding (UMl 7 € 23) = SQ Mg AYing (o).
Therefore 1 (o= (1°\ A)[w]) = ritg ([wW]\ (o~ (A)N[w])) = 1 ([w]) —ritg (" (A)N[w] <

(1—(2Q)~"my(A))me([w]). Hence for every Borel set B C I°° with my(B) < 1, for every
n > 0, and for every w € I"™ we get

(2.6) g (o~ (B) N [w]) < (1 - (2Q)7 (1 — my(B)))mg([w]).
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In order to conclude the proof of the complete ergodicity of ¢ fix » > 1, and suppose that
o~"(B) = B with 0 < mg(B) < 1. Put v = 1— (2Q) (1 — g (B)). Note that 0 <y < 1.
In view of (2.6), for every w € (I")* we get mg(BN[w]) = iy (0~ “I(B)N[w]) < ymg([w]).
Take now 1 > 1 so small that yn < 1 and choose a subfamily R of (I")* consisting of
mutually incomparable words and such that B C [J{[w] : w € R} and mg(J{[w] : w €
R}) < ming(B). Then 1ig(B) < 3 cpimg(BN[w]) < 3,cpvig([w]) = v (U{lw] :
w € R}) < ynmg(B) < mg(B). This contradiction finishes the proof. B

Theorem 2.8. my is the only probability measure m satisfying Lo(m) = m.

Proof. Since my satisfies this equality we are only left to prove its uniqueness. So, let m;
be another such a measure and let my be the probability measure produced in Lemma 2.5
applied to the measure m;. Then for every w € I'* we have Q! < my([w])/me([w]) < @Q,
whence m; and mg are equivalent and the Radon-Nikodym derivative p = dﬁﬁ:; satisfies

Q7 < p < Q. We also have 1y ([o(w)]) = [ exp(Sy(w)(¢) —P(¢)|o(w)|) dmy and therefore

() = [ exp(Su(8) - P@)lw]) dims
:/emeﬂwm@@»—Pw»mm&mwwww4%@wwmdmam.
Hence

inf{exp (¢ () = P(9)) : & € o) (X))}t ([0(w)]) < 1t ([w])
< sup{exp (9 “V) (z) = P()) : & € do(u)(X)}ig([o(w))).

Since ¢1) is a continuous function on X we thus obtain that for every w € I®

(2.7) lim 7 ([#n])

n=00 11y ([0(w)]n—1]

) = exp(¢“)(r (0 (w))) — P(¢))

and the same formula is true with m replaced by m. In view of Theorem 2.7 there exists
a set of points w € I* with m, measure 1 for which the Radon-Nikodym derivatives p(w)
and p(o(w)) both are defined. Let w € I® be such a point. Then using (2.7) and its
version for m, we obtain

mm:nm(@ﬂ%ﬁ>:mn(7mww>,mmwmmn>muwmwm>
( 1]

m¢([“|n]) .

n— 00 n— 00

1 ([0(W)ln-1]) Mg ([o@)ln-1]) Mg ([wln])
= exp (¢ (m(a(w))) = P(¢)) plo(w)) exp(¢“V) (0 (w))) — P(4) = p(o(w))
But since, in view of Theorem 2.7, o is ergodic with respect to mg, we conclude that p

is mg-almost everywhere constant. Since moreover m; and mg are both probabilistic and
equivalent, m; = my. So, applying Lemma 2.6 finishes the proof. Bl
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We call a Borel probability measure m on J, ¢-conformal if

(2.8 m(9u(X0) = [ exp(Su(0) ~ P(@)lo]) dim, w e I
and
(2.9 m(gu(X) N6,(X)) = 0

for all incomparable words w, T € I*. Notice that in fact it suffices to require (2.8) and
(2.9) to hold for words of length 1. Now we shall prove the existence (and uniqueness) of
¢-conformal measures. In fact we shall show that every measure fulfilling slightly weaker
requirements than being a fixed point of the dual operator L, is conformal.

An iterated function system {¢; : ¢ € I} by definition does not have ovrlaps if ¢;(X) N
¢j(X)=0foralli,jel,i#j.

Lemma 2.9. Suppose that the iterated function system {¢; : i € I} does not have
overlaps or it is conformal. A Borel probability measure v on X is ¢-conformal if and only
if V(¢ (A)) > [, exp(Su(p) — P(¢)) dv for all w € I* and for all Borel subsets A of X.

Proof. That conformal measures satisfy the requirements appearing in this lemma follows
immediately from their definition. In order to prove the harder part first we shall show
that condition (2.9) is satisfied, then that v(J) = 1, and finally that (2.8) holds. If the
system does not have overlaps then (2.9) is immediate. So, suppose that it is conformal
and suppose on the contrary that v(¢,(X) N ¢, (X)) > 0 for some ¢ > 1 and two distinct
words p,7 € I9. Let E = ¢,(X) N ¢,(X) and for every n > 1 let E, = (J,cn ¢u(E).
Since each element of FE,, admits at least two different codes of length n + ¢ which agree
on the initial segment of length n, it follows from Lemma 1.1 that (N, Uo—, En = 0.
On the other hand, by (2.5) and Lemma 1.1, we get v(FE,) > Q™ '8\q_1 5% v(F), thus
V(Meet Uni Bn) > Q71 BAa—1S%'wv(E) > 0. This contradiction shows that

(2.10) v($p(X) N 7 (X)) = 0

for all incomparable words p, 7 € I*. From now on the proof runs simultaneously for
confromal systems and those without overlaps. In order to show that v(J) = 1 suppose
to the contrary that (X \ J) > 0. In view of (2.10) for all w € I* we have v(d, (X \

NN T) = v(Urene (X \T) N dr(I) < 3 e v(¢u(X \ J) N ¢r(J)) = 0. Hence
setting En = Jyern P (X \ J) we get v(J N Un>1 E,) = 0. On the other hand, as above,
)

v(E,) > Q w(X \ J) (because of (2 10) we could skip the factor A, (S4~1) here) and
therefore v((Nyey Un—y En) > K°v(X \ J) > 0. Moreover

NUEcNU U e@)=N U t® =17
k=1n=k k=1 n=kweIlm™ k=1welk

Combining the formulae occuring at the ends of the last three sentences we fall into a
contradiction which proves that v(J) = 1.
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Now we need and we are in position to prove, that the measure my is ¢-conformal. In-
deed, my satisfies all conditions placed in the right-hand side of Lemma 2.9. Moreover,
using (2.10), (2.3), and Lemma 2.5, given an integer n > 1, we can write 1 = my(X) =
m¢(UwEI" ¢W(X)) = ZwEI” m¢(¢w(X)) Z ZwEI" fexp(Sw(qS) - P(¢)|w|) dm¢ = 1L
Therefore mg (¢, (X)) = [ exp(Su(¢) — P(d)|w|) dmy for all w € I™. Define now two finite
measures m; and my on X in the following way: mi(A4) = [exp(S.,(¢) — P(¢)|w]) dmy
and ma(A) = my(¢,(A)). Since we know that mq(X) = mo(X) and mq(A) < ma(A) for
all Borel sets A, we conclude that m; = my. Hence, conformality of m, is proved.

Let us now return to the measure v. We shall show that mg is absolutely continuous with
respect v. Indeed, it follows from conformality of mg and (BDP) that Q|| exp (S, (¢) —
P(@)w)llo < ma(u(X) < llexp(Su(6) — P(@)w])llo for all w € I*. Since, by the
assumptions, v(¢, (X)) > Q7| exp(S.(¢)—P()|w|)||o, we therefore obtain my (¢, (X)) <
Qu(¢,(X)). So, using (2.10), we conclude that mg is absolutely continuous with respect
to v and p = dmgy/dv < Q v-a.e.. Repeating essentially the argument from the proof of
Theorem 2.8 to show that p is almost everywhere constant, we proceed as follows. In view
of Lemma 2.6 and Theorem 2.7 there exists a set of points w € I°® with m, measure 1
for which the Radon-Nikodym derivatives p o m(w) and p o w(o(w)) both are defined. Let
w € I*° be such a point. Then

<m¢(¢w|n(X))>

v(fu), (X))

T < My (Pu), (X)) my(Pow)., (X)) V(¢o(w)|n1(X))>
m¢(¢a(W)|n—1(X)) V(¢U(w)|n—1(X)) V(¢w|n(X))

< lim S o, 0 @9 —P(9)) dmy

T n—oo m¢(¢a(w)|nf1(X))

. v(bo(w)._i (X))
neo [ exp(6@) (2) — P(9)) dv(x)

= exp(¢“) (n(0(w))) = P($))p(m(0/(w))) (exp(¢V) (m(0(w))) = P(9)))
= p(r(o(w)))

So, by the Birkhoff ergodic theorem, p o m(w) is mg-a.e. constant and so is the Radon-
Nikodym derivative p : J — [0,00). Keep the same symbol p for this value. Since both
measures m and v are probabilistic, p > 1. In the proof of the previous theorem we were
done at this point concluding that p = 1 since m; and mg were equivalent. Here an
additional argument is needed. And indeed, if p > 1 mg-almost everywhere, define the set
Z ={xeJ:p(x)=0}. Thenv(Z)=1-1/p> 0. We claim that

pom(w)= nlgr;o

n— 00

~p(m(o(w)))-

(2.11) v((J\Z2)Nu(2)) =0

for all w € I*. Indeed, if v((J\ Z) N ¢,(Z)) > 0 for some w € I*, then my(¢,(2)) >
me((J\ Z2) N ¢pu(Z)) = pr((J\ Z) N ¢,(Z)) > 0 which by conformality of m, implies

12



that mg(Z) > 0. This contradiction finishes the proof of (2.11). But now it follows from
(2.11) that the probability measure v|z/v(Z) satisfies the assumptions of the right-hand
side of Lemma 2.9, hence from what has been proved we conclude that mg is absolutely
continuous with respect to v|z/v(Z). This however contradicts the definition of the set Z
and finishes the proof. B

Corollary 2.10. my is the only probability measure satisfying £§(mg) = mgy and my is
¢-conformal. Also mg-almost every point x € J has a unique representation in the form
r = m(w), w € I, that is 7~ 1(x) is a singleton. In particular in view of Theorem 2.7 and
Lemma 2.6 the measure pg = figom ™! is equivalent with m with bounded Radon-Nikodym
derivatives.

In the and of this section we further investigate the o-invariant measure fi4 introduced in
Theorem 2.7. Let p = . We begin with the following technical result.

Lemma 2.11. The following 3 conditions are equivalent
a) [—¢dig < oo.
(b) > ;s inf(—9;) exp(inf @) < oo.
(¢c) Hgz,(a) < oo, where oo = {[4] : i € I} is the partition of I°° into initial cylinders of
length 1.

Proof. Suppose that [ —¢dfg < oo. It means that ZzeIf —¢dfig < oo and conse-
quently, using Theorem 2.7 and Lemma 2.5, we get

00 > me — Pl / dfiy = Zinf(—(ﬁhi]) /[.] pding

iel el

> QS inf(—l)ring (i) = @ inf(— gl / exp(¢9) () = P(6))dm ()

iel el

—1 —P(¢)me — ol /exp(é(i)(fﬂ))quﬁ(ﬂf)

el

Thus

oo>me —l11) /exp(QS(l( Ydmg(z >me — Pl exp(igl(f(qﬁ(i))

i€l 1€l

= Z inf(—a|;) exp(inf @)

el

Now suppose that ), inf(—¢|;)) exp(inf ¢[f;) < co. We shall show that Hj, (o) < oo.
So, using Theorem 2.7 again,

Hp, () = Y —fig([i]) log fig([i]) < D —Q iy ([i]) (log 1ty ([i]) — log Q).

el i€l

13



But .. —Q 'my([i])(—log Q) = Q' log @, so it suffices to show that

Z —mg ([i]) log mg([i]) < oo.
But

> g ([i]) log g ([i]) = Y _ —ring([i]) log (/X exp (¢ — P(¢))> dmg

el el

< 3 g (i) inf (6 — P(4).

i€l

But 3,7 mg([i])P(¢) = P(¢), so it suffices to show that Y, —1g([d]) infx (¢(?) < oco.
And indeed,

Z —1mg ([ 1nf (p™) Zm¢ [i]) sup (—p®) <Zm¢ 1nf ¢(i))+logQ).

1=y 1=y 1=y

Since Y, ; e ([i]) log @ = log @, it is enough to show that Y-, ms([d]) infx (—¢p®) < oo
And indeed,

> (i) inf(=¢®) = | / exp (@) — P(¢))dmg inf(—¢7)

1€l 1€l

But since L4(11) € C(X), ¢V are negative everywhere for all i large enough, say i > k.
Then using Lemma 2.1 again we get

> g ([]) if(—9) < e™POQ Y exp (inf (9)) imf ()

i>k i>k

which is finite due to our assumption. Hence, >, mg([d]) infx (— »®) < co. . Finally
suppose that H;, () < co. We need to show that [ —¢djig < oo. We have

00 > Hp, () = —fig([i)) log (fig([i])) <D —Qring([i]) (inf(]y) — P(¢) — 210g Q)).

1€l 1€l

Hence ), ; —mg([4]) inf(¢|;7) < oo and therefore

/ —pdjiy = Z/ —dfiy <Y sup(—o)ring([i]) = D —inf(g[p)mg ([i]) < oo.

el 1€l el

The proof is complete. B
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Abusing a little bit notation we can define a function ¢ : I°° — IR by setting

$(w) = o) (n(a(w)))-

Since {(b(i) i € I} is a Holder system of functions of order 3, ¢ is a Holder continuous
function of order # meaning that Vz(¢) = sup,,5,{e’"V,,(¢)} < oo, where

Va(9) = supf{|d(w) — &(7)] : wln = 7[n}-

It is easy to see that

(2.12) P(¢) = lim llog Z exp | sup Z(ﬁoaj ,

|w|=n TE[W] j=0

where the topological pressure P(¢) has been defined at the beginning of the section. It is
also not difficult to check (see [HU] and [MU2]) that formula (2.12) gives the same value
as the definition introduced by Sarig in [Sa]. Therefore, it follows from Theorem 3 of
[Sa] that sup{h,(c) + [ ¢du} = P(¢), where the supremum is taken over all o-invariant
probability measures such that [ —¢dp < oco. We call a o-invariant probability measure
p an equilibrium state of the potential ¢ if h,(c) + [ ¢du = P(¢). We shall prove the
following.

Theorem 2.12. If ), inf(—¢|};)) exp(inf ¢[f;) < oo, then jiy is an equilibrium state of
the potential ¢ satisfying [ —¢djiy < oo.

Proof. It follows from Lemma 2.11 that [ —¢dfi, < oo. To show that fis is an equilib-
rium state of the potential ¢ consider o« = {[i] : ¢ € I}, the partition of I* into initial
cylinders of length one. By Lemma 2.11, Hy, (o) < oo. Applying the Breiman-Shanon-
McMillan theorem, the Birkhoff ergodic theorem, and using Theorem 2.7 and Lemma 2.5,
we therefore get for fig-a.e. w € X

iy (0) 2 b, (0,0) = lim —* log(jig([w])

= lim %1 log (/ exp(S.(¢) — P(¢)")dm¢>>
= nlgr;o %1 log /exp(z_: <25(0j (WnT))ding(T) — P(¢)”)
> lhrglcgf — log exp(z_: $(07 (w)) —logQ — P(¢)”)

= Jim =S o7 @) + P(9) = — [ gty + P(9),
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Hence hy, (o) + [ ¢djiy > P(¢), which in view of the variational principle (see Theorem 3
in [Sa]) implies that fi4 is an equilibrium state for the potential ¢. The proof is finished.
|

§3. Volume Lemma. Recal that if v is a finite Borel measure on X, then HD(v), the
Hausdorff dimension of v, is the infimum of Hausdorff dimensions of sets of ful measure
v. From now on throughout the whole paper we assume that the system {¢; : i € I} is
conformal. By a = {[i] : ¢ € I} we denote the partition of I°° into initial cylinders of
length 1. If p is a Borel shift-invariant ergodic probability measure on I*° by h, (o) we
denote its entropy with respect to the shift map o and by x, (o) = [ gdp its characteristic
Lyapunov exponent, where

9(w) = —log|¢,,, (7(o(w)))].

Note that g(w) > —log s for all w € I°° and therefore x,(0) > —logs > 0. In this section
we shall prove the following.

Theorem 3.1.(Volume Lemma) Suppose that u is a Borel shift-invariant ergodic prob-
ability measure on I°° such that

(3.1) pom Heo(X) N e (X)) =0

for all incomparable words w, T € I'*. If
(a) the series Y . —pu([z]) log(|[¢}|lo) converges and H, (o) < oo
or

(b) Hu(ar) < o0 and x,(0) < 0o
then .
HD(pon ) = u(0) ,
Xu(o)
where H, () is the entropy of the partition « with respect to the measure f.

Proof. If (a) holds then the series ), ; —u([i]) log(]|¢}||o) converges and, using (BDP),
we conclude that the function g is integrable. So, in case (a) the assumptions of (b) are
also satisfied and from now on we assume that (b) holds. Since H,(a) < oo and « is a
generating partition, the entropy h,(c) = h, (o, @) < H, () is finite. Thus, in view of the
Birkhoff ergodic theorem and the Breimann-Shannon-McMillan theorem there exists a set
Iy C I*° such that u(ly) =1,

n—1

Zg 00’ (w) = xu(o) and lim — log(i([wln)) =h,(0)

n—00 n

1

n

(3.2) nli—{%o
7=0

for all w € Iy. Fix now w € Iy and n > 0. For r > 0 let n = n(w,r) > 0 be the least integer
such that ¢, (X) C B(n(w),r). Then

log(pon ! (B(r(w),r))) = log(nom™ ¢y, (X)) = log(u([wln]) = —(hu(e) +m)n
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for every r > 0 small enough (which implies that n = n(w,r) is large enough) and
diam (¢, ,(X)) > r. The last inequality along with (BDP) imply that

logr < log(diam(¢,,|,_, (X))) < log(DK|¢;|n,1(w(a”‘l(w»)l)

< log(DK) + }jmm¢ (W))] < log(DK) = (n = 1)(xu(o) =)

for all 7 > 0 small enough. Therefore, for these r

log(p,ow_l(B(W(w),r))) < —(hy(o) +n)n
log 7 ~ log(DK) — (n — 1)(xu(0) —n)
_ h,(o) +1n _
—1o8DK) 1 0=l (3, (o) — )

Hence letting r — 0, and consequently n(w,r) — oo, we obtain

Lt sup log(p, o B(n(w), r))) < h, (o) +
r—0 IOgT' - XM(O-) -

Ui
n

Since n was an arbitrary positive number we finitely obtain

T log(p,ow_l(B(W(w),r))) < h, (o)
r—)Op logr B X“'(O-)

for all w € Iy. Hence (see [Ma], [PU]), as pom~(w(Ip)) =1, HD(pom™ 1) < h,(0)/xu(o).
Let now J; C J be an arbitrary Borel set such that pox~'(J;) > 0. Fix > 0. In view
of (3.2) and Jegorov’s theorem there exist ng > 1 and a Borel set Jo C 7=1(.J;) such that

u(J2) > p(n=(J1))/2 > 0,
(3.3) p([wln]) < exp((=hu (o) +m)n)

and [¢), (m(o"(w))] > exp((—xu(o) —n)n) for all n > ny and all w € Jo. Due to the
(BDP), the last inequality implies that there exists n1 > ng such that

(3.4) diam (¢, (X)) > (DK)~ Lo(=xu(@)=mn > o=(xu(o)+2m)n

for all n > ny and all w € Jo. Given now 0 < r < exp(—(x,. (o) + 2n)ny) and w € Jo
let n(w,r) > 0 be the least number n such that diam(¢,,, ,, (X)) < r. Using (3.4) we
deduce that n(w,r) +1 > nq, hence n(w,r) > ny and diam(d,,, (X)) > r. In view of
Lemma 2.7 of [MU1] there exists a universal constant L > 1 such that for every w € .J,
and 0 < 7 < exp(—(x,(0) + 2n)ny) there exist k& < L points w, ... ,w®) € Jo such that
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7(J2) ﬂB(W(aj), r) C U?Zl ¢w(j)|n(w(j),r) (X). Let fi = |5, be the restriction of the measure
i to the set Jo. Using (3.1), (3.3) and (3.4) we get

k

o {(Br(w),r) < Y por (Buo, . (0) = 2 (& g )
< ZGXP((_hu(U) +n)n(w,r))

k n(w(j),r) —hy,(o)+n

=3 (exp(=(xul0) + 2m) (@@, ) + 1)) ) 7 TR

k n(w(-j>,1’) . h,(o)—n k n(w(-j>,1’) . hy (o)—n
< diam ) X)) nw@ ry+1 xplo)t2n () ry+1 xulo)+2n
<> (¢W(J>|n(w(j),r)+1( ) <>

ny h,(o)—n >
ni+l  xu(o)+2n =

7:*;((‘3;;2 Hence (see [Ma],[PU]), HD(.J;) > HD(n(J3)) > % and since 7 was an

arbitrary number HD(J;) > :“—((';; Thus HD(po 7™ 1t) > :“—((';; and the proof is complete.
|

where the last inequality sign was written assuming n; so large that

Remark 3.2. Note that proveing HD(py o 771) < ;’; EZ)) we did not use the property

pw([w]) = por Y (py(X)), w € I*, which is equivalent with (3.1).

Corollary 3.3. If {¢; : i € I} is a Holder system of functions and the series

> —my(#i(X) log(l|gill0) and Y | —my($i(X))log(mg(¢i(X)))

el i€l
converge, then

hy (o)
HD(my) = HD(pgy) = .
¢ . Xu(0)
Proof. The proof is an immediate consequence of Theorem 3.1, Lemma 2.6, and Corol-
lary 2.10. B

64. Ionescu-Tulcea and Marinescu theorem. Let
Ho={f:1I° —= €: f is bounded and continuous}

and for every a > 0 let

Ho ={f € Ho: Vo(f) < o0},
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where
|f(w) = f(7)]

Va(f) = sup { do(@. )

tw, T € I w# 7 and wy :7'1}

and d,(w,7) = e~k k - the maximal integer such that wl|p = 7|;. Notice that Hg is a
Banach space with the supremum norm || - [|p and each H, is a Banach space with the
norm || - || defined by the formula ||f||o = ||f|lo + Va(f). Now we introduce the main
object of this section, the normalized Perron-Frobenius operator Lo : Hg — Ho defined as
follows.

Lo(f)w)= Y exp(¢(r) —P(9))f(r) = exp(p(iw) — P($)) f (iw),

7€ (w) i€l

where, let us recall from Section 2, ¢(7) = ¢(™) (7 (o (7))).

Theorem 4.1. The normalized operator Lo : Ho — Ho preserve the space Hg and
moreover there exist constants 0 <y < 1, C' > 0, and an integer ¢ > 1 such that for every

f€Hp
1L6(Nls < 11 flls +Cllflo-

Proof. Let 7,p € I, 7| = p|r and 711 # pgy1 for some k& > 1. Then for every n > 1
L (£)(p) — Lo (f)(7)
= > exp(Sud(wp) = P($))f(wp) = D exp(Sud(wr) — P(9))f(wr)

= Y exp(Snd(wp) — P(9))(f(wp) — f(wr))
(4.1) + ) f(wr)(exp(Sud(wp) — P(¢)) — exp(Spd(wr) — P(4)))

But |f(wp) — f(wT)| < Va(f)e P™+*) and therefore employing Theorem 2.4 and the defi-
nition of ¢, we obtain

Y~ exp(Snd(wp) — P(g)n)| f(wp) — f(wr)| < Va(fle PHRQ

weln
(4.2) <e QI fllpds(p, )

Now notice that there exists a constant M > 1 such that |1 —e®| < M|x| for all x with
lz| < e PlogQ. Since by Lemma 2.1, |S,d(wp) — Spop(wr)| < e PFlogQ < e PlogQ we
can estimate as follows.

| exp(Snd(wp) — P(p)n) — exp(Snd(wr) — P(P)n
= exp(Sud(@p) — P(OM|1 — exp(Su(wT) — Snp(wp))|
< M exp(Sng(wp) — P(¢)n)|Snd(wp) — Sn(wT)|
< M exp(Sy(wp) — P(¢)n) log Qe
= M log Q exp(Snp¢(wp) — P(¢)n)dg(p, )

~—

~—

19



Hence, using Theorem 2.4 again, we get

Y [f@n)llexp(Sud(wp) — P(¢)n) — exp(Sud(wr) — P(¢)n)|

weln

< | flloMlog Qdg(p,7) > exp(Snp(wp) — P(¢)n)

weln
< MQlog Q|| fllods(p, )

Combining this inequality, (4.2) and (4.1), we finally get

L5 (£)(p) = L5 (F) (1) < e QI fllads (p, 7) + MQlog Q]| f]lods (o, 7).

Taking now n so large that v = e™#"(Q) < 1 finishes the proof. B

Applying now the theorem of Ionescu-Tulcea and Marinescu (see [IM], comp. [PU]) and
Theorem 2.7 we shall prove the following.

Theorem 4.2. If L is the normalized operator, then
(a) A =1 1is the only eigenvalue of modulus 1 for Ly : Hy — Ho and its eigenspace E has

dimension 1. In fact, ¢ = ;jﬂ% has a version in Hg and £ = @)

(b) Lo =P + S, where P : Hy — E is a projector from Hgy to £, PoS =S50 P =0 and
sup,,>1 [|S™|o < oo.

(c) S acts on Hp and there exist constants M > 0 and 0 < 1 < 1 such that

15™[ls < M7

for every n > 1.

Proof. Since, by the Ascoli-Arzela theorem the unit ball in Hg is compact as a subset
of Hp, Theorem 4.1 and Theorem 2.4 complete the demostration that the assumptions of
the Tonescu-Tulcea and Marinescu theorem (see [IM]) are satisfied. The latter claims that

o(Lo) NSt is finite, consists, say, of elements A1, A, ..., Ay, and for every n > 1
q
Ly => AP+ S,
i=1
where P; : Ho — E;, ¢ = 1,2,...,q, are projectors onto eigenspaces F; of eigenvalues A;

respectively, P;o S = S o P;, P;o P; = 0 for all 7 # j, and S has the properties listed in
part (b) and part (c¢) of Theorem 4.2. It now follows from the theory of positive operators
on latices (see [Sch]) that each eigenvalue JA; is a root of unity. We shall first show that

(4.3) Hp N @ E; # {0}.
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Indeed, suppose on the contrary that the above intersection is equal to {0}. Since 1 € Hg,
then on the one hand [ Lo(1)dmg = [Ldmg = 1 for all n > 1 and on the other hand
limy, 00 [|L™(1)]]o = limy—00 ||S™(1)||o = 0 which implies that lim,_, [ Lo(1)dmy = 0.
This contradiction finishes the proof of (4.3). Choose now r > 1 so that A] = 1 for all
i=1,2,...,¢. and consider an arbitrary f € @}_, E;. Then L(f) = f and consequently
Li(Re(f)) = Re(f) and Ly(Im(f)) = Im(f). Writing u = Re(f) (resp. u = Im(f))we have

Li(u) = u.
Let M be so large that u + M1y > 0 and let

N f(u+M1[))dﬁ7,¢

Then, using Theorem 2.7 we conclude that LS(@Z) = me-a.e., ¥ > 0, and f@de(ﬁ = 1.
Hence the probability measure 1/37’77,45 is equivalent with fis and o"-invariant. Thus, it
follows from the total ergodicity of the shift map o with respect to the measure /iy, proven
in Theorem 2.7, that gﬁm = [ig = YPmg. Hence, )= mg-a.e. Therefore u + M1 =
Y [(u+ My)dmg me-a.e. and consequently

(4.4) u = (/(u + Myp)dimg — M)p.

This completes the part (a) of Theorem 4.2 (To observe that ¢ has a version in Hz take an
arbitrary f € HgNED]_, E;\{0} whose existence follows from (4.3). Then at least one of the
functions Re(f) or Im(f) does not vanish and since both Re(f), Im(f) € HgnPi_, E;\{0},
the claim follows from (4.4)) and part (b) and (c) follow now immediately from the Tonescu-
Tulcea and Marinescu theorem. The proof is complete.

§5. Stochastic laws. In this section we closely follow §3 of [DU1]. Let ' be a finite
or countable measurable partition of a probability space (Y, F,v) and let S : Y — Y be
a measure preserving transformation. For 0 < a < b < o0, set I‘g = \/a<l<b S—IT. The
measure v is said to be absolutely regular with respect to the filtration defined by T, if
there exists a sequence 3(n) | 0 such that

/ sup sup [w(AITS) — v(A)|dy < B(n).

Y a Aely )

The numbers 3(n), (n > 1), are called coefficients of absolute regularity. Let o be the
partition of I°° into initial cylinders of length 1. Using Theorem 4.2, Theorem 2.7, and
proceeding exactly as in the proof of [Ry, §3 Theorem 5] we derive the following (with the
notation of previous sections).
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Theorem 5.1. The measure fi4 is absolutely regular with respect to the filtration defined
by the partition a. The coefficients of absolute regularity decrease to 0 at an exponential
rate.

It follows from this theorem that the theory of absolutely regular processes applies ([IL],
[PS]). We sketch this application briefly. We say that a measurable function f: I*° — IR
belongs to the space L* (o) if there exist constants a, v, M > 0 such that [ ||f||5T* djig < oo
and

[ 15 = By (7@ I3 g < M2

for all n > 1, where Ej, (f|(a)"~*) denotes the conditional expectation of g with respect

to the partition (a)"~' and the measure fi,. L*(0) is a linear space. It follows from
Theorem 4.1, [IL] and [PS] that with fi4s(f) = [ f dfis the series

7 =)= [ (F= il diig+2 3 [ (5= DS 00 = ) dio

is absolutely convergent and non-—negative. The reader should not be confused by two
different meanings of the symbol o: the number defined above and the shift map. If
0% > 0, then the process (f o o™ : n > 1) satisfies the central limit theorem and an
a.s. invariance principle. The latter theorem means that one can redefine the process
(foo™:n > 1) on some probability space on which there is defined a standard Brownian
motion (B(t) : t > 0) such that for some A > 0

> [fool —s(f)] - Blo®) =02 ) iy ace.

0<j<t

Let h : [1,00) — IR be a positive non—decreasing function. The function A is said to
belong to the lower class if

/100 @ exp(—%h(t)z)dt < 00

and to the upper class if

/100 @ exp(—%h(t)z)dt = 00.

Well known results for Brownian motion imply (see Theorem A in [PS]) the following.

Theorem 5.2. If f € L*(o) and 02(f) > 0 then

fiop <{w eI i:(f(aj(w)) — g (f)) > o(f)h(n)y/n for infinitely many n > 1})

j=0
B { 0 if h belongs to the lower class,
1 ifh belongs to the upper class.
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Our last goal in this section is to provide a sufficient condition for the functions ¢ and
g : I*® — IR to belong to the space L*(o), where, we recall,

g(w) = —log |, om0 o(w)|

Lemma 5.3. Each Holder continuous function which has some finite moment greater than
2 belongs to L* (o).

Proof. It suffices to show that any Holder continuous function 1 : ¥ — IR satisfies the
requirement, [ ||¢p — Eg, (¢[(a)™)||3 diig < Mn=2~7 which will finish the proof. So, given
n > 1 suppose that w,7 € A for some A € ™. In particular w|, = 7|,. Hence [1)(w) —
()| < Vg(1p)e P which means that (1) — Va(1)e ™" < ¢(w) < (1) + Vg(p)e Pm.
Integrating these inequalities against the measure fis and keeping w fixed, we obtain

/A Wdfis — Va()e P ig(A) < p(w)ig(A) < /A Bdjiy + Va(p)e "1y (A).

Dividing these inequalities by fis(A) we deduce that

‘Ww) - m /A wd%‘ < Va(@h)e om.

Thus [ [[¢(w) — Ea, (¥]()™) |3 ditg < V()™ and we are done. B

§6. Refined Geometry. Let ¢ = ¢ + kg — P(¢), where £ = HD(u4) and, as in the
previous section, g(w) = —log|¢,, omoo(w)|. Throughout the whole section we assume
that [|p[*tVdag < oo and [ |4|*T7dfiy < oo for some v > 0. In view of Lemma 5.3
and since L*(o) is a linear space, 1 € L*(o) and, in particular 02 = 02(3)) exists. The
following lemma has been proved in [DU1] as Lemma 4.3. We provide its formulation and
short proof for the sake of completeness.

Lemma 6.1. Let 7, x > 0 and let p : [(x +71)~', 00) — IRy belong to the upper (lower)
class. Let @ : [(x +1)~',00) — IRy be a function such that lim;_, p(£)0(t) = 0. Then
there exists an upper (lower) class function p; : [1,00) = R4, (p— : [1,00) — IRy) with
the following properties.

(a) p(t(x +m) +0(t(x +n)) < p1(t), (t > 1)

(b) p(t(x —n)) = 0(t(x —m) > p—(t), (t > 1).

Proof. Since lim;_,, p(t)0(t) = 0, there exists a constant M such that (p(t) + 6(t))? <
p(t)2 + M. Let p belong to the upper class. Then t — p(t/(x + 7)) also belongs to the
upper class. Hence we may assume that y +n = 1. Define

py(t)? = inf{u(t)? : u is non-decreasing and u(t) > p(t) + 0(t)}.
Then py (t) > p(t) + 0(¢) for t > 1 and py is non-decreasing. Since py(t)? < p(t)? + M,

we also get

/loo ,0+t(t) exp(—(l/Z)pi(t))dt > eXp(—M/2)/

1

h p+t(t) exp(—(1/2)0%(8))dt = oc.
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The proof in the case of a function of the lower class is similar. H

A function h : [1,00) — IR is said to be slowly growing if h(t) = o(t*) for all & > 0. Let
X = Xj, (0) = [ gdjiy. First we shall prove the main geometrical lemma.

Lemma 6.2. (Refined Volume Lemma) Suppose that o2 = o2(¢)) > 0. If a slowly
growing function i belongs to the upper class, then for pg-a.e. z € J,

B
lim sup M)( ($7 T))

r—0  r%exp(ox~Y2h(—logr)y/—logr)

If, on the other hand, h belongs to the lower class, then for every € > 0 there exists a Borel
set Jo C J such that pg(J:) > 1 —¢, and there exists a constant k(e) > 1 such that for all
x € Jeand all 0 < r < 1/k(e)

= OQ.

po(Je N B(x,r))
r#exp(ox~1/2h(—logr)y/—logr)

Proof. Given z = n(w) € J and r > 0 let n = n(w,r) be the least integer such that
bu|, (X) C B(z,r). Then r < diam(p,, ,(X)) and

<e.

mg(B(z,1)) > mg(do, (X)) = /XeXp(Sw|n(¢) — P(¢)n)(2)dmy(z).

Hence,

my(B(z, 7))

6.1 >
(6.1) r#exp(ox—1/2h(—logr)y/—logr) ~

erxp(Sw|n(q5) P(¢)n)(z)dme(2) S Q_lexp(8w|n(¢)—P(¢)n)(:U)
- r“exp(ax 1/2h(—logr)y/—logr) — reexp(ox—Y2h(—logr)y/—logr)
. Q" exp(5.1, () ~ PO)(@)
- diam(¢w|n71(X))”exp(ax—l/zh( logr)y/—logr)
Q™" exp (352 ¢ o0’ (w) — P(9)n)
D¥exp(—r Y7 Jgooi(w w)) exp(ox~1/2h(—logr)/—logr)

exp (32520 (#0 09 (w) + g 0 09 (w)) — P(9)n — ox~/2h(~ logr)y=TogT — kg(o" ()

v

QD"

where the second inequality is true due to Lemma 2.1. In view of the Birkhoff ergodic
theorem there exists a Borel set Y1 C I®° of [i4 measure 1 such that for every n > 0, every
w € Y7 and every n large enough, say n > ni(w,n)

(6.2) —logr < —log(diam(¢,, (X))) +log 2 < (x + n)n.
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In fact, in what follows we will need a better upper estimate on — logr. In order to provide
it notice that in view of Lemma 6.1 the function g is a member of L*(a). Let 72 denote
the assymptotic variance of g. If 72 = 0, then by [IL] g is cohomologous to the constant
x by an L' couboundary. It turns out that the following proof, where we assume 72 > 0
becomes much simpler when 72 = 0. Since the function ¢ — 2y/floglogt belongs to the
lower class there exists Yo C Y; of [ig measure 1 such that for all w € Y5, 71 > 7, and all
n large enough, say n > na(w) > nq(w,n),

n—1

—logr < —log(diam(¢,,), (X)) + log2 < log D + log 2 + Z g(07(w))
j=0

(6.3) < xn + 27y/nloglogn +log D + log2 < xn + 211y/nloglogn

It is a simple exercise in the measure theory to check that if ¢ > 0 and [ |f|*du < oo, then
for every a > 0, pu(|f| > a) < a™* [|f|!dpu. Since by our assumptions [ |g|*T*Vdf, < oo
for some 0 < v < 1/2, for all n > 0 we get

fig({w € I = 6lg(w)| = o(A((x +n)n)v/n) ~7})
< (o (O mm) V)= [ g+,
Since for every n > 1, h((x + n)n) > h(x + 1) > 0, 2(1 — y)(=2 — 4y) < —1 and the

measure [ls is o-invariant, we get

Y g ({w € I s wlg(a™ (W) = a(h((x +m)n)v/n)'~7})

n=1

_~\—2—4 ~
<3 (ot V) [l < o

Therefore, in view of the Borel Canteli lemma there exists a set Y3 C Y3 of /i, measure 1
such that for all w € Y3 there exists n3(w) > n2(w) such that for all n > n3(w)

(6.4) klg(o" " w))] < o (A((x +m)n)v/n)' 7.
Combining this, (6.3), (6.2) and (6.1) we get for all a < 0

O'G,Tbl/4

re exp(a/&l/zh(— logr)y/—Tlogr)
1
> QD” exp<zwoa] —0oX 1/2h((x+77 \/Xn+27'1\/nloglogn—

(6.5)

1/4

o+ n)n)\/ﬁ)l‘”>e"“"

n—1
b B

+h((x + n)n)\/ﬁ)l—'yn—v/2>>
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Now, consider the function

_ 2r [loglog(t(x+m)~" | —1y-1/4 h(t) ™
O0) = h(t) | | 1+ x\/ t(x +mn)~t ! e+ ™) +(t(x+77)‘1)7/2'

So, 6(t) > 0 and since h(t) is slowly growing, lim;_,~, h(t)0(t) = 0. Therefore it follows from
Lemma 6.1(a) that there exists h, (¢) in the upper class such that h(t) > h( (x+mn)+

O(t(x +n)). Since, by Theorem 2.12 and Theorem 3.1, [Ydip = [ ¢pdjiy+ b X P(¢) =
[ ddpg + hg, —P(#) =0, it follows from Theorem 5.2 that for infinitely many n’s

Oﬁzwoaﬂ'(w)—ax/—fu Zwoaﬁ ) — ovn(h(n(x +n)) +0(n(x +n)))
5;¢00j(w)—0f<h( (X+77))\/1+2X \/@

—an™* 4+ h((x + n)n)l_”fW) :
Combining this and (6.3) we see that

m¢(B($7T)) =1 axn(—gant/4
meXp(UX_l/zh(—logr)\/Tgr) > (QD") ! exp(—can'/*)

for fis almost all w and infiniteley many n’s provided they are of the form n(w,r). But
since there exists ng(w) such that each n > ns(w) is of the form n(w,r), fixing a < 0, we
eventually get

: mg(B(z,r))
lim sup
r—0 1% exp(ox~Y2h(—logr)y/—logr)
for py a. e. o € J. Since, by Corollary 2.10, pg4 and mg are equivalent with bounded
Radon-Nikodym derivatives, the proof of the first part of Lemma 6.2 is complete.

= OQ.

Let us now prove the second part of the lemma. For every w € I°° and every r > 0
let n = n(w,r) > 0 be the least integer n such that diam(e,,,,(X)) < r. Clearly
lim, o n(w,r) = 0o and therefore there exists r1(w) such that for all 0 < r < rq(w)

(6.6) diam(g,,, (X)) > r.
Fix now w € I*® and 0 < r < ry(w). By Lemma 2.5 and Lemma 2.1 we get

g ([w]n]) = /XeXp(Sw|n(¢) — P(¢)n)dmg < Q exp(Syy, ()(m(c" (w))) — P(¢)n)

n—1

=Qexp | Y poo’(w)—P(p)n

J=0
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Mg ([w]n])
(6.7) r& exp(ox~1/2h(—logr)/—logr) :

< Qexp (X725 ¢ 007 (w) — P(¢)n)

= diam® (g, ,, (X)) exp(ox~V2h(— log 1)/~ log )
Qexp (X520 do 0l (w) — P()n)
(o™ L(@)))|exp(ox—/2h(~ log )/~ Tog7)

<
~ D¢

Wlnt1

n—1 n
= QD" exp Z ¢ oo’ (w) + nZg 00’ (w) —P(¢p)n —ox 2h(—logr)\/—logr
§=0 =0

n—1
=QD"exp [ Y pool(w)—ox 2h(—logr)y/—logr + kg oo™ (w)
=0

In view of the Birkhoff ergodic theorem there exists a Borel set Y7 C I°° of [is measure 1
such that for every n > 0, every w € Y7 and every n large enough, say n > ny(w,n)

(6.8) —logr > —log(diam(¢y, (X))) > (x — n)n.

In fact, in what follows we will need a better upper estimate on —logr. In order to provide
it notice that in view of Lemma 6.1 the function g is a member of L*(o). Let 72 denote
the assymptotic variance of g. If 72 = 0, then by [IL] g is cohomologous to the constant
x by an L' couboundary. It turns out that the following proof, where we assume 72 > 0
becomes much simpler when 72 = 0. Since the function ¢ — 2+/tloglogt belongs to the
lower class there exists Yo C Y; of [ig measure 1 such that for all w € Y5, 71 > 7, and all
n large enough, say n > ny(w) > ny(w,n),

n—1

—logr > —log(diam(¢,, (X)) > —log(DK) + Zg(aj(w))

(6.9) > xn — 27y/nloglogn — log(DK) > xn — 211y/nloglogn.

The same argument as that leading to (6.4) shows that there exists a Borel set Y3 C Y5
of fiy measure 1 such that for all w € Y3 there exists ng(w) > n2(w) such that for all
n > nz(w), klg(a™(w))] < a(h((x —n)n)y/n)*~7. Combining this, (6.7), (6.8) and (6.9) we
get for all a > 0

1/4

Mg ([w]n])e”™"

% exp(ox~/2h(—logr)y/—logr)
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< QD" exp (Z d oo’ (w)—ox Y2h((x —n)n) \/Xn — 2711y/nloglog n+
§=0

1/4

o(h((x - n)n)\/ﬁ)l_”’>

= QD" exp _woo'jw — oy h((x—n)n 1_2 oglogn
(S veait) - ov (i >>\/ 2, floglog

=0

(6.10) — an ™ b((x - n)n)\/ﬁ)l‘”n‘””))

Now, consider the function

h(t)t=>
(t(x —n)~1)/2

— _ _ ﬁ 10g10g(t(X—77)_1 a o —1\—1/4
0(t) =h(t) | 1 1 x\/ o — )1 +alt(x—n)"")" "+

So, O(t) > 0 and since h(t) is slowly growing, lim;_, h(¢)0(t) = 0. Therefore it follows

from Lemma 6.1(b) that there exists h_(t) in the lower class such that h_(t) < h( (x—n))—

O(t(x —n)). Since, by Theorem 2.12 and Theorem 3.1, [dip = [ ¢pdfiy 40 X —P(¢) =
[ ddig+ h;, —P(¢) = 0, it follows from Theorem 5.2 that there exists a Borel set Yy C Y3
of iy measure 1 such that for all w € Yy and all n large enough, say n > ns(w) > nz(w)

O>Z¢OJJ ) —ovnh_( Zlboﬂ] —0\/_( (n(x _77))_9("()(_77)))

> iwocﬂ(w) —ff\/ﬁ<h(n(x—n))\/1 - In, flekosn

—an = B )T ).

Combining this and (6.10) we conclude that for every w € Yy and every n > ny(w)

1/4

'ﬁb¢([(d|n] < QDn)e—aa,n

% exp(ox~Y2h(—logr)y/=Tlogr) ~

In other words, for every w € Yy and every r > 0 small enough, say r < r(w) < ri(w),

m¢([w|n(w r)] _ 1/4
6.11 ’ < QD" oan(w,r) ‘
(6.11) r#exp(ox~1/2h(—logr)y/—logr) ~ QD e

Fix now € > 0 and take ¢ so large that QD’“"’)e_‘mql/4 < e. Then, since lim,~ o n(w,r) = 00,

there exists k(w) > 1 such that for all 0 < r < 1/k(w), (6.10) holds and n(w,r) > ¢. Since
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Vi = U2, {w € Yy : k(w) < kY, there exists k() so large that if J. = {w €: Y} : k(w) <
k(e)}, then

(6.12) mg(J\ J.) <e
Moreover for every w € J. and every r < 1/k(e) (so r < 1/k(w))

m¢,([wn(w,,ﬂ)) < QDne—aan(w,r)IM S QDne—aaqlm S ..

rexp(ox—1/2h(—logr)y/—logr) ~
Let J. = m(J.). It then follows from (6.12) and lemma 2.6 that
mo(J2) = 1y 0 7N (J2) = g 0 7 (w(JL)) = 1ig(J) > 1 —e.

(6.13)

Now, in view of Lemma 2.7 of [MU1] there exists a universal constant L > 1 such that for

every x € J. and every < r < 1/k(e) there exist points w®,w® ... W) € J, such that
L

Je N B(z,r) C Ujy ¢w(j)|n(w(j) N (X). Therefore, by (6.13)

mg(Je N B(z, 1)) zL: m¢(¢w<]>| (@), )(X)) ) <
r&exp(ox~1/2h(—logr)y/—logr) ~ < rtexp(ox~Y2h(—logr)y/—logr)’ ~

Jj=1

Le.

Since the measures p4 and mg are equivalent with bounded Radon-Nikodym derivatives,
looking at the last two displays we conclude that the proof of the second part of Lemma 6.2
is complete. l

For a function h : [1,00) — (0, 00) define for sufficiently small ¢ > 0
= o
h(t) = t" exp (—h —logt —logt> .
(t) N ( )V

Theorem 6.3. Suppose that o2(¢)) > 0 and that h : [1,00) — (0,0) is a slowly growing
function.

a) If h belongs to the upper class, then the measures uy4 and #h on J are singular.
¢
(b) If h belongs to the lower class, then p is absolutely continuous with respect to the
Hausdorff measure #".

Proof. Suppose first that h belongs to the upper class. For every n > 1 and every € > 0,
by Lemma 6.2 there exists a Borel set E,, C J such that pg(E,) > 1 — 27" and such
that for every x € E, and some closed ball B(z) centered at x and with diameter < 1/n,
pe(B(x)) > nh(B(x)). By Besicovic’s covering theorem there exists a universal constant
C > 0 such that from the cover {B(z) : © € E,} one can choose a countable subcover
{B(xj) : j > 1} of multiplicity < C. Since for every j > 1, diam(B(z;)) < 1/n, we get

C C
< —.
H" (B, 1/n) < Zw < —pg(J) =

Setting F. = (),,>; En we then have ’Hh(EE) = 0 and py(F;) > 1 —e. Finally the set

E = ;> E1/, satisties #H"(E) = 0 and pe(E) = 1. The proof of item (a) is therefore
complete.
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Soppose in turn that A belongs to the lower class and consider a Borel set £ C J with
pe(E) > 0. Take € = py(E)/2. Then by Lemma 6.2 py(Je NE) > py(E) —e = . Fix
0 < 6 <1/k(e) and consider B = {B(x;,r;)}, a cover of J. N E by balls centered at points
of J. N E and with radii < . Then by Lemma 6.2

~ 1 1
h(r;) > - Je N B(xi,ri)) > —pe(Je NE) > 1.
SDi) 2 ¢ X kel N Blaiar) 2 gl 0 )

Hence ’H(’;l (E) > B > 0, where B is a universal constant (see [Ma], comp. [PU]). Thus
HM(E) > B > 0 and we are done. B

Remark. Taking h := 0 it follows from Theorem 6.3(a) that the measure p4 is singular
with respect to the k-dimensional Hausdorff measure H" on J.

We say that two functions fi, fo : I°° — IR are cohomologous in a class H if there exists
a function u € H such that
fg—fl = UOoO0 — U.

As a complementary result to Theorem 6.3 we shall prove the following.

Theorem 6.4. If 6%(¢)) = 0, then kK = HD(ug) = HD(J) := h, the functions —hg and
¢ —P(¢) are cohomologous in the class of Holder continuous bounded functions, the system
{¢i : i € I} is regular and m, is equivalent with the h-conformal measure on J, that is
with m_pg4, with bounded Radon-Nikodym derivatives and the invariant measures fis and
fihg are equal.

In order to prove Theorem 6.4 we need some preparations. First, let a._ be the partition of
the two-sided shift space IZ into elements of the form w x It12} where w € I{--»=2-1,0},
Given —oo <m <n < 400 let w|’ = wpwm1 ... w, and let

W ={r€I? 1 =wy forallm < k < n}.

Finally let 7z, be Rokhlin’s natural extentsion of the invariant measure fis onto the two-
sided shift space IZ. Let us recall that i, is defined on a cylinder C' = =, ' (C1) N, ! (Ca) N
N W;kl(C’k) with n1 < ny <...<ny, by the formula

fig(C) = fig (0~ " *D(O) ),

where for every k € Z, m, : IZ — I is the projection onto the kth coordinate given by the
formula 7y (w) = wy and for every set B C I, B|{° is the projection of B onto I{1:2:}
denoted also by m(B). Let us recall that the measure 7z, is shift-invariant. We shall prove
the following.

Lemma 6.5. If {u, () : w € I} is the Rokhlin canonical system of measures of
the measure 7, on the partition a_, then for m,-a.e. w € IZ the conditional measure
o () considered on [ N is equivalent with fi- Moreover, the Radon-Nikodym derivative
dita_ (w)/dfiy is bounded from above and from below respectively by Q* and Q.
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Proof. By the martingale theorem, for 7 ,-a.e. w € IZ and every Borel set B C 1%,

fiy(B N [w]2,)

It therefore suffices to show that for every 7 € I'*

4 /jfa_(w)([w“iooT])
R Ea)

And indeed, in view of Lemma 2.5 and Theorem 2.7 we get

< Q.

B ([0]2,) = fip (o~ "D ([0]2,)[5°) < Qring (0= "D ([w]2,,)[5°)

= Q/GXP(S(,—(n+1)([w]0n)|’;+1 (#) = P(¢)(n +1))dmy

=@ [[exp(Sun(6) ~ PO+ 1),
< Qexp(Su w0 (9) = P(¢)(n + 1))

and putting k = |7

M¢>([T] N [w](in) = ﬁ¢(a—(n+1)([7—] N [w]gn)|c1>0)) > Q_lﬁl¢(o'_(”+1)([7—] A [w]‘in)|‘f°))
= Q—l /eXP(Sg—(nH)([T]m[w]on)|1lz+1 (¢) —P(p)(n+1+ k))dm¢

_o / exp(Su o wors e (®) — P(@)(n -+ 1+ k))dmy

> Q7 exp(inf(Su_,..wor...r (9)) — P(@)(n + 1+ k))
> Q7 exp(inf(S () + inf(Sr, 1, (9)) — P(@)(n + 1+ k)
> Q7% exp(sup(Su_,..wo(#)) = P()(n + 1)) exp(sup(Sr, .-, () — P()k).

Applying Lemma 2.1 we therefore obtain

fig([7] N [w]2,,)
Ty ([w]2)

> Q73Q " exp(sup S, (¢) — P()k)
= Q *exp(sup S, (¢) — P(p)k) > Qg ([7]).

Hence f1o () ([w|2o07]) = @ *ug([7]). Similar computations show that g (W) ([w|%o7]) <
Q*1y([7]). The proof is complete. W

As an immediate consequence of this lemma we get the following.
Corollary 6.6. If {{1,_(,) 1w € IZ} is the Rokhlin canonical system of measures of the
measure i, on the partition a_, then for Tiy-a.e. w € 1%, supp(pia_(w)) = a—(w), where

a_(w) is the only atom of a_ containing w.
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Lemma 6.7. If n : I°*° — IR is a Holder continuous function of some order g > 0 such
that [ |n|**Vdag < oo, [ndig = 0 and o?(n) = 0, then there exists a bounded Holder
continuous function u of order 8 > 0 such that n = u — u o ¢. In particular n turns out to
be bounded.

Proof. It follows from Theorem 5.1 and [IL] that there exists u € La(fi4) such that
(6.14) nN=u—uoo

fip a.e. Our aim is to show that u has a Holder continuous version of order 5. We first
extend 7 and u on the two-sided shift space IZ by declaring

n(w) =nwli?) and w(w) = u(w[i).

wherever u(w|°) is defined. The cohomological equation (6.14) remains satisfied since

(6.15)  u(w) —uoo(w) =uw|®) —u(o(w)|i?) = w(wli®) — ule(W]i%))) = n(w).

In view of Luzin’s theorem there exists a compact set D C IZ such that fig(D) > 1/2 and
the function u|p is continuous. In view of Birkhoff’s ergodic theorem there exists a Borel
set B C I% such that fig(B) = 1, for every « € B, o™(x) visits D with the asymptotic
frequence > 1/2, u is Well defined on | J,,., 07" (B) and (6.14) holds on | J,, , 0~ "(B). By
the definition of conformal measures and by Lemma 6.5 there exists a Borel set F C IZ
such that i, = 1, for all w € F, pio_(y(BNa—(w)) =1, and supp(pio_(v)) = a-(w). In
particular, for every w € F, the set BN a_(w) is dense in a_(w). Fix one w € F and
consider two arbitrary elements p, 7 € a_(w). Then there exists a countinuous increasing
to infinity sequence {n;} such that ¢~ (p),0=™ (1) € D for all j > 1. Using (6.14) we
get

u(p) — u(r)] = |ule™™ (0)) = 3 n(o*(p)) — (uw—"j -3 n(a_k(p))) ‘
k=1
(6.16) < (o (p) — ule= (D] + 3 Ino(0)) — u(e= (7).

Now, since lim;_, o dist(¢ =" (p),c ™™ (7)) = 0, since both 07" (p) and o~"i (1) belong to
D and since u|p is uniformly continuous (as D is compact), we conclude that

lim fu(o™" (p)) — u(e™" (7)) = 0.

.]—)OO

Since 7 is Holder continuous of order f,

& _ Vge™
> (e (p) — ulo™" (1)] < ZVB Je PEdg(p,T) < 1fe_ﬁdﬂ(p77—)-
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Therefore, it follows from (6.16) that

u(p) — u(r)] < 7255 ds(p, 7).

Hence, as a_(w) N B is dense in a_ (w), u has a bounded Holder continuous extension from
a_(w)NBon a_(w) =wx I, where w = w|® .. Denote this extension by @ : a_ (w) — IR
and for every 7 € I'N set

u(r) = u(wr).

This obviously defines a bounded Holder continuous function @ : I™ — IR. Define now the
set B, to be determined by the condition wB,, = a_ (w) N B. The function @ : I'N — IR is
a version of u. Indeed, since po_(,,)(wB,) = 1, it follows from Lemma 6.5 that fis(B.,) = 1
and additionally, for every 7 € B, u(7) = u(wr) = u(r). Since the measure fi4 is shift-
invariant, fis(B,No~1(B,)) = 1. Take now an arbitrary element p € B,No~*(B,,). Then
o(w) € B, and we have n(p) = u(p) —u(o(p)) = u(p) —u(o(p)). But since supp(fiy) = IV,
the set B, N o 1(B,) is dense in I'N and therefore n = % — w o o on I™V. The proof is
complete. l

Proof of Theorem 6.4. First notice that in view of Theorem 3.1, Theorem 2.12 and
Lemma 2.11

h~
/ bijiy — / iy + i, —P(g) = / bdfiy + Dz, — P(¢) = P(9) — P(9) = 0.
¢

Hence the assumptions of Lemma 6.6 are satisfied with n = 1) and therefore there exists a
bounded function u € Hg such that ¢ —P(¢p)+rg = u—wuoo, that is the functions —xg and
¢ — P(¢) are cohomologous in the class of bounded functions of Hg. As we have already
pointed out in the paragraph proceeding Theorem 2.12 our definition of pressure coincides
with that introduced in [Sa]. That is for every Holder continuous function f : I — IR

n—1
P()=lim ~log[ Y exp> fool(w)

n—oo 1 X
wEPer; (n) Jj=0

for every i € I, where Per;(n) C IV is the set of all fixed points w of o™ with w; = i.
Hence

P(—rg) =P(¢ - P(¢) +uco —u)

n—1

= lim llog Z eXp(Z¢OUj(w)—P(¢)+U00j+1(w)_uoaj(w))
nmee wePer;(n) Jj=0
n—1

= lim o | 30 en(X($o0d @) + u(r"(w)  u(w)) exp(~P($)n)
w€Per;(n) Jj=0
n—1

= lim_ % log [ > exp(d_pooi(w)) —P(g) | =0.

w€Per;(n) Jj=0
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Therefore, in the terminology of [MU1] the system {¢; : i € I} is regular and it follows
from Theorem 3.15 of [MU1] that k = HD(J) := h. Thus, it is only left to show that m
and m_pg4 are equivalent with bounded Radon-Nikodyn derivatives and p4 = p—pg. And
indeed, for every w € I'* we have

o) = [ exp(5.(6) ~ P@ul)dmg = [ exp(X (6007 (wr) — P($)ding (1
= exp(s[u? Z_:(—lig +u—uoc)oagl)) = exp(s[ug) i(—ﬁ;g ool +u—wuoo™))
= exp(s[ug) z_:(—ﬁg 00?)) < m_pg([w])

Hence mg and m_p, are equivalent with bounded Radon-Nikodym derivatives. Therefore
fig and fi_pg are equivalent and, as ergodic shift-invariant, they must coincide. Since, by
lemma 2.6, mg = my o 7! and M_pg = M_pg O 7!, we conclude that mg and m_pg are
equivalent with bounded Radon-Nikodym derivatives. B
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