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FUNCTIONS
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ABSTRACT. We explore the class of elliptic functions whose all critical points contained in the
Julia set are non-recurrent and whose w-limit sets form compact subsets of the complex plane.
In particular, this class comprises hyperbolic, subhyperbolic and parabolic elliptic maps. Let
h be the Hausdorff dimension of the Julia set of such elliptic function f. We construct an
atomless h-conformal measure m and we show that the h-dimensional Hausdorff measure of
the Julia set of f vanishes unless the Julia set is equal to the entire complex plane €. The
h-dimensional packing measure is always positive and it is finite if and only if there are no
rationally indifferent periodic points. Furthermore, we prove the existence of a (unique up to
a multiplicative constant) o-finite f-invariant measure p equivalent with m. The measure p
is then proved to be ergodic and conservative and we identify the set of those points whose
all open neighborhoods have infinite measure u. In particular we show that oo is not among
them.

1. INTRODUCTION AND GENERAL PRELIMINARIES

1.1. Introduction.

First examples of elliptic (in fact p-Weierstrass) functions with detailed description of their
Julia sets appeared in [11]. Our paper dealing with elliptic functions whose all critical points
contained in the Julia set are non-recurrent and whose w-limit sets form compact subsets of
the complex plane, basically stems from [21], [22] and [12]. Any such elliptic function will
be called non-recurrent. We study geometric properties of the Julia sets ultimately resulting
in Theorem 4.1 which says that the h-dimensional Hausdorff measure of the Julia set of f
vanishes unless the Julia set is equal to the entire complex plane €. The h-dimensional packing
measure is always positive and it is finite if and only if there are no rationally indifferent
periodic points. We would like to emphasize that both Hausdorff and packing appearing
in this theorem are taken with respect to the spherical metric on €. The fact of vanishing
h-dimensional Hausdorff measure of the Julia set in the case when h < 2 (note that due to
[12] h > 1) caused by the existence of poles, dramatically differentiate non-recurrent elliptic
functions from the case of analogous class of rational functions (see [21]). Our main technical
tool employed in this paper is the concept of semi-conformal, almost-conformal and conformal
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measures. We provide an elaborated proof of the existence, uniqueness and continuity of an h-
conformal measure. Another important tool is provided by Proposition 2.21, where, expressed
in an appropriate language, all non-singular points are shown to be conical. Although there
are some overlaps with rational functions (see [21]), most of the proofs are substantially
different, mainly because of the existence of poles in the Julia set.

Our second major theme in this paper is the dynamics of f with respect to the conformal
measure m. As the first result in this direction we we prove the existence of a conservative
ergodic o-finite measure p equivalent to m. Developing this direction, we study points of finite
and infinite condensation of the measure p, the concepts introduced in [22]. After collecting
some some basic facts about these points we show in Subsection 5.2 that oo is always a point
of finite condensation, perhaps the most interesting fact about the measure p. In the next
subsection we relate points of infinite condensation with the set (f) of rationally indifferent
periodic points, providing in particular some sufficient conditions (2(f) = () for the invariant
measure j to be finite. In the end of this section we deal with parabolic points themselves.

1.2. General Preliminaries.

Throughout the entire paper f*, diam, and B,(z,r) denote respectively the derivatives, di-
ameters and open balls defined by means of the spherical metric whereas f', diam and B(z, r)
are considered in the Euclidean sense.

Definition 1.1. If H : D — @'is an analytic map, z € @, andr > 0, then by Comp(z, H(z), H, )
we denote the connected component of H Y(B(H(z),r)) that contains z.

Suppose now that c¢ is a critical point of an analytic map H : D — €. Then there exists
R=R(H,c) >0and A= A(H,c) > 1 such that
Az —c" <|H(2) — H(c)| < Alz — ¢|
and
A= et < ()] < Al — eft!
for every z € Comp(c, H(c), H, R) and that
H(Comp(c, H(c), H, R)) = B(H (c), R)

where ¢ = ¢(H,¢) is the order of H at the critical point ¢. Moreover letting R > 0 to be
sufficiently small we can require the two above inequalities to hold for every z € B(c, (AR)'/9)
and the ball B(c, (AR)"?%) U Comp(c, H(c), H, R) to be expressed as a union of the point ¢
and ¢ open mutually disjoint sets such that H restricted to each of them is injective.

Koebe’s Distortion Theorem, I (Euclidean version). There exists a function & :
[0,1) — [1,00) such that for any z € €, r > 0,¢ € [0,1) and any univalent analytic function
H : B(z,r) — @ we have that

sup{|H'(z)| : © € B(z,tr)} < k(t)inf{|H'(z)| : © € B(z,tr)}.
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We put K = k(1/2).

Koebe’s Distortion Theorem, I (spherical version). Given a number s > 0 there exists
a function k, : [0,1) — [1,0c) such that for any z € @, r > 0,¢ € [0,1) and any univalent
analytic function H : B(z,r) — @ such that the complement €'\ H(B(z,r)) contains a ball
of radius s we have

sup{|H"*(z)| : x € B(z,tr)} < ks(t)inf{|H"(x)| : 2 € B(z,tr)}.

The following is straightforward consequence of these two Koebe’s Distortion Theorems.

Lemma 1.2. Suppose that D C @ is an open set, z € D and H : D — @' is an analytic map
which has an analytic inverse H; ' defined on B(H(z),2R) for some R > 0. Then for every
0<r<R

B(z, K 'r|H'(2)|"") ¢ H;Y(B(H(2),r)) C B(z, Kr|H'(2)| ).

Lemma 1.3. Suppose that D C @ is an open set, z € D and H : D — @' is an analytic map
which has an analytic inverse H; ' defined on B(H(z),2R) for some R > 0 avoiding a ball of
some radius s. Then for every 0 <r < R

B(z,k, ' (1/2)r|H'(2)| ") € H,'(B(H(2),7)) C Bz, ks(1/2)r|H'(2)] ).

We shall also use the following more geometric versions of Koebe’s Distortion Theorems
involving moduli of annuli.

Koebe’s Distortion Theorem, IT (Euclidean version). There exists a function w :
(0, +00) — [1, 00) such that for any two open topological disks Q1 C Q2 with Mod(Q2\Q1) >t
and any univalent analytic function H : Q3 — €'such that the complement @'\ H(Q) contains
a ball of radius s we have

sup{|H'(x)| : x € @1} < w(t)inf{|H'(z)| : x € Q1}.

Koebe’s Distortion Theorem, IT (spherical version). Given a number s > 0 there exists
a function wy : (0, 4+00) — [1,00) such that for any two open topological disks Q1 C @, with
Mod(Q2\ Q1) > t and any univalent analytic function H : Q, — @ such that the complement
@'\ H(Q-) contains a ball of radius s we have

sup{|H'(z)| : z € @1} < ws(t) inf{|H'(z)| : 2 € @1}

Lemma 1.4. Suppose that an analytic map Qo H : D — @, a radius R > 0 and a point
z € D are such that

Comp(H (2),Q(H(2)),Q,2R) N Crit(Q) = and Comp(z,Q o H(z),Qo H,R)NCrit(H) # ()
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If ¢ belongs to the last intersection and
diam(Comp(z,Q 0 H(2),Q o H,R)) < (AR(H, c))"/"

then
2o < KA?(Qo H)(2)] 'R

2. THE DyNAMICS OF NON-RECURRENT HELLIPTIC FUNCTIONS

2.1. Preliminaries from Elliptic Functions. As we already indicated in the introduction,
throughout the entire paper f : @ — @ denotes a non-constant elliptic function. Every such
function is doubly periodic and meromorphic. In particular there exist two vectors wy, wo,
Im(g—;) # 0, such that for every z € €'and n,m € Z,

f(2) = f(z + mwy + nw,).
The set
A ={mw, +nwy :m,n € Z}
will be called the lattice of the elliptic function f. This object is independent of the choice of
its generators w; and wy. Let
R = {t1w1 + t2w2 : 0 S tl,tQ S 1},

be the basic fundamental parallelogram of f. It follows from periodicity of f that j(@') =
f(R). Therefore f(@) as a closed and open subset of the connected set ' is equal to €. This
means that each elliptic function is surjective. It also follows from periodicity of f that

f (o) = U (’R N f1(oo) + mw, + an).
mmnezZ
For every pole b of f let g, denote its multiplicity. We define
q:=max{qg : b€ f (o)} =max{q : b€ f'(0)NR]}.
Let
Br={z€: |2| > R}.
For every pole b of f by By(R) we denote the connected component of f~'(By) containing b.

If R > 0 is large enough, say R > Ry, then By contains no critical values of f, all sets By (R)
are simply connected, mutually disjoint and for z € By(R)

Gb(z)

f(z) = by (2.1)

where G, : By(R) — ('is a holomorphic function taking values out of some neighbourhood
of 0. If U C Bg \ {oo} is an open simply connected set, then all the holomorphic inverse
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branches f,;&’l, e ,f,;(}’qb of f are well-defined on U and for every 1 < j < ¢, and all z € U
we have
—1 ~ ot
|(fowy) (2) <[] o (2.2)
Therefore
22
IR _ ! 1+ |2 z| D
|(frmg)" (2)] < [z = = (2.3)

L+ [(fi) ()2 7 142 = b2

where the last comparability sign we wrote assuming in addition that |b| is large enough,
gqp—1

say |b] > Ry > Ry. Let M be an upper bound of the ratios of \(fb}}])*(zﬂ and |z| % |b|~?

with b, U, j as above. A straightforward calculation based on (2.1) shows that there exists a

constant I, > 1 such that for all poles b and all R > R; we have

L™'R % <diam(B,(R)) < LR o)
L7'R % (14 |b2)~" <diam,(By(R)) < LR % (1 + [b|?) L. '

We will frequently use the following fact proven in [12].

Theorem 2.1. If f : @ — @ is an arbitrary elliptic function, then

2
2 o

HD(J(f)) > =5 >

where ¢ = inf{g, : b € inf '(00)} = max{g: b€ RN f'(c0)}.

2.2. Julia Sets and Non-Recurrent Elliptic Functions.

The Fatou set F(f) of a meromorphic function f : @ — @ is defined in exactly the same
manner as for rational functions; F(f) is the set of points z € € such that all the iterates
are defined and form a normal family on a neighborhood of z. The Julia set J(f) is the
complement of F(f) in @. Thus, F(f) is open, J(f) is closed, F(f) is completely invariant
while f=1(J(f)) € J(f) and f(J(f)) = J(f)U{oo}. For a general description of the dynamics
of meromorphic functions see e.g. [5]. We would however like to note that it easily follows
from Montel’s criterion of normality that if f : @ — € has at least one pole which is not an
omitted value then

J(f) = U f(o0).

n>0

Let Crit(f) be the set of critical points of f i.e.
Crit(f) ={z: f'(2) =0}.
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Its image, f(Crit(f)), is called the set of critical values of f. Since R N Crit(f) is finite and
since f(Crit(f)) = f(R N Crit(f)), the set of critical values f(Crit(f)) is also finite. Let

Io(f)={2€C@:z€ | f ™(0) or lim f*(z) = oo}

be the set of points escaping to infinity under iterates of f. We say that the elliptic function
f + @ — @'is non-recurrent, if the following conditions are satisfied:

(1) If ¢ € Crit(f)NJ(f), then the w-limit set w(c) is a compact subset of €' (i.e. 0o ¢ w(c))

and ¢ ¢ w(c)

(2) If ¢ € Crit(f) N F(f) then either there exists an attracting periodic point w or a
rationally indifferent periodic point w such that w(c) C {w, f(w),..., fP"H(w)}, p is
a period.

From now on, unless otherwise stated, we assume throughout the entire paper that the elliptic
function f : €' — 'is non-recurrent. If ¢ > 0, then a measure m supported on J(f) is said to
be semi t-conformal for f: €' — , if

m(f(A)) > [ |f*|dm (25)

for every Borel set A C J(f) such that f|4 is injective and m is said to be t-conformal for
f:C— @ if

m(f(4)) = [ |£*("dm (26)
for these sets A.

2.3. Local behavior around parabolic fixed points.

In this section f : @ — @'is an arbitrary elliptic function of degree > 2. In particular the map
f is not assumed yet to be non-recurrent. In what follows we basically summarize the results
concerning local behavior around parabolic fixed points which have been proved in [1], [8],
and [9]. Although they were formulated and proved in the context of parabolic rational maps
that is assuming that the Julia set contains no critical points, nevertheless they and their
proofs are of local character and, in particular, extend to the class of all elliptic functions.
Through this section w is a simple parabolic fixed point of f, that is f(w) = w and f'(w) = 1.

First note that on a sufficiently small open neighbourhood V' of w a holomorphic inverse
branch f!':V — € of f is well defined which sends w to w. Moreover, V' can be taken so

small that on V' the transformation f_' expresses in the form

fl2) =2z—a(z —w)P™ +ay(z —w)P? +asz(z —w)P™ + ... (2.7)
where a # 0 and p = p(w) is a positive integer.
02 ~w=2-w—a(z - w) tag(z — W) +az3(z — )PP+ ...

Consider the set {z : a(z —w)? € IR and a(z — w)? > 0}. This set is the union of p rays
beginning in w and forming angles which are integer multiples of 27 /p. Denote these rays by
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Ly,Ly,...,L, For1 <j<p 0<r<ooand0<a<2rletS;(r,a) CV be the set of
those points z lying in the open ball B(w, r) for which the angle between the rays L, and the
interval which joins the points w and z does not exceed «. Using (2.7) an easy computation
leads to the following

Va>03dr(a)>030 <oy <aVli<ji<p
fo ' (Sj(ri(@), a0)) € Sj(o0, )
and there are § > 0 and 6; > 0 such that
£ (2) —w| <]z —w| and |(f;1)(2)] <1 (2.9)

w

(2.8)

for every w # z € S1(01,8)U...US,(6:, ). The following version of Fatou’s flower theorem,
(see [4], [17], comp. [1]) shows that the Julia set J(f) approaches the fixed point w tangentially
to the lines Ly, Lo, ..., L,. This can be precisely formulated as follows.

Lemma 2.2. (Fatou’s flower theorem) For every a > 0 there exists ro(a) > 0 such that
J(f) N B(w, () C Si(ra(a), @) U...US,(ra(a), ).

Since the Julia set J(f) is fully invariant (f~'(J(f)) = J(f) and f(J(f)) = J(f) U {oc},
we conclude from this lemma and (2.9) that for every 0 < 6y < min{#;,79(3)} we have

fo '(J(f) N B(w, 02)) C J(f) N B(w,by).

Thus all iterates f," : J(f) N B(w,6y) — J(f) N B(w,6), n = 0,1,2,... are well defined.
From (2.8), Lemma 2.2, and (2.9) we obtain the following

Va >0 3rg(a) >0V1<j<p

158, (r3(@).0) 1 J(1)) € 5,0, ). 210
Put
0 =0(f,w) = min{fy, r,(5), r5(5)} (2.11)
Then, it follows from (2.9), (2.8), and Lemma 2.2 that for every z € J(f) N B(w, ).
lim f "(z) =w (2.12)

n—00

In fact it can be proved that this convergence is uniform on compact subsets of B(w,#) N
J(f) \ {w}. See (2.13) for even stronger result. By precise computations one can prove the
following.

Lemma 2.3. For every 7 > 0 sufficiently small and every z € J(f) N B(w,0)
fo ' (B(z, 7]z = w)) € B(f, ' (2), 7If " (2) — wl).

This lemma immediately leads to the following.
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Lemma 2.4. For every 7 > 0 sufficiently small, every z € J(f) N B(w,0) and every n > 0
there exists a unique holomorphic inverse branch

oot B(z, 27|z —w|) = B(f,"(2),27|f,"(2) — wl)

Jw,z

of f™ which sends z to f;™(z).

The following three results (comp. Lemma 1 and Lemma 2 of [8] and Lemma 4.8 of [9]) can
be proved in exactly the same way as in [8] and [9].

Tim | £57(2) — wln'’? = (Jalp) 7 and 0 5 < (L0 LD G <0

(2.13)
uniformly on compact subsets of B(w,0) N J(f)\ {w}.

Lemma 2.5. Let m be a semi t-conformal measure for f. Then for every R > 0 there exists
a constant C = C(t,w, R) > 1 such that for every 0 <r < R

m(B(w,r) \ {w}) m(Bs(w,r) \ {w}) <C.

Tat(w) ,,aat(w)

where ay(w) =t + p(w)(t — 1). If m is t-conformal, then in addition
m(Bw,r) \{w}) m(By(w,r)\{w}) _ 1

rat(w) rot(w)

2.4. Basic properties of non-recurrent elliptic functions. .

In this section the elliptic function f : @ — € is assumed to be non-recurrent. A periodic
point w of f is called parabolic if there exits ¢ > 1 such that f9(w) = w and (f7)'(1) = 1.
The set of all parabolic points will be denoted by €2(f). Since the set of critical values of f is
finite, it follows from Fatou’s theorem that Q(f) is also finite. In addition, Q(f) is contained
in the Julia set J(f). The crucial tool for our approach in this paper similarly as in [21] is
the following version of Mane’s theorem proven in [13].

Theorem 2.6. Let f : @ — @ be a non-recurrent elliptic function. If X C J(f) \ Q(f) is
a closed subset of @, then for every € > 0 there exists 0 > 0 such that for every x € X and
every n > 0, all connected components of f~"(B(x,0)) have diameters < e.

Corollary 2.7. Let f : @ — @ be a non-recurrent elliptic function. If X C J(f)U{oc}\Q(f)
is compact, then for every e > 0 there exists 6 > 0 such that for every x € X and everyn > 0,
all connected components of f~'(Bs(x,d)) have Euclidean diameters < e.

Proof. Apply Theorem 2.6 for the set f~'(co) and given € > 0. This gives us the cor-
responding number ¢; > 0. Taking now & > 0 so small that each connected component of
f"(Bs(0,€)) is contained in B(b,d;) for some pole b € f~'(oc) consider the set ¥ = X \
Bg(00, ). Since Y is a compact subset of @, it follows from Theorem 2.6 that there exists §, >
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0 such that for every x € Y and every n > 0 all the connected components of f~"(Bs(z,0))
have Euclidean diameters < e. Consider a finite cover {By(z1,02), ... , Bs(xg, d2), Bs(00, &)}
of X, where z; € Y for all j =1,2,... k. Taking as ¢ half of the Lebesgue number of this
cover finishes the proof. m

Because of an extremal importance of this theorem and its corollary for our considerations, we
provide in the Appendix the proof of Theorem 2.6 adapting to the context of elliptic functions
original Mane’s proof from [13] and some lemma from [19].

We put
Crit(J(f)) = Crit(f) N J(f),

0 = 0(f) = min{min{0(f*,w) : w € Q). %dist(Q(f), Cit()} >0 (214)

where a > 1 is so large that all parabolic points of f* are simple and the numbers 6(f, w)
are defined in (2.11). We also denote for every set A C €

04(4) = [ f"(4).
n>0
and
A= A(f) =max{A(f,c):ce Crit(f)} (2.15)
We call two points z and w equivalent and we write z ~ w if w — z € A, the lattice associated
with the elliptic function f. Obviously z ~ w implies that O, (z) = O (w) and w(z) = w(w).
Since the set Crit(f) NR is finite, we conclude that the sets w(Crit(f)) = Ucecrit(p)nr w(c)

and O, (Crit(f)) = Ucecrit(s)nr O+ (c) are compact subsets of €. A positive number 3 < 6/2
is now chosen to be less than the following three numbers.

min{dist(c, O (f(c)) : ¢ € Crit(f)}

min{(A(c)R(f,¢))"1 : ¢ € Crit(f)}

min{|c — | : ¢, ¢ € Crit(f) and ¢ # ('},
where ¢(¢) = q(f, ¢) is the order of the critical point ¢ of f. Notice that the first of these num-
bers is positive since O (f(Crit(f)) is a compact subset of €' and Crit(f) has no accumulation
points in €. Since f contains no recurrent critical points, it follows from Theorem 2.6 that

there exists 0 < v < 1/4 such that if n > 0 is an integer, z € J(f) and f"(2) ¢ B(QX(f),0),
then

diam(Comp(z, f(z), ", 27)) < B. (2.16)

From now on fix also 0 < 7 < ' min{f, 27} so small as required in Lemma 2.4 for every
w € Q(f) and so small that for every z € J(f)

diam(Comp(z, f(2), f, 97)) < min{/j,2v}. (2.17)
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Lemma 2.8. If n > 0 is an integer, n > 0, z € J(f) and for every k € {0,1,... ,n}
diam (Comp(f¥(2), f"(2), /" *.n)) < B,

then each connected component Comp(f*(2), f*(2), f**,n) contains at most one critical point
of f and the equivalence class of each critical point intersects at most one of these components.

Proof. The first part is obvious by the choice of 3. In order to prove the second part
suppose that

er € Crit(f) 0 Comp(7 (2), (), 5 m), e2 € Comp(f*(2). (=), "4, )
and ¢; ~ ¢, where 0 < ky < ko < n. But then
£ (e) = 54 (1) € Comp(£(2), f1(2), 1 *,1)
and therefore | f¥27%1(cy) — ¢;| < 3, contrary to the choice of 5. B

Lemma 2.9. The set w(Crit(J(f))) is nowhere dense in J(f).

Proof. Suppose that the interior (relative to J(f)) of w(Crit(J(f))) is nonempty. Then
there exists ¢ € Crit(J(f)) such that w(c) has nonempty interior. But then there would
exist n > 0 such that f"(w(c)) = J(f) and consequently w(c) = J(f). This however is a
contradiction as ¢ ¢ w(c). W

-1
Let k = (Hcecm(f)mgq((:)) . We shall prove the following.

Lemma 2.10. If z € J(f), f"(2) ¢ B(Q(f),0), then
Mod(Comp(z,f”(z), f",27) \ Comp(z, f"(z), f”,v)) > klog2/#(Crit(f) NR)

Proof. In view of Lemma 2.8 there exists a geometric annulus R C B(f"(2),27)\B(f"(2),7)
centered at f"(z) of modulus log2/#Crit(f) such that f~"(R) N Comp(z, f*(z), ", 2v) N
Crit(f™)) = 0. Since covering maps increase moduli of annuli at most by factors equal to
their degrees, we conclude that

Mod(Comp(z, f"(2), f",27) \ Comp(z, f"(2), f*. 7))
> Mod(R,) > (log 2/#(Crit(f) N R) /Meecrin(prra(c)
klog?2
HC(f) N R)
where R, C Comp(z, f"(z), f™,27v) is the connected component of f~"(B(f"(z),27)) enclos-
ing Comp(z, f"(2), f",7). ®

As an immediate consequence of this lemma and Koebe’s Distortion Theorem, II (Euclidean
version) we get the following.
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Lemma 2.11. Suppose that z € J(f) and f"(z) ¢ B(Q(f),0). If 0 < k < n and f* :
Comp(z, f*(2), f, 27) — Comp(f*(2), f(2), f**,27) is univalent, then

k\/
YO
(%) ()]
forall z,y € Comp(z, f"(z), f",7), where const is a number depending only on #(Crit(f)NR)
and k.

For A, B, any two subsets of a metric space put

dist(A, B) = inf{dist(a,b) : a € A,b € B}
and

Dist(A, B) = sup{dist(a,b) : a € A, b € B}.
We shall prove the following.

Lemma 2.12. Suppose that z € J(f) and f*(2) ¢ B(Q(f),0). Suppose also that QY C
QP c B(f"(2),7) are connected sets. If Q) is a connected component of f~(Q®?) contained
in Comp(z, f"(2), ™ 7') and QM is a connected component of f~(QWM) contained in Q?,
then

diam(Qg)) diam(Q(l))
. ) e :
dlam(Qn ) d1am(Q(2))
Proof. Let 1 <n; <...<mn, <n be all the integers k£ between 1 and n such that

Crit(f) N Comp(f"~*(2), f"(2), f*,27) # 0.

Fix 1 <i<wu. If j € [n;,niz1 — 1] (we set n, 1 =n — 1), then by Lemma 2.10 there exists a
universal constant 7" > 0 such that

diam(Q%:) . Tdiam(Q%)) 2.18)
diam(Qj ) diam(Q%i))

Since, in view of Lemma 2.8, u < #(Crit(f) NR), in order to conclude the proof is therefore
enough to show the existence of a universal constant £ > 0 such that for every 1 < < wu—1.

diam(Q().) Ediam(Qg))
diam(Qg)H) N diam(Q%)).

And indeed, let ¢ be the critical point contained in Comp(f™ "+ (z), f"(z), f™+',2v) and let
q denote its order. Since both sets Q(n%)H and Q(nlz)+1 are connected, we get for i = 1,2 that

diam(QSLrl) = diam(ngi)H) sup{|f'(x)] 1z € QSBH} = diam(le_)H)Dist(c, ngi)H).
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Hence, using (2.18), we obtain

diam(QS}ill) _ diam(Q(nlill,l) . Dist(c, Q%QI)H) S diam(Q(nlillfl)
diam(Q,) ~ diam(Q7), 1) Dist(c, Q%)) T diam(QP, )
N Tdiam(Qg)) |
2T ()

We are done.

2.5. Partial order in Crit(./(f)) and stratifications of closed forward-invariant sub-
sets of J(f).

Now we introduce in Crit(.JJ(f)) a relation < which, in view of Lemma 2.13 below, is an
ordering relation, by putting

0 <y = ¢ €w(c). (2.19)

Since ¢y ~ ¢3 implies w(ey) = w(cy), if ¢ < o, then if ¢; < ¢ and ¢y ~ 3, then ¢ < ¢3

Lemma 2.13. If ¢; < ¢y and ¢y < c3, then ¢ < c3.

Proof. Indeed, we have ¢; € w(cy) C w(c;). W

Lemma 2.14. There is no infinite, linear subset of the partially ordered set (Crit(J(f)), <)

Proof. Indeed, suppose on the contrary that ¢; < ¢; < ... is an infinite, linearly or-
dered subset of Crit(.J(f)). Since the number of equivalency classes of relation ~ is equal to
#(Crit(J(f)) N R) which is finite, there exist two numbers 1 < i < j such that w(c;) = w(c;).
But this implies that ¢; € w(c;) = w(e;) and we get a contradiction. The proof is finished. W

The following observation is a reformulation of the condition that J(f) contains no recurrent
critical points.

Lemma 2.15. If ¢ € Crit(J(f)), then ~ (¢ < ¢).

Define now inductively a sequence {Cr;(f)} of subsets of Crit(J(f)) by setting Cro(f) = 0
and

Crig(f) = {c e Crit(J(f)) \ O Cri(f): if ¢ <e, then ¢ € Cro(f)U...U Crz(f)i )

Lemma 2.16. We have
(a) If c € Cri(f) and ¢ ~ ¢, then ¢ € Cri(f).
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(b) The sets {Cr;(f)} are mutually disjoint.
( ) p>1 vz>p+1 CTZ(f) :@

(d) Cro(f)u...UCry(f) = Crit(J(f))

() Cri(f) #0

Proof. The item (a) follows immediately from the definition of the sets C'r; and the fact that
two equivalent points have the same w-limit sets. By definition Cr;1(f) N U§:1 Cri(f) =10,
so disjointness in (b) is clear. As the number of equivalency classes of the relation ~ is equal
to #(Crit(J(f)) N R which is finite, (a) and (b) imply (c¢). Take p to be minimal number
satisfying (b) and suppose that ¢ € Crit(J(f)) \ U=, Cr;(f). Since Cryi1(f) = 0, there
exists ¢ ¢ U, Cr;(f) such that ¢/ < c. Iterating this procedure we would obtain an infinite
sequence of critical points ¢; = ¢ > ¢ = ¢ > ¢3 > .... But this contradicts Lemma 2.14
proving (d). Now part (e) follows from (c) and (2.20). ®

As an immediate consequence of the definition of the sequence {Cr;(f)} we get the following
simple lemma.

Lemma 2.17. If ¢, € Cri(f), then ~ (¢ < ).

For every point z € J(f) define the set
Crit(z) = {c € Crit(J(f)) : c € w(2)}
We shall prove the following.

Lemma 2.18. If z € J(f) \ Io(f), then either 2 € U,>o f"(2f)) or w(z) \ {oc} is not
contained in O, (f(Crit(z)) U Q(f).

Proof. Suppose that 2z & U,>o f7"(2(f)) U Io(f). Then by (2.12) the set w(z) \ {oo} is
not contained in Q(f). So, if we suppose that

w(z) \ {o0} € O, (F(Crit(2)) U (), (2.21)

then, as w(z) \ {oc} # 0, we conclude that Crit(z) # 0. Let ¢; € Crit(z). It means that
c1 € w(z) and as ¢; ¢ Q(f), it follows from (2.21) that there exists ¢; € Crit(z) such that
either ¢; € w(cy) or ¢; = f™(cy) for some ny > 1. Iterating this procedure we obtain an
infinite sequence {c;}22, such that for every j > 1 either ¢; € w(cjy1) or ¢; = f"(cj41) for
some n; > 1. Consider an arbitrary block ¢, ¢x1, ..., ¢ such that ¢; = " (c¢;41) for every
k < j <1—1 and suppose that [ — (k — 1) > #(Crit(f) N R). Then there are two indexes
k <a < b<[such that ¢, ~ ¢;. Then

f”a+na+1+---+nb—1 (Ca) — f”a+na+1+---+nb71 (

Cb) = Cq

and consequently, as ng, + ngy1 + ... +np1 > b—a > 1, ¢, is a super-attracting periodic
point of f. Since ¢, € J(f), this is a contradiction, and in consequence the length of the
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block ¢, cgi1,. .., ¢ is bounded above by #(Crit(f) N R). Hence, there exists an infinite
subsequence {ny},>: such that c,, € w(c,,41) for every k& > 1. But then ¢,, € w(cy,,,,) for
every k > 1, or equivalently ¢,, < ¢, ., forevery k > 1. This however contradicts Lemma 2.14
and we are done. W

Define now for every i =0,1,... ,p

Si(f)=Cro(f)U...uCri(f)

and for every i = 0,1,... ,p — 1 consider ¢’ € Uecy,,, (5 w(c) NCrit(J(f)). Then there exists
¢ € Crigq(f) such that ¢ € w(c) which equivalently means that ¢’ < ¢. Thus, by (2.20) we
get ¢ € S;(f). So

U w(eon(Crit(J(f)\ Si(f) =0 (2.22)

c€Crit1(f)

Therefore, since the set U.ccy,,,(pw(c) C @'is compact and Crit(J(f)) \ Si(f) has no accu-
mulation point in @,

di=dist( |J  w(e),Crit(J(f)\ Si(f)) >0 (2.23)

c€Crita(f)
Set
p=min{d;/2:i=0,1,... ,p—1}.
Fix a closed forward-invariant subset F' of J(f) and for every i = 0,1,... ,p define

Fi(f) = {z € F : dist(04.(2), Crit(J(£) \ Si(£)) > p}-

Let us now prove the following two lemmas concerning the sets F;(f).

Lemma 2.19. Fy, CFy C...C F,=F.

Proof. Since S;y1(f) D Si(f), the inclusions F; C Fj 4 is obvious. Since S,(f) = Crit(J(f)),
it holds J,(f) = J(f). We are done.

Let

PC(f) = O (Crit (J(7)))

We shall prove the following.

Lemma 2.20. There exists | = I(f) such that for every i =10,1,... ,p—1
U w(o) € 0u(F(Crina(f) € PC(S);

ceCrit1(f)
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Proof. The left-hand inclusion is obvious regardless whatever [(f) is. In order to prove the
right-hand one fix i € {0,1,...,p — 1}. By the definition of w-limit sets there exists [; > 1

such that for every ¢ € Cr;y1(f) we have dist(0+(fli(c)),UC€CTi+1(f)w(c)) < 0;/2. Thus,
by (2.23), dist(O, (fi(c)), Crit(J(f)) \ Si(f)) > 6;/2. Since p < 6;/2 and since for every

z € O4(fl(c)) also O, (z) € O,(f%(c)), we therefore get O, (f'(Criy1(f))) € PC(f);. So,
putting I(f) = max{l; : i =0,1,... ,p — 1} the proof is completed. B

2.6. Holomorphic inverse branches. In this section we prove the existence of suitable
holomorphic inverse branches-our basic tools in the next section. Set

Sing () = U £ () U Crit(J(£)) U £ (00)) and I_(f) = | £ "(00).

We start with the following.

Proposition 2.21. If z € J(f) \ Sing (f), then there exist a positive number n(z), an
increasing sequence of positive integers {n;};>1, and a point ¥ = x(z) € w(z)\ (Qf) U
w(Crit(2))) such that x # oo if 2 ¢ Io(f), im0 f™(2) = = and

Comp(z, f"(2), f™,n(z)) N Crit(f") =0
for every j > 0.

Proof. Suppose first that z € I,(f)\Sing (f). Since O, (Crit(f)) is a compact subset of ,
we conclude that for all n large enough dist(f™(z), O, (Crit(f))) > 1. We are therefore done
taking z = oo and n(z) = 1. So, suppose that z ¢ I,(f). This means that w(z) \ {oc} # 0.
Suppose that w(z)\{oo} is unbounded. Since O (Crit(f)) is a compact subset of €, there thus
exists © € w(z) \ {oc} such that dist(x, O, (Crit(f))) > 2 and we are done fixing a sequence
{n;}52, such | f%(z) —z| < 1 and taking n(2) = 1. So, assume that w(z) = FU{co} where F' C
@'is a compact set. Then FNf~'(oc) # @ and fix x € FNf~'(c0). Again, since O (Crit(f)) is
a compact subset of ¢'and since f(O+(Crit(f))) C O, (Crit(f)), we see that x ¢ O, (Crit(f))

and we are done taking 7(z) = dist(z, O, (Crit(f))). So suppose finally that w(z) is a compact
subset of €. In view of Lemma 2.18 there exists x € w(z) \ (Q2(f) U O4(f(Crit(z)) U {oc}).
The number n = dist(x, Q(f) U O, (f(Crit(2)))/2 is positive since w(Crit(z)) is a compact
subset of €' and Q(f) is finite. Then there exists an infinite increasing sequence {m;};>; such
that

le%lo fMi(z) =x (2.24)
and
B(f™(z),m) N U f"(Crit(2)) = 0. (2.25)

n>1
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Now we claim that there exists 7(z) such that for every j > 1 large enough
Comp(z, f™(2), f™,n(z)) N Crit(f™) = 0. (2.26)

Otherwise we would find an increasing to infinity subsequence {my,} of {m;} and a decreasing
to zero sequence of positive numbers 7n; such that n; < n and

Comp(z, f™i (2), f™¢, n;) N Crit(f™) # 0

Let ¢ € Comp(z, f™i(z), f™i,n;) N Crit(f™:). Then there exists ¢; € Crit(f) such that
fPi(¢;) = ¢ for some 0 < p; < my, — 1. Since the set f () is at a positive distance
from Q(f) and since 7; — 0, it follows from Theorem 2.6 that lim; ,. ¢; = 2. Since z ¢
Unso f ™ (Crit(f)), it implies that lim; ,o p; = o0o. But then using Lemma 2.6 again and
the formula f*i(¢;) = ¢; we conclude that the set of all accumulation points of the sequence
{¢;} is contained in w(z). Hence, passing to a subsequence, we may assume that the limit
¢ = lim;_,, ¢; exists. But since ¢ € w(z), since w(z) is a compact subset of € and since oo is the
only accumulation point of Crit(f), we conclude that the sequence ¢; is eventually constant.
Thus, dropping some finite number of initial terms, we may assume that this sequence is
constant. This means that ¢; = ¢ for all i = 1,2,.... Since ¢ = fPi(¢;), we get

775 () — froemi(e) = £ () — F @) <

Since lim;_,, 1; = 0 and since w(z) is a compact subset of €, we conclude that lim;_, ., | f™i (2)—
fmi7Pi(¢)| = 0. Since ¢ € Crit(z), in view of (2.25) this implies that m;, — p; < 0 for all i
large enough. So, we get a contradiction as 0 < p; < m;, — 1 and (2.26) is proved. We are
done. H

Since if z € J(f) \ (Sing™ (f) U Ix(f)), the limit points of the normal family
£ Bla(2),n(2)/2) = @

consist only of constant functions. Therefore we get the following.

Corollary 2.22. If z € J(f) \ (Sing™ (f) U Io(f)) and the sequence {n;}32, is taken from
Proposition 2.21, then

limsup (") (2)] = Limsup |(f*)(2)] = lim |(f*)(2)] = +oc.

In addition, if we assume only that z € J(f) \ Sing™ (f), then

lim sup [(f")'(2)] = oc.

3. CONFORMAIL MEASURES

In this section we deal in detail with the existence, uniqueness and some properties of con-
formal measures. Let HD denote the Hausdorff dimension, H* and I, denote respectively
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t-dimensional Hausdorff measure and 2-dimensional Lebesgue measure, both considered with
respect to the spherical metric on €. Throughout this section and the entire paper we set

h = HD(J()).
We begin with the following.

Lemma 3.1. If m is a t-conformal measure for f: J(f) — J(f) U{oc}, then t > HD(J(f))
and H'| ;5 is absolutely continuous with respect to m.

Proof. Fix z € J(f) \ (Sing (f) U Ix(f)). Let n(z) >0, z € w(z) \ {oo} and the sequence
{n;};>1 be taken from Proposition 2.21. It then follows from this proposition and Koebe’s
Distortion Theorem, I(spherical version) that

£ (B(f"(2),1(2)/2)) < B(z, |[(f™)"(2)| 'n(2)/2).
Applying again this Koebe’s Distortion Theorem and conformality of the measure m, we get
for all 7 > 1 large enough
m(B(z [(f") ()] 'n(2)/2)) < | 'm(B(f"(2),1(2)/2))
|(f")"(2) ' m(B(x,m(2)/4))
|(f")' ()| "'m(B (@, n(2)/4))

)
= (20(z) Y'm(Bla, () /) (1) ()] n()/2),

where the second comparability sign depends on |z| and holds for all j > 1 large enough so
that f"i(z) is sufficiently close to z. In particular

lim sup 7m(B:tz, r)
where R(z) = (2n(2)')'m(B(z,n(2)/4)). Therefore, putting
Xe={z € J(f)\Sing (/) : [o] < k and R(z) > 1/k}

we have Up, Xy = J(f) \ (Sing™ (f) U Io(f)) and in view of Theorem 4.3(1) (which is of
purely geometric character independent of our considerations here), dH*/dm < b(2)k on Xj.

In particular H* < m on J(f)\(Sing™ (f)UI.(f)). Hence HD(J(f)\(Sing*(f)ufoo(f))) <t.
By Theorem 1 and Theorem 2 in [12]), HD(J(f)) > HD(I(f)). Thus HD(J(f)) = HD(J(f)\
(Sing™ () U Ino(f))) <t and H' < m on J(f). ®

(f") ()
n

=0

Y

¢

> R(z) >0,

We will need in the sequel the following result which is interesting itself.

Lemma 3.2. If m is a t-conformal measure for f : @ — @, then m(Io(f)\I_(f)) = 0. Even
more, there exists R > 0 such that

m({z : liminf | f"(z)| > R}) = 0.
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Proof. Let b be a pole of f : € — €. We shall obtain first an upper estimate on m(By(R))
similar to the second inequality in (2.4). And indeed, covering Bg \ {oo} by two simply
connected domains

B ={2€ Br\ {o<}:Imz >0} and Bj = {z € Br\ {oco}:Imz < 1}

we obtain
m(B, {b}<2/ Ik \dm+2/ (fya ) lidm.

Using now (2.3), we obtain
qp—1

o Wyt = [ (5l )tdm< )= g Ly, A e
< @A) [ 2T fdm(z).

R

Looking at the ﬁrst line of this formula with a pole b of maximal multiplicity, we see that the

integral fB+ \z| dm(z) is finite and even more:
li | \rltd (2)=0 (3.1)
Jim - z m(z) = 0. :

—1
Similarly is finite the integral [41 12| T 'dm(z) and it also converges to 0 as R — co. Putting

Y g = max {/ \z|%tdm(z),/ |zqq_1tdm(z)}
B} Bl
we therefore conclude that

m(By(R) \ {b}) < 20T (1 + ") " < 2T lb . (3.2)

Now the argument goes essentially in the same way as in [12]. We present it here for the sake
of completeness. We take Ry > Ry defined in Section 2.1 so large that

LR % < Ry (3.3)

for all poles b € Bg, and all R > Ry. Given two poles by, by € Byg, we denote by sz K
B(by, Ry) — € all the holomorphic inverse branches sz,B (b1.Ry);- 1t follows from (2.4) and
(3.3) that

Frabn g (B(bl, RU)) C By, (2Ry — Ry) C By, (Ry) C B(ba, Ro) (3.4)

Set
Ir(f) ={z € C:V>0|f"(2)| > R}.
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Since the series > ¢ r-1(00)\{0} |b\’ converges for all s > 2 and since by Lemma 3.1 and
Theorem 3 from [12], ¢ > h > 4 there exists Ry > Ry such that

Mt Y T <12 (3.5)

beBRBfol(oo)
Consider R > 4R3. Put
I = f '(c0) N By

Since R/2+4+ Ry < R/2+ R3 < R/2+ R/2 = R, it follows from (3.4), (2.4) and (3.3) that for
every [ > 1 the family W, defined as

{fb;})pl,]z fb171,b172,]171 e 0 fb;,lbl,]é © fb;}b07jl (Bbo (R/2) \ fﬁl(oo))} )

where b; € I : 1 < j; < @q,,i = 0,1,...,1, is well-defined and covers Ir(f). Applying (2.3)
and (2.4) we may now estimate as follows.

m(Ir(f)) <

a, ab,
1 -1
< Z Z e Z Z Z (fbl bi_1.01 fblflybl—%]lfl R fb2,b1,j2 © fbl,bo,jl (Bbﬂ (R/2)))
biel j;=1 biel ji=1boel
a, b, B B » » . .
< Z Z e Z Z Z H(fbl,blil’jl © fbl—l;bl—2;jl—1 0...0 fb27b17j2 © fbl,bo,jl) ‘BbO(R/Q)Hoom(Bbo (R/Q))
biel j;=1 biel ji=1boel
=t t WA w1\ !
b, b, |bl 1| ap, ‘bl72| 9b;_q ‘b0| b, 1

< "= ' e
< Z Z Z Z Z M e P R (2¢XR) D

bel j;=1 bi1€l j1=1bo€el

av, b,

SICONETED S SRS B B B e (VT b My

bel j;=1 bi1€l j1=1bo€el
b, dbq

<EESMUE Y X S Y (T b )

b[EI]l 1 b1€[]1 1 bgel

l
< (2¢Sp)tM" (Z b~ )

bel
l
t t _atly
< (2¢Xg) (qM > bl )
bEBRsﬂffl(OO)

Applying (3.5) we therefore get m(Ir(f)) < (2¢Xr)!27!. Letting | — oo we therefore get
m(Ig(f)) = 0. Since mo f~' < m and since {z : liminf, . [f"(2)] > R} = U2, 7 (Ir(f)),
we conclude that m({z climinf, Lo |f"(2)] > R}) = 0. We are done. &
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Developing the general scheme from [7] we shall now prove in several steps the existence of
an h-conformal measure. In order to begin we call Y C {oc} U Q(f) UU,>: f"(Crit(J(f))) a
crossing set if Y is finite and the following two conditions are satisfied.

(yl) c €Y.

(v2) YO {f™(x):n > 1} is a singleton for all € Crit(J(f)).

(v3) YﬁCnt(f) =0

(y4) Q(f) €
Since f(Crlt(f)) is finite, crossing sets do exist. Let V' C @ be an open neighbourhood of Y.
We define

K(V)={z€J(f): ["(2) ¢ VV(n > 0)}.

Obviously f(K(V)) € K(V) and since f : @ — @' is continuous and V is open, we see that
K (V) is a closed subset of @. Since in addition K (V) C @'\ V, we conclude that K (V) is a
compact subset of €. Fix w € K(V) and ¢ > 0. For all n > 1 consider the sets

= (flxe)) " (w)
and the number
c(f) = hmsup log > I(f
n— zeF,

Since the continuous map f|xy : K(V) — K(V) has no critical points, all the sets K (V')
are (n,0)-separated, where

. . 71
5= yé}l{l(fv){mln{\z —z|:ix,z € (f\;((v)) (y) and © # z}} > 0.
Therefore

e(f) < P (flxw). —tlog |f*]) . (3.6)

where the right-hand side of this inequality is the topological pressure of the potential
—tlog | f*| with respect to the dynamical system f|xy : K(V) — K(V). Denote this pres-
sure simply by P(f, V). We call a Borel set A C (' special if |4 is injective. Lemma 3.1 and
3.2 from [7] (comp. [6]) enlarged by the reasoning started from the second paragraph of the
proof of Lemma 5.3 in [7] can be now formulated together as follows.

Lemma 3.3. For everyt > 0 there exists a Borel probability measure my,, supported on K(V)
such that

(a) my(f(A) > [, D] f*|'dmy, for every special set A C @ and
(b) my(f(A)) = [, D) f*|'dmy; for every special set A C C\'V.

We will need the following technical lemma.

Lemma 3.4. The function t — c(f) is continuous, c(0) > 0 and ¢~ (0) N (0,h] # 0 if V has
a sufficiently small diameter.
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Proof. Continuity of the function c(f) follows from the fact that 0 < infx{|f*]} <
supg 1 1|f*[} < co. Since periodic points of f are dense in J(f), K(V') # 0 for all V' suffi-
ciently small. Also if V' is sufficiently small and w € K(V'), then #E,, > 2" and consequently
c(0) > log2 > 0. Since ¢(0) > 0 and since the function ¢(f) is continuous, in order to prove
the last claim of our lemma, it suffices to show that ¢(f) < 0 for all ¢ > h. So, suppose on
the contrary that ¢(f) > 0 for some t > h. It follows from (3.6) that

P(f,V) > 0. (3.7)

Since the proof of Lemma 4.1 and Corollary 4.2 from [7] go word by word in our context,
we conclude that the Lyapunov exponent x, = [log|f*|dp > 0 for every Borel probability
f-invariant measure g supported on K (V). It follows from (3.7) and the variational principle
for topological pressure that there exists a Borel probability f-invariant measure p supported
on K(V) such that h,(f) — tx, > 0. Since x, > 0, this implies that h,(f) > 0 and due
to Ruelle’s inequality x, > 0. Hence, applying Przytycki’s-Manne volume lemma (see [18],
comp. [14]), we can write

h
Xu
and this contradiction finishes the proof. ®

Let
s(V) = min{c '(0) N (0,h]} > 0.

Combining Lemma 3.3 and Lemma 3.4 we get the following.

Lemma 3.5. There ezists a Borel probability measure my supported on K(V') such that

(a) my(f(A) > [, 1 PV dmy for every special set A C @ and
(b) my(f(A) = [4|f*1*Vdmy for every special set A C @'\'V.

Since the sequence n +— s(Bs(Y,1/n)) is monotonically non-decreasing, proceeding similarly
as in the proof of Lemma 5.4 from [7] (note that in the place where Lemma 3.3 from [7] is
invoked, only the first inequality in (d) is needed; in particular my (oc) = 0, where my is an
arbitrary weak accumulation point of the sequence mp,(v,1/,) we obtained the following.

Lemma 3.6. For every s(Y), an accumulation point of the sequence s(Bs(Y,1/n)), s(Y) €
(0, h] and there exists a Borel probability measure my (an appropriate week accumulation
point of the sequence {mp, (v,1/n)}n>1) supported on J(f) such that

(a) my (f(A)) > [, 1PYdmy for every special set A C @ and
(b) my (f(A) = [, |F1°Ydmy for every special set A C @T'\'Y.

The next fact proven in this section is provided by the following.
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Lemma 3.7. For every crossing set Y, m = my is an s(Y')-conformal measure for f : J(f) —
J(f)U{oc}, s(Y) = h, and all atoms of m are contained in I_(f) UU,>o f"(Crit(J(f)).

Proof. Since we already know that m(occ) = 0 and since Y N (Sing (f) U I(f)) C Q(f) U
{00}, it follows from Lemma 3.6(b) and Corollary 2.22 that

(¥ \ () = 0. (38)
We shall show now that m(Q2(f)) = 0. And indeed, fix w € Q(f). Take a > 1 so large

that f*(w) = w and (f*)'(w) = 1. It then follows from (2.13) that there exist a compact set
F, C B(w,0)\ {w} and a constant C' > 1 such that for every k£ > 1

1 p(w)+1 _p(w)+1
C 'k o < (£5™)*(2)] < Ck~ 7@ (3.9)
and for every n > 1 there exists k,, > 1 such that
B(w,1/n)C |J f,“(F,) and lim k;, = oo. (3.10)

J=kn
It follows from Lemma 3.6(b), (3.9) and the fact that the family {f,*"(F,)},>1 is of bounded
multiplicity, that

p(w)+1

Zn ookl <oo.

n>1
In particular %S(Y) > 1. Denote m|g,(v,1/n) by m, and s(By(Y,1/n)) by s,. Since
lim,, o s, = (YY), we see that for every n > 1 large enough, say n > ny,

1
Sy, >1+o0.

for some o > 0. It therefore follows from Lemma 3.6(a), (3.10) and (3.9) that for all n > nq
and all [ > 1

Sn P(w)+lsn
ma(B(w, 1/1) < 3" ma (£, (F,)) < Zy ()
Jj=ki J=k
< C’p;ufzjls(y) i j7(1+o).

J=ki
Consequently

Y) i jf(l-l-a).

J=ki

m(B(w,1/1)) < O™

Since lim;_,, k; = oo, we infer

m(Q(f)) = 0.
Combining this and (3.8), we see that m(Y) = 0. Since f(2(f)) = Q(f), in order to prove
s(Y)-conformality of the measure m, it therefore suffices to show that m(f(Y \ Q(f))) =
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0. But if y € Y\ (Q(f) U {o0}), then due to our definition of YV, y ¢ Sing (f) and the
formula m(f(y)) = 0 immediately follows from Corollary 2.22, the formula m(f"(f(y))) >
() ()P Ym(f(y)) and the stated in Lemma 3.6 fact that s(Y) > 0. Thus the s(Y)-
conformality of m is proven and in addition all the atoms of m must be contained in J(f)\ €2.
In view of Lemma 3.6 and Lemma 3.1, s(Y') = h. Applying now Lemma 3.2 and Corollary 2.22
we see that all atoms of m must be contained in I_(f) U U,>o f " (Crit(J(f)). The proof is
complete. W -

4. HAUSDORFF AND PACKING MEASURES

Let IT" denote the packing measure considered with respect to the spherical metric on @ We
shall prove in this section that the conformal measure m is atomless and the following main
result.

Theorem 4.1. Let f : @ — @ be a non-recurrent elliptic function. If h = HD(J(f)) = 2,
then J(f) = @. So suppose that h < 2. Then
(a) HA(J()) = 0.
(b) I"(.J(f)) > 0.
(J(

As an immediate consequence of this theorem we get the following.

Corollary 4.2. If Q(f) = 0, then the Euclidean h-dimensional packing measure 11" is finite
on each bounded subset of J(f).

4.1. Preliminaries from Geometric Measure Theory. In this section we collect some
facts from the geometric measure theory as well as we list without proofs some more technical
facts taken from Section 2, Section 3 and Section 4 of [21]. Given a subset A of a metric space
(X,d), a countable family {B(x;,r;)}2, of open balls centered at the set A is said to be a
packing of A if and only if for any pair 7 # j

d(l‘i, ij) > 1+ Ty
Given t > 0, the t-dimensional outer Hausdorff measure H'(A) of the set A is defined as
H'(A) = sup inf{z th}
e>0 i=1

where infimum is taken over all covers { B(z;,r;)}5°, of the set A by open balls centered at A
with radii which do not exceed e.
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The t-dimensional outer packing measure I1(A) of the set A is defined as
POAY — s ti4.
) = jaf (11040
(A; are arbitrary subsets of A), where

ITL(A) = sup sup{i rf}

e>0 i=1

Here the second supremum is taken over all packings { B(x;, ;) }32, of the set A by open balls
centered at A with radii which do not exceed e. These two outer measures define countable
additive measures on Borel o-algebra of X.

The definition of the Hausdorff dimension HD(A) of A is the following
HD(A) = inf{t : H(A) = 0} = sup{t : H'(A) = oc}.

Let v be a Borel probability measure on X which is positive on open sets. Define the function
p= (V) X % (0,00) = (0,00) by

v(B(z,r))

p(w,r) = —

The following two theorems (see [DU5]) are for our aims the key facts from geometric measure
theory. Their proofs are an easy consequence of Besicovi¢ covering theorem (see [G]).

Theorem 4.3. Let X = IR? for some d > 1. Then there exists a constant b(n) depending
only on n with the following properties. If A is a Borel subset of IR and C > 0 is a positive
constant such that

(1) for all (but countably many) v € A

lim sup p(z,7) > C ',
r—0
then for every Borel subset E C A we have H/(E) < b(n)Cv(E) and, in particular,
H!(A) < oo.
or

(2) for allz e A
lim sup p(z,7) < C ',

r—0

then for every Borel subset E C A we have H'(E) > Cv(E).

Theorem 4.4. Let X = IR? for some d > 1. Then there exists a constant b(n) depending
only on n with the following properties. If A is a Borel subset of IR and C > 0 is a positive
constant such that
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(1) for allz € A
.. 1
l11;nﬁ10nfp(x, r)y<Cc
then for every Borel subset E C A we have II'(E) > Cb(n) 'v(E),

or

(2) forallz e A
liminf p(z,r) > C 1,
r—0

then TI'(E) < Cv(E) and, consequently, 11'(A) < oo.
(1’) If v is non atomic then (1) holds under the weaker assumption that the hypothesis of
part (1) is satisfied on the complement of a countable set.

Assume now that v is a Borel measure on € finite on bounded sets. These two theorems
motivated us in [21] to introduce the following notions.

Definition 4.5. Given r > 0 and L > 0 a point x € € is said to be (r, L) — t.upper estimable
if p(x,r) < L and is said to be (r, L) — t.lower estimable if p(x,r) > L. We will frequently
abbreviate the notation writing (r, L)-u.e. for (r, L) — t.-upper estimable and (r, L)-l.e. for
(r, L)—t.-lower estimable. We also say that the point  is t-upper estimable (t-lower estimable)
if it is (r, L) — t.upper estimable ((r, L) — t.lower estimable) for some L > 0 and all v > 0
sufficiently small.

We will also need the following more technical notion.

Definition 4.6. Given r > 0, 0 > 0 and L > 0 the point © € X is said to be (r,o, L) —
t.strongly lower estimable, or shorter (r,o, L)-s.l.e. if v(B(y,or)) > Lrt for everyy € B(x,r).

We collect now from [21] the technical facts about the notions defined above.

Lemma 4.7. If z is (r,0, L)-s.l.e., then every point x € B(z,1/2) is (r/2,20,2'L)-s.l.e..
Lemma 4.8. If x is (r,0, L)-s.l.e., then for every 0 < u <1 4t is (ur,o/u, Lu *)-s.l.e..

Lemma 4.9. If v is positive on nonempty open sets, then for every r > 0 there exists E(r) > 1
such that every point x € X is (r, E(r))-u.e. and (r, E(r)~")-lLe..
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Passing to conformal maps we consider now the situation where H : U; — U, is an analytic
map of open subsets U;, U; of the complex plane @. We say that given ¢ > 0, the Borel
measure v finite on bounded sets of €' is a Euclidean semi ¢-conformal if and only if

V(H(A)) > /A|H’\tdz/

for every Borel subset A of U; such that H|, is one-to-one and is call ¢-conformal if the “>”
sign can be replaced by an “=" sign.

Lemma 4.10. Let v be a Fuclidean semi t-conformal measure. Suppose that D C @ is an
open set, z € D and H : D — @' is an analytic map which has an analytic inverse H_ ' defined
on B(H(z),2R) for some R > 0. Then for every 0 <r < R

K~'w(B(z, K™'r|H'(2)|7) < [H'(2)|""v((B(H(2),7))).
If, in addition, v is t-conformal, then also

[H'(2)] "v((B(H(2),1))) < K'v(B(z, Kr|H'(2)| ).

Lemma 4.11. Suppose that v is a Euclidean t-conformal measure. If the point H(z) is
(r,o,L)-s.le., where r < R/2 and o < 1, then the point z is (K '|H'(2)| 'r, K?0, L)-s.lL.e..

Lemma 4.12. Suppose that v is a Euclidean t-conformal measure. Let ¢ be a critical point
of an analytic map H : D — €. If 0 < r < R(H,c) and H(c) is (r,L)-l.e., then c is
(Ar)le, A=2 L) -Le..

Lemma 4.13. Let ¢ be a critical point of an analytic map H : D — @. Let v be a Fuclidean
semi t-conformal measure such that v(c) =0. If 0 <r < R(H,¢) and H(c) is (s, L)-u.e. for

all 0 < s <, then c is ((A’lr)l/q, q(2A%)! (217 — 1)*1L) -u.e..

Note that the proof of this lemma is the same as the proof of Lemma 3.4 in [21]. The only
modification is that the equality sign in the first line of the first displayed formula of this
proof is to be replaced by the “>” sign.

Lemma 4.14. Suppose that v _is a Euclidean t-conformal measure. Let ¢ be a critical point
of an analytic map H : D — @. If 0 < r < %R(H, ¢), 0 <o <1 and H(c) is (r,0,L)-s.l.e,

l;qt

then ¢ is (A~'r)/49, 5, L)-s.l.e, where 6 = (297" K A%0)"/9 and L = Lmin{K *, (A%0) 7 '}.
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Notice now that if m is a semi #-conformal measure for f : J(f) — J(f) U {oc}, then the
measure m, = (1 + |z|?)'m is Euclidean semi ¢-conformal, i.e.

m(f(4)) = [ |f'dm.

for every Borel set A C J(f) such that f|4 is 1-to-1. If m is t-conformal, then so is m, in
the obvious sense. The measure m, is called the Euclidean version of m. Obviously m, is
equivalent to m and is finite on bounded subsets of €. From now on throughout the entire
paper we fix a crossing set Y and we consider an open neighbourhood V C @ of Y such that
Crit(f) NV = () and the closure of V is disjoint from at least one fundamental parallelogram
of f. A semi t-conformal measure m is said to be almost t-conformal if

m(f(4) = [ 1f"dm

for every Borel set A C J(f) such that f|4 is 1-to-1 and ANV = . Hence for every Borel
set A such that f|, is 1-to-1 and ANV = ) and for every w € A, we have

[ 1/ dme = me(F(A)) = me(F(A+w) = [ |fdm

and the last inequality sign becomes an equality either if in addition (A +w) NV = @ or if
m is a t-conformal measure and we assume only that f|4 is 1-to-1. Since f’ is periodic with
respect to the lattice A, all the above statements and assumptions lead to the following.

Lemma 4.15. For every w € A, every Borel set A C @ such that ANV = 0 and every almost
t-conformal measure m

me(A 4+ w) < me(A).

If either in addition (A +w) NV =0 or if m is h-conformal and we assume only that f|a is
1-to-1, then this inequality becomes an equality. For every r > 0 there exists M(r) € (0, 00)
independent of any almost t-conformal measure m such that

me(F) < M(r). (4.1)

for every Borel set F' C @ with the diameter < r. If in addition m is h-conformal, then for
every R > 0 there exist constants Q(R) and Qn(R) such that

me(Be(z,7)) > Q(R)r* > Qu(R)r" (4.2)
for all x € J(f) and all 7 > R.

The following lemma is proven in the same way as the corresponding lemma from Section 4
of [21].
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Lemma 4.16. Suppose that m, is a Euclidean t-conformal measure. Then for every R > 0
and every 0 < o < 1 there ezxists L = L(w, R,0) > 0 such that for every 0 < r < R every
point w € Q(f) is (r,0, L)-ay(w).s.l.e. with respect to the measure m,.

4.2. Conformal Measure and Holomorphic Inverse Branches.

In this subsection we prove two technical propositions modeled on Proposition 6.3 and Propo-
sition 6.4 from [21]. Let m be an almost t-conformal measure and let m, be its Euclidean
version. The upper estimability and strongly lower estimability will be considered in this
section with respect to the measure m,. When we speak about lower estimability we assume
more, that the measure m is t-conformal. Since the number of parabolic points is finite,
passing to an appropriate iteration, we assume in this and the next section without loosing
generality that all parabolic points of f are simple. Fix a forward f-invariant compact subset
F of €. Put

1f | = sup{[f'(z)] : z € F}.

Recall that 6 was defined in (2.11) and that 7 > 0 is so small as required in Lemma 2.3.

Proposition 4.17. Fix a forward f-invariant compact subset F' of €. Let z € F', A > 0 and
let 0 <7 < 70||f'|x' A" be a real number. Suppose that at least one of the following two
conditions is satisfied:

ce F\ | [ (Crit(J(f)

n>0
or

z€F and r>70|f'||m' A inf{|(f")(2)] ' in=1,2,...}.

Then there ezists an integer u = u(A,r, z) > 0 such that r|(f*)'(2)| < 197 and the following
four conditions are satisfied

diam(Comp(f3(2), f*(2). /7.7 |(f*)(2))) < 6 (43)

for every 7 = 0,1,... ,u. For every n > 0 there exists a continuous function t — By =
Bi(A\,n) > 0, t € [0,00), (independent of z, n, and r) and such that if f*(z) € B(w,8) for
some w € Q(f), then

f4(z) s (qrl(f*)'(2)], By) — au(w).u.e. (4.4)

and there exists a function W, = Wy(A\,n) : (0,1] — (0,1] (independent of z, n, and r) such
that if f"(z) € B(w,0) for some w € Q(f), then for every o € (0,1]

f42) is (nrl(f")'(2)|,0,Wi(0)) — as(w).s.l.e. (4.5)

If f*(2) ¢ B(Uf),0), then formulas (4.4) and (4.5) are also true with a,(w) replaced by t.
(4.6)
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Proof. Suppose first that sup{\r|(f7)'(2)| : 5 > 1} > 07||f'||;" and let n = n()\, z,7) > 0
be a minimal integer such that

Ar|(f")(2)] > O7]f] 1 (4.7)
Then n > 1 (due to the assumption imposed on r) and also
Ar|(f")(2)| < 67 (4.8)

If f"(z) ¢ B(2(f),0) set u=wu(\, r,z) =n. The items (4.4), (4.5) and (4.6) are obvious in
view of our assumptions imposed on F'.

So suppose that f"(z) € B(2(f), ), say f"(z) € B(w,0),w € Q(f). Let 0 <k =k(\ z,r) <
n be the smallest integer such that f7(z) € B(Q(f),0) for every j = k,k+1,... ,n. Consider
all the numbers

i = [f(2) = wl|[(f)(2)]
where i = k, k+ 1,... ,n. By (4.7) we have
ra = |f"(2) — wll(F") () < OF R0~ T A = || |l A

and therefore there exists a minimal k& < u = u(\, 7, 2) < n such that r, < |[f'||p7 !Ar. In
other words

[1"(2) = wl < e A () ()L < L e | () ()] (4.9)

If sup{\r|(f))'(2)| : 7 > 1} < O7||f'||z", then it follows from Corollary 2.22 that z €
Ujsof 7(Q(f)). Define then u(X, z,7) = k(X z,7) to be the minimal integer j > 0 such
that f/(z) € Q(f) and put w = f“(z). Notice that in this case formulas (4.8) and (4.9) are
also satisfied. Our further considerations are valid in both cases. First note that by (4.9) we
have

B(f"(2), | (f")'(2)]) € Blw, (14 [|f/llem "0~ Nnrl (£ (2)]) (4.10)
and in view of Lemma 2.5 and (4.8)
me(B(f*(2)mr|(f*)(2)])) <
< Cw, (L+[[F[ern NOmnA )+ [ f]]er = N | (1) (2) )

So, item (4.4) is proved. Also applying (4.9), Lemma 4.16, Lemma 4.7 and (4.8) we see that
the point f"(z) is

(L7 A (Y ) ol L1 A 2% Lw, 2016, o7 (2] f11e) " nA ) )-s.Le.
So, if [|f']|#7"'A > n, then by Lemma 4.8, f“(z) is
(£ (@) 0, U N A ) @ L(w, 2] fl|60, 07 (2] ') ')A )-s.Le

If instead || f'||#7 '\ < 7, then again it follows from (4.9), Lemma 4.16, Lemma 4.7 and (4.8)
that the point f"(z) is (777“|(f“)’(z)\,0, 200 [(w, 207 A\, 0/2))—s.l.e.. So, part (4.5) is also
proved.
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In order to prove (4.3) suppose first that v = k. In particular this is the case if z €
Ujgo fﬁJ(Q(f)) Then

Comp(f*~1(2), f*(2), f.r[(f") (2)]) € Comp(f*~'(2), f*(2), f, 07)
and by the choice of k and (2.9) we have f*'(z) ¢ B(Q(f),0). Therefore (4.3) follows from
the choice of 7 (see (2.17)) and (2.16).
If u > k (so the first case holds), then 7, 1 > ||f'||p7 'Ar and by (2.16) we get

"(2) = |

[fe1(z) — o
So, Ar|(f")'(2)| < 7|f"(2) — w| and applying Lemma 2.4 and (2.9) v — k times we conclude
that for every £ < j <u

diam (Comp(f7(2), f*(2), f*~ Mr|(f*) (2)])) < b7 < B

And now for j =k — 1,k —2,...,1,0, the same argument applies as in the case u = k. B

F PN e 2 I ra > 7

Ty =

Proposition 4.18. Fiz a forward f-invariant compact subset F' of @. Let € and A be both
positive numbers such that ¢ < Amin{l,77 1,0 "7y}, If 0 < r < 70||f'||-* A" and z €
F \ Crit(J(f)), then there exists an integer s = s(\,e,r,z) > 1 with the following three
properties.

(f*)'(2)] #0. (4.11)

If = u(\, 1, 2) is well-defined, then s < u(\,r,z). If either u is not defined or s < u, then
there exists a critical point ¢ € Crit(f) such that

1£°(2) = o] < er[(£°)(2)]- (4.12)
In any case
Comp(z, f*(2), f*, (KA?) "2 #C it er|(£2) (2)]) N Crit(f*) = 0. (4.13)

Proof. Since z ¢ Crit(f) and in view of Proposition 4.17, there exists a minimal number
s = s(\, e, 1, z) for which at least one of the following two conditions is satisfied

7 (2) — e <er[(f7)(2)] (4.14)
for some ¢ € Crit(J(f)) or
u(A, 1, z) is well-defined  and s(\€,7,2) = u(A, r, 2) (4.15)
Since |(f*)'(z)| # 0, the parts (4.11) and (4.12) are proved.

In order to prove (4.13) notice first that no matter which of the two numbers s is, in view of
Proposition 4.17 we always have

er|(£5) (2)] < eX 07 (4.16)
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Let us now argue that for every 0 < j <'s
diam (Comp(f* (=), *(2), /1, er| () (2)])) < 8 (4.17)

Indeed, if s = u, it follows immediately from Proposition 4.17 and (4.3) since ¢ < A. Otherwise
1f5(2) — ¢| < er|(f*)(2)] < eA7'07 < 0 and therefore, by (2.14), f*(z) ¢ B(Q(f),0). Thus
(4.17) follows from (2.16).

Now by (4.17) and (Lemma 2.8), there exists 0 < p < #(Crit(f)), an increasing sequence of

integers 1 < ky < ko < ... < k, < s and mutually distinct critical points ¢1,¢a,... ,¢, of f
such that
{er} = Comp(f*~M(2), f2(2), fM, er[ () (2)]) N Crit(f). (4.18)
for every [ =1,2,... ,pandif j ¢ {ky, kq,... ,k,}, then
Comp(f*(2), f*(2), F/, er[(f*) (2)]) N Crit(f) = 0. (4.19)

Setting ky = 0 we shall show by induction that for every 0 <[ <p
Comp(f*~"(2), f*(2), M, (KA*) "' 27er|(f*)'(2)]) N Crit(f*) = 0. (4.20)

Indeed, for I = 0 there is nothing to prove. So, suppose that (4.20) is true for some 0 <1 <
p — 1. Then by (4.19)

Comp(f*~ 17D (2), f2(2), o=t (KA%) 27 er|(£°) (2)]) 0 Crit(foe1 ) = 0.
So, if
cipr € Comp(f*~11 (2), f2(2), fhrer, (K A%) 712 er|(£2)'(2)])
then by Lemma 1.4 applied for holomorphic maps H = f, Q = f"+~! and the radius
R = (KA?) 127U er|(£2)(2)| < v we get
PR (2) = | < KAP|(fR) (f R (2)) | AR T2 e | () (2)]
= 2 e (fohior (2))'
<er|(fhe(2))]

which contradicts the definition of s and proves (4.20) for [ 4+ 1. In particular it follows from
(4.20) that

Comp(z, f*(2), f°, (KA?) "2 # ™ Der|(£2) (2)]) 0 Crit(£°) = 0

The proof is finished. m
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4.3. Hausdorff and Conformal Measure.

Let m be a Borel probability measure on €' and let m, be its Euclidean version, i.e. ‘ZZ; (2) =
(1+ |z|*)". We will need in this and the next section the following.

Lemma 4.19. If z € J(f), rn \ 0 and M = lim,_,o 7, 'm.(B(z,1,)), then
m(By(z, (21 +|22))"ra)

lim su < 2'M
wos. (OF2P) Tt
and
m(B(z,2(1 + |2?) " tr,
lim inf ( (= 2( 1) ) > 27t

TG ) )
Proof. Since for every r > 0 sufficiently small
B(z,27 '(1 + |2])r) C By(z,7) C B(z,2(1 + |2[*)r)

and since

. me(B(z,1)) 2t
lim ——— = (1
rl\rj% m(B(z,r)) ( + ‘Z| ) )
we get
m(By(z, (2(1 + |2]?)) " tr, B
lim sup ( (2, (2(1 + |2[%)) ) < lim m(B(z,ry)) oty
ns00 (2 +[2[2) " ra)’ n=voe 27H(1 + |2[2) ),
and
m(Bs(z,2(1 + |2*) " r, B
lim inf (Bz:21 4 27) ') > lim JBET) oy,
P TR R ) AR (T )

We are done.

Our first goal is to show that the h-conformal measure m proven to exist in Lemma 3.7 is
atomless and that H"(J(f)) = 0. We will consider almost ¢-conformal measures v with ¢ > 1.
The notion of upper estimability introduced in Definition 4.5is considered with respect to the
Euclidean almost t-conformal measure v,. Recall that [ = [(f) > 1 is the integer claimed in
Lemma 2.20 and put

Ri(f) = inf{R(f’,¢) : ¢ € Crit(f) and 1 < j <I(f)}
=min{R(f?,¢) : c € Crit(f)NRand 1 < j <I(f)} < o0
and :
Af) = suplA(f,¢) s ¢ € Crit(f) and 1 < j < I(f)}
=max{A(f’,c):ce Crit(f)NRand 1 < j <I(f)}

where the numbers R(f7,c) and A(f7,¢) are defined just above Definition 1.1. Since the num-
ber of equivalence classes of the relation ~ is finite, looking at Lemma 2.20 and Lemma 4.15,
the following lemma follows immediately from Lemma 4.13.
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Lemma 4.20. If Rz(,ul) > 0 is a positive constant and t +— C’t(zj)l € (0,00), t € [1,00), is a
continuous function such that all points z € PC(f); are (r, C’t(ffy)l)—t.u.e. with respect to any
FEuclidean almost t-conformal measure v, (witht > 1) for all 0 < r < Rz(,ul), then there exists
a continuous function t — CN't(lf)l >0, t €[1,00), such that all critical points ¢ € Cri1(f) are

(r, CN’t(f;’)l)—t.u.e. with respect to any Fuclidean almost t-conformal measure v, for all 0 < r <

A'RY.
We shall now prove the following.

Lemma 4.21. If RZ(-’UQ) > 0 is a positive constant and t — C’t(zf)Q € (0,00), t € [1,00), is a
continuous function such that all critical points ¢ € S;(f) are (r, C’t(f;’)Q)—t.u.e. with respect to
any Euclidean almost t-conformal measure v, (with t > 1) for all 0 < r < RZ(,UQ), then there
exist a continuous function t — CN’t(?)Q >0, s € [1,00), and RZ(UQ) > 0 such that all points
z € PC(f); are (r, CN’S;’)Q)—t.u.e. with respect to any Euclidean almost t-conformal measure v,
(witht > 1) for all 0 <1 < Rl(lé)

Proof. We shall show that one can take
R = min{70||f |lps A" R 1} and CfY, = max{K?2'C{Y,, K”'B,}.
Indeed, denote #(Crit(J(f))) by #. Put € = 2K (K A?)2%# and then choose A > 0 so large
that
e < Amin{1,77",0~'7 min{y, p, R} /2}}. (4.21)
Consider 0 < r < RSUQ) and z € PC(f);. If z € Crit(J(f)), then z € S;(f) and we are done.
Thus, we may assume that z ¢ Crit(J(f)). Let s = s(\, €, 7, z). By the definition of ¢,
2K7|(f°)'(2)] = (KA*) "2 Fer|(f°) ()] (4.22)

Suppose first that u(\, r, z) is well defined and s = u(A, r, z). Then by Proposition 4.17(4.4) or
Proposition 4.17(4.6), applied with n = 2K, we see that the point f*(z) is (2K7|(f*)'(2)|, By)-
t.u.e.. Using (4.22), it follows from Proposition 4.18(4.13) and Lemma 4.10 that the point z
is (r, K*"By)-h.u.e..

If either u is not defined or s < wu(\,r, z), then in view of Proposition 4.18(4.13), there
exists a critical point ¢ € Crit(J(f)) such that |f*(z) — ¢| < er|(f*)'(2)]. Since s < u, by
Proposition 4.17 and (4.21) we get

2K |(f°)'(2)] < er(f°)'(2)] < erA " min{p, R /2} (4.23)
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Since z € PC(f);, it implies that ¢ € S;(f). Therefore using (4.23), the assumptions of
Lemma 4.21, and (4.22) and then applying Proposition 4.18(4.13) and Lemma 4.10, we con-

clude that z is (r, K22t0,5(f;?2)—t.11.e.. The proof is complete. B

Lemma 4.22. Ifb € f~'(0), if v is a Fuclidean almost t-conformal measure with t > qf%
such that v(b) = 0, and if m is the h-conformal measure proven to exist in Lemma 3.7, then

2 "b“t

v(By(R)) = R
and
me(B(b, 1)) = a2
forall 0 < r <1.
Proof. Tt follows from Lemma 4.15 that m.({z € €: R < |z| < 2R}) < R? and v({z € C':
R < |z| < 2R}) < R? for all R > 0 large enough. It therefore follows from (2.2) that

qb+1

me((By(R) \ B,2R)) < R’R™ " ", (4.24)
and
v((Bi(R)\ B,2R)) < R*R " . (4.25)

Fix now r > 0 so small that R = (r/L)~% is large enough for the formula (4.24) and (4.25)
to hold. Using (2.4) and (4.25) we therefore get

V(BB = v (U (Bs(2'B)\ m)) = S (B2 R\ BR)

§>0 =0

< S (2RP(2'R) %t:R”’Z:ltizj(”Tt)

Jj=0 J=0

9_ qb+1 9_ qpt1

Y ( ap ) (gp+1)t—2q 22 ( ap t) — r(l]b+1)t*2%’

where the last comparability sign was written since q”q“t > 2. We are done with the first part
of our lemma. Replace now in the above formula v by m, and ¢ by h, which is greater than
qi‘fl due to Theorem 2.1. Since in this case the “<” sign can be, due to (4.24), replaced by
the comparability sign “<”, since the first equality sign becomes “>" (we do not rule out the
possibility that me(b) > 0 yet), and since m.(B(b,r)) > v(By(R)), we are also done in this
case. l

We shall prove now the following.

Lemma 4.23. The h-conformal measure m for f : J(f) — J(f) U {oc} proven to exist in
Lemma 3.7 is atomless.
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Proof. Using the induction on ¢ = 0,1,...,p, it follows immediately from Lemma 4.21
(which is an inductive step and for i = 0 the first step of induction as Sy(f) = (), Lemma 4.20,
and Lemma 2.19 that there exists a continuous function ¢ — C; € (0,00), t € [1,00), such
that if v is an arbitrary almost ¢-conformal measure on J(f), then

ve(B(z, 7)) < Cyrt (4.26)

for all z € PC(f) and all r < r( for some ry > 0 sufficiently small. Consider now the almost
tp-conformal measures m, = mp,(y,1/m) (n is assumed to be so large that B,(Y,1/n) C V),
where ¢, = S(Bs(Y,1/n)). Letting n — oo and recalling that m is a week limit of measures
my,, formula (4.26) gives

me(B(z,r)) < Cpr (4.27)
for all z € PC(f) and all r < ry. It now follows from Lemma 4.19 that

B
lim sup M < 2MC,.

r™\0 rh

for all x € PC(f). In particular m(Crit(f)) = 0 and consequently

(U f(Crit(f ) = 0. (4.28)

Fix now b € f!(o0). Fix t € (qii”l,h). Consider all integers n > 1 so large that ¢, > t.

Since my, (f ' (00)) < my(f 1 (Bs(Y,1/n)) = 0, it then follows from Lemma 4.22 that

qp+1

qp+1
ma(By(R)) < B* % " < R*

t

Hence me(b) = 0. Since m and m, are equivalent on €, this gives m(b) = 0. Since
Unso f"(b) N Crit(f) = 0, this implies that m (U, f (b)) = 0. Invoking now (4.28)
and Lemma 3.7 finishes the proof. m

Theorem 4.24. There exists a unique atomless t-conformal measure m for f : J(f) —
J(f)U{oc}. Thent = h, m is ergodic conservative and all other conformal measures are purely
atomic, supported on Sing™ (f) with exponents larger than h. Consequently m(Tr(f)) = 1.

Proof. In view of Lemma 4.23 there exists an atomless h-conformal measure m for f :
J(f) = J(f) U{oc}. Suppose that v is an arbitrary ¢t-conformal measure for f and some
t > 0. By Lemma 3.1, ¢t > h. Fix z € J(f) \ (Io(f) U Sing (f)). Then in view of Propo-
sition 2.21 there exist a point y(z) € J(f) and an increasing sequence {ny}, such that
y(z) = limy_,oo f™(2). Define for every [ > 1

Zi={z € J(H)\ (Ino(f) USing (f)) : [y(=)] < L and 5(z) = 1/1},

) =
fix! > 1and z € Z;. Considering for k large enough the sets f, ™ (B(y, 1)) and f, " (B(y, 117))).
where f, " is the holomorphic inverse branch of f* defined on B(y, ;) and sending f™(z2)
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to z, using conformality of the measure v along with Koebe’s distortion theorem, we easily
deduce that

Blv, )~ el () (2)] ™ < v(By(z, cl(F%)*(2)|)) < B, el (f)*(2)| "
(4.29)

for all £ > 1 large enough, where K > 1 is the constant appearing in the Koebe’s distortion
theorem and ascribed to the scale 1/2 and ¢ > 0 is some constant comparable with 1. Fix
now FE, an arbitrary bounded Borel set contained in Z;. Since m is regular, for every x € E
there exists a radius r(z) > Ohe form from (4.29) such that
m(|J Bs(z.r(z)) \ E) < e. (4.30)
zeR
Now by the Besicovi¢ theorem (see [G]) we can choose a countable subcover { By(x;, r(x;)) }$2,,

r(z;) < e, from the cover {By(x,r(x))}.er of E, of multiplicity bounded by some constant
C > 1, independent of the cover. Therefore by (4 29) and (4.30), we obtain

gg (o (@) < B, nirw

=1

<B ir m(Bs(x;, r(x;))) (431)

By(wi, r(x;)))

(@

< B(v,1)B(m, )Ce"m(

1
m(E)).
In the case when ¢ > h, letting € \, 0 we obtain v(Z;) = 0. Since J(f)\ (Ioo(f)USing (f)) =

I
Ure, 7, we therefore get Z/(J(f) \ (I (f)USing ™ (f ))) = 0 which by Lemma 3.2 implies that

v(Sing™ (f)) = 1 and the last part of our theorem is proved . Suppose now that ¢ = h. Since,
in view of Lemma 3.2, v(I(f)\ I_(f)) = m(Ix(f)) = 0, using (4.31) and letting [ * oo, we
conclude that v| ;s sing () << M|s(p)psing (1) ExXchanging the roles of m and v we infer that

+ 5

< CB(v,1)B(m, )€ " (e

the measures V| pn\ging— () a0d M| 5(p)psing—(y) are equivalent. Suppose that v(Sing™ (f)) > 0.
Then there exists y € Crit(J(f)) UQ(f) U f (o) such that m(y) > 0. But then

O < o0,

fey™
where y= = U,>o f7"(y) and for every £ € y=, n(§) is the least integer n > 0 such that
f™(&) = y. Hence,
T IUOP(6)] o
Yeey |(frO)(O"
is an h-conformal measure supported on y~ C Sing™ (f). This contradicts the proven fact that

the measures vy | p)\sing-(r) a0 M| j(p)\sing(r) are equivalent and m(J(f) \ Sing™ (f)) = 1.
Thus v and m are equivalent.
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Let us now prove that any h-conformal measure v is ergodic. Indeed, suppose to the contrary
that f'(G) = G for some Borel set G C J(f) with 0 < m(G) < 1. But then the two
conditional measures vg and v, \qa

~ v(BNG)

volB) V(BN I()\G)

“u@ B e

would be h-conformal and mutually singular; a contradiction.

If now v is again an arbitrary h-conformal measures, then by a simple computation based on
the definition of conformal measures we see that the Radon-Nikodyn derivative ¢ = dv/dm
is constant on grand orbits of f. Therefore by ergodicity of m we conclude that ¢ is constant
m-almost everywhere. As both m and v are probability measures, it implies that ¢ =1 a.e.,
hence v = m.

Let us show now that m is conservative. We shall prove first that every forward invariant
(f(E) C E) subset E of J(f) is either of measure 0 or 1. Indeed, suppose to the contrary
that 0 < m(E) < 1. Since m(I(f) USing (f)) = 0, it suffices to show that
m(E\ (Is(f) U Sing™ (f))) = 0.

Denote by Z the set of all points z € E \ (Io(f) U Sing™ (f))) such that

L m(B(zr) N (B (e (f) U Sing ()

o (B2, 1))
In view of the Lebesgue density theorem (see for example Theorem 2.9.11 in [Fe]), m(Z) =
m(E). Since m(E) > 0 we find at least one point z € Z. Since z € J(f)\ (I(f)USing (f)),
let © € J(f), n(z) > 0, and an increasing sequence {ny}3>, be given by Proposition 2.21.

5 = n(2)/s.
Suppose that m(B(z,0) \ E) = 0. By conformality of m, m(f(Y)) = 0 for all Borel sets YV’
such that m(Y’) = 0. Hence,
0=m(f"(B(x,8)\ B)) >m(f"(Bz,0)\ f"(E))

> m(f"(B(x,0)) \ E) > m(f"(B(x,0)) — m(E)

for all n > 0. Since J(f) = U,s, f"(00), for some p > 2, the image f*~'(B(x,d)) con-

tains an open neighbourhood of co. thus, it contains at least one (in fact infinitely many)
copy of the fundamental parallelogram R and consequently f?(B(z,d)) = €'. In particular

m(fp(B(x, 6))) = 1. Then (4.33) implies that 0 > 1 — m(E) which is a contradiction. Con-
sequently m(B(z,d) \ F) > 0. Hence for every j > 1 large enough, m(B(f”J’(z), 20) \ E) >

m(B(x,(S) \ E) > 0. Therefore, as f~'(J(f)\ E) C J(f) \ E, the standard application of
Koebe’s Distortion Theorem shows that

=1. (4.32)

(4.33)

>0

 m(B(zr)\ B)
e = (B(er))
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which contradicts (4.32). Thus either m(E) =0 or m(E) = 1.

Now conservativity is straightforward. One needs to prove that for every Borel set B C J(f)
with m(B) > 0 one has m(G) = 0, where

G={zeJ(f): > xp(f"(z)) < +oc}.
n>0
Indeed, suppose that m(G) > 0 and for all n > 0 let
Go={zeJ(f): D xs(f*(x) =0} ={a € J(f): f(x) ¢ B forall k>n}.
k>n

Since G = U,>o Gn, there exists k > 0 such that m(Gy) > 0. Since all the sets G, are forward
invariant we conclude that m(Gy) = 1. But on the other hand all the sets f~"(B), n > k,
are of positive measure and are disjoint from Gj. This contradiction finishes the proof of

conservativity of m. Consequently m(Tr(f)) = 1. Since, by Lemma 3.1, H" < m, we thus see
that H"(J(f) \ Tr(f)) = 0. We are done. m

The proof of part (a) of Theorem 4.1. Let m be the unique h-conformal atomless
measure proven to exist in Theorem 4.24. Consider an arbitrary point z € Tr(f). Fix a pole
be f (o). Since b ¢ O, (Crit(f)), there exists v > 0 such that

B(b,v) N O4(Crit(f)) = 0. (4.34)
Since z € Tr(f), there exists an infinite increasing sequence {n;}22, such that
lim f"(z) =b and |f"(z) — b|] < v/4 (4.35)

j—o00

for every j > 1. Tt follows from this and (4.34) that for every j > 1 there exists a holomorphic
inverse branch f; ™ : B(f"(z),3v/4) — @ of f" sending f"i(z) to z. Using now Koebe’s
Distortion Theorem (Euclidean version) and Lemma 4.22, we conclude that

me (2 B(KI(FY ()72 (2) — b)) = me(B(f (=), 21 () — bl) ) 1(£2)'(2)] ™

> me (B(b,|f"(2) = b)) (/) (2)] "
= |f1(2) = bl DR () ()|

= (KUY @I () — bl) KA () = ),
(5

Since h < 2, using (4.35), this implies that lim,_,or " (2,7)) = oo. Hence H"(Tr(f)) =0
in view of Theorem 4.3. Since by Theorem 4.24 m.(J(f) \ Tr(f)) = 0, it follows from
Lemma 3.1 that H*(J(f)\Tr(f)) = 0. In conclusion H*(.J(f)) = 0 and the proof is complete.
|

Proposition 4.25. The conformal measure m is absolutely continuous with respect to the
packing measure 11' and moreover, the Radon-Nikodym derivative dm/dI1" is uniformly bounded
away from infinity. In particular TI'(J(f)) > 0.
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Proof. Since J(f) N w(Crit(f) \ Crit(J(f))) = Q(f), we conclude from Lemma 2.9 that

there exists y € J(f) at a positive distance, say 87, from O, (Crit(f)). Fix z € Tr(f). Then
there exists an infinite sequence n; > 1 of increasing integers such that f"(z) € B(y,n).
Therefore B(f™i(z),4n) N O, (Crit(f)) = 0 and consequently

Comp(z, f"(2), [ ,n/2) N Crit(f") =0
Hence, it follows from Lemma 1.2 and Lemma 4.10 that
e(B(z,
lim infm(iizqd)) < B
r—0 r
for some constant B € (0, 00) and all z € Tr(f). Applying Lemma 4.19 we therefore get that

B(z,

iming 7B 1) ognp
r—0 rh

Hence, by Theorem 4.4(1), the measure m|r s is absolutely continuous with respect to

IT"|1y(p). Since, by Theorem 4.24, m(J(f) \ Tr(f)) = 0, we are done. B

Lemma 4.26. If Q(f) # 0, then I"(J(f)) = +oo.

Proof. Fix w € Q. Since U, > f"(w) is dense in J(f) and, by Lemma 2.9, w(Crit(f))
is non-where dense in J(f), there exist an integer s > 0, a real number 1 > 0, and a point

y € f*(w) \B(Unzg f™(Crit(f)), 17). Since by Theorem 2.1, h > 1, it follows from Lemma 2.5

and Lemma 4.13 (y may happen to be a critical point of f*!) that
(Bly,
lim inf e BW1) (4.36)
r—0 rh
Consider now a transitive point z € J(f), i.e. z € Tr(f). Then there exists an infinite

increasing sequence n; = n;(z) > 1 of positive integers such that
lim [f%(2) —y/=0 and r;=|f"(2) —y| <n/7
j—o0

forevery 7 = 1,2,.... By the choice of y, for all j > 1 there exist holomorphic inverse branches
f=" 1 B(f"(2),6r;) — @sending f"(2) to 2. So, applying Lemma 1.2 and Lemma 4.10 with
R = 3r;, we conclude from (4.36) that
B
lim inf (B2 1)
r—0 rh

= 0.

Applying Lemma 4.19, we conclude that the same formulas remain true with m, replaced
by m and B(z,r) by By(z,7). Therefore, it follows from Theorem 4.24 (m(Tr(f)) = 1) and
Theorem 4.4(1) that II"(J(f)) = +oc. We are done. B

From now on let m denote the unique atomless h-conformal measure m proven to exist in
Theorem 4.24.
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Since the number of equivalence classes of the relation ~ is finite, looking at Lemma 2.20 and
Lemma 4.15, the following lemma follows immediately from Lemma 4.14

Lemma 4.27. If C}, >0, 0 < R, < R/(f)/3, and 0 < o < 1 are three real numbers such
that all points z € PC(f); are (r,0, nyl)—h.s.l.e. with respect to the measure m,, then there
exists C’fl > 0 such that all critical points ¢ € Criy(f) are (r, o, C’il)—h.s.l.e. with respect to
the measure m, for all 0 <r < A[lRal.

Let us prove the following.

Lemma 4.28. Suppose that Q(f) = 0. Assume that C’Z-(’ZQ) > 0, Rl(l% >0and 0 <o <1 are
three real numbers such that all critical points ¢ € S;(f) are (r, o, Clgylg)—h.(s.l.e. with respect to
the measure m, for all 0 < r < ng Then there exist CN'i(g > 0, ng > 0 and such that all
points z € PC(f); are (r,8K3A22#(Critll) 4, CN'Z-(’g)—h.s.l.e. with respect to the measure m, for
all0 <r < ng
Proof. We shall show that this time one can take
R = min{r0||f/[' A7 R, 1) and Of = (8(KA%)2#)"CL),

where ||f'|| = ||f'|lpc(y);- Indeed, denote again #(Crit(f)) by #. Take e = 4K (K A?)2# and
then choose A > 0 so large that

e < Amin{1,7~", 077 " min{y, p, R\}/2}}. (4.37)
Consider 0 < r < ng and z € PC(f);. If z € Crit(J(f)), then z € S;(f) and we are done.
Thus, we may assume that z ¢ Crit(J(f)). Let s = s(\, ¢, 7, 2). By the definition of €
AKr|(f*) (2)] = (KA 7'2 Per|(f°)'(2)]. (4.38)
Suppose first that u(A,r, z) is well defined and s = u(A, 7, 2). Then by Proposition 4.17(4.5)
or Proposition 4.17(4.6), applied with n = K, we see that the point
fi(2) is (Kr||(f*) ()|, 0/K*, Wy(c/K?)) — hsle..

Using (4.38) it follows from Proposition 4.18(4.13) and Lemma 4.11 that the point z is
(r,0, Wy(0/K?))-h.s.le.. If either u is not defined or s < u(\,r, z), then in view of Proposi-
tion 4.18(4.12), there exists a critical point ¢ € Crit(f) such that |f*(2) — ¢| < er|(f*)'(2)].
Since s < u, by Proposition 4.17 and (4.37) we get

AKT|(f*)(2)] < er|(f*)'(2)] < er@A " min{p, R{}/2}. (4.39)

Since z € PC(f);, it implies that ¢ € S;(f). Therefore, by the assumptions of Lemma 4.28
and by (4.39) we conclude that ¢ is (2er|(f*)'(2)], o, Ci(’g)—h.s.l.e.. Consequently, in view of
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Lemma 4.7, the point f*(z) is (er|(f*)'(2)|, 20, 2hC’Z~(,l2))—h.s.l.e.. So, by Lemma 4.8 this point is

(Kr|(f*)(2)], 20€¢/ K, (2¢ K )PCY)) — hsile,

Using now formula (4.38) and Proposition 4.18(4.13) it follows from Lemma 4.11 that the

point z is (r,2Keo, (26K’1)h02-(’12)) — hsle. If z € Crit(J(f)), then by the definition of
PC(f); we see that z € S;(f) and we are done in view of the assumption of the lemma and

in view of the definitions of R(l% and CN'Z-(}Q)). The proof is completed. B

,L"

Lemma 4.29. If Q(f) =0, then [I*(F) < oo for every bounded Borel set F C (.

Proof. Let
min = min{q, : b € f '(c0)}.
Take x € (0,1) so small that if z € @, then f|p(, 4 is 1-to-1for every d < rdist(z, Crit(f) U
f7'(00)). Using induction on i = 0,1,... ,p, it follows immediately from Lemma 4.28 (which
is an inductive step and for ¢ = 0 the first step of induction as Sy(f) = (), Lemma 4.27, and
Lemma 2.19 that each point z € PC(f) is (r, 0, G) — hs.l.e. for some o € (0,1), G >0, R > 0
and all r € (0, R). Without loss of generality we may assume R € (0,1) to be so small that

Ellz =0 < |f(w) <€z —b ™ (4.40)
and
sup{|w|: w € PC(f)} < ¢ 'R ™ —8R (4.41)

for all b € f~'(c0), all z € B(b,R) and some £ > 1. Fix a point z € F \ Sing™ (f) and
r € (0, R). In view of Corollary 2.22 there exists the least n > 1 such that either

dist(£"(2). PO(F)) < 8(Kw) ' r|(F) ()] or r(/"Y(2)] > ShE.

There are the following three possibilities.

10
K7 ()] < g
This in particular implies that
dist(f"(2), PC(f)) < 8(Kr)~'r[(f")'(2)].
20
K '71(7)(2)] > ghR and dist(f"(2), PO(S)) > 8(Kw)'rl(/") (2)].
30

K 'r|(f™)(2)] > é/{R and dist(f"(2), PC(f)) < 8(Kr) 'r|(f")(2)|.
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Let us consider the case 1°. Since 8(K«k) 'r|(f"1)'(2)] < dist(f" 1(2), PC(f)), we get
SK'r|(f" 1) (2)| < kdist(f™ (), Crit(f)). (4.42)
Suppose now that
8K r[(f" 1) (2)] > mdist(f" ' (2), f ' (00)).
This implies that there exists b € f~'(c0) such that |f"~'(z) — b] < R. Hence, using (4.40),
we get
[f" () = €M (2) — b = TR
On the other hand, using (4.41), we obtain
()] < supdul - w € PO(f)} + dist(/7(2), PC(f))
< sup{|w|: w € PC(f)} +8(Kr) 'r|(f")(2)]
<sup{|w|: w € PO(f)} +8R < 'R .
This contradiction shows that
8K r|(f" 1) (2)] < mdist(f" 1 (2), £ (00)).
Along with (4.42) and the definition of k, this implies that the map f restricted to the ball
B(f™'(2), 8K 'r|(f"')'(2)]), is univalent. It therefore follows from Koebe’s 1-theorem that
F(BU™ (2, 8K (7 Y (2)) D BU™(2), 2K 7l (£ (2)]). (4.43)
Thus, there exists a unique holomorphic inverse branch f; ! : B(f"(z),2K 'r|(f")'(2)]) —
B(f"'(2),8K'r|(f"1)'(2)]) of f sending f™(z) to f"'(z). Since
B(f" (=), 8K r|(f* ) (2)]) n PC(f) = 0
there exists a unique holomorphic inverse branch
F B ), 8K (Y () — @
of f"~! sending f"~'(z) to z. Therefore, the composition
[ = o £ B (), 2K (Y () - @

is a well-defined holomorphic inverse branch of f™ sending f™(z) to z. As dist(f"(z), PC(f)) <
R, since K~ 'r|(f")' ()| < R and since each point z € PC(f) is (r,0, @) — hs.l.e., we obtain
that

me(BUF(2), K7 (F) (2))) > GUK (£ (2)])"
Using now Koebe’s distortion theorem, we conclude that
me(B(z,7)) > m,(f," (B (2), K 'rl(f")(2)])))
> K (f") () me(B(f" (). K~ |(f7)'(2)])) (4.44)
> KM ()G () () = (GO
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Let us now deal with the case 2°. 1In this case the holomorphic inverse branch f " :
B(f"(2),2K'r|(f")'(2)]) = @ of f™ sending f™(z) to z is well-define. Using Koebe’s distor-
tion theorem and Lemma 4.15, we get

me(B(z,7)) > me(f."(B(f"(2), K r[(f")(2)])))

> K"(f") () "me(B(f"(2), K~ 'r[(f")'(2)]))
> KGO (GRR) (K ())! 449
= C}, <%R/{> K 2ph
Case 33. Suppose first that
) b < K
for some pole b € f~!(oc). Then
B(f"'(2), K~'r|(f")(2)] > B(b, %KlT(fnl)'(Z))- (4.46)
Since s K 1r|(f"1)'(2)| < 15k R, it follows from Lemma 4.22 that
1 1 @+1)h—2q
me (B, 5K () @)D) = O (GEem et (4.47)

for some universal constant C' > 0. Since 2K 'r[(f" 1) (2)| < 8K ' 'r|(f" 1) (2)| <
dist(f"'(2), PC(f)), we see that there exists a unique holomorphic inverse branch f,("=1 :
B(f"'(2), 2K 'r[(f"1)'(2)|) = @ of f"~! sending f"~'(z) to z. Therefore, applying (4.46),
(4.47) and Koebe’s distortion theorem, we obtain

me(B(z,1)) > me (£, " (B(f"(2), K 'rl(f")(2)]))
> KN (2) " me (B (@), K| (7771 (2))
> K ) (Bl 5K () (2))
> Kl Y@ (K@)
> CK (K )" e
s orcn (o) "
So, suppose finally that
1) bl > Y )
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for all poles b € f!(o00). Since also

dist(f" 1(2), PC(f)) > 4K ' r|(f" 1) (2)], (4.49)
we conclude that the map f : @ — @, restricted to the ball B(f"'(z), 36K 'r|(f*")(2)]),
is univalent. It therefore follows from Koebe’s l—theorem that

F(BU™ (2. 5K () () 3 B(gek (Y ().

Hence, there exists a unique holomorphic inverse branch f; ! : B(f"(z), skK e[ (f") (2) |) —
B(f™ '(2), 5K 'r[(f" 1) (2)]) of f sending f"(z) to f '(z). In view of (4.49) there exists
a unique holomorphic inverse branch f; "=V : B(f"'(z), ik K 'r|(f" ") (2)]) = @ of f!
sending f"~'(z) to z. Hence, the composition

for= o £ B(f(2), éﬁKlT(f")'(Z)D -

is a well-defined holomorphic inverse branch of f” sending f"(z) to z. Since Jcx K 'r|(f")'(2)| >
27 "k%R, applying Koebe’s distortion theorem and Lemma 4.15, we get

me(B(z,7)) > me (£, D (B(f"(2), —nK () (2))))
> K" ()| "me (B (f“(z), (16K) " wr|(f")(2)]))
> K02 TR R () ((16K) wr|(£7)(2)])”
= (16) 'K *"kCy (27K’ R)r"

Combining this inequality along with (4.44) (4.45) and (4.48), we conclude that I1"(F') < oc.
We are done. B

Our last lemma in this section is this.

Lemma 4.30. If Q(f) = 0, then the spherical packing measure 11"(J(f)) is finite.

Proof. Since the packing measure II" is A-invariant, it follows from Lemma 4.29 and
Proposition 4.25 that 1" (J(f) (B(0,2R) \ B(0, R))) =< R? for all R > 1. Since in addition

filﬁh( ) = (1+ |z[*)"" and since h > 1, we get

n(J(f) N (@\ BO,1))) = Znh( N (B(0,2"*") \ B(0,2")))

= 3" 2t (J(f) 0 (B0, 2) \ B0.2))

n=0

— i 272hn22n _ i 2(272h)n < 00
n=0 n=0
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We are done. m
The proof of Theorem 4.1 is therefore complete. B

5. INVARIANT MEASURES

In this section we deal with o-finite invariant measures equivalent to the conformal measure
m. We prove their existence, ergodicity, conservativity and we detect the points around which
these measures are finite or infinite. This allows us to provide sufficient conditions for their
finiteness.

5.1. o-finite invariant measures equivalent to the conformal measure m. In order to
prove Theorem 5.2 below we apply a general sufficient condition for the existence of o-finite
absolutely continuous invariant measure proven in [15]. In order to formulate this condition
suppose that X is a o-compact metric space, v is a Borel probability measure on X, positive
on open sets, and that a measurable map f : X — X is given with respect to which measure
v is quasi-invariant, i.e. v o f! << v. Moreover we assume the existence of a countable
partition o = {A,, : n > 0} of subsets of X which are all o-compact and of positive measure
v. We also assume that v(X \ U,>¢ 4,) = 0, and if additionally for all m,n > 1 there exists
k > 0 such that -

v(fH(Am) N AL) >0,

then the partition « is called irreducible. Martens’ result comprising Proposition 2.6 and
Theorem 2.9 of [15] reads the following.

Theorem 5.1. Suppose that o = {A,, : n > 0} is an irreducible partition for T : X — X.
Suppose that T is conservative and ergodic with respect to the measure v. If for every n > 1
there exists K,, > 1 such that for all k > 0 and all Borel subsets A of A,

—k
A ) )
v(An) T v(f7H(An)) v(An)
then T has a o-finite T-invariant measure p absolutely continuous with respect to v. In

addition, p is equivalent with v, conservative and ergodic, and unique up to a multiplicative
constant. Moreover, for every Borel set A C X

= lim i V(f *(A))
p(A) = lim Sr_om(f*(Ap))

K*l

The first result of this section is the following.

Theorem 5.2. There exists a o-finite f-invariant measure p absolutely continuous with re-
spect to h-conformal measure m. In addition, p is equivalent with m and ergodic.
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Proof. Let £ € ' be a periodic point of f with some period p > 3. We put
Py(f) = O+ (f(Crit(f))) UL f(E). - [T 1O}

Since Oy (f(Crit(f)) is a forward-invariant nowhere-dense subset of J(f) and since the h-
conformal measure m is positive on nonempty open subsets of J(f), it follows from ergodicity
and conservativity of m (see Theorem 4.24) that m(O,(f(Crit(f)))) = 0. Since m has no
atoms (see Theorem 4.24) we therefore obtain that m(Ps(f)) = 0. We shall now construct
the partition « of the set J(f) \ P3(f). We shall check next that it satisfies the assumptions
of Theorem 5.1. We first define the family of balls

{B <z, %dist(z, Pg(f))> }zew\Pg(f) |

This family obviously covers @'\ P;(f). Since @'\ Ps(f) is an open set, it is a Lindeldf space,
and therefore we can choose a countable subcover of €'\ Ps(f), which we denote by

{5 (= %dist(zi, 7)) }oo

i=1

We inductively define a partition A = {A4;}°, of @'\ Ps(f) as follows. Let

Ay = {B <zo, %dist(zo, Pg(f))> } |

Assume that we have defined the set Aq,..., A, such that

Ay < {B (=, 3dist (5, B }

and
IntAj 7£ @

Then A, we define as

n

Apyr = {B <zn+1, %dist(znﬂ, Pg(f))>} \ U 4.

7=1
The set A,,.; is disjoint with the sets Ay,..., A, and

Ani1 C B <2n+1, %dist(zm, P3(f))> \UB <zj, %dist(zj, pg(f))) |
7j=1

Thus either A,,.; = 0 or IntA,; # 0 and we remove all the empty sets.

We shall now check that the partition is irreducible. And indeed, it follows from the con-
struction of the sets {A4;}°, and continuity of the measure m that it suffices to demonstrate
that if z € @, r > 0 and K C C'is a compact set, then there exists n > 1 such that

k>0 k>0

" (B(z, )\ U fk(oo)) DK\ U ¥ (00).
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Since the set of repelling periodic points is dense in the Julia ([2], comp. [5]), there thus exists
a periodic point © € B(z,1), say of period ¢ > 1. Since z is repelling there exists s > 0 so
small that B(xz,s) C B(z,r) and f/(B(z,s)) D B(x,s). Since Ujs; f¥(B(x,s)) D @, since
K is a compact subset of € and since {f%(B(x, 5))}52, is an increasing family of open sets,
there thus exists k& > 1 such that f%*(B(z,s)) D K.

Let us check now the distortion assumption of Theorem 5.1. And indeed, in view of Koebe’s
distortion theorem there exists a constant K > 1 such that if f " : B(zi, dist(z;, P3(f))) -

is a holomorphic branch of f~", then for every k > O and allx,y € A, C B (zi, %dist (i, Pg(f)))

we have

(£ ()]
|(fm)' ()]

We therefore obtain for all Borel sets A, B C Ay, with m(B) > 0 and all n > 0 that
m(f,"(A) _ Ll dm_ supa {I(£7) 1" Fm(A) o m(A)

m(fo(B))  [al(fom)hdm = infa {[(f) " ym(B) — 7 m(B)’
and similarly

<K. (5.1)

(M A) | e nmlA)
m(f."(B)) m(B)
Since by Theorem 4.24 the measure is conservative ergodic, all the assumptions of Theorem 5.1
have been checked and we are done. B

The following lemma easily follows from Theorem 5.1.
Lemma 5.3. For every n > 0 we have 0 < pu(A4,) < oc.

We say that the f-invariant measure p produced in Theorem 5.2 is of finite condensation
at © € J(f) if and only if there exists an open neighborhood V' of x such that p(V) < oc.
Otherwise p is said to be of infinite condensation at z. We respectively say that x is a point of
finite or infinite condensation of . We end this subsection with the following obvious results.

Lemma 5.4. If x is a point of infinite condensation of p, then each point of the closure
{f™(x) : n > 0} is also of infinite condensation of p.

Lemma 5.5. The set of points of infinite condensation of measure p is contained in the union

O, (Crit(f)) U QU {oo}.

Proof. 1f z ¢ O, (Crit(f)) U QU {oo}, then by local finiteness of the family {4, : n > 0}
there exist an open neighborhood V' of z and an integer £ > 0 such that m(V \ Uf:g Aj) = 0.
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Hence, in view of Lemma 5.3 and Theorem 5.2 (1 < m) we get u(A) < 35 pu(A4;) < oc.
The proof is finished. &

5.2. oo is a Point of Finite Condensation of ..
The goal of this subsection is to prove that oc is a point of a finite condensation of the measure
. We start with the following.

Lemma 5.6. For every R > 1 large enough there ezists a constant C1(R) > 0 such that
m(By(R)) < C1(R)diam”(B,(R)).

Proof. For every k > 0 let App = {2z € @ : 2*R < |2] < 2""'R}. As in the proof of
Lemma 3.2 let
B ={z € Bg\ {00} : Imz > 0}
B ={z€ By \ {oc} : Imz < 1} and B} = {z € By \ {oc} : Imz > 0}.
We also put A} , = Ay g N By and A , = Ay p N Bg. Using formula (2.3) we can write for
allb € f1(o0),all j € {1,...,q} and all k& > 0 that

_ . _ G-1p
(b (AL = [ 1 ) dm = (14 b2) (5 R) 5 " m( A7 )

k,R

and similarly

_ _ _ w1y _
mf, pr (A ) =< (L4 1BP) H2R) 0 "m(A )

Thus
(FialAir)) = Uik (AL + mUfs s (A ) = (14 )R 5 (A )
m b,R,j \“1k,R m b,R,j\“k,R m bR (A r)) = m(Ay g).
Summing now over all j € {1,...,¢}, we get

a1

m(Aprs) < (1+ b)) "(28R) "% "m(Ayr) (5.2)
where Ay py = By(R) N f~'(Agr). Therefore, putting S = 3 ,ca(1+ |w[?*)™" < oo (since by
Theorem 2.1 h > 1), we obtain

m(f " (Apr)) = Z m(Ag rp)

bef~1(o0)

= Z Z Ak R b+w

bERNf 1 (00) WEA

< Z Z(1+\b+w\)< R)“% " (A )

beRNF—1(00) WEA

xm(Ak,R) > (2" R)“ " A+ b+wf) "
beRNf~1(00) wEA

= m(Apr)SQ*R) T
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Hence m(Agr) < (2’“R)¥h5*1m(f*1(Ak,R)) where ¢ = max{q, : b € RN f'(c0)}. Com-
bining this and (5.2), we get for every b € f~'(c0) that
m(Agrp) = (14 [p]") "5 R) " (2 R) TS (! (A )
< L+ " ST m(f T (Akg)) < (1 [B1P) T "m(f T (Ar,r))

Summing now over all k& > 0 we get m(By(R)) = (14 [b]?) "m(f "(Bgr)) < (1+ [b]*) "
Combining in turn this with (2.4) we get

m(By(R)) < L" R4 diam"(B,(R)) (5.3)
The proof is complete. ®

Lemma 5.7. Fiz R > 2 sufficiently large. Re-numerating the elements of the partition
{A;}52, we may assume that Ay C Br and diam,(Ag) = 1. For every b € f~'(oc0) and every
n >0 let A™ = f~"(Ay) N B, where B, is a connected component of f~"(Bg). Then there
exists a constant Cy > 0 such that m(B,) < Cy(R)m(A™).

Proof. 1t follows from the construction of the partition {4, },> that
m(A™) < diam"(A™) (5.4)

Since dist(0, Ap) > R > 2 and since diam(Ay) = 1 using (2.3), and (2.4), we get for every
pole b € f~!(oc0) that

ap—1

diams(Ag, - (1 + \b|2)71dist(0, Ao)Tdiams(A[])

b) w11
. = — >R % Rw =1, (5.5)
diam; (B, (R)) (1+ [b2) 'R%

where Ag, = f1(Ag) N By(R). Since w(Crit(f)) is a compact subset of the complex plane
@, dist(w(Crit(f)), f (o)) > 0. Therefore there exists r > 0 such that for all R > 1 large

enough B,(R) C B(b,r) and B(b,2r) N O (Crit(f)) = 0. Since B, = f;(nfl)(Bb(R)) for
an appropriate holomorphic inverse branch f;(nfl) . B(b,2r) — @ of f=1 it follows from
Koebes’s distortion theorem and (5.5)

diam,(A™) _ diam,(f. " "(Ap)) _  diam,(A,,)

. = X =1
diam,(B,)  diam,(f. ""V(B,(R))  diam,(By(R))
and that
diam®(B,) _ diam”(f. "V (By(R))) _ diam!(By(R))
m(By) m(fo "V (By(R))) m(By(R))
Combining the last two formulas and (5.4) we get

m(A™) = diam"(B,) < (%) m(B,) = m(B,)

The proof is complete. B
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We are ready now to prove the main result of this section.

Theorem 5.8. oc s the point of finite condensation of the measure pi.

Proof. Take R > 0 so large as required in Lemma 5.7. It follows from this lemma that
m(f*(Br)) < Co(R)ym(f1(Ap)) for every k > 0. Thus, applying Theorem 5.1 , we get
- Xiom(f” (Br))
Bg) = lim
M) = (7T ()

S CQ(R) < 0.

We are done.

5.3. All Points of Finite and Infinite Condensation. We say that z € J(f)\ Q is
geometrically good if

m(B,) < diam"(B,) (5.6)

for every set B of sufficiently small diameter containing x, every n > 0 and every connected
component B, of f~™(B). The direction of the inequality above makes that checking geo-
metrical goodness one can assume the sets B to be balls centered at x. The most general
sufficient condition for finite condensation is the following.

Lemma 5.9. If z € J(f) \ Q is geometrically good, then z is a point of finite condensation
of measure [i.

Proof. Since z ¢ Q, taking # > 0 sufficiently small, z ¢ B(Q,0). Set B = B(z,7).
Since m(B) > 0 and m(U,>¢ 4,) = 1, there exists ¢ > 0 such that m(B N A;) > 0. Since
BN A;NJ(f) has a non-empty interior relative to J(f), there exists an open ball F C BN 4;
having nonempty intersection with J(f). Of course m(F) > 0. For every n > 0 let B, be a
connected component of f~"(B) and let F,, C B, be some connected component of f~"(F)
contained in B,,. Using Koebe’s Distortion Theorem, I (Euclidean version) and the fact that
the point z is geometrically good, we get

diam(F},)
diam(B,,)
Applying now Lemma 2.12 to the connected sets F' and B we obtain

m(Fy) = m(B,) (%)h

m(F,) =< diam"(F,) = ( M)h

)hdiamh(Bn) = m(B) (diam(Bn)

Thus

n

S m(H(B) 2 Y mfHE) < Y m(fHA).

k=0 k=0 k=0
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Hence, using Lemma 5.3, we get u(B) =< u(A;) < oo and therefore z is a point of finite
condensation of p. W

In order to make use of this lemma we need to provide sufficient conditions for points to be
geometrically good. This is done below.

Lemma 5.10. If p is h-upper estimable at every point z € J(f) with the same estimability
constant, then every point z € J(f) is geometrically good.

Proof. The proof of this lemma follows by a straightforward inductive argument incorpo-
rating Koebe’s Distortion Theorem, Lemma 4.13, finiteness of the equivalence classes of the
relation ~ on the set of critical points of f, Lemma 2.8, and equivalently (2.16).

Theorem 5.11. The set of points of infinite condensation of p is contained in the set of
parabolic points Q(f).

Proof. The proof of Lemma 4.23 shows that each point z € J(f) is upper estimable with
respect to the Euclidean h-conformal measure m, and so, also with respect to the measure m.
Therefore the proof of Theorem 5.11 is completed by applying Lemma 5.10 and Lemma 5.9.
|

Corollary 5.12. If Q = 0, then there exists an f-invariant probability measure p equivalent
to m.

§6. Invariant measure - Parabolic points. From what we have shown in the previous
section, it is clear that in order to localize the points of infinite condensation of x we have to
look at the parabolic points. Proceeding in exactly the same way as in Section 6 of [22], we
can prove the following.

Proposition 5.13. If w € Q\ O, (Crit(f)), then u is of infinite condensation at w if and

; 2p(w)
only if h < IR

Corollary 5.14. If

max{g,: b € RN f '(o0)} > sup{}% TwE Q},

then the invariant measure p s finite.
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Proposition 5.15. Ifw € Q and h < pQ(f)()L:—)l’ then p has infinite condensation at w.

Theorem 5.16. If ¢ € J(f) is a critical point of f of order q, w = f(c) € Q, and h <
then w s of infinite condensation of measure fi.

2gp(w)
plw)+1’

6. APPENDIX

The goal of this appendix is to provide a proof of Theorem 2.6. We first prove a version
of Przytycki’s lemma from [19] for the sake of completeness and then we prove a version of
Mane’s theorem from [13]. We decided to provide a full proof of this theorem since its original
Mane’s proof contains some minor misprints and it would be very difficult to indicate in which
places and in which way one needs to modify it.

Lemma 6.1. For every integer K > 0 and every 0 < A < 1 the following holds. For every
€ > 0 and every k > 0 there exists 09 = 0o(K, €, A\, ) > 0 such that for every disk B(x,d) with
0 < &g and every x € T in the distance at least k apart from the set of parabolic points and
attracting points, for every n > 0 and every connected component W = Compf"(B(z,d))
such that fﬁv has at most K critical points counted with multiplicities, for every component

W' = Comp(f~"™(B")) in W, for the disc B' = B(x,\d) we have
diamW' < e
diamW' — 0 for n — oo uniformly (i.e. independently of the choices of B and W').

Proof. Suppose on the contrary that there exist a sequence {z, }°°; of points in the distance
at least k apart from the set of parabolic points and attracting points, a sequence 9, \, 0,
a sequence of components W, = Compf *(B,) with k, — oo, as n — oc such that the
number of critical points of each map f* on W, is bounded by K and W/, the sequence
associate to W, as in the statement of the lemma, such that lim,_, diam(W;) = 0. Then
for each n there exists L = L(n) : 0 < L < K such that there is no critical value of f"f}[;n in

L+1
P(n) = B(z,,0,(A+ (1 = A)——=)) \ B(#n,0,(A+ (1 = A)——)).

() = Blan a2+ (1 A7)\ Blow a3+ (1 X))

Without loosing generality we may assume that all the components W, intersect the funda-

mental region R. Put

L(n)

K+ 1)))

L(n)+1
K1)

W .= Compf*B(zy, 5u(A+ (1 — \)

W2 = Compf " B(xpn, 0n(A+ (1 = \)
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the components containing W),
P, =wH\w

n n

and for every 0 < m <k,,1=1,2,
Wit = f (W), Py = o m(B) = WL\ Wil
Let, for each n, the number m = m(n) < k, be the least integer such that

diamW ") > min(n, inf dist(cy, c3)),
nm = (77 c1,e20€CTit(f),c1#ca} ( ! 2))
So for every 0 < t < m(n) the set P,; is a topological annulus. That is so because at
each step back by f ! from P, 1 to P, there is at most one branch point for f~! from

W(fzfl to W(iz,i = 1,2. Now, all the annuli P, ,,)—1’s have moduli bounded below by

n n,

27K (1 — )\)KLJrl Since in addition all the components W, intersect the fundamental region
R, it follows from Montel’s Theorem that there exists a topological (maybe not geometric)

annulus P contained in all P, ,,,(n)—1’s for a subsequences n,, which bounds a topological disk

D. So D C Wn(f?m(ns)fl. Hence f™™)=1(D) C B(x,6,). Passing to yet another subsequence
we may assume that the sequence x,, converges to a point y € ('at the distance at least x apart
from the set of parabolic points and attracting points. Since d,, — 0, we have also m(n) — oc.
Thus D cannot intersect the Julia set J(f). If the were contained in a preimage of a Siegel
disk or a Herman ring, the limit of diameters of iterate f™™)=1(D) would be positive. Thus
D is either contained in the basin of attraction to an attracting periodic orbit or a parabolic
periodic orbit. In either case the limit of the sets f™(™)=1(D) would be contained in either
an an attracting periodic orbit or a parabolic periodic orbit. Since this limit would coincide
with y, we get a contradiction. The proof is complete. B

Remark 6.2. Obviously this lemma remains true (with the proof required only minor modi-
fications) if instead of the disk B(x,d) one takes the square centered at x and with edges of
length 6. This is the version we will need in the next theorem.

Theorem 6.3. Let f : @ — @ be an elliptic function. If a point x € J(f) \ Q(f) is not
contained in the w-limit set of a recurrent critical point, then for all € > 0 there exists a
neighbourhood U of x such that:

(a) For alln >0, every connected component of f~"(U) has diameter < ¢;
(b) There exists N > 0 such that for all n > 0 and every connected component V of
f™U), the degree of fiy 1s < N;

Proof. The core of the theorem is (a), from which the property (b) will easily follow. Given
an open set U C @ denote c¢(U,n) the set of connected components of f"(U). Observe
that V € ¢(U,n) implies f/(V) € c¢(U,n — j) for all 0 < j < n. If V € ¢(U,n) define
A(V,n) = #{z € V;(f")(z) = 0} counted with algebraic multiplicity. A square is the set
S of the form S = {z € @': |[R(z — p)| < 4,|S(z — p)| < d}. The point p is the center and &
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its radius. Given a square S with center p and radius 4, then, given k£ > 0, denote by S* the
square with center p and radius k£d. If S is a square with radius ¢, denote by £(S) the family

of squares contained in S* — S and having radius d/4. Denote by £*(S) the family of squares
3

S% — S and having radius 6/4. Denote by £*(S) the family of squares S¢ with Sy € £(S).
Suppose that x is not a parabolic point or is contained in the w-limit set of recurrent critical
point. Then there exists d; > 0 such that

(1) There is no critical point ¢ of f such that there exists 0 < n; < ny satisfying
[f™" () = c] < 6y
and
()~ < 8,
(2) |z — p| > 106y for every parabolic or attracting periodic point p.
Given € > 0 take €; > 0 satisfying
(3) 0 < e; < min{e/10,60/10}

(4) if U is an open connected set with diam(U) < 2¢; then diam(W) < §, for all W €
c(U,1)
Let Ny be the number of equivalence classes of the relation ~ between critical points of f.
Take N; > 2 such that

(5) If S is a square and V' € ¢(S,n) satisfies A(V,n) < Ny + 1 then the number of

connected components of f"(S3) contained in V is < Nj.
Finally, take ¢ given by
(6) 6 = min{dy/10, €1/10,0(2No, 555~ 2,00)} where 6(2Ny, SR 2,8o) is given by Lemma 6.1.
Let Sy be the square of center x and radius . Suppose that Theorem 6.3 fails for U = Sj.
Then there exists n > 0 and V' € ¢(Sy,n) with diamV > e > 10¢;. On the other hand, by
(1), diarr;So — 2v/26 < 38 < €. Hence there exists an integer ng > 0 such that there exists

Vo € ¢(S¢,ng) satisfying

(7) diam(f~M=D(S) N fi(V;)) < € for all 1 < i < ng, and
(8) diam(f ™ (Sp)NVy) > €

Since diamS, < ¢, it follows that nyg > 0. Now, starting with Sy, we shall construct a sequence
of squares Sy, S1, So, ... and strictly positive integers ng > ny > ny ... satisfying

(9) Sj41 € L(S;) .
(10) there exists V; € ¢(S},n;) such that
diam(fC"0(S;) N f1(V))) < @
for all + <7 < mnj; and
diam(f " (S;) NV;) > €.
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From (7) and (8), it follows that Sy satisfies (10). If we construct such a sequence of squares
and integers, then Theorem 6.3 will be proved by contradiction because the condition ny >
ny > Ng...> Ny > ... > 0 implies that n; = n; for all > i for a certain i. But (a) implies

that the radius of S; is (2)70; in particular diam(S;) — 0 when j — +o0. But by (10),

1 < diam(f ™ (S,) 1 V)) = diam(f () N V),
V} = C(S]%,’I’Lj) = C(Sggani)

Taking j — 400, and recalling that 7 is contained and lim;_,, diamS; = 0, we conclude that
the inequality above cannot hold.

The sequence {S;} and {n,} will be constructed by induction starting with Sy. Suppose S;
and n; constructed for 0 <1i < j. To find Sj;; and n;;; we begin by observing that from (a)
it follows that if p € S € £L*(S;), then, by

J Jj+1 3 . J+1 3 .
p—a| < diam(S;) = Z(g)ldiam(so) =2V2 Z(g)%s < 4V/26.
=0 =0 =0

Hence, if a point ¢ satisfies dist(q, S) < dg, we have
g — x| < 4V25 + 8§y < 26,
By (2), this means that
(11) dist(g, S) > dp for all S € £*(S;) and all parabolic or attracting periodic point g.
For the induction step (i.e. the construction of S;;; and n;1), we shall use the following

lemma.

Lemma 6.4. If U C T is an open set and V' € ¢(U,n) satisfies
diamf'(V) < &y, 0<i<n

then
A(V, ’ﬂ) S N[].

Proof. If A(V.n) > Ny + 1, there exists Ny + 1 different points z;, 1 <i < Ny +1, in V;
such that (f™)'(x;) = 0. This means that for each 1 < i < Ny + 1 there exist 1 < m; < n,
such that f™ (z;) is a critical point. Recalling that N, is the number of the equivalence
classes of the equivalence relation ~, it follows that there exists two different points in the set
{z;; 1 <1< Ny + 1}, that we shall denote by xy, x5, and two critical points ¢; and ¢ in the
same equivalence class of the equivalence relation ~, such that f™i(z;) = ¢y and f™2(z9) = cs.
Assume without loss of generality that 0 < my < msy. Then by the choice of §y, m; < msy and

L (en), e)| = [ e2), e)| = T () — [ (@0) | < diamf™? (V) < by
and
|7 = (), af = S (@0)) = @ = [ (@) — 2] < 6
contradicting property (1) of 6,. ®
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Now, to find S;;1 and n;4 we first claim that there exists S € £(.S;) that for some 0 < n < n;

has V € ¢(S, n) with diamV" > 1511\,1. Suppose that the claim is false. Then, for all 1 <i < n;,

diam(f(V;)) < diam (f~59(8;) 0 (V)
+ sup{diam(W); W € ¢(S,n; —1),S € L(S;)}

€1
< 1 <9
_€1+10N1_ “

From this inequality applied to i = 1 and property (4), we have
diam(V;) < 4
Moreover, since 2¢; < &y ( by (3)),
diam(£(V;) < b,
for all 1 < <mnj, he121ce for all 0 <7 < n;. By Lemma 6.4. This proves that A(V;,n;) < Np.
Then, since V; € ¢(S},n;) it follows from (5), (11) and Lemma 6.4 that

. €1
W e c(Sj,n;),W CV; = diam(W) < 0N,
Moreover, by the way N; was chosen, we have
#{W € c(Sj,n;); W C Vi < Ny
and we are assuming that
) €
S e L(S;).U € (S,n;) = diam(U) < T

Now observe that V; is the union of sets U € ¢(S,n;),U C V;,S € L(S;) and the sets
W € ¢(Sj,n;),W C V,;. Moreover, for any two sets W’ W" in this family there exist
W'= Wy, Wy, ... , W, =W"in ¢(S;,n;) and contained in V; such that for all 0 < i < k there
exists S; € E(S]) and U; € C(Si,n]’) such that Uz ﬁWi 7£ 1) Ul N Wi+1 7£ (). Then

. €1 €1 €1
d Vi) <N ( ) = —
am(Vi) < N (o8 * 10w, ) T 5
contradicting the last inequality in condition (10). This completes the proof of the claim. Now

we can take S € L£(S;) such that diam(V) > 5~ for some V' € ¢(S,n),0 < n < n;. Take

Ve C(S%,n) containing V. Suppose that A(f/, n) < Ny. Then by Lemma6.1 and condition

(6)

. €1
diam(V) <
iam(V) < 20N,
since V € ¢((S2)7,n) and is contained in V. This contradicts the fact that
diam(V) > —L

10V,
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and proves A(f/, n) > Ny + 1. From Lemma 6.4, it follows that

diam(f'(V)) > 6
for some 0 < i < n. Now we define S;;; = S3. Then fi(V) € ¢(S2,n—1) and diam(fi(V)) >
0p > 10¢;. Moreover diamSJ%+1 < 20 < €. Then there exists 0 < n;;; <n —1<mn; —iand

3
Vig1 € ¢(S71,nj41) such that

diam(f~"*1(S11) N Vi) > €
and
diam(f "+ 4 (S550) N f (Vigr)) < €.
Observe that n;,; > 0 since diam (Sj+1) < 20 < €;. This completes the construction of the

sequence {S;} and {n;} and the proof of part (a) of Theorem 6.3. Property (b) of Theorem 6.3
follows from (a) and Lemma 6.4. B

Our destination in this appendix is the following.

Proof of Theorem 2.6 If X is a compact subset of the complex plane @ the theorem
immediately follows from Theorem 6.3 and compactness of X. So suppose that X C J(f) \
Q(f) is a closed subset of €. Let A = dist(Q(f), f'(oc)) > 0. In view of (2.2) and (2.4)
there exists R > 0 so large that if |f(z)] > R/2, then for some b € f~'(0c),2 € By(R/2)

|f'(2)] > 2 and diam(B,(R/2)) < A/2. (6.1)

Consider now the compact set Y = XU(C\ B(2(f), A/2))\ Bg and the corresponding number
0 < § < min{e, R/2} ascribed to Y and the number min{e, R/2}. In order to complete the
proof it suffices to show that if x € By, then the diameter of each connected component C,,(x)
of f~"(B(x,d)) does not exceed € for every € > 0. And indeed, fix w € f~"(z) N C,(x) and
let 1 < k < n be the least integer such that " *(w) ¢ By provided it exists. Otherwise, set
k = n. We shall show by mathematical induction that

diam (" 7(Cy(2))) < 0 < min{e, R/2} (6.2)

for every 0 < j < k. For j = 0 this formula is true since f"(C,(x)) = B(z,d). So, suppose that
it is true for some 0 < j < k — 1. Since f"7(w) € By and since diam (f"7(C,(z))) < R/2,
we conclude that

f"(Cu(x)) € Baya- (6.3)

It therefore follows from the first part of formula (6.1) that
diam (/" 7HY(C, (1)) < diam (f" 7 (Cu(x))) < 6.

This proves formula (6.2). It follows from (6.3) and the second part of formula (6.1) that
[ RCu(x)) € @\ B(2(f),A/2). Since we also know that f" *(w) ¢ Bp, we conclude that
" *(w) € Y, we see that diam(C,,(r)) < min{e, R/2} < e. We are done. B
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