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§1. Preliminaries. In [MU] we have provided the framework to study infinite conformal
iterated function systems. Let us recall this notion assuming that X is a 1-dimensional
interval. Let I be a countable index set with at least two elements and let S = {¢; :
X — X : 4 € I} be a collection of injective contractions from X into X for which there
exists 0 < s < 1 such that p(¢;(x), ¢i(y)) < sp(z,y) for every i € I and for every pair of
points z,y € X. Thus, the system S is uniformly contractive. Any such collection S of
contractions is called an iterated function system. We are particularly interested in the
properties of the limit set defined by such a system. We can define this set as the image
of the coding space under a coding map as follows. Let I* =, -, I", the space of finite
words, and for w € I, n > 1, let ¢, = P, 0Py, 0+ 0y, . fw € I*UI™® and n > 1 does
not exceed the length of w, we denote by w|, the word wyws...w,. Since given w € I,
the diameters of the compact sets ¢, (X), n > 1, converge to zero and since they form a
descending family, the set

M ol (X)

is a singleton and therefore, denoting its only element by 7(w), defines the coding map
7w : I°*° — X. The main object of our interest will be the limit set

J:ﬂ-([oo): U m¢w|n(X)7

wEI>* n=1

Observe that .J satisfies the natural invariance equality, J = [J;c; ¢i(J). Notice that if I
is finite, then .J is compact and this property fails for infinite systems.

An iterated function system S = {¢; : X — X : 4 € I}, is said to satisfy the Open Set
Condition if there exists a nonempty open set U C X (in the topology of X) such that
¢i(U) C U for every i € I and ¢;(U) N ¢;(U) = 0 for every pair i,j € I, i # j.

An iterated function system S, satisfying the Open Set Condition is said to be conformal
(c.i.f.s.) if the following conditions are satisfied.

(a) U = Int(X).

(b) There exists an open connected set X C V' C IR such that all maps ¢;, i € I, extend
to C! diffeomorphisms on V.

(c) Bounded Distortion Property(BDP). There exists K > 1 such that

|60 (W)| < K|, (2)|

for every w € I'* and every pair of points z,y € V, where |¢, (z)| means the norm of
the derivative.

Notice that for simplicity and clarity of our exposition we assumed the open set U ap-
pearing in the open set condition to be Int(X). As was demonstrated in [MU], conformal
iterated function systems naturally break into two main classes, irregular and regular.
This dichotomy can be determined from either the existence of a zero of a natural pressure
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function or, equivalently, the existence of a conformal measure. The topological pressure
function, P is defined as follows. For every integer n > 1 define

Yalt) = D lI6LII"

weln

and )
P(t) = lim —logy,(t).

n—oo N

For a conformal system S, we sometimes set g = 1; = 1. The finiteness parameter,
s, of the system S is defined by inf{t : ¥(t) < oo} = fs. In [MU], it was shown
that the topological pressure function P(t) is non-increasing on [0, 00), strictly decreasing,
continuous and convex on [f,00) and P(1) < 0. Of course, P(0) = oo if and only if I is
infinite. In [MU] (see Theorem 3.15) we have proved the following characterization of the
Hausdorff dimension of the limit set .J, which will be denoted by HD(.J) = hg.

Theorem 1.1. HD(J) = sup{HD(Jp) : F C I is finite} = inf{t : P(t) < 0}. If P(t) =0,
then t = HD(J).

We called the system S regular provided that there is some ¢ such that P(t) = 0. It follows
from [MU] that ¢ is unique. Also, the system is regular if and only if there is a ¢-conformal
measure. Recall that a Borel probability measure m is said to be t-conformal provided
m(J) =1 and for every Borel set A C X and every i € |

m(gi(A)) = /A 41t dim

and
m(¢i(X) N ¢;(X)) =0,

for every pair 4,j € I, i # j. We recall also (see [MU, Theorem 3.8]) that there exists an
invariant measure p (in the sense that for every measurable set A, u(lJ;cpy ¢i(4)) = u(A)
equivalent with m.

Finally, we call two iterated function systems {f; : X — X, € IN} and {¢; : Y — Y,i €
IN'} topologically conjugate if and only if there exists a homeomorphism h : X — Y such
that ho f; = g; o h for all « € IN. Then by induction we easily get that ho f, = g, o h for
every finite word w.

§2. General Systems. The main result of this section is the following

Theorem 2.1. Suppose that F'={f; : X - X,i€ IN) and G=(g;: Y —» Y,i € IN) are
two topologically conjugate one-dimensional conformal iterated function systems. Then
the following 4 conditions are equivalent.



(1) 35 > 1 Vw € IN*

< Tam(f, (X)) =

(2) |9, (yo)| = |f(zy)] for all w € IN*, where z,, and y, are the only fixed points of
fo: X = X and g, : Y — Y respectively.

(3) 3E > 1Vw € IN*

(4) For every finite subset 7' of IN, HD(Jg ) = HD(Jpr) and the conformal measures
mg,r and mp o h™! are equivalent.

Suppose additionally that both systems F' and G are regular. Then the following condition

is also equivalent with the four conditions above.

(5) HD(Jg) = HD(JF) and the conformal measures mg and mp o h~1 are equivalent.

Proof. Let us first demonstrate that conditions (2) and (3) are equivalent. Indeed, suppose
that (2) is satisfied and let Kr and K¢ denote the distortion constants of the systems F
and G respectively. Then for all w € IN*, ||g|| < K¢l (yw)| = Ka|fl (zu)] < Kal|fL]]
and similarly ||f.|| < Kr||g,||.- So suppose that (3) holds and (2) fails, that is that there
exists w € IN* such that |g/,(y.)| # |f.(x,)|. Without loosing generality we may assume
that |9/, (yw)| < |f.(zw)]. For every n > 1 let w™ be the concatenation of n words w.
Then gyn (yw) = 97%(yw) = Yo and similarly f,»(z,) = zy,. S0, Tyn = x, = Tp(w™) and
on = o = 1(%). Moreover |gt ()| = 9, ()| and |fom ()] = |1 (3,)|". Honce

/
lim e W)l _
n—00 | fin ()]

On the other hand, by (3) and the Bounded Distortion Property

Kg'llgin |l
|| Fon ]l

90 (o)

> E'K:!
|fon (o)) - ¢

>

for all n > 1. This contradiction finishes the proof of equivalence of conditions (2) and (3).
Since the equivalence of (1) and (3) is immediate, the proof of the equivalence of conditions
(1)-(3) is finished. We shall now prove that (3) = (5). Indeed, it follows from (3) that
E~YWen(t) < Ypn(t) < Epgn(t) for allt > 0 and all n > 1. Hence Pg(t) = Pr(t) and
therefore by Theorem 1.1, HD(Jg) = HD(JF). Denote this common value by h. Although
we keep the same symbol for the homeomprphism establishing conjugacy between the
systems F' and G, it will never cause misunderstandings.

Suppose now that both systems are regular (in fact assuming (3) regularity of one of
these systems implies regularity of the other). Then for every w € IN*

K"l _ mr(fu(Ir) _  NIfLI"

(KpE) ™" < < < — < (
[lgl, 1" ma(gu(Ja)) — Kg"|lgl,||"

Keo)h.
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So, the measures mg and mg o h~! are equivalent, and even more

_ dmg
(KFE) " < W < (EKG)h-

Let us show now that (5) = (3). Indeed, if (5) is satisfied then the measure pr o h=1 is
equivalent with pg. Since additionally pr o h=! and pg are both ergodic (see Theorem
3.8 of [MU], they are equal. Hence

[lgi,I* = / l9.,|" dme = ma(9u(Ja)) = ne(9.(Ja))

= o 17 = (Ful i) = mop (Ful ) = [ IS dm
= [ foI"
and raising the first and the last term of this sequence of comparabilities to the power 1/h,

we finish the proof of the implication (5) = (3).

The equivalence of (4) and conditions (1) - (3) is now a relatively simple corollary. Indeed,
to prove that (3) implies (4) fix a finite subset T' of IN. By (3) E~ < ||fL]|/|lgL|| < E for
all w € T*, and as every finite system is regular, the equivalence of measures mg r and
mpr o h™! follows from the equivalence of conditions (3) and (5) applied to the systems
{fi:ie€T}and {g;:i € T}. If in turn (4) holds and w € IN*, then w € T*, where T is the
(finite) set of letters making up the word w and the measures mg r and mpr o h™1 are
equivalent. Hence, by the equivalence of (2) and (5) applied to the systems {f; : i € T'}
and {g; : i € T} we conclude that |g,(y.,)| = |f,(x)|. Thus (2) follows and the proof of
Theorem 2.1 is finished. &

We say that a conformal system {¢; : X — X :4 € IN} is of bounded geometry if and only
if there exists C' > 1 such that for all 7,7 € IN, i # j

max{diam(¢;(X)), diam(¢; (X))} < Cdist(¢;(X), ¢;(X)).
The next theorem provides a sufficient and necessary condition for two systems of bounded

geometry to be bi-Lipschitz equivalent.

Theorem 2.2. If both systems {f; : X - X :i€ IN} and {g; : Y — Y : i € IN} are of
bounded geometry, then the topological conjugacy h : Jf — J, is bi-Lipschitz continuous
if and only if the following two conditions are satisfied.

(a) Q_l < dia‘m(fw(X))

= (g (1)) =

for some ( > 1 and all w € IN*.

1 dist (g;(Y), g;(Y))
 dist (f;(X), £3(X))
for some C'> 1 and all 7,5 € IN, 7 # j.

(b) C <C
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Proof. First notice that (a) and (b) remain true, with modified constants @ and C' if
necessary, if X is replaced by Jr and Y is replaced by Jg respectively. Suppose now that
x € fi(Jp) and y € fj(JF) with ¢ # 7. Then

|h(y) — h(z)| < diam(g;(Ja)) + dist(gi(Ja), 9j(Ja)) + diam(g;(Jy))
< Qdiam(f;(Jr)) + Cdist(fi(Jr), f;(Jr)) + Qdiam(f;(Jr))
< 2QCdist(fi(Jr), f;(Jr)) + Cdist(fi(Jr), f;(JF))
< (2Q + 1)Cdist(fi(Jr), f3(JF))
<(2Q +1)Cly — |

Suppose in turn that z # y both belong to the same element f(Jr). Then there exist w €
I* (lw| > 1) and i # j € IN such that z,y € f,(Jr), v € foi(Jr) and y € fo,;(Jr). From
what has been proved so far we know that |g;(h(y)) — g5 (h(2))] < (2Q +1)C|f; 1 (y) —
fo ()] Since |y — x| < ||f5|I1f5 1 (y) — f51 (@) and |h(y) — h(z)| < |lg.|ll95 " (h(y)) —
195" (h())], we get

i < ol
() — ha)] < 0

In the same way we show that h~! is Lipshitz continuous which completes the proof of the
first part of our theorem.

ly — x|

So suppose now that h is bi-Lipshitz continuous. We shall show that conditions (a) and (b)
are satisfied. Indeed, to prove (a) suppose that a and b are taken so that |h(a) — h(b)| >
1diam(g,(Jg)). Then diam(g,(Jg)) < 2|h(a) — h(b)| < 2L|a — b| < 2Ldiam(f.,(JF)),
where L is a Lipshitz constant of h and A~!. In the same way it can be shown that
diam(f, (Jr)) < 2Ldiam(g,(Jg)) which completes the proof of property (a). In order to
prove the right-hand side of property (b) we proceed as follows. Fix i,j € IN, i # j and
a#be Jp. Then
dist(g:(Y), 9;(Y)) < dist(g:(Jea), 9;(Je)) < lgi(h(a)) — g;(h(b))| < Lifi(a) — f;(b)]
< (diam(f;(X)) + dist(f; (), £3(X)) + diamn(f;(X))
<L

(2C + D)dist(fi(X), f;(X)),

where the last inequality we wrote due to boundedness of geometry of the system {f; : i €
IN'}. The proof is finished. L]

Remark 2.3. Notice that Theorem 2.1 nd Theorem 2.2 remain true without assuming
that the phase space X is one-dimensional. We only need to know that the maps ¢;, ff;
and g; are conformal and the assumption (2.7)of [MU] is satisfied.

Remark 2.4. Suppose now that the maps i — ¢;(X) are monotone, that is suppose that

for all ¢ and j, i < j implies ¢;(X) < ¢;(X). We claim that then the bounded geometry
of the system is equivalent with the following weaker condition

max{diam(¢; (X ), diam(¢p;+1(X)} < Cdist(p;(X), pir1(X)).
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Indeed, if ¢ < j, then

max{diam(¢;(X), diam(¢;(X )}<Z<Il?ax {max{diam(¢y (X)), diam(¢r+1(X))}}

<1<111€f1<ax {Cdist(d(X), pr+1(X))}

< Cdist(¢i(X), ¢;(X)),

where writing the last inequality we used the monotonicity of the map i — ¢;(X). The
opposite implication is obvious.

Remark 2.5. If both maps i — f;(X) and i — g¢;(X) are monotone, then condition (2.b)
from Theorem 2.2 can be replaced by the following.

1 dist(gr(Y), gr11(Y))
(c) ¢ Sdist(fk(X),fk+1(X))

for some constant C' > 1 and all k¥ € IN. Indeed, assuming (2.3) this follows from the
following computation.

<C

dist(g; (Y det 9x(Y), gke1(Y)) + Z diam(gg (X
k=i+1

< X_:Cdist(fk(X), Fes1 (X)) +Q X_: diam(fx (X))

k=t k=i+1

7j—1
< max{C,Q} (Z Cdist(fr(X), fr41(X Z diam ( fx (X )
k=i

k=i+1

— max{C, Q}dist(f(X), ;X))

§3. Real-analytic systems. We call a 1-dimensional system ® = {¢; : X — X, i € IN}
real analytic if and only if there exists a topological disk D such that all the maps ¢;
extend in a conformal (so 1-to-1) fashion to D. Let m be the conformal measure associated
to the system ® and let u be the only probability invariant measure equivalent with m
(see [MU,Theorem 3.8], where this measure was denoted by p*). We call the system ®
non-linear (comp. [S1]) if and only if at least one of the Jacobians Jy, = d‘“"ﬁl is not
constant. We shall prove the following theorem which is stronger than both Theorem 2.1
and Theorem 2.2.

Theorem 3.1. If both systems {f; : X — X :i€ IN} and {g; : Y = Y :i € IN} are

real-analytic and non-linear, then the following conditions are equivalent.

(a) The conjugacy between the systems {f; : X - X :i€ IN} and {g; : Y - Y :i€ IN}
is real analytic.



(b) The conjugacy between the systems {f; : X - X :i€ IN} and {g;: Y =Y :i € IN}
is Lipschitz continuous.

(©) |9, (yw)| = |fL(zn)] for all w € IN*, where x, and y, are the only fixed points of
fo: X = X and g, : Y — Y respectively.

(d) 38 > 1 VYw e IN*

S_l < dla‘m(gw (Y))

S Jam(f (X)) =5

() 3E > 1Vw € IN*

(f) For every finite subset T' of IN, HD(Jg,r) = HD(JFr) and the measures mg r and
mpr o h™! are equivalent.

(g) For every finite subset T' of IN, the measures mg r and mp o h~! are equivalent.

Suppose additionally that both systems F' and G are regular. Then the following two
conditions are also equivalent with the conditions above.

(h) HD(Jg) = HD(JF) and the measures mg and mp o h™! are equivalent.
(i) The measures mg and mp o h~! are equivalent.

Proof. The implication (a) = (b) is obvious.That (b) = (c) results from the fact that
(b) implies condition (1) of Theorem 2.1 which in view of this theorem is equivalent with
condition (2) of Theorem 2.1 which finally is the same as condition (c¢) of Theorem 3.1
The implications ¢ = (d) = (e) = (h) have been proved in Theorem 2.1. The implication
(h) = (i) is again obvious. Let us now prove that (i) = (a). As the first step we shall
show that if a regular system {¢; : ¢ € IN} is real-analytic, then the Jacobians Jy of all

the maps ¢, w € IN* with respect to the invariant measure p are also real analytic. Since
d(modg,,)

dm .
function, the function |¢],

= |¢L|* and since ¢, is a real valued, either positive or negative, real analytic
| is also real analytic. Consequently, to check that

dpod,  duog, _dm0¢w_d_m:d_uo¢ .

dmog, dm
de  dmo ¢, dm dp  dm dm du

is real-analytic it suffices to check that 5—7’7‘1 is real-analytic. Let D C @ be the open
topological disk claimed in the definition of real analytic systems. Since for each w € IN*,
1¢" |lx =T ¢.|x, all the derivatives extend (complex) analytically to the corresponding
maps v(w)¢@.,, where v(w) € {1, —1}. Given n > 1 consider the series of (complex) analytic
functions £"(1) = Z|w|:n(u(w)q5(’d)h, where (v(w)¢l,)" are well-defined since D is simply
connected. Fix zy € X. By the Koebe Distortion Theorem and (3.3) of [MU] we can write
forallm > 1 and all x € D

Y W@ < Y I @)" < K" Y g (wo) = KL (1)(wo) < KM

lwl=n lw|=n lwl=n



Hence, the maps £™(1) : D — €'form a normal family in the sense of Montel. Since £™(1)]|x
converges to p = ;—7‘7‘1, we conclude more, that £™(1)|p converges to an analytic extension
of pon D. We will keep the same notation p for this extension. So, we have proved that all
the Jacobians Jg = % are real-analytic, and in fact extends analytically onto D. Now
suppose that condition (i) of Theorem 3.1 is satisfied. Then pup = pg o h meaning that
Jn = d’d‘ﬁ—:h = 1. Since ho f,, = g, oh, the chain rule implies that J,o f,-Js, = Jg, oh-Jy
and consequently

Jg, = Jg, oh.

Let now g; be the contraction produced by non-linearity. Notice then that J, has only
finitely many extremal points, since otherwise the equation Jéi = 0 would have an accu-
mulation point in ¥ which in turn would imply that J,, would be constant on Y, contrary
to non-linearity of the system G. Hence Jg_l_1 o Jy, is well-defined and 1 —f0—1 on an open
set V.C X, and h = J; " oJy on VN .Jp. Consider now w € IN* such that f,(X) C V.
Then the map g o (Jg_i1 oJyf,)o fu: X — X extends h and is real analytic. So, we have
proved that the conditions (a), (b), (¢), (d), (e), (h), and (i) are equivalent To complete
the proof we need to demonstrate that (f) and (g) are equivalent with conditions (a)-(e).
Indeed, the implications (e) = (f) and (g) = (c) are proved in exactly the same way as
respectively implication (3) = (4) and (4) = (2) of Theorem 2.1. Since the implication
(f) = (g) is obvious, the proof is finished. &

=
=

§4. Scaling functions. From now on we assume that all our systems satisfies condition
(a) of Lemma 2.2 of [MU]. This condition reads as follows:

There are two constants I > 1 and « > 0 such that

(4.1) [I6i()| = I (@)]] < LII(@5) M y — =],

for every 7 € I and every pair of points z,y € V. As a byproduct of the demonstration
that (b) = (¢) (p.112 of [MU]) we have shown that for all w € IN*, say w € IN™ and all
r,y € X

[log |6, ()| = log|#L,(@)] < Y [1(¢0,) 7M1 - 1, (yn—)| = 6L, (#n—j)].
7=1
where 2z = ¢, ., ©... 0, (2). In view of (4.1) this estimate continuous as follows

| log |6, ()| = log|#,(@)|| < Y Llya—j — @n—y|*

7=1
n—1
<Y Ly — x|
§=0
L
(4.2 S —



or equivalently

—L |0 (W) L
4.3 — < — ¢
(4.3) exp<1_8a|y z|* ) (o) = P T ¥ — 2l
Now, since for every ¢ sufficiently small |e* — 1| < 2¢, we get
! 2Ls"™
4:.4: / _ !/ — |¢w(y)| _ 1 !/ _ « !/ < _ [e%
(4.4) [l¢e, ()] =g, (@)]] ()] b (@)] < Tl =216, ()] < T—Zly

In order to define scaling functions we will need the following basic lemma.

Lemma 4.1. If {¢, : X — X : n > 1} is a one-dimensional conformal iterated function
system satisfying condition (4.1), then for every closed subinterval K of X and w € IN*°
the following limit exists

lu |¢wnwn—1---wo (K)| N
1m

= S(w, K
n—0o0 |¢wnwn71...wo(X)| ( )

and the convergence is uniform with respect to K, n and w.

Proof. We shall show that the above sequence satisfies an appropriate Cauchy condition,
So, fix k < n. We then have

|¢wn...wk...wo(K)| |¢wk wO(K)| _ |¢wn...wk+1(stk...wo(K)”
[P ccwn (X [Py (X)) |Pari..w0 ()]
|¢w LWE (.’En)|
4.5 no k]
() ~ Wl 0]

|¢wn~~~wk+1 (¢wk---w0 (X))|
| ..o (X))

/ | /

for some z, € ¢y, . w,(K) and y, € ¢y, .. w,(X), where the last equality sign we wrote
due to the Mean Value Theorem. Denote now (@ ..o (K)|/|Pw;...wo (X)| by a;. In view of
(4.5) and (4.2) we get

L she.
-1 -— s«

L
|log a,, —logag| < T |[Zn — yn|* < @|¢wk...wo( )* <
Thus the sequence {loga,}52 ; is a Cauchy sequence, and consequently {a,}7 ; itself is a
Cauchy sequence too, The proof is finished. &

Let IN°® denote the set of infinite sequences of the form ...w,w,_1...wiwy and let N,
denote the set of all finite words of the form w,w,_1...wiwg. Lemma 4.1 allows us to
introduce the scaling function (comp. also [S2] and [PT]). In this section we will explore
this notion. The weaker scaling function S is defined on the space IN>® x IN, takes values
n (0,1), and is given by the formula

w 0o T |¢wnwn,1...wo(¢i(X))|
S ({w’n}’n=07l) - nli)II;o |¢wnwn_1.“w0 (X)| 9
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where the limit exists due to Lemma 4.1.

The stronger scaling function S*® is defined similarly but on the larger space N x (INUC),
where C denotes the set of all connected components of X \ i, ¢;(X). Frequently, given
w € IN* we will consider the function S*(w) : (IN UC) — (0,1) given by the formula
S*(w)(Z) = S*(w, Z), and similarly we define the function S*(w). The following theorem
is an immediate consequence of Lemma 4.2

Theorem 4.2. Both scaling functions S* : IN°° x IN and S* : N x (INUC) are continuous.

We now pass to consider two systems F' = {f; :i € IN} and G = {g; : i € IN}. Our first
theorem about them reads as follows.

Theorem 4.3. If two topologically conjugate 1-dimensional i.f.s. F' and G have the same
weak scaling functions and condition (b) of Theorem 2.2 is satisfied, then the topological
conjugacy is Lipschitz continuous. Conversly, if the topological conjugacy h : Jp — Jg
extends in a diffeomorphic fashion onto X, then Jp and Jg have the same strong scaling
functions.

Proof. Let us first prove the second part of this theorem. Indeed, let us keep the same
notation h for its diffeomorphic extension to X and let D be an arbitrary closed subinterval
of X. For w € N°° we can write

D) i Vo) 9o BN _ o Voo D)) o (X))
S@,h(D)) ~ 1% [faryran O 1o D 255 [ caog (BDN 1910 (V)

Now, by the Mean Value Theorem there exist a,, and b,, respectively in f,, ., (D) and in
fw,..wo (X) such that

S@.0) o Mopan D) oo (b)
S (e, (D))~ 12250 0 faraon (DD T CON] 5350 1 ()

Since A’ is uniformly continuous with no zeros and since |b,, — a,,| — 0 the last limit is
equal to 1 which finishes the proof of the second part of our theorem.

In order to show the first part of this theorem it suffices to show that condition (a) of
Theorem 2.2 is satisfied. So, let 7 = 79 ...74—1 be an arbitrary word. Our aim is to show
that |(g,) (h(x:))| = |(fr)'(z+)|, where z, is the only fixed point of the map f,: X — X.
First notice that for every n

grotriry V) Ngrntrn O gents V)] grrrem sV [grnryr (V)
|Gz (V)] |grnt1 (V)] |g7—nT0~~~7—q72(Y)| |g7—n'r0---7_q73 (V)| |Gz (V)]
Hence
: T+l Y w w w w
(46) lim w = STOO (TO)STOOTo...Tq72 (Tq—l)STOOTo...Tq,Q, (Tq—2) e STOOTO (Tl)

n—=0o0 |g7'”7'o (Y)|
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and similarly

n+1 X
(4.7) lim Jrroiny (X))

) qw w w w
n—00 |f7'"7'0 (X)| STOO (TO)STOOTO,,.Tq,2 (Tq—l)STOOTo...Tq,;g (Tq—2) e STOOTO (Tl)'

Since grnt1,,(Y) = g7(9r, (Y) and since frn+1, (X) = fr(fr. 7 (X)), it follows from
the Mean Value theorem that there exists z,, € f. .,(X) and y, € g, (YY) such that

|gznt1ry V)] = 197 (Yn ) - 97,7 (V)| and | frnsrry (X)]| = [f7(yn)] - [fr,7(X)]. Thus in view
of our assumptions and (4.6) and (4.7) we get

1 —
nsoo |f1(@n)|  noo [grare (V)]

97 (yn)| lim |grntin (Y )|/ |}”:1TT0(%)|| -1

Now, a straightforward computation shows that ¥, — vy, and z,, — z,, where y, and z,

are fixed points of g, and f; respectively. Hence |g.(y,)| = |f.(z;)| and equivalence of
this condition with condition (1) of Theorem 2.1 finishes the proof. &
References

[MU] R.D. Mauldin, M. Urbanski, Dimensions and measures in infinite iterated function
systems, Proc. London Math. Soc. (3) 73(1996), 105-154.

[PT] F. Przytycki, F. Tangerman, Cantor sets in the line: Scaling functions of the shift
map, Preprint 1992.

[S1] D. Sullivan, Quasiconformal homeomorphisms in dynamics, topology, and geometry,
Proc. International Congress of Mathematicians, A.M.S. (1986), 1216-1228.

[S2] D. Sullivan, Differentiable structures on Fractal-like sets, Determined by Intrinsic
Scaling functions on Dual Cantor sets, The Mathematical Heritage of Herman Weyl, A.S
Proc. Symp. Pure Math. 48 (1988).

12



