
GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTICFUNCTIONSJANINA KOTUS AND MARIUSZ URBA�NSKIAbstra
t. We explore the 
lass of ellipti
 fun
tions whose all 
riti
al points 
ontained in theJulia set are non-re
urrent and whose !-limit sets form 
ompa
t subsets of the 
omplex plane.In parti
ular, this 
lass 
omprises hyperboli
, subhyperboli
 and paraboli
 ellipti
 maps. Leth be the Hausdor� dimension of the Julia set of su
h ellipti
 fun
tion f . We 
onstru
t anatomless h-
onformal measure m and we show that the h-dimensional Hausdor� measure ofthe Julia set of f vanishes unless the Julia set is equal to the entire 
omplex plane CI . Theh-dimensional pa
king measure is always positive and it is �nite if and only if there are norationally indi�erent periodi
 points. Furthermore, we prove the existen
e of a (unique up toa multipli
ative 
onstant) �-�nite f -invariant measure � equivalent with m. The measure �is then proved to be ergodi
 and 
onservative and we identify the set of those points whoseall open neighborhoods have in�nite measure �. In parti
ular we show that 1 is not amongthem.
1. Introdu
tion and General Preliminaries1.1. Introdu
tion.First examples of ellipti
 (in fa
t }-Weierstrass) fun
tions with detailed des
ription of theirJulia sets appeared in [11℄. Our paper dealing with ellipti
 fun
tions whose all 
riti
al points
ontained in the Julia set are non-re
urrent and whose !-limit sets form 
ompa
t subsets ofthe 
omplex plane, basi
ally stems from [21℄, [22℄ and [12℄. Any su
h ellipti
 fun
tion willbe 
alled non-re
urrent. We study geometri
 properties of the Julia sets ultimately resultingin Theorem 4.1 whi
h says that the h-dimensional Hausdor� measure of the Julia set of fvanishes unless the Julia set is equal to the entire 
omplex plane CI. The h-dimensional pa
kingmeasure is always positive and it is �nite if and only if there are no rationally indi�erentperiodi
 points. We would like to emphasize that both Hausdor� and pa
king appearingin this theorem are taken with respe
t to the spheri
al metri
 on CI. The fa
t of vanishingh-dimensional Hausdor� measure of the Julia set in the 
ase when h < 2 (note that due to[12℄ h > 1) 
aused by the existen
e of poles, dramati
ally di�erentiate non-re
urrent ellipti
fun
tions from the 
ase of analogous 
lass of rational fun
tions (see [21℄). Our main te
hni
altool employed in this paper is the 
on
ept of semi-
onformal, almost-
onformal and 
onformal2000 Mathemati
s Subje
t Classi�
ation. Primary 37F35. Se
ondary 37F10, 30D30.The resear
h of the �rst author was supported in part by the Foundation for Polish S
ien
e, the Polish KBNGrant No 2 P03A 009 17 and TUW Grant no 503G 112000442200. She also wishes to thank the Universityof North Texas where this resear
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2 JANINA KOTUS AND MARIUSZ URBA�NSKImeasures. We provide an elaborated proof of the existen
e, uniqueness and 
ontinuity of an h-
onformal measure. Another important tool is provided by Proposition 2.21, where, expressedin an appropriate language, all non-singular points are shown to be 
oni
al. Although thereare some overlaps with rational fun
tions (see [21℄), most of the proofs are substantiallydi�erent, mainly be
ause of the existen
e of poles in the Julia set.Our se
ond major theme in this paper is the dynami
s of f with respe
t to the 
onformalmeasure m. As the �rst result in this dire
tion we we prove the existen
e of a 
onservativeergodi
 �-�nite measure � equivalent tom. Developing this dire
tion, we study points of �niteand in�nite 
ondensation of the measure �, the 
on
epts introdu
ed in [22℄. After 
olle
tingsome some basi
 fa
ts about these points we show in Subse
tion 5.2 that1 is always a pointof �nite 
ondensation, perhaps the most interesting fa
t about the measure �. In the nextsubse
tion we relate points of in�nite 
ondensation with the set 
(f) of rationally indi�erentperiodi
 points, providing in parti
ular some suÆ
ient 
onditions (
(f) = ;) for the invariantmeasure � to be �nite. In the end of this se
tion we deal with paraboli
 points themselves.1.2. General Preliminaries.Throughout the entire paper f �, diams and Bs(z; r) denote respe
tively the derivatives, di-ameters and open balls de�ned by means of the spheri
al metri
 whereas f 0, diam and B(z; r)are 
onsidered in the Eu
lidean sense.De�nition 1.1. IfH : D! CI is an analyti
 map, z 2 CI, and r > 0, then by Comp(z;H(z); H; r)we denote the 
onne
ted 
omponent of H�1(B(H(z); r)) that 
ontains z.Suppose now that 
 is a 
riti
al point of an analyti
 map H : D ! CI. Then there existsR = R(H; 
) > 0 and A = A(H; 
) � 1 su
h thatA�1jz � 
jq � jH(z)�H(
)j � Ajz � 
jqand A�1jz � 
jq�1 � jH 0(z)j � Ajz � 
jq�1for every z 2 Comp(
;H(
); H;R) and thatH(Comp(
;H(
); H;R)) = B(H(
); R)where q = q(H; 
) is the order of H at the 
riti
al point 
. Moreover letting R > 0 to besuÆ
iently small we 
an require the two above inequalities to hold for every z 2 B(
; (AR)1=q)and the ball B(
; (AR)1=q) [ Comp(
;H(
); H;R) to be expressed as a union of the point 
and q open mutually disjoint sets su
h that H restri
ted to ea
h of them is inje
tive.Koebe's Distortion Theorem, I (Eu
lidean version). There exists a fun
tion k :[0; 1)! [1;1) su
h that for any z 2 CI; r > 0; t 2 [0; 1) and any univalent analyti
 fun
tionH : B(z; r)! CI we have thatsupfjH 0(x)j : x 2 B(z; tr)g � k(t) inffjH 0(x)j : x 2 B(z; tr)g:



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 3We put K = k(1=2).Koebe's Distortion Theorem, I (spheri
al version). Given a number s > 0 there existsa fun
tion ks : [0; 1) ! [1;1) su
h that for any z 2 CI; r > 0; t 2 [0; 1) and any univalentanalyti
 fun
tion H : B(z; r) ! CI su
h that the 
omplement CI nH(B(z; r)) 
ontains a ballof radius s we havesupfjH�(x)j : x 2 B(z; tr)g � ks(t) inffjH�(x)j : x 2 B(z; tr)g:The following is straightforward 
onsequen
e of these two Koebe's Distortion Theorems.Lemma 1.2. Suppose that D � CI is an open set, z 2 D and H : D ! CI is an analyti
 mapwhi
h has an analyti
 inverse H�1z de�ned on B(H(z); 2R) for some R > 0. Then for every0 � r � R B(z;K�1rjH 0(z)j�1) � H�1z (B(H(z); r)) � B(z;KrjH 0(z)j�1):Lemma 1.3. Suppose that D � CI is an open set, z 2 D and H : D ! CI is an analyti
 mapwhi
h has an analyti
 inverse H�1z de�ned on B(H(z); 2R) for some R > 0 avoiding a ball ofsome radius s. Then for every 0 � r � RB(z; k�1s (1=2)rjH 0(z)j�1) � H�1z (B(H(z); r)) � B(z; ks(1=2)rjH 0(z)j�1):We shall also use the following more geometri
 versions of Koebe's Distortion Theoremsinvolving moduli of annuli.Koebe's Distortion Theorem, II (Eu
lidean version). There exists a fun
tion w :(0;+1)! [1;1) su
h that for any two open topologi
al disksQ1 � Q2 with Mod(Q2nQ1) � tand any univalent analyti
 fun
tion H : Q2 ! CI su
h that the 
omplement CInH(Q2) 
ontainsa ball of radius s we havesupfjH 0(x)j : x 2 Q1g � w(t) inffjH 0(x)j : x 2 Q1g:Koebe's Distortion Theorem, II (spheri
al version). Given a number s > 0 there existsa fun
tion ws : (0;+1)! [1;1) su
h that for any two open topologi
al disks Q1 � Q2 withMod(Q2 nQ1) � t and any univalent analyti
 fun
tion H : Q2 ! CI su
h that the 
omplementCI nH(Q2) 
ontains a ball of radius s we havesupfjH 0(x)j : x 2 Q1g � ws(t) inffjH 0(x)j : x 2 Q1g:Lemma 1.4. Suppose that an analyti
 map Q Æ H : D ! CI, a radius R > 0 and a pointz 2 D are su
h thatComp(H(z); Q(H(z)); Q; 2R)\Crit(Q) = ; and Comp(z; Q ÆH(z); Q ÆH;R)\Crit(H) 6= ;



4 JANINA KOTUS AND MARIUSZ URBA�NSKIIf 
 belongs to the last interse
tion anddiam�Comp(z; Q ÆH(z); Q ÆH;R)� � (AR(H; 
))1=qthen jz � 
j � KA2j(Q ÆH)0(z)j�1R:2. The Dynami
s of Non-re
urrent Ellipti
 Fun
tions2.1. Preliminaries from Ellipti
 Fun
tions. As we already indi
ated in the introdu
tion,throughout the entire paper f : CI ! CI denotes a non-
onstant ellipti
 fun
tion. Every su
hfun
tion is doubly periodi
 and meromorphi
. In parti
ular there exist two ve
tors w1; w2,Im(w1w2 ) 6= 0, su
h that for every z 2 CI and n;m 2 ZZ,f(z) = f(z +mw1 + nw2):The set � = fmw1 + nw2 : m;n 2 ZZgwill be 
alled the latti
e of the ellipti
 fun
tion f . This obje
t is independent of the 
hoi
e ofits generators w1 and w2. LetR = ft1w1 + t2w2 : 0 � t1; t2 � 1g;be the basi
 fundamental parallelogram of f . It follows from periodi
ity of f that f(CI) =f(R). Therefore f(CI) as a 
losed and open subset of the 
onne
ted set CI is equal to CI. Thismeans that ea
h ellipti
 fun
tion is surje
tive. It also follows from periodi
ity of f thatf�1(1) = [m;n2ZZ�R \ f�1(1) +mw1 + nw2�:For every pole b of f let qb denote its multipli
ity. We de�neq := maxfqb : b 2 f�1(1)g = maxfqb : b 2 f�1(1) \ Rg:Let BR = fz 2 CI : jzj > Rg:For every pole b of f by Bb(R) we denote the 
onne
ted 
omponent of f�1(BR) 
ontaining b.If R > 0 is large enough, say R � R0, then BR 
ontains no 
riti
al values of f , all sets Bb(R)are simply 
onne
ted, mutually disjoint and for z 2 Bb(R)f(z) = Gb(z)(z � b)qb (2.1)where Gb : Bb(R) ! CI is a holomorphi
 fun
tion taking values out of some neighbourhoodof 0. If U � BR n f1g is an open simply 
onne
ted set, then all the holomorphi
 inverse
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hes f�1b;U;1; : : : ; f�1b;U;qb of f are well-de�ned on U and for every 1 � j � qb and all z 2 Uwe have j(f�1b;U;j)0(z)j � jzj� qb+1qb : (2.2)Therefore j(f�1b;U;j)�(z)j � jzj� qb+1qb 1 + jzj21 + j(f�1b;U;j)(z)j2 � jzj qb�1qb1 + jbj2 � jzj qb�1qbjbj2 ; (2.3)where the last 
omparability sign we wrote assuming in addition that jbj is large enough,say jbj � R1 > R0. Let M be an upper bound of the ratios of j(f�1b;U;j)�(z)j and jzj qb�1qb jbj�2with b; U; j as above. A straightforward 
al
ulation based on (2.1) shows that there exists a
onstant L � 1 su
h that for all poles b and all R � R1 we haveL�1R� 1qb �diam(Bb(R)) � LR� 1qb ;L�1R� 1qb (1 + jbj2)�1 �diams(Bb(R)) � LR� 1qb (1 + jbj2)�1: (2.4)We will frequently use the following fa
t proven in [12℄.Theorem 2.1. If f : CI ! CI is an arbitrary ellipti
 fun
tion, thenHD(J(f)) > 2qq + 1 � 1;where q = inffqb : b 2 inf�1(1)g = maxfqb : b 2 R \ f�1(1)g.2.2. Julia Sets and Non-Re
urrent Ellipti
 Fun
tions.The Fatou set F (f) of a meromorphi
 fun
tion f : CI ! CI is de�ned in exa
tly the samemanner as for rational fun
tions; F (f) is the set of points z 2 CI su
h that all the iteratesare de�ned and form a normal family on a neighborhood of z. The Julia set J(f) is the
omplement of F (f) in CI. Thus, F (f) is open, J(f) is 
losed, F (f) is 
ompletely invariantwhile f�1(J(f)) � J(f) and f(J(f)) = J(f)[f1g. For a general des
ription of the dynami
sof meromorphi
 fun
tions see e.g. [5℄. We would however like to note that it easily followsfrom Montel's 
riterion of normality that if f : CI ! CI has at least one pole whi
h is not anomitted value then J(f) = [n�0 f�n(1):Let Crit(f) be the set of 
riti
al points of f i.e.Crit(f) = fz : f 0(z) = 0g:



6 JANINA KOTUS AND MARIUSZ URBA�NSKIIts image, f(Crit(f)), is 
alled the set of 
riti
al values of f . Sin
e R \ Crit(f) is �nite andsin
e f(Crit(f)) = f(R\ Crit(f)), the set of 
riti
al values f(Crit(f)) is also �nite. LetI1(f) = fz 2 CI : z 2 [n�0 f�n(1) or limn!1 fn(z) =1gbe the set of points es
aping to in�nity under iterates of f . We say that the ellipti
 fun
tionf : CI ! CI is non-re
urrent, if the following 
onditions are satis�ed:(1) If 
 2 Crit(f)\J(f), then the !-limit set !(
) is a 
ompa
t subset of CI (i.e. 1 =2 !(
))and 
 =2 !(
)(2) If 
 2 Crit(f) \ F (f) then either there exists an attra
ting periodi
 point w or arationally indi�erent periodi
 point w su
h that !(
) � fw; f(w); : : : ; f p�1(w)g, p isa period.From now on, unless otherwise stated, we assume throughout the entire paper that the ellipti
fun
tion f : CI ! CI is non-re
urrent. If t � 0, then a measure m supported on J(f) is said tobe semi t-
onformal for f : CI ! CI, ifm(f(A)) � ZA jf �jt dm (2.5)for every Borel set A � J(f) su
h that f jA is inje
tive and m is said to be t-
onformal forf : CI ! CI, if m(f(A)) = ZA jf �jt dm (2.6)for these sets A.2.3. Lo
al behavior around paraboli
 �xed points.In this se
tion f : CI ! CI is an arbitrary ellipti
 fun
tion of degree � 2. In parti
ular the mapf is not assumed yet to be non-re
urrent. In what follows we basi
ally summarize the results
on
erning lo
al behavior around paraboli
 �xed points whi
h have been proved in [1℄, [8℄,and [9℄. Although they were formulated and proved in the 
ontext of paraboli
 rational mapsthat is assuming that the Julia set 
ontains no 
riti
al points, nevertheless they and theirproofs are of lo
al 
hara
ter and, in parti
ular, extend to the 
lass of all ellipti
 fun
tions.Through this se
tion ! is a simple paraboli
 �xed point of f , that is f(!) = ! and f 0(!) = 1.First note that on a suÆ
iently small open neighbourhood V of ! a holomorphi
 inversebran
h f�1! : V ! CI of f is well de�ned whi
h sends ! to !. Moreover, V 
an be taken sosmall that on V the transformation f�1! expresses in the formf�1! (z) = z � a(z � !)p+1 + a2(z � !)p+2 + a3(z � !)p+3 + : : : (2.7)where a 6= 0 and p = p(!) is a positive integer.f�1! (z)� ! = z � ! � a(z � !)p+1 + a2(z � !)p+2 + a3(z � !)p+3 + : : :Consider the set fz : a(z � !)p 2 IR and a(z � !)p > 0g. This set is the union of p raysbeginning in ! and forming angles whi
h are integer multiples of 2�=p. Denote these rays by



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 7L1; L2; : : : ; Lp. For 1 � j � p, 0 < r � 1 and 0 � � < 2� let Sj(r; �) � V be the set ofthose points z lying in the open ball B(!; r) for whi
h the angle between the rays Lj and theinterval whi
h joins the points ! and z does not ex
eed �. Using (2.7) an easy 
omputationleads to the following 8� > 0 9r1(�) > 0 90 < �0 � � 81 � j � pf�1! (Sj(r1(�); �0)) � Sj(1; �) (2.8)and there are � > 0 and �1 > 0 su
h thatjf�1! (z)� !j < jz � !j and j(f�1! )0(z)j < 1 (2.9)for every ! 6= z 2 S1(�1; �) [ : : :[ Sp(�1; �). The following version of Fatou's 
ower theorem,(see [4℄, [17℄, 
omp. [1℄) shows that the Julia set J(f) approa
hes the �xed point ! tangentiallyto the lines L1; L2; : : : ; Lp. This 
an be pre
isely formulated as follows.Lemma 2.2. (Fatou's 
ower theorem) For every � > 0 there exists r2(�) > 0 su
h thatJ(f) \B(!; r2(�)) � S1(r2(�); �) [ : : : [ Sp(r2(�); �):Sin
e the Julia set J(f) is fully invariant (f�1(J(f)) = J(f) and f(J(f)) = J(f) [ f1g,we 
on
lude from this lemma and (2.9) that for every 0 < �2 � minf�1; r2(�)g we havef�1! (J(f) \ B(!; �2)) � J(f) \ B(!; �2):Thus all iterates f�n! : J(f) \ B(!; �2) ! J(f) \ B(!; �2), n = 0; 1; 2; : : : are well de�ned.From (2.8), Lemma 2.2, and (2.9) we obtain the following8� > 0 9r3(�) > 0 81 � j � pf�1! (Sj(r3(�); �) \ J(f)) � Sj(r3(�); �): (2.10)Put � = �(f; !) = minf�2; r2(�); r3(�)g (2.11)Then, it follows from (2.9), (2.8), and Lemma 2.2 that for every z 2 J(f) \ B(!; �).limn!1 f�n! (z) = ! (2.12)In fa
t it 
an be proved that this 
onvergen
e is uniform on 
ompa
t subsets of B(!; �) \J(f) n f!g. See (2.13) for even stronger result. By pre
ise 
omputations one 
an prove thefollowing.Lemma 2.3. For every � > 0 suÆ
iently small and every z 2 J(f) \ B(!; �)f�1! (B(z; � jz � !j)) � B(f�1! (z); � jf�1! (z)� !j):This lemma immediately leads to the following.



8 JANINA KOTUS AND MARIUSZ URBA�NSKILemma 2.4. For every � > 0 suÆ
iently small, every z 2 J(f) \ B(!; �) and every n � 0there exists a unique holomorphi
 inverse bran
hf�n!;z : B(z; 2� jz � !j)! B(f�n! (z); 2� jf�n! (z)� !j)of fn whi
h sends z to f�n! (z).The following three results (
omp. Lemma 1 and Lemma 2 of [8℄ and Lemma 4.8 of [9℄) 
anbe proved in exa
tly the same way as in [8℄ and [9℄.limn!1 jf�n!;z (z)� !jn1=p = (jajp)�1=p and n� p+1p � j(f�n!;z )0(z)j; j(f�n!;z )�(z)j � n� p+1p (2.13)uniformly on 
ompa
t subsets of B(!; �) \ J(f) n f!g.Lemma 2.5. Let m be a semi t-
onformal measure for f . Then for every R > 0 there existsa 
onstant C = C(t; !; R) � 1 su
h that for every 0 < r � Rm(B(!; r) n f!g)r�t(!) ; m(Bs(!; r) n f!g)r�t(!) � C:where �t(!) = t+ p(!)(t� 1). If m is t-
onformal, then in additionm(B(!; r) n f!g)r�t(!) ; m(Bs(!; r) n f!g)r�t(!) � C�1:2.4. Basi
 properties of non-re
urrent ellipti
 fun
tions. .In this se
tion the ellipti
 fun
tion f : CI ! CI is assumed to be non-re
urrent. A periodi
point ! of f is 
alled paraboli
 if there exits q � 1 su
h that f q(!) = ! and (f q)0(1) = 1.The set of all paraboli
 points will be denoted by 
(f). Sin
e the set of 
riti
al values of f is�nite, it follows from Fatou's theorem that 
(f) is also �nite. In addition, 
(f) is 
ontainedin the Julia set J(f). The 
ru
ial tool for our approa
h in this paper similarly as in [21℄ isthe following version of Mane's theorem proven in [13℄.Theorem 2.6. Let f : CI ! CI be a non-re
urrent ellipti
 fun
tion. If X � J(f) n 
(f) isa 
losed subset of CI, then for every � > 0 there exists Æ > 0 su
h that for every x 2 X andevery n � 0, all 
onne
ted 
omponents of f�n(B(x; Æ)) have diameters � �.Corollary 2.7. Let f : CI ! CI be a non-re
urrent ellipti
 fun
tion. If X � J(f)[f1gn
(f)is 
ompa
t, then for every � > 0 there exists Æ > 0 su
h that for every x 2 X and every n � 0,all 
onne
ted 
omponents of f�1(Bs(x; Æ)) have Eu
lidean diameters � �.Proof. Apply Theorem 2.6 for the set f�1(1) and given � > 0. This gives us the 
or-responding number Æ1 > 0. Taking now � > 0 so small that ea
h 
onne
ted 
omponent off�n(Bs(1; �)) is 
ontained in B(b; Æ1) for some pole b 2 f�1(1) 
onsider the set Y = X nBs(1; �). Sin
e Y is a 
ompa
t subset of CI, it follows from Theorem 2.6 that there exists Æ2 >
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h that for every x 2 Y and every n � 0 all the 
onne
ted 
omponents of f�n(Bs(x; Æ))have Eu
lidean diameters � �. Consider a �nite 
over fBs(x1; Æ2); : : : ; Bs(xk; Æ2); Bs(1; �)gof X, where xj 2 Y for all j = 1; 2; : : : ; k. Taking as Æ half of the Lebesgue number of this
over �nishes the proof.Be
ause of an extremal importan
e of this theorem and its 
orollary for our 
onsiderations, weprovide in the Appendix the proof of Theorem 2.6 adapting to the 
ontext of ellipti
 fun
tionsoriginal Mane's proof from [13℄ and some lemma from [19℄.We put Crit(J(f)) = Crit(f) \ J(f);� = �(f) = minnminf�(fa; !) : ! 2 
(f)g; 12dist(
(f);Crit(f))o > 0 (2.14)where a � 1 is so large that all paraboli
 points of fa are simple and the numbers �(fa; !)are de�ned in (2.11). We also denote for every set A � CIO+(A) = [n�0 fn(A):and A = A(f) = maxfA(f; 
) : 
 2 Crit(f)g (2.15)We 
all two points z and w equivalent and we write z � w if w� z 2 �, the latti
e asso
iatedwith the ellipti
 fun
tion f . Obviously z � w implies that O+(z) = O+(w) and !(z) = !(w).Sin
e the set Crit(f) \ R is �nite, we 
on
lude that the sets !(Crit(f)) = S
2Crit(f)\R !(
)and O+(Crit(f)) = S
2Crit(f)\RO+(
) are 
ompa
t subsets of CI. A positive number � < �=2is now 
hosen to be less than the following three numbers.minfdist(
; O+(f(
)) : 
 2 Crit(f)gminf(A(
)R(f; 
))1=q(
) : 
 2 Crit(f)gminfj
� 
0j : 
; 
0 2 Crit(f) and 
 6= 
0g;where q(
) = q(f; 
) is the order of the 
riti
al point 
 of f . Noti
e that the �rst of these num-bers is positive sin
e O+(f(Crit(f)) is a 
ompa
t subset of CI and Crit(f) has no a

umulationpoints in CI. Sin
e f 
ontains no re
urrent 
riti
al points, it follows from Theorem 2.6 thatthere exists 0 < 
 < 1=4 su
h that if n � 0 is an integer, z 2 J(f) and fn(z) =2 B(
(f); �),then diam�Comp(z; fn(z); fn; 2
)� < �: (2.16)From now on �x also 0 < � < ��1minf�; 2
g so small as required in Lemma 2.4 for every! 2 
(f) and so small that for every z 2 J(f)diam�Comp(z; f(z); f; ��)� < minf�; 2
g: (2.17)



10 JANINA KOTUS AND MARIUSZ URBA�NSKILemma 2.8. If n � 0 is an integer, � > 0, z 2 J(f) and for every k 2 f0; 1; : : : ; ngdiam�Comp(fk(z); fn(z); fn�k; �)� � �;then ea
h 
onne
ted 
omponent Comp(fk(z); fn(z); fn�k; �) 
ontains at most one 
riti
al pointof f and the equivalen
e 
lass of ea
h 
riti
al point interse
ts at most one of these 
omponents.Proof. The �rst part is obvious by the 
hoi
e of �. In order to prove the se
ond partsuppose that
1 2 Crit(f) \ Comp(fk1(z); fn(z); fn�k1 ; �); 
2 2 Comp(fk2(z); fn(z); fn�k2 ; �)and 
1 � 
2, where 0 � k1 < k2 � n. But thenfk2�k1(
2) = fk2�k1(
1) 2 Comp(fk2(z); fn(z); fn�k2; �)and therefore jfk2�k1(
2)� 
1j < �, 
ontrary to the 
hoi
e of �.Lemma 2.9. The set !(Crit(J(f))) is nowhere dense in J(f).Proof. Suppose that the interior (relative to J(f)) of !(Crit(J(f))) is nonempty. Thenthere exists 
 2 Crit(J(f)) su
h that !(
) has nonempty interior. But then there wouldexist n � 0 su
h that fn(!(
)) = J(f) and 
onsequently !(
) = J(f). This however is a
ontradi
tion as 
 =2 !(
).Let � = ��
2Crit(f)\Rq(
)��1. We shall prove the following.Lemma 2.10. If z 2 J(f), fn(z) =2 B(
(f); �), thenMod�Comp(z; fn(z); fn; 2
) n Comp(z; fn(z); fn; 
)� � � log 2=#(Crit(f) \R)Proof. In view of Lemma 2.8 there exists a geometri
 annulusR � B(fn(z); 2
)nB(fn(z); 
)
entered at fn(z) of modulus log 2=#Crit(f) su
h that f�n(R) \ Comp(z; fn(z); fn; 2
) \Crit(fn)) = ;. Sin
e 
overing maps in
rease moduli of annuli at most by fa
tors equal totheir degrees, we 
on
lude thatMod�Comp(z; fn(z); fn; 2
) n Comp(z; fn(z); fn; 
)�� Mod(Rn) � �log 2=#(Crit(f) \ R�=�
2Crit(f)\Rq(
)= � log 2#(Crit(f) \R) ;where Rn � Comp(z; fn(z); fn; 2
) is the 
onne
ted 
omponent of f�n(B(fn(z); 2
)) en
los-ing Comp(z; fn(z); fn; 
).As an immediate 
onsequen
e of this lemma and Koebe's Distortion Theorem, II (Eu
lideanversion) we get the following.
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(f); �). If 0 � k � n and fk :Comp(z; fn(z); fn; 2
)! Comp(fk(z); fn(z); fn�k; 2
) is univalent, thenj(fk)0(y)jj(fk)0(x)j � 
onstfor all x; y 2 Comp(z; fn(z); fn; 
), where 
onst is a number depending only on #(Crit(f)\R)and �.For A, B, any two subsets of a metri
 spa
e putdist(A;B) = inffdist(a; b) : a 2 A; b 2 Bgand Dist(A;B) = supfdist(a; b) : a 2 A; b 2 Bg:We shall prove the following.Lemma 2.12. Suppose that z 2 J(f) and fn(z) =2 B(
(f); �). Suppose also that Q(1) �Q(2) � B(fn(z); 
) are 
onne
ted sets. If Q(2)n is a 
onne
ted 
omponent of f�n(Q(2)) 
ontainedin Comp(z; fn(z); fn; 
0) and Q(1)n is a 
onne
ted 
omponent of f�n(Q(1)) 
ontained in Q(2)n ,then diam�Q(1)n �diam�Q(2)n � � diam�Q(1)�diam�Q(2)� :Proof. Let 1 � n1 � : : : � nu � n be all the integers k between 1 and n su
h thatCrit(f) \ Comp(fn�k(z); fn(z); fk; 2
) 6= ;:Fix 1 � i � u. If j 2 [ni; ni+1 � 1℄ (we set nu+1 = n� 1), then by Lemma 2.10 there exists auniversal 
onstant T > 0 su
h thatdiam�Q(1)j �diam�Q(2)j � � T diam�Q(1)ni �diam�Q(2)ni � (2.18)Sin
e, in view of Lemma 2.8, u � #(Crit(f) \R), in order to 
on
lude the proof is thereforeenough to show the existen
e of a universal 
onstant E > 0 su
h that for every 1 � i � u� 1.diam�Q(1)ni+1�diam�Q(2)ni+1� � Ediam�Q(1)ni �diam�Q(2)ni � :And indeed, let 
 be the 
riti
al point 
ontained in Comp(fn�ni+1(z); fn(z); fni+1; 2
) and letq denote its order. Sin
e both sets Q(2)ni+1 and Q(1)ni+1 are 
onne
ted, we get for i = 1; 2 thatdiam�Q(i)ni+1�1� � diam�Q(i)ni+1� supfjf 0(x)j : x 2 Q(i)ni+1g � diam�Q(i)ni+1�Dist(
; Q(i)ni+1):



12 JANINA KOTUS AND MARIUSZ URBA�NSKIHen
e, using (2.18), we obtaindiam�Q(1)ni+1�diam�Q(2)ni+1� � diam�Q(1)ni+1�1�diam�Q(2)ni+1�1� � Dist(
; Q(2)ni+1)Dist(
; Q(1)ni+1) � diam�Q(1)ni+1�1�diam�Q(2)ni+1�1�� T diam�Q(1)ni �diam�Q(2)ni � :We are done.2.5. Partial order in Crit(J(f)) and strati�
ations of 
losed forward-invariant sub-sets of J(f).Now we introdu
e in Crit(J(f)) a relation < whi
h, in view of Lemma 2.13 below, is anordering relation, by putting 
1 < 
2 () 
1 2 !(
2): (2.19)Sin
e 
2 � 
3 implies !(
2) = !(
3), if 
1 < 
2, then if 
1 < 
2 and 
2 � 
3, then 
1 < 
3Lemma 2.13. If 
1 < 
2 and 
2 < 
3, then 
1 < 
3.Proof. Indeed, we have 
1 2 !(
2) � !(
3).Lemma 2.14. There is no in�nite, linear subset of the partially ordered set (Crit(J(f)); <)Proof. Indeed, suppose on the 
ontrary that 
1 < 
2 < : : : is an in�nite, linearly or-dered subset of Crit(J(f)). Sin
e the number of equivalen
y 
lasses of relation � is equal to#(Crit(J(f))\R) whi
h is �nite, there exist two numbers 1 � i < j su
h that !(
i) = !(
j).But this implies that 
i 2 !(
j) = !(
i) and we get a 
ontradi
tion. The proof is �nished.The following observation is a reformulation of the 
ondition that J(f) 
ontains no re
urrent
riti
al points.Lemma 2.15. If 
 2 Crit(J(f)), then � (
 < 
).De�ne now indu
tively a sequen
e fCri(f)g of subsets of Crit(J(f)) by setting Cr0(f) = ;andCri+1(f) = 8<:
 2 Crit(J(f)) n i[j=0Crj(f) : if 
0 < 
; then 
0 2 Cr0(f) [ : : : [ Cri(f)9=;(2.20)Lemma 2.16. We have(a) If 
 2 Cri(f) and 
0 � 
, then 
0 2 Cri(f).
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) 9p�1 8i�p+1 Cri(f) = ;(d) Cr0(f) [ : : : [ Crp(f) = Crit(J(f))(e) Cr1(f) 6= ;Proof. The item (a) follows immediately from the de�nition of the sets Cri and the fa
t thattwo equivalent points have the same !-limit sets. By de�nition Cri+1(f) \ Sij=1 Crj(f) = ;,so disjointness in (b) is 
lear. As the number of equivalen
y 
lasses of the relation � is equalto #(Crit(J(f)) \ R whi
h is �nite, (a) and (b) imply (
). Take p to be minimal numbersatisfying (b) and suppose that 
 2 Crit(J(f)) n Spj=1 Crj(f). Sin
e Crp+1(f) = ;, thereexists 
0 =2 Spj=1 Crj(f) su
h that 
0 < 
. Iterating this pro
edure we would obtain an in�nitesequen
e of 
riti
al points 
1 = 
 > 
2 = 
0 > 
3 > : : : . But this 
ontradi
ts Lemma 2.14proving (d). Now part (e) follows from (
) and (2.20).As an immediate 
onsequen
e of the de�nition of the sequen
e fCri(f)g we get the followingsimple lemma.Lemma 2.17. If 
; 
0 2 Cri(f), then � (
 < 
0).For every point z 2 J(f) de�ne the setCrit(z) = f
 2 Crit(J(f)) : 
 2 !(z)gWe shall prove the following.Lemma 2.18. If z 2 J(f) n I1(f), then either z 2 Sn�0 f�n(
(f)) or !(z) n f1g is not
ontained in O+(f(Crit(z)) [ 
(f).Proof. Suppose that z =2 Sn�0 f�n(
(f)) [ I1(f). Then by (2.12) the set !(z) n f1g isnot 
ontained in 
(f). So, if we suppose that!(z) n f1g � O+(f(Crit(z)) [ 
(f); (2.21)then, as !(z) n f1g 6= ;, we 
on
lude that Crit(z) 6= ;. Let 
1 2 Crit(z). It means that
1 2 !(z) and as 
1 =2 
(f), it follows from (2.21) that there exists 
2 2 Crit(z) su
h thateither 
1 2 !(
2) or 
1 = fn1(
2) for some n1 � 1. Iterating this pro
edure we obtain anin�nite sequen
e f
jg1j=1 su
h that for every j � 1 either 
j 2 !(
j+1) or 
j = fnj(
j+1) forsome nj � 1. Consider an arbitrary blo
k 
k; 
k+1; : : : ; 
l su
h that 
j = fnj (
j+1) for everyk � j � l � 1 and suppose that l � (k � 1) � #(Crit(f) \ R). Then there are two indexesk � a < b � l su
h that 
a � 
b. Thenfna+na+1+:::+nb�1(
a) = fna+na+1+:::+nb�1(
b) = 
aand 
onsequently, as na + na+1 + : : : + nb�1 � b � a � 1, 
a is a super-attra
ting periodi
point of f . Sin
e 
a 2 J(f), this is a 
ontradi
tion, and in 
onsequen
e the length of the
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k 
k; 
k+1; : : : ; 
l is bounded above by #(Crit(f) \ R). Hen
e, there exists an in�nitesubsequen
e fnkgk�1 su
h that 
nk 2 !(
nk+1) for every k � 1. But then 
nk 2 !(
nk+1) forevery k � 1, or equivalently 
nk < 
nk+1 for every k � 1. This however 
ontradi
ts Lemma 2.14and we are done.De�ne now for every i = 0; 1; : : : ; pSi(f) = Cr0(f) [ : : : [ Cri(f)and for every i = 0; 1; : : : ; p� 1 
onsider 
0 2 S
2Cri+1(f) !(
)\Crit(J(f)). Then there exists
 2 Cri+1(f) su
h that 
0 2 !(
) whi
h equivalently means that 
0 < 
. Thus, by (2.20) weget 
0 2 Si(f). So [
2Cri+1(f)!(
) \ (Crit(J(f)) n Si(f)) = ; (2.22)Therefore, sin
e the set S
2Cri+1(f) !(
) � CI is 
ompa
t and Crit(J(f)) n Si(f) has no a

u-mulation point in CI, Æi = dist� [
2Cri+1(f)!(
);Crit(J(f)) n Si(f)� > 0 (2.23)Set � = minfÆi=2 : i = 0; 1; : : : ; p� 1g:Fix a 
losed forward-invariant subset F of J(f) and for every i = 0; 1; : : : ; p de�neFi(f) = fz 2 F : dist�O+(z);Crit(J(f)) n Si(f)� � �g:Let us now prove the following two lemmas 
on
erning the sets Fi(f).Lemma 2.19. F0 � F1 � : : : � Fp = F .Proof. Sin
e Si+1(f) � Si(f), the in
lusions Fi � Fi+1 is obvious. Sin
e Sp(f) = Crit(J(f)),it holds Jp(f) = J(f). We are done.Let PC(f) = O+(Crit(J(f)))We shall prove the following.Lemma 2.20. There exists l = l(f) su
h that for every i = 0; 1; : : : ; p� 1[
2Cri+1(f)!(
) � O+(f l(Cri+1(f))) � PC(f)i
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lusion is obvious regardless whatever l(f) is. In order to prove theright-hand one �x i 2 f0; 1; : : : ; p � 1g. By the de�nition of !-limit sets there exists li � 1su
h that for every 
 2 Cri+1(f) we have dist�O+(f li(
));S
2Cri+1(f) !(
)� < Æi=2. Thus,by (2.23), dist�O+(f li(
));Crit(J(f)) n Si(f)� > Æi=2. Sin
e � � Æi=2 and sin
e for everyz 2 O+(f li(
)) also O+(z) � O+(f li(
)), we therefore get O+(f l(Cri+1(f))) � PC(f)i. So,putting l(f) = maxfli : i = 0; 1; : : : ; p� 1g the proof is 
ompleted.2.6. Holomorphi
 inverse bran
hes. In this se
tion we prove the existen
e of suitableholomorphi
 inverse bran
hes-our basi
 tools in the next se
tion. SetSing�(f) = [n�0 f�n�
(f) [ Crit(J(f)) [ f�1(1)� and I�(f) = [n�1 f�n(1):We start with the following.Proposition 2.21. If z 2 J(f) n Sing�(f), then there exist a positive number �(z), anin
reasing sequen
e of positive integers fnjgj�1, and a point x = x(z) 2 !(z) n (
(f) [!(Crit(z))) su
h that x 6=1 if z =2 I1(f), limj!1 fnj(z) = x andComp(z; fnj(z); fnj ; �(z)) \ Crit(fnj) = ;for every j � 0.Proof. Suppose �rst that z 2 I1(f)nSing�(f). Sin
e O+(Crit(f)) is a 
ompa
t subset of CI,we 
on
lude that for all n large enough dist(fn(z); O+(Crit(f))) � 1. We are therefore donetaking x =1 and �(z) = 1. So, suppose that z =2 I1(f). This means that !(z) n f1g 6= ;.Suppose that !(z)nf1g is unbounded. Sin
e O+(Crit(f)) is a 
ompa
t subset of CI, there thusexists x 2 !(z) n f1g su
h that dist(x;O+(Crit(f))) � 2 and we are done �xing a sequen
efnjg1j=1 su
h jfnj(z)�xj � 1 and taking �(z) = 1. So, assume that !(z) = F[f1g where F �CI is a 
ompa
t set. Then F \f�1(1) 6= ; and �x x 2 F \f�1(1). Again, sin
e O+(Crit(f)) isa 
ompa
t subset of CI and sin
e f�O+(Crit(f))� � O+(Crit(f)), we see that x =2 O+(Crit(f))and we are done taking �(z) = dist(x;O+(Crit(f))). So suppose �nally that !(z) is a 
ompa
tsubset of CI. In view of Lemma 2.18 there exists x 2 !(z) n (
(f) [ O+(f(Crit(z)) [ f1g).The number � = dist(x;
(f) [ O+(f(Crit(z)))=2 is positive sin
e !(Crit(z)) is a 
ompa
tsubset of CI and 
(f) is �nite. Then there exists an in�nite in
reasing sequen
e fmjgj�1 su
hthat limj!1 fmj(z) = x (2.24)and B(fmj (z); �) \ [n�1 fn(Crit(z)) = ;: (2.25)
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laim that there exists �(z) su
h that for every j � 1 large enoughComp(z; fmj (z); fmj ; �(z)) \ Crit(fmj ) = ;: (2.26)Otherwise we would �nd an in
reasing to in�nity subsequen
e fmjig of fmjg and a de
reasingto zero sequen
e of positive numbers �i su
h that �i < � andComp(z; fmji (z); fmji ; �i) \ Crit(fmji ) 6= ;Let ~
i 2 Comp(z; fmji (z); fmji ; �i) \ Crit(fmji ). Then there exists 
i 2 Crit(f) su
h thatf pi(~
i) = 
i for some 0 � pi � mji � 1. Sin
e the set f�1(x) is at a positive distan
efrom 
(f) and sin
e �i ! 0, it follows from Theorem 2.6 that limi!1 ~
i = z. Sin
e z =2Sn�0 f�n(Crit(f)), it implies that limi!1 pi = 1. But then using Lemma 2.6 again andthe formula f pi(~
i) = 
i we 
on
lude that the set of all a

umulation points of the sequen
ef
ig is 
ontained in !(z). Hen
e, passing to a subsequen
e, we may assume that the limit
 = limi!1 
i exists. But sin
e 
 2 !(z), sin
e !(z) is a 
ompa
t subset of CI and sin
e1 is theonly a

umulation point of Crit(f), we 
on
lude that the sequen
e 
i is eventually 
onstant.Thus, dropping some �nite number of initial terms, we may assume that this sequen
e is
onstant. This means that 
i = 
 for all i = 1; 2; : : : . Sin
e 
 = f pi(~
i), we getjfmji (z)� fmji�pi(
)j = jfmji (z)� fmji (~
i)j < �i:Sin
e limi!1 �i = 0 and sin
e !(z) is a 
ompa
t subset ofCI, we 
on
lude that limi!1 jfmji (z)�fmji�pi(
)j = 0. Sin
e 
 2 Crit(z), in view of (2.25) this implies that mji � pi � 0 for all ilarge enough. So, we get a 
ontradi
tion as 0 � pi � mji � 1 and (2.26) is proved. We aredone.Sin
e if z 2 J(f) n (Sing�(f) [ I1(f)), the limit points of the normal familyf�njz : B(x(z); �(z)=2)! CI
onsist only of 
onstant fun
tions. Therefore we get the following.Corollary 2.22. If z 2 J(f) n (Sing�(f) [ I1(f)) and the sequen
e fnjg1j=1 is taken fromProposition 2.21, thenlim supn!1 j(fn)�(z)j = lim supn!1 j(fn)0(z)j = limn!1 j(fnj)0(z)j = +1:In addition, if we assume only that z 2 J(f) n Sing�(f), thenlim supn!1 j(fn)0(z)j =1:3. Conformal MeasuresIn this se
tion we deal in detail with the existen
e, uniqueness and some properties of 
on-formal measures. Let HD denote the Hausdor� dimension, Ht and l2 denote respe
tively
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onsidered withrespe
t to the spheri
al metri
 on CI. Throughout this se
tion and the entire paper we seth = HD(J(f)):We begin with the following.Lemma 3.1. If m is a t-
onformal measure for f : J(f)! J(f) [ f1g, then t � HD(J(f))and HtjJ(f) is absolutely 
ontinuous with respe
t to m.Proof. Fix z 2 J(f) n (Sing�(f) [ I1(f)). Let �(z) > 0, x 2 !(z) n f1g and the sequen
efnjgj�1 be taken from Proposition 2.21. It then follows from this proposition and Koebe'sDistortion Theorem, I(spheri
al version) thatf�njz (B(fnk(z); �(z)=2)) � B(z; j(fnj)�(z)j�1�(z)=2):Applying again this Koebe's Distortion Theorem and 
onformality of the measure m, we getfor all j � 1 large enoughm(B(z; j(fnj )0(z)j�1�(z)=2)) � j(fnj)�(z)j�tm(B(fnj(z); �(z)=2))� j(fnj)�(z)j�tm(B(x; �(z)=4))� j(fnj)0(z)j�tm(B(x; �(z)=4))= (2�(z)�1)tm(B(x; �(z)=4))�j(fnj)�(z)j�1�(z)=2)�t;where the se
ond 
omparability sign depends on jzj and holds for all j � 1 large enough sothat fnj(z) is suÆ
iently 
lose to x. In parti
ularlim supr!0 m(B(z; r))rt � R(z) > 0;where R(z) = (2�(z)�1)tm(B(x; �(z)=4)). Therefore, puttingXk = fz 2 J(f) n Sing�(f) : jzj � k and R(z) � 1=kgwe have S1k�1Xk = J(f) n (Sing�(f) [ I1(f)) and in view of Theorem 4.3(1) (whi
h is ofpurely geometri
 
hara
ter independent of our 
onsiderations here), dHt=dm � b(2)k on Xk.In parti
ular Ht � m on J(f)n(Sing�(f)[I1(f)). Hen
e HD�J(f)n(Sing�(f)[I1(f))� � t.By Theorem 1 and Theorem 2 in [12℄), HD(J(f)) > HD(I1(f)). Thus HD(J(f)) = HD�J(f)n(Sing�(f) [ I1(f))� � t and Ht � m on J(f).We will need in the sequel the following result whi
h is interesting itself.Lemma 3.2. If m is a t-
onformal measure for f : CI ! CI, then m(I1(f)n I�(f)) = 0. Evenmore, there exists R > 0 su
h thatm(fz : lim infn!1 jfn(z)j > Rg) = 0:



18 JANINA KOTUS AND MARIUSZ URBA�NSKIProof. Let b be a pole of f : CI ! CI. We shall obtain �rst an upper estimate on m(Bb(R))similar to the se
ond inequality in (2.4). And indeed, 
overing BR n f1g by two simply
onne
ted domainsB+R = fz 2 BR n f1g : Imz > 0g and B1R = fz 2 BR n f1g : Imz < 1gwe obtain m(Bb(R) n fbg) � qbXj=1 ZB+R j(f�1b;B+R ;j)�jtdm+ qbXj=1 ZB1R j(f�1b;B�R ;j)�jtdm:Using now (2.3), we obtainZB+R j(f�1b;B+R ;j)�jtdm � ZB+R  11 + jbj2 jzj qb�1qb !t dm(z) = 1(1 + jbj2)t ZB+R jzj qb�1qb tdm(z)� (1 + jbj2)�t ZB+R jzj q�1q tdm(z):Looking at the �rst line of this formula with a pole b of maximal multipli
ity, we see that theintegral RB+R jzj q�1q tdm(z) is �nite and even more:limR!1 ZB+R jzj q�1q tdm(z) = 0: (3.1)Similarly is �nite the integral RB1R jzj q�1q tdm(z) and it also 
onverges to 0 as R!1. Putting�R = max(ZB+R jzj q�1q tdm(z); ZB1R jzj q�1q tdm(z))we therefore 
on
lude thatm(Bb(R) n fbg) � 2q�R(1 + jbj2)�t � 2q�Rjbj�2t: (3.2)Now the argument goes essentially in the same way as in [12℄. We present it here for the sakeof 
ompleteness. We take R2 � R1 de�ned in Se
tion 2.1 so large thatLR� 1qb < R0 (3.3)for all poles b 2 BR2 and all R � R2. Given two poles b1; b2 2 B2R2 we denote by f�1b2;b1;j :B(b1; R0) ! CI all the holomorphi
 inverse bran
hes f�1b2;B(b1;R0);j. It follows from (2.4) and(3.3) that f�1b2;b1;j�B(b1; R0)� � Bb2(2R2 �R0) � Bb2(R2) � B(b2; R0) (3.4)Set IR(f) = fz 2 CI : 8n�0jfn(z)j > Rg:
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e the series Pb2f�1(1)nf0g jbj�s 
onverges for all s > 2 and sin
e by Lemma 3.1 andTheorem 3 from [12℄, t � h > 2qq+1 there exists R3 � R2 su
h thatqM t Xb2BR3\f�1(1) jbj� q+1q t � 1=2: (3.5)Consider R � 4R3. Put I = f�1(1) \B(R=2)Sin
e R=2 +R0 � R=2 +R3 < R=2 +R=2 = R, it follows from (3.4), (2.4) and (3.3) that forevery l � 1 the family Wl de�ned asnf�1bl;bl�1;jl Æ f�1bl�1;bl�2;jl�1 Æ : : : Æ f�1b2;b1;j2 Æ f�1b1;b0;j1�Bb0(R=2) n f�1(1)�o ;where bi 2 I : 1 � ji � qbi ; i = 0; 1; : : : ; l, is well-de�ned and 
overs IR(f). Applying (2.3)and (2.4) we may now estimate as follows.m(IR(f)) �� Xbl2I qblXjl=1 : : :Xb12I qb1Xj1=1 Xb02Im �f�1bl;bl�1;jl Æ f�1bl�1;bl�2;jl�1 Æ : : : Æ f�1b2;b1;j2 Æ f�1b1;b0;j1�Bb0(R=2)��� Xbl2I qblXjl=1 : : :Xb12I qb1Xj1=1 Xb02I jj�f�1bl;bl�1;jl Æ f�1bl�1;bl�2;jl�1 Æ : : : Æ f�1b2;b1;j2 Æ f�1b1;b0;j1��jBb0 (R=2)jjt1m�Bb0(R=2)�� Xbl2I qblXjl=1 : : :Xb12I qb1Xj1=1 Xb02IM lt 0BB� jbl�1j qbl�1qbljblj2 1CCAt � 0BB� jbl�2j qbl�1�1qbl�1jbl�1j2 1CCAt : : :0BB� jb0j qb1�1qb1jb1j2 1CCAt (2q�R)t 1jb0j2t= (2q�R)tM lt Xbl2I qblXjl=1 : : :Xb12I qb1Xj1=1 Xb02I jblj�2t�jbl�1j� q+1q t : : : jb0j� q+1q t�� (2q�R)tM lt Xbl2I qblXjl=1 : : :Xb12I qb1Xj1=1 Xb02I�jblj� q+1q tjbl�1j� q+1q t : : : jb0j� q+1q t�� (2q�R)tM lt 0�Xb2I jbj� q+1q t1Al ql� (2q�R)t0�qM t Xb2BR3\f�1(1) jbj� q+1q+ t1AlApplying (3.5) we therefore get m(IR(f)) � (2q�R)t2�l. Letting l ! 1 we therefore getm(IR(f)) = 0. Sin
e m Æ f�1 � m and sin
e fz : lim infn!1 jfn(z)j > Rg = S1j=0 f�j(IR(f)),we 
on
lude that m�fz : lim infn!1 jfn(z)j > Rg� = 0. We are done.



20 JANINA KOTUS AND MARIUSZ URBA�NSKIDeveloping the general s
heme from [7℄ we shall now prove in several steps the existen
e ofan h-
onformal measure. In order to begin we 
all Y � f1g [ 
(f) [ Sn�1 fn(Crit(J(f))) a
rossing set if Y is �nite and the following two 
onditions are satis�ed.(y1) 1 2 Y .(y2) Y \ ffn(x) : n � 1g is a singleton for all x 2 Crit(J(f)).(y3) Y \ Crit(f) = ;.(y4) 
(f) � Y .Sin
e f(Crit(f)) is �nite, 
rossing sets do exist. Let V � CI be an open neighbourhood of Y .We de�ne K(V ) = fz 2 J(f) : fn(z) =2 V 8(n � 0)g:Obviously f(K(V )) � K(V ) and sin
e f : CI ! CI is 
ontinuous and V is open, we see thatK(V ) is a 
losed subset of CI. Sin
e in addition K(V ) � CI n V , we 
on
lude that K(V ) is a
ompa
t subset of CI. Fix w 2 K(V ) and t � 0. For all n � 1 
onsider the setsEn = �f jK(V )��n (w)and the number 
(f) = lim supn!1 1n log Xx2En j(fn)�(x)j�t:Sin
e the 
ontinuous map f jK(V ) : K(V ) ! K(V ) has no 
riti
al points, all the sets K(V )are (n; Æ)-separated, whereÆ = infy2K(V )fminfjz � xj : x; z 2 �f jK(V )��1 (y) and x 6= zgg > 0:Therefore 
(f) � P �f jK(V );�t log jf �j� ; (3.6)where the right-hand side of this inequality is the topologi
al pressure of the potential�t log jf �j with respe
t to the dynami
al system f jK(V ) : K(V ) ! K(V ). Denote this pres-sure simply by P(f; V ). We 
all a Borel set A � CI spe
ial if jA is inje
tive. Lemma 3.1 and3.2 from [7℄ (
omp. [6℄) enlarged by the reasoning started from the se
ond paragraph of theproof of Lemma 5.3 in [7℄ 
an be now formulated together as follows.Lemma 3.3. For every t � 0 there exists a Borel probability measure mV;t supported on K(V )su
h that(a) mV;t(f(A)) � RA e
(f)jf �jtdmV;t for every spe
ial set A � CI and(b) mV;t(f(A)) = RA e
(f)jf �jtdmV;t for every spe
ial set A � CI n V .We will need the following te
hni
al lemma.Lemma 3.4. The fun
tion t 7! 
(f) is 
ontinuous, 
(0) > 0 and 
�1(0) \ (0; h℄ 6= ; if V hasa suÆ
iently small diameter.
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tion 
(f) follows from the fa
t that 0 < infK(V )fjf �jg �supK(V )fjf �jg < 1. Sin
e periodi
 points of f are dense in J(f), K(V ) 6= ; for all V suÆ-
iently small. Also if V is suÆ
iently small and w 2 K(V ), then #En � 2n and 
onsequently
(0) � log 2 > 0. Sin
e 
(0) > 0 and sin
e the fun
tion 
(f) is 
ontinuous, in order to provethe last 
laim of our lemma, it suÆ
es to show that 
(f) � 0 for all t � h. So, suppose onthe 
ontrary that 
(f) > 0 for some t � h. It follows from (3.6) thatP(f; V ) > 0: (3.7)Sin
e the proof of Lemma 4.1 and Corollary 4.2 from [7℄ go word by word in our 
ontext,we 
on
lude that the Lyapunov exponent �� = R log jf �jd� � 0 for every Borel probabilityf -invariant measure � supported on K(V ). It follows from (3.7) and the variational prin
iplefor topologi
al pressure that there exists a Borel probability f -invariant measure � supportedon K(V ) su
h that h�(f) � t�� > 0. Sin
e �� � 0, this implies that h�(f) > 0 and dueto Ruelle's inequality �� > 0. Hen
e, applying Przyty
ki's-Manne volume lemma (see [18℄,
omp. [14℄), we 
an write t < h�(f)�� = HD(�) � hand this 
ontradi
tion �nishes the proof.Let s(V ) = minf
�1(0) \ (0; h℄g > 0:Combining Lemma 3.3 and Lemma 3.4 we get the following.Lemma 3.5. There exists a Borel probability measure mV supported on K(V ) su
h that(a) mV (f(A)) � RA jf �js(V )dmV for every spe
ial set A � CI and(b) mV (f(A)) = RA jf �js(V )dmV for every spe
ial set A � CI n V .Sin
e the sequen
e n 7! s(Bs(Y; 1=n)) is monotoni
ally non-de
reasing, pro
eeding similarlyas in the proof of Lemma 5.4 from [7℄ (note that in the pla
e where Lemma 3.3 from [7℄ isinvoked, only the �rst inequality in (d) is needed; in parti
ular mY (1) = 0, where mY is anarbitrary weak a

umulation point of the sequen
e mBs(Y;1=n) we obtained the following.Lemma 3.6. For every s(Y ), an a

umulation point of the sequen
e s(Bs(Y; 1=n)), s(Y ) 2(0; h℄ and there exists a Borel probability measure mY (an appropriate week a

umulationpoint of the sequen
e fmBs(Y;1=n)gn�1) supported on J(f) su
h that(a) mY (f(A)) � RA jf �js(Y )dmY for every spe
ial set A � CI and(b) mY (f(A)) = RA jf �jS(Y )dmY for every spe
ial set A � CI n Y .The next fa
t proven in this se
tion is provided by the following.
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rossing set Y , m = mY is an s(Y )-
onformal measure for f : J(f)!J(f) [ f1g, s(Y ) = h, and all atoms of m are 
ontained in I�(f) [ Sn�0 f�n(Crit(J(f)).Proof. Sin
e we already know that m(1) = 0 and sin
e Y \ (Sing�(f) [ I1(f)) � 
(f) [f1g, it follows from Lemma 3.6(b) and Corollary 2.22 thatm(Y n 
(f)) = 0: (3.8)We shall show now that m(
(f)) = 0. And indeed, �x ! 2 
(f). Take a � 1 so largethat fa(!) = ! and (fa)0(!) = 1. It then follows from (2.13) that there exist a 
ompa
t setF! � B(!; �) n f!g and a 
onstant C � 1 su
h that for every k � 1C�1k� p(!)+1p(!) � j(f�ak! )�(z)j � Ck� p(!)+1p(!) (3.9)and for every n � 1 there exists kn � 1 su
h thatB(!; 1=n) � 1[j=kn f�aj! (F!) and limn!1kn =1: (3.10)It follows from Lemma 3.6(b), (3.9) and the fa
t that the family ff�an! (F!)gn�1 is of boundedmultipli
ity, that Xn�1n� p(!)+1p(!) s(Y ) <1:In parti
ular p(!)+1p(!) s(Y ) > 1. Denote mjBs(Y;1=n) by mn and s(Bs(Y; 1=n)) by sn. Sin
elimn!1 sn = s(Y ), we see that for every n � 1 large enough, say n � n0,p(!) + 1p(!) sn > 1 + �:for some � > 0. It therefore follows from Lemma 3.6(a), (3.10) and (3.9) that for all n � n0and all l � 1 mn(B(!; 1=l)) � 1Xj=klmn�f�aj! (F!)� � C p(!)+1p(!) sn 1Xj=kl j� p(!)+1p(!) sn� C p(!)+1p(!) s(Y ) 1Xj=kl j�(1+�):Consequently m(B(!; 1=l)) � C p(!)+1p(!) s(Y ) 1Xj=kl j�(1+�):Sin
e liml!1 kl =1, we infer m(
(f)) = 0:Combining this and (3.8), we see that m(Y ) = 0. Sin
e f(
(f)) = 
(f), in order to proves(Y )-
onformality of the measure m, it therefore suÆ
es to show that m(f(Y n 
(f))) =
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(f) [ f1g), then due to our de�nition of Y , y =2 Sing�(f) and theformula m(f(y)) = 0 immediately follows from Corollary 2.22, the formula m(fn(f(y))) �j(fn)�(y)js(Y )m(f(y)) and the stated in Lemma 3.6 fa
t that s(Y ) > 0. Thus the s(Y )-
onformality of m is proven and in addition all the atoms of m must be 
ontained in J(f)n
.In view of Lemma 3.6 and Lemma 3.1, s(Y ) = h. Applying now Lemma 3.2 and Corollary 2.22we see that all atoms of m must be 
ontained in I�(f) [ Sn�0 f�n(Crit(J(f)). The proof is
omplete. 4. Hausdorff and Pa
king MeasuresLet �h denote the pa
king measure 
onsidered with respe
t to the spheri
al metri
 on CI. Weshall prove in this se
tion that the 
onformal measure m is atomless and the following mainresult.Theorem 4.1. Let f : CI ! CI be a non-re
urrent ellipti
 fun
tion. If h = HD(J(f)) = 2,then J(f) = CI. So suppose that h < 2. Then(a) Hh(J(f)) = 0.(b) �h(J(f)) > 0.(
) �h(J(f)) =1 if and only if 
(f) 6= ;.As an immediate 
onsequen
e of this theorem we get the following.Corollary 4.2. If 
(f) = ;, then the Eu
lidean h-dimensional pa
king measure �he is �niteon ea
h bounded subset of J(f).4.1. Preliminaries from Geometri
 Measure Theory. In this se
tion we 
olle
t somefa
ts from the geometri
 measure theory as well as we list without proofs some more te
hni
alfa
ts taken from Se
tion 2, Se
tion 3 and Se
tion 4 of [21℄. Given a subset A of a metri
 spa
e(X; d), a 
ountable family fB(xi; ri)g1i=1 of open balls 
entered at the set A is said to be apa
king of A if and only if for any pair i 6= jd(xi; xj) > ri + rj:Given t � 0, the t-dimensional outer Hausdor� measure Ht(A) of the set A is de�ned asHt(A) = sup�>0 infn 1Xi=1 rtiowhere in�mum is taken over all 
overs fB(xi; ri)g1i=1 of the set A by open balls 
entered at Awith radii whi
h do not ex
eed �.



24 JANINA KOTUS AND MARIUSZ URBA�NSKIThe t-dimensional outer pa
king measure �t(A) of the set A is de�ned as�t(A) = inf[Ai=AnXi �t�(Ai)o(Ai are arbitrary subsets of A), where�t�(A) = sup�>0 supn 1Xi=1 rtio:Here the se
ond supremum is taken over all pa
kings fB(xi; ri)g1i=1 of the set A by open balls
entered at A with radii whi
h do not ex
eed �. These two outer measures de�ne 
ountableadditive measures on Borel �-algebra of X.The de�nition of the Hausdor� dimension HD(A) of A is the followingHD(A) = infft : Ht(A) = 0g = supft : Ht(A) =1g:Let � be a Borel probability measure on X whi
h is positive on open sets. De�ne the fun
tion� = �t(�) : X � (0;1)! (0;1) by �(x; r) = �(B(x; r))rtThe following two theorems (see [DU5℄) are for our aims the key fa
ts from geometri
 measuretheory. Their proofs are an easy 
onsequen
e of Besi
ovi�
 
overing theorem (see [G℄).Theorem 4.3. Let X = IRd for some d � 1. Then there exists a 
onstant b(n) dependingonly on n with the following properties. If A is a Borel subset of IRd and C > 0 is a positive
onstant su
h that(1) for all (but 
ountably many) x 2 Alim supr!0 �(x; r) � C�1;then for every Borel subset E � A we have Ht(E) � b(n)C�(E) and, in parti
ular,Ht(A) <1.or(2) for all x 2 A lim supr!0 �(x; r) � C�1;then for every Borel subset E � A we have Ht(E) � C�(E).Theorem 4.4. Let X = IRd for some d � 1. Then there exists a 
onstant b(n) dependingonly on n with the following properties. If A is a Borel subset of IRd and C > 0 is a positive
onstant su
h that



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 25(1) for all x 2 A lim infr!0 �(x; r) � C�1;then for every Borel subset E � A we have �t(E) � Cb(n)�1�(E),or(2) for all x 2 A lim infr!0 �(x; r) � C�1;then �t(E) � C�(E) and, 
onsequently, �t(A) <1.(1') If � is non{atomi
 then (1) holds under the weaker assumption that the hypothesis ofpart (1) is satis�ed on the 
omplement of a 
ountable set.Assume now that � is a Borel measure on CI �nite on bounded sets. These two theoremsmotivated us in [21℄ to introdu
e the following notions.De�nition 4.5. Given r > 0 and L > 0 a point x 2 CI is said to be (r; L)� t:upper estimableif �(x; r) � L and is said to be (r; L) � t:lower estimable if �(x; r) � L. We will frequentlyabbreviate the notation writing (r; L)-u.e. for (r; L) � t:-upper estimable and (r; L)-l.e. for(r; L)�t:-lower estimable. We also say that the point x is t-upper estimable (t-lower estimable)if it is (r; L) � t:upper estimable ((r; L) � t:lower estimable) for some L > 0 and all r > 0suÆ
iently small.We will also need the following more te
hni
al notion.De�nition 4.6. Given r > 0, � > 0 and L > 0 the point x 2 X is said to be (r; �; L) �t:strongly lower estimable, or shorter (r; �; L)-s.l.e. if �(B(y; �r)) � Lrt for every y 2 B(x; r).We 
olle
t now from [21℄ the te
hni
al fa
ts about the notions de�ned above.Lemma 4.7. If z is (r; �; L)-s.l.e., then every point x 2 B(z; r=2) is (r=2; 2�; 2tL)-s.l.e..Lemma 4.8. If x is (r; �; L)-s.l.e., then for every 0 < u � 1 it is (ur; �=u; Lu�t)-s.l.e..Lemma 4.9. If � is positive on nonempty open sets, then for every r > 0 there exists E(r) � 1su
h that every point x 2 X is (r; E(r))-u.e. and (r; E(r)�1)-l.e..
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onformal maps we 
onsider now the situation where H : U1 ! U2 is an analyti
map of open subsets U1, U2 of the 
omplex plane CI. We say that given t � 0, the Borelmeasure � �nite on bounded sets of CI is a Eu
lidean semi t-
onformal if and only if�(H(A)) � ZA jH 0jt d�for every Borel subset A of U1 su
h that HjA is one-to-one and is 
all t-
onformal if the \�"sign 
an be repla
ed by an \=" sign.Lemma 4.10. Let � be a Eu
lidean semi t-
onformal measure. Suppose that D � CI is anopen set, z 2 D and H : D! CI is an analyti
 map whi
h has an analyti
 inverse H�1z de�nedon B(H(z); 2R) for some R > 0. Then for every 0 � r � RK�t�(B(z;K�1rjH 0(z)j�1)) � jH 0(z)j�t�((B(H(z); r))):If, in addition, � is t-
onformal, then alsojH 0(z)j�t�((B(H(z); r))) � Kt�(B(z;KrjH 0(z)j�1)):Lemma 4.11. Suppose that � is a Eu
lidean t-
onformal measure. If the point H(z) is(r; �; L)-s.l.e., where r � R=2 and � � 1, then the point z is (K�1jH 0(z)j�1r;K2�; L)-s.l.e..Lemma 4.12. Suppose that � is a Eu
lidean t-
onformal measure. Let 
 be a 
riti
al pointof an analyti
 map H : D ! CI. If 0 < r � R(H; 
) and H(
) is (r; L)-l.e., then 
 is((Ar)1=q; A�2tL)-l.e..Lemma 4.13. Let 
 be a 
riti
al point of an analyti
 map H : D ! CI. Let � be a Eu
lideansemi t-
onformal measure su
h that �(
) = 0. If 0 < r � R(H; 
) and H(
) is (s; L)-u.e. forall 0 < s � r, then 
 is �(A�1r)1=q; q(2A2)t(2t=q � 1)�1L�-u.e..Note that the proof of this lemma is the same as the proof of Lemma 3.4 in [21℄. The onlymodi�
ation is that the equality sign in the �rst line of the �rst displayed formula of thisproof is to be repla
ed by the \�" sign.Lemma 4.14. Suppose that � is a Eu
lidean t-
onformal measure. Let 
 be a 
riti
al pointof an analyti
 map H : D ! CI. If 0 < r � 13R(H; 
), 0 < � � 1 and H(
) is (r; �; L)-s.l.e,then 
 is ((A�1r)1=q; ~�; ~L)-s.l.e, where ~� = (2q+1KA2�)1=q and ~L = LminfK�t; (A2�) 1�qq tg.
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e now that if m is a semi t-
onformal measure for f : J(f) ! J(f) [ f1g, then themeasure me = (1 + jzj2)tm is Eu
lidean semi t-
onformal, i.e.me(f(A)) � ZA jf 0jtdmefor every Borel set A � J(f) su
h that f jA is 1-to-1. If m is t-
onformal, then so is me inthe obvious sense. The measure me is 
alled the Eu
lidean version of m. Obviously me isequivalent to m and is �nite on bounded subsets of CI. From now on throughout the entirepaper we �x a 
rossing set Y and we 
onsider an open neighbourhood V � CI of Y su
h thatCrit(f) \ V = ; and the 
losure of V is disjoint from at least one fundamental parallelogramof f . A semi t-
onformal measure m is said to be almost t-
onformal ifm(f(A)) = ZA jf 0jtdmfor every Borel set A � J(f) su
h that f jA is 1-to-1 and A \ V = ;. Hen
e for every Borelset A su
h that f jA is 1-to-1 and A \ V = ; and for every w 2 �, we haveZA jf 0jtdme = me(f(A)) = me(f(A+ w)) � ZA+w jf 0jtdmeand the last inequality sign be
omes an equality either if in addition (A + w) \ V = ; or ifm is a t-
onformal measure and we assume only that f jA is 1-to-1. Sin
e f 0 is periodi
 withrespe
t to the latti
e �, all the above statements and assumptions lead to the following.Lemma 4.15. For every w 2 �, every Borel set A � CI su
h that A\V = ; and every almostt-
onformal measure m me(A+ w) � me(A):If either in addition (A+w) \ V = ; or if m is h-
onformal and we assume only that f jA is1-to-1, then this inequality be
omes an equality. For every r > 0 there exists M(r) 2 (0;1)independent of any almost t-
onformal measure m su
h thatme(F ) �M(r): (4.1)for every Borel set F � CI with the diameter � r. If in addition m is h-
onformal, then forevery R > 0 there exist 
onstants Q(R) and Qh(R) su
h thatme(Be(x; r)) � Q(R)r2 � Qh(R)rh (4.2)for all x 2 J(f) and all r � R.The following lemma is proven in the same way as the 
orresponding lemma from Se
tion 4of [21℄.



28 JANINA KOTUS AND MARIUSZ URBA�NSKILemma 4.16. Suppose that me is a Eu
lidean t-
onformal measure. Then for every R > 0and every 0 < � � 1 there exists L = L(!;R; �) > 0 su
h that for every 0 < r � R everypoint ! 2 
(f) is (r; �; L)-�t(!):s.l.e. with respe
t to the measure me.4.2. Conformal Measure and Holomorphi
 Inverse Bran
hes.In this subse
tion we prove two te
hni
al propositions modeled on Proposition 6.3 and Propo-sition 6.4 from [21℄. Let m be an almost t-
onformal measure and let me be its Eu
lideanversion. The upper estimability and strongly lower estimability will be 
onsidered in thisse
tion with respe
t to the measure me. When we speak about lower estimability we assumemore, that the measure m is t-
onformal. Sin
e the number of paraboli
 points is �nite,passing to an appropriate iteration, we assume in this and the next se
tion without loosinggenerality that all paraboli
 points of f are simple. Fix a forward f -invariant 
ompa
t subsetF of CI. Put jjf 0jjF = supfjf 0(z)j : z 2 Fg:Re
all that � was de�ned in (2.11) and that � > 0 is so small as required in Lemma 2.3.Proposition 4.17. Fix a forward f -invariant 
ompa
t subset F of CI. Let z 2 F , � > 0 andlet 0 < r � ��jjf 0jj�1F ��1 be a real number. Suppose that at least one of the following two
onditions is satis�ed: z 2 F n [n�0 f�n(Crit(J(f))or z 2 F and r > ��jjf 0jj�1F ��1 inffj(fn)0(z)j�1 : n = 1; 2; : : :g:Then there exists an integer u = u(�; r; z) � 0 su
h that rj(fu)0(z)j � ��1�� and the followingfour 
onditions are satis�eddiam�Comp(f j(z); fu(z); fu�j; rj(fu)0(z)j)� � � (4.3)for every j = 0; 1; : : : ; u. For every � > 0 there exists a 
ontinuous fun
tion t 7! Bt =Bt(�; �) > 0, t 2 [0;1), (independent of z, n, and r) and su
h that if fu(z) 2 B(!; �) forsome ! 2 
(f), then fu(z) is (�rj(fu)0(z)j; Bt)� �t(!):u.e. (4.4)and there exists a fun
tion Wt = Wt(�; �) : (0; 1℄ ! (0; 1℄ (independent of z, n, and r) su
hthat if fu(z) 2 B(!; �) for some ! 2 
(f), then for every � 2 (0; 1℄fu(z) is (�rj(fu)0(z)j; �;Wt(�))� �t(!):s.l.e. (4.5)If fu(z) =2 B(
(f); �), then formulas (4.4) and (4.5) are also true with �t(!) repla
ed by t:(4.6)



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 29Proof. Suppose �rst that supf�rj(f j)0(z)j : j � 1g > �� jjf 0jj�1F and let n = n(�; z; r) � 0be a minimal integer su
h that �rj(fn)0(z)j > �� jjf 0jj�1F : (4.7)Then n � 1 (due to the assumption imposed on r) and also�rj(fn)0(z)j � �� (4.8)If fn(z) =2 B(
(f); �) set u = u(�; r; z) = n. The items (4.4), (4.5) and (4.6) are obvious inview of our assumptions imposed on F .So suppose that fn(z) 2 B(
(f); �), say fn(z) 2 B(!; �), ! 2 
(f). Let 0 � k = k(�; z; r) �n be the smallest integer su
h that f j(z) 2 B(
(f); �) for every j = k; k+1; : : : ; n. Considerall the numbers ri = jf i(z)� !jj(f i)0(z)j�1where i = k; k + 1; : : : ; n. By (4.7) we havern = jfn(z)� !jj(fn)0(z)j�1 � �jjf 0jjF��1��1�r = jjf 0jjF ��1�rand therefore there exists a minimal k � u = u(�; r; z) � n su
h that ru � jjf 0jjF ��1�r. Inother words jfu(z)� !j � jjf 0jjF��1�rj(fu)0(z)j � jjf 0jjF ��1��1��rj(fu)0(z)j (4.9)If supf�rj(f j)0(z)j : j � 1g � �� jjf 0jj�1F , then it follows from Corollary 2.22 that z 2Sj�0 f�j(
(f)). De�ne then u(�; z; r) = k(�; z; r) to be the minimal integer j � 0 su
hthat f j(z) 2 
(f) and put ! = fu(z). Noti
e that in this 
ase formulas (4.8) and (4.9) arealso satis�ed. Our further 
onsiderations are valid in both 
ases. First note that by (4.9) wehave B(fu(z); �rj(fu)0(z)j) � B(!; (1 + jjf 0jjF ��1��1�)�rj(fu)0(z)j) (4.10)and in view of Lemma 2.5 and (4.8)me�B(fu(z);�rj(fu)0(z)j)� �� C(!; (1 + jjf 0jjF��1��1�)�����1)(1 + jjf 0jjF ��1��1�)�t(!)(�rj(fu)0(z)j)�t(!)So, item (4.4) is proved. Also applying (4.9), Lemma 4.16, Lemma 4.7 and (4.8) we see thatthe point fu(z) is�jjf 0jjF ��1�rj(fu)0(z)j; �� jjf 0jj�1F ���1; 2�t(!)L(!; 2jjf 0jjF�; ��(2jjf 0jjF )�1���1)�-s.l.e.So, if jjf 0jjF ��1� � �, then by Lemma 4.8, fu(z) is��rj(fu)0(z)j; �; (2jjf 0jjF ��1���1)�t(!)L(!; 2jjf 0jjF�; ��(2jjf 0jjF )�1�)��1�-s.l.eIf instead jjf 0jjF ��1� � �, then again it follows from (4.9), Lemma 4.16, Lemma 4.7 and (4.8)that the point fu(z) is ��rj(fu)0(z)j; �; 2�t(!)L(!; 2����1�; �=2)�-s.l.e.. So, part (4.5) is alsoproved.



30 JANINA KOTUS AND MARIUSZ URBA�NSKIIn order to prove (4.3) suppose �rst that u = k. In parti
ular this is the 
ase if z 2Sj�0 f�j(
(f)). ThenComp(fk�1(z); fk(z); f; rj(fu)0(z)j) � Comp(fk�1(z); fk(z); f; ��)and by the 
hoi
e of k and (2.9) we have fk�1(z) =2 B(
(f); �). Therefore (4.3) follows fromthe 
hoi
e of � (see (2.17)) and (2.16).If u > k (so the �rst 
ase holds), then ru�1 > jjf 0jjF ��1�r and by (2.16) we getru = jfu(z)� !jjfu�1(z)� !j jf 0(fu�1(z))j�1ru�1 � kfk�1ru�1 � ��1�r:So, �rj(fu)0(z)j � � jfu(z) � !j and applying Lemma 2.4 and (2.9) u � k times we 
on
ludethat for every k � j � udiam�Comp(f j(z); fu(z); fu�j; �rj(fu)0(z)j)� � �� < �And now for j = k � 1; k � 2; : : : ; 1; 0, the same argument applies as in the 
ase u = k.Proposition 4.18. Fix a forward f -invariant 
ompa
t subset F of CI. Let � and � be bothpositive numbers su
h that � < �minf1; ��1; ��1��1
g. If 0 < r < ��jjf 0jj�1F ��1 and z 2F n Crit(J(f)), then there exists an integer s = s(�; �; r; z) � 1 with the following threeproperties. j(f s)0(z)j 6= 0: (4.11)If = u(�; r; z) is well-de�ned, then s � u(�; r; z). If either u is not de�ned or s < u, thenthere exists a 
riti
al point 
 2 Crit(f) su
h thatjf s(z)� 
j � �rj(f s)0(z)j: (4.12)In any 
ase Comp�z; f s(z); f s; (KA2)�12�#(Crit(f)�rj(f s)0(z)j� \ Crit(f s) = ;: (4.13)Proof. Sin
e z =2 Crit(f) and in view of Proposition 4.17, there exists a minimal numbers = s(�; �; r; z) for whi
h at least one of the following two 
onditions is satis�edjf s(z)� 
j � �rj(f s)0(z)j (4.14)for some 
 2 Crit(J(f)) oru(�; r; z) is well-de�ned and s(�; �; r; z) = u(�; r; z) (4.15)Sin
e j(f s)0(z)j 6= 0, the parts (4.11) and (4.12) are proved.In order to prove (4.13) noti
e �rst that no matter whi
h of the two numbers s is, in view ofProposition 4.17 we always have �rj(f s)0(z)j � ���1�� (4.16)



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 31Let us now argue that for every 0 � j � sdiam�Comp(f s�j(z); f s(z); f j; �rj(f s)0(z)j)� � � (4.17)Indeed, if s = u, it follows immediately from Proposition 4.17 and (4.3) sin
e � � �. Otherwisejf s(z) � 
j � �rj(f s)0(z)j � ���1�� < � and therefore, by (2.14), f s(z) =2 B(
(f); �). Thus(4.17) follows from (2.16).Now by (4.17) and (Lemma 2.8), there exists 0 � p � #(Crit(f)), an in
reasing sequen
e ofintegers 1 � k1 < k2 < : : : < kp � s and mutually distin
t 
riti
al points 
1; 
2; : : : ; 
p of fsu
h that f
lg = Comp(f s�kl(z); f s(z); fkl; �rj(f s)0(z)j) \ Crit(f): (4.18)for every l = 1; 2; : : : ; p and if j =2 fk1; k2; : : : ; kpg, thenComp(f s�j(z); f s(z); f j; �rj(f s)0(z)j) \ Crit(f) = ;: (4.19)Setting k0 = 0 we shall show by indu
tion that for every 0 � l � pComp(f s�kl(z); f s(z); fkl; (KA2)�12�l�rj(f s)0(z)j) \ Crit(fkl) = ;: (4.20)Indeed, for l = 0 there is nothing to prove. So, suppose that (4.20) is true for some 0 � l �p� 1. Then by (4.19)Comp(f s�(kl+1�1)(z); f s(z); fkl+1�1; (KA2)�12�l�rj(f s)0(z)j) \ Crit(fkl+1�1) = ;:So, if 
l+1 2 Comp(f s�kl+1(z); f s(z); fkl+1; (KA2)�12�(l+1)�rj(f s)0(z)j)then by Lemma 1.4 applied for holomorphi
 maps H = f , Q = fkl+1�1 and the radiusR = (KA2)�12�(l+1)�rj(f s)0(z)j < 
 we getjf s�kl+1(z)� 
l+1j � KA2j(fkl+1)0(f s�kl+1(z))j�1(KA2)�12�(l+1)�rj(f s)0(z)j= 2�(l+1)�rj(f s�kl+1(z))0j� �rj(f s�kl+1(z))0jwhi
h 
ontradi
ts the de�nition of s and proves (4.20) for l + 1. In parti
ular it follows from(4.20) that Comp(z; f s(z); f s; (KA2)�12�#(Crit(f)�rj(f s)0(z)j) \ Crit(f s) = ;The proof is �nished.



32 JANINA KOTUS AND MARIUSZ URBA�NSKI4.3. Hausdor� and Conformal Measure.Let m be a Borel probability measure on CI and let me be its Eu
lidean version, i.e. dmedm (z) =(1 + jzj2)t. We will need in this and the next se
tion the following.Lemma 4.19. If z 2 J(f), rn & 0 and M = limn!1 r�tn me(B(z; rn)), thenlim supn!1 m�Bs(z; (2(1 + jzj2))�1rn�((2(1 + jzj2))�1rn)t � 2tMand lim infn!1 m�Bs(z; 2(1 + jzj2)�1rn�(2(1 + jzj2)�1rn)t � 2�tMProof. Sin
e for every r > 0 suÆ
iently smallB(z; 2�1(1 + jzj2)r) � Bs(z; r) � B(z; 2(1 + jzj2)r)and sin
e limr&0 me(B(z; r))m(B(z; r)) = (1 + jzj2)t;we get lim supn!1 m�Bs(z; (2(1 + jzj2))�1rn�((2(1 + jzj2))�1rn)t � limn!1 m(B(z; rn))2�t(1 + jzj2)�trtn = 2tMand lim infn!1 m�Bs(z; 2(1 + jzj2)�1rn�(2(1 + jzj2)�1rn)t � limn!1 m(B(z; rn))2t(1 + jzj2)�trtn = 2�tM:We are done.Our �rst goal is to show that the h-
onformal measure m proven to exist in Lemma 3.7 isatomless and that Hh(J(f)) = 0. We will 
onsider almost t-
onformal measures � with t � 1.The notion of upper estimability introdu
ed in De�nition 4.5is 
onsidered with respe
t to theEu
lidean almost t-
onformal measure �e. Re
all that l = l(f) � 1 is the integer 
laimed inLemma 2.20 and putRl(f) = inffR(f j; 
) : 
 2 Crit(f) and 1 � j � l(f)g= minfR(f j; 
) : 
 2 Crit(f) \ R and 1 � j � l(f)g <1and Al(f) = supfA(f j; 
) : 
 2 Crit(f) and 1 � j � l(f)g= maxfA(f j; 
) : 
 2 Crit(f) \R and 1 � j � l(f)gwhere the numbers R(f j; 
) and A(f j; 
) are de�ned just above De�nition 1.1. Sin
e the num-ber of equivalen
e 
lasses of the relation � is �nite, looking at Lemma 2.20 and Lemma 4.15,the following lemma follows immediately from Lemma 4.13.



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 33Lemma 4.20. If R(u)i;1 > 0 is a positive 
onstant and t 7! C(u)t;i;1 2 (0;1), t 2 [1;1), is a
ontinuous fun
tion su
h that all points z 2 PC(f)i are (r; C(u)t;i;1)-t:u.e. with respe
t to anyEu
lidean almost t-
onformal measure �e (with t � 1) for all 0 < r � R(u)i;1 , then there existsa 
ontinuous fun
tion t 7! ~C(u)t;i;1 > 0, t 2 [1;1), su
h that all 
riti
al points 
 2 Cri+1(f) are(r; ~C(u)t;i;1)-t:u.e. with respe
t to any Eu
lidean almost t-
onformal measure �e for all 0 < r �A�1l R(u)i;1 .We shall now prove the following.Lemma 4.21. If R(u)i;2 > 0 is a positive 
onstant and t 7! C(u)t;i;2 2 (0;1), t 2 [1;1), is a
ontinuous fun
tion su
h that all 
riti
al points 
 2 Si(f) are (r; C(u)t;i;2)-t:u.e. with respe
t toany Eu
lidean almost t-
onformal measure �e (with t � 1) for all 0 < r � R(u)i;2 , then thereexist a 
ontinuous fun
tion t 7! ~C(u)t;i;2 > 0, s 2 [1;1), and ~R(u)i;2 > 0 su
h that all pointsz 2 PC(f)i are (r; ~C(u)t;i;2)-t:u.e. with respe
t to any Eu
lidean almost t-
onformal measure �e(with t � 1) for all 0 < r � ~R(u)i;2 .Proof. We shall show that one 
an take~R(u)i;2 = minn��jjf 0jj�1PC(f)��1; R(u)i;2 ; 1o and ~C(u)t;i;2 = maxfK22tC(u)t;i;2; K2tBsg:Indeed, denote #(Crit(J(f))) by #. Put � = 2K(KA2)2# and then 
hoose � > 0 so largethat � < �minn1; ��1; ��1��1minf
; �; R(u)i;2 =2go: (4.21)Consider 0 < r � ~R(u)i;2 and z 2 PC(f)i. If z 2 Crit(J(f)), then z 2 Si(f) and we are done.Thus, we may assume that z =2 Crit(J(f)). Let s = s(�; �; r; z). By the de�nition of �,2Krj(f s)0(z)j = (KA2)�12�#�rj(f s)0(z)j (4.22)Suppose �rst that u(�; r; z) is well de�ned and s = u(�; r; z). Then by Proposition 4.17(4.4) orProposition 4.17(4.6), applied with � = 2K, we see that the point f s(z) is (2Krj(f s)0(z)j; Bt)-t:u.e.. Using (4.22), it follows from Proposition 4.18(4.13) and Lemma 4.10 that the point zis (r;K2hBh)-h:u.e..If either u is not de�ned or s < u(�; r; z), then in view of Proposition 4.18(4.13), thereexists a 
riti
al point 
 2 Crit(J(f)) su
h that jf s(z) � 
j � �rj(f s)0(z)j. Sin
e s � u, byProposition 4.17 and (4.21) we get2Krj(f s)0(z)j � �rj(f s)0(z)j < �����1minf�; R(u)i;2 =2g (4.23)
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e z 2 PC(f)i, it implies that 
 2 Si(f). Therefore using (4.23), the assumptions ofLemma 4.21, and (4.22) and then applying Proposition 4.18(4.13) and Lemma 4.10, we 
on-
lude that z is (r;K22tC(u)t;i;2)-t:u.e.. The proof is 
omplete.Lemma 4.22. If b 2 f�1(1), if � is a Eu
lidean almost t-
onformal measure with t > 2qbqb+1su
h that �(b) = 0, and if m is the h-
onformal measure proven to exist in Lemma 3.7, then�(Bb(R)) � R2� qb+1qb tand me(B(b; r)) � r(qb+1)h�2qbfor all 0 < r � 1.Proof. It follows from Lemma 4.15 that me(fz 2 CI : R � jzj < 2Rg) � R2 and �(fz 2 CI :R � jzj < 2Rg) � R2 for all R > 0 large enough. It therefore follows from (2.2) thatme�(Bb(R) nBb(2R)� � R2R� qb+1qb h: (4.24)and ��(Bb(R) nBb(2R)� � R2R� qb+1qb t: (4.25)Fix now r > 0 so small that R = (r=L)�qb is large enough for the formula (4.24) and (4.25)to hold. Using (2.4) and (4.25) we therefore get�(Bb(R)) = � 0�[j�0�Bb(2jR) nBb(2j+1R)�1A = 1Xj=0 ��Bb(2jR) nBb(2j+1R)�� 1Xj=0(2jR)2(2jR)� qb+1qb t = R2� qb+1qb t 1Xj=0 2j�2� qb+1qb t�= Lqb�2� qb+1qb t�r(qb+1)t�2qb 1Xj=0 2j�2� qb+1qb t� � r(qb+1)t�2qb ;where the last 
omparability sign was written sin
e qb+1qb t > 2. We are done with the �rst partof our lemma. Repla
e now in the above formula � by me and t by h, whi
h is greater than2qbqb+1 due to Theorem 2.1. Sin
e in this 
ase the \�" sign 
an be, due to (4.24), repla
ed bythe 
omparability sign \�", sin
e the �rst equality sign be
omes \�" (we do not rule out thepossibility that me(b) > 0 yet), and sin
e me(B(b; r)) � �(Bb(R)), we are also done in this
ase.We shall prove now the following.Lemma 4.23. The h-
onformal measure m for f : J(f) ! J(f) [ f1g proven to exist inLemma 3.7 is atomless.



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 35Proof. Using the indu
tion on i = 0; 1; : : : ; p, it follows immediately from Lemma 4.21(whi
h is an indu
tive step and for i = 0 the �rst step of indu
tion as S0(f) = ;), Lemma 4.20,and Lemma 2.19 that there exists a 
ontinuous fun
tion t 7! Ct 2 (0;1), t 2 [1;1), su
hthat if � is an arbitrary almost t-
onformal measure on J(f), then�e(B(x; r)) � Ctrt (4.26)for all x 2 PC(f) and all r � r0 for some r0 > 0 suÆ
iently small. Consider now the almosttn-
onformal measures mn = mBs(Y;1=n) (n is assumed to be so large that Bs(Y; 1=n) � V ),where tn = S(Bs(Y; 1=n)). Letting n !1 and re
alling that m is a week limit of measuresmn, formula (4.26) gives me(B(x; r)) � Chrh (4.27)for all x 2 PC(f) and all r � r0. It now follows from Lemma 4.19 thatlim supr&0 m(B(x; r)rh � 2hCh:for all x 2 PC(f). In parti
ular m(Crit(f)) = 0 and 
onsequentlym0�[n�0 f�n(Crit(f))1A = 0: (4.28)Fix now b 2 f�1(1). Fix t 2 � 2qbqb+1 ; h�. Consider all integers n � 1 so large that tn � t.Sin
e mn(f�1(1)) � mn(f�1(Bs(Y; 1=n)) = 0, it then follows from Lemma 4.22 thatmn(Bb(R)) � R2� qb+1qb tn � R2� qb+1qb t:Hen
e me(b) = 0. Sin
e m and me are equivalent on CI, this gives m(b) = 0. Sin
eSn�0 f�n(b) \ Crit(f) = ;, this implies that m �Sn�0 f�n(b)� = 0. Invoking now (4.28)and Lemma 3.7 �nishes the proof.Theorem 4.24. There exists a unique atomless t-
onformal measure m for f : J(f) !J(f)[f1g. Then t = h, m is ergodi
 
onservative and all other 
onformal measures are purelyatomi
, supported on Sing�(f) with exponents larger than h. Consequently m(Tr(f)) = 1.Proof. In view of Lemma 4.23 there exists an atomless h-
onformal measure m for f :J(f) ! J(f) [ f1g. Suppose that � is an arbitrary t-
onformal measure for f and somet � 0. By Lemma 3.1, t � h. Fix z 2 J(f) n (I1(f) [ Sing�(f)). Then in view of Propo-sition 2.21 there exist a point y(z) 2 J(f) and an in
reasing sequen
e fnkg1k=1 su
h thaty(z) = limk!1 fnk(z). De�ne for every l � 1Zl = fz 2 J(f) n (I1(f) [ Sing�(f)) : jy(z)j � l and �(z) � 1=lg;�x l � 1 and z 2 Zl. Considering for k large enough the sets f�nkz (B(y; 14l)) and f�nkz (B(y; 14Kl))),where f�nkz is the holomorphi
 inverse bran
h of fnk de�ned on B(y; 12l) and sending fnk(z)



36 JANINA KOTUS AND MARIUSZ URBA�NSKIto z, using 
onformality of the measure � along with Koebe's distortion theorem, we easilydedu
e thatB(�; l)�1
j(fnk)�(z)j�h � ��Bs(z; 
j(fnk)�(z)j�1)� � B(�; l)
j(fnk)�(z)j�h (4.29)for all k � 1 large enough, where K � 1 is the 
onstant appearing in the Koebe's distortiontheorem and as
ribed to the s
ale 1=2 and 
 > 0 is some 
onstant 
omparable with 1. Fixnow E, an arbitrary bounded Borel set 
ontained in Zl. Sin
e m is regular, for every x 2 Ethere exists a radius r(x) > 0he form from (4.29) su
h thatm([x2EBs(x; r(x)) n E) < �: (4.30)Now by the Besi
ovi�
 theorem (see [G℄) we 
an 
hoose a 
ountable sub
over fBs(xi; r(xi))g1i=1,r(xi) � �, from the 
over fBs(x; r(x))gx2E of E, of multipli
ity bounded by some 
onstantC � 1, independent of the 
over. Therefore by (4.29) and (4.30), we obtain�(E) � 1Xi=1 �(Bs(xi; r(xi))) � B(�; l) 1Xi=1 r(xi)t� B(�; l)B(m; l) 1Xi=1 r(xi)t�hm(Bs(xi; r(xi)))� B(�; l)B(m; l)C�t�hm( 1[i=1Bs(xi; r(xi)))� CB(�; l)B(m; l)�t�h(� +m(E)): (4.31)
In the 
ase when t > h, letting �& 0 we obtain �(Zl) = 0. Sin
e J(f)n (I1(f)[Sing�(f)) =S1l=1Zl, we therefore get ��J(f) n (I1(f)[ Sing�(f))� = 0 whi
h by Lemma 3.2 implies that�(Sing�(f)) = 1 and the last part of our theorem is proved . Suppose now that t = h. Sin
e,in view of Lemma 3.2, �(I1(f) n I�(f)) = m(I1(f)) = 0, using (4.31) and letting l%1, we
on
lude that �jJ(f)nSing�(f) << mjJ(f)nSing�(f). Ex
hanging the roles of m and � we infer thatthe measures �jJ(f)nSing�(f) and mjJ(f)nSing�(f) are equivalent. Suppose that �(Sing�(f)) > 0.Then there exists y 2 Crit(J(f)) [ 
(f) [ f�1(1) su
h that m(y) > 0. But thenX�2y� j(fn(�))�(�)j�h <1;where y� = Sn�0 f�n(y) and for every � 2 y�, n(�) is the least integer n � 0 su
h thatfn(�) = y. Hen
e, �y = P�2y� j(fn(�))�(�)j�hÆ�P�2y� j(fn(�))�(�)j�his an h-
onformal measure supported on y� � Sing�(f). This 
ontradi
ts the proven fa
t thatthe measures �yjJ(f)nSing�(f) and mjJ(f)nSing�(f) are equivalent and m(J(f) n Sing�(f)) = 1.Thus � and m are equivalent.
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onformal measure � is ergodi
. Indeed, suppose to the 
ontrarythat f�1(G) = G for some Borel set G � J(f) with 0 < m(G) < 1. But then the two
onditional measures �G and �J(f)nG�G(B) = �(B \G)�(G) ; �J(f)nG(B) = �(B \ J(f) nG)�(J(f) nG)would be h-
onformal and mutually singular; a 
ontradi
tion.If now � is again an arbitrary h-
onformal measures, then by a simple 
omputation based onthe de�nition of 
onformal measures we see that the Radon-Nikodyn derivative � = d�=dmis 
onstant on grand orbits of f . Therefore by ergodi
ity of m we 
on
lude that � is 
onstantm-almost everywhere. As both m and � are probability measures, it implies that � = 1 a.e.,hen
e � = m.Let us show now that m is 
onservative. We shall prove �rst that every forward invariant(f(E) � E) subset E of J(f) is either of measure 0 or 1. Indeed, suppose to the 
ontrarythat 0 < m(E) < 1. Sin
e m(I1(f) [ Sing�(f)) = 0, it suÆ
es to show thatm(E n (I1(f) [ Sing�(f))) = 0:Denote by Z the set of all points z 2 E n (I1(f) [ Sing�(f))) su
h thatlimr!0 m(B(z; r) \ (E n (I1(f) [ Sing�(f))))m(B(z; r)) = 1: (4.32)In view of the Lebesgue density theorem (see for example Theorem 2.9.11 in [Fe℄), m(Z) =m(E). Sin
e m(E) > 0 we �nd at least one point z 2 Z. Sin
e z 2 J(f)n (I1(f)[Sing�(f)),let x 2 J(f), �(z) > 0, and an in
reasing sequen
e fnkg1k=1 be given by Proposition 2.21.Æ = �(z)=8:Suppose that m(B(x; Æ) n E) = 0. By 
onformality of m, m(f(Y )) = 0 for all Borel sets Ysu
h that m(Y ) = 0. Hen
e,0 = m�fn(B(x; Æ) n E)� � m�fn(B(x; Æ)) n fn(E)�� m�fn(B(x; Æ)) n E� � m�fn(B(x; Æ)��m(E) (4.33)for all n � 0. Sin
e J(f) = Sn�1 f�n(1), for some p � 2, the image f p�1(B(x; Æ)) 
on-tains an open neighbourhood of 1. thus, it 
ontains at least one (in fa
t in�nitely many)
opy of the fundamental parallelogram R and 
onsequently f p(B(x; Æ)) = CI . In parti
ularm�f p(B(x; Æ))� = 1. Then (4.33) implies that 0 � 1�m(E) whi
h is a 
ontradi
tion. Con-sequently m(B(x; Æ) n E) > 0. Hen
e for every j � 1 large enough, m�B(fnj (z); 2Æ) n E� �m�B(x; Æ) n E� > 0. Therefore, as f�1(J(f) n E) � J(f) n E, the standard appli
ation ofKoebe's Distortion Theorem shows thatlim supr!0 m(B(z; r) n E)m(B(z; r)) > 0
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h 
ontradi
ts (4.32). Thus either m(E) = 0 or m(E) = 1.Now 
onservativity is straightforward. One needs to prove that for every Borel set B � J(f)with m(B) > 0 one has m(G) = 0, whereG = fx 2 J(f) : Xn�0�B(fn(x)) < +1g:Indeed, suppose that m(G) > 0 and for all n � 0 letGn = fx 2 J(f) : Xk�n�B(fn(x)) = 0g = fx 2 J(f) : fk(x) =2 B for all k � ng:Sin
e G = Sn�0Gn, there exists k � 0 su
h that m(Gk) > 0. Sin
e all the sets Gn are forwardinvariant we 
on
lude that m(Gk) = 1. But on the other hand all the sets f�n(B), n � k,are of positive measure and are disjoint from Gk. This 
ontradi
tion �nishes the proof of
onservativity of m. Consequently m(Tr(f)) = 1. Sin
e, by Lemma 3.1, Hh � m, we thus seethat Hh(J(f) n Tr(f)) = 0. We are done.The proof of part (a) of Theorem 4.1. Let m be the unique h-
onformal atomlessmeasure proven to exist in Theorem 4.24. Consider an arbitrary point z 2 Tr(f). Fix a poleb 2 f�1(1). Sin
e b =2 O+(Crit(f)), there exists 
 > 0 su
h thatB(b; 
) \O+(Crit(f)) = ;: (4.34)Sin
e z 2 Tr(f), there exists an in�nite in
reasing sequen
e fnjg1j=0 su
h thatlimj!1 fnj(z) = b and jfnj(z)� bj < 
=4 (4.35)for every j � 1. It follows from this and (4.34) that for every j � 1 there exists a holomorphi
inverse bran
h f�njz : B(fnj(z); 3
=4) ! CI of fnj sending fnj(z) to z. Using now Koebe'sDistortion Theorem (Eu
lidean version) and Lemma 4.22, we 
on
lude thatme�z; B�Kj(fnj)0(z)j�12jfnj(z)� bj�� � me�B�fnj (z); 2jfnj(z)� bj��j(fnj)0(z)j�h� me�B(b; jfnj(z)� bj)�j(fnj)0(z)j�h� jfnj(z)� bj(qb+1)h�2qb j(fnj)0(z)j�h= �Kj(fnj)0(z)j�1jfnj(z)� bj�hK�hjfnj(z)� bjqb(h�2):Sin
e h < 2, using (4.35), this implies that limr!0r�hme(B(z; r)) =1. Hen
e Hh(Tr(f)) = 0in view of Theorem 4.3. Sin
e by Theorem 4.24 me(J(f) n Tr(f)) = 0, it follows fromLemma 3.1 that Hh(J(f)nTr(f)) = 0. In 
on
lusion Hh(J(f)) = 0 and the proof is 
omplete.Proposition 4.25. The 
onformal measure m is absolutely 
ontinuous with respe
t to thepa
king measure �t and moreover, the Radon-Nikodym derivative dm=d�t is uniformly boundedaway from in�nity. In parti
ular �t(J(f)) > 0.
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e J(f) \ !�Crit(f) n Crit(J(f))� = 
(f), we 
on
lude from Lemma 2.9 thatthere exists y 2 J(f) at a positive distan
e, say 8�, from O+(Crit(f)). Fix z 2 Tr(f). Thenthere exists an in�nite sequen
e nj � 1 of in
reasing integers su
h that fnj(z) 2 B(y; �).Therefore B(fnj (z); 4�) \O+(Crit(f)) = ; and 
onsequentlyComp(z; fnj(z); fnj ; �=2) \ Crit(fnj ) = ;Hen
e, it follows from Lemma 1.2 and Lemma 4.10 thatlim infr!0 me(B(z; r))rh � Bfor some 
onstant B 2 (0;1) and all z 2 Tr(f). Applying Lemma 4.19 we therefore get thatlim infr!0 m(Bs(z; r))rh � 2hB:Hen
e, by Theorem 4.4(1), the measure mjTr(f) is absolutely 
ontinuous with respe
t to�hjTr(f). Sin
e, by Theorem 4.24, m(J(f) n Tr(f)) = 0, we are done.Lemma 4.26. If 
(f) 6= ;, then �h(J(f)) = +1.Proof. Fix ! 2 
. Sin
e Sn�0 f�n(!) is dense in J(f) and, by Lemma 2.9, !(Crit(f))is non-where dense in J(f), there exist an integer s > 0, a real number � > 0, and a pointy 2 f�s(!)nB�Sn�0 fn(Crit(f)); ��. Sin
e by Theorem 2.1, h > 1, it follows from Lemma 2.5and Lemma 4.13 (y may happen to be a 
riti
al point of f s!) thatlim infr!0 me(B(y; r))rh = 0: (4.36)Consider now a transitive point z 2 J(f), i.e. z 2 Tr(f). Then there exists an in�nitein
reasing sequen
e nj = nj(z) � 1 of positive integers su
h thatlimj!1 jfnj(z)� yj = 0 and rj = jfnj(z)� yj < �=7for every j = 1; 2; : : : . By the 
hoi
e of y, for all j � 1 there exist holomorphi
 inverse bran
hesf�njz : B(fnj (z); 6rj)! CI sending fnj(z) to z. So, applying Lemma 1.2 and Lemma 4.10 withR = 3rj, we 
on
lude from (4.36) thatlim infr!0 me(B(z; r))rh = 0:Applying Lemma 4.19, we 
on
lude that the same formulas remain true with me repla
edby m and B(z; r) by Bs(z; r). Therefore, it follows from Theorem 4.24 (m(Tr(f)) = 1) andTheorem 4.4(1) that �h(J(f)) = +1. We are done.From now on let m denote the unique atomless h-
onformal measure m proven to exist inTheorem 4.24.
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e the number of equivalen
e 
lasses of the relation � is �nite, looking at Lemma 2.20 andLemma 4.15, the following lemma follows immediately from Lemma 4.14Lemma 4.27. If C li;1 > 0, 0 < Rli;1 � Rl(f)=3, and 0 < � � 1 are three real numbers su
hthat all points z 2 PC(f)i are (r; �; C li;1)-h:s.l.e. with respe
t to the measure me, then thereexists ~C li;1 > 0 su
h that all 
riti
al points 
 2 Cri+1(f) are (r; ~�; ~C li;1)-h:s.l.e. with respe
t tothe measure me for all 0 < r � A�1l Rli;1.Let us prove the following.Lemma 4.28. Suppose that 
(f) = ;. Assume that C(l)i;2 > 0, R(l)i;2 > 0 and 0 < � � 1 arethree real numbers su
h that all 
riti
al points 
 2 Si(f) are (r; �; C(l)i;2)-h:s.l.e. with respe
t tothe measure me for all 0 < r � R(l)i;2. Then there exist ~C(l)i;2 > 0, ~R(l)i;2 > 0 and su
h that allpoints z 2 PC(f)i are (r; 8K3A22#(Crit(f)�; ~C(l)i;2)-h:s.l.e. with respe
t to the measure me forall 0 < r � ~R(l)i;2.Proof. We shall show that this time one 
an take~R(l)i;2 = minf��jjf 0jj�1F ��1; R(l)i;2; 1g and ~C(l)i;2 = (8(KA2)2#)hC(l)i;2 ;where jjf 0jj = jjf 0jjPC(f)i . Indeed, denote again #(Crit(f)) by #. Take � = 4K(KA2)2# andthen 
hoose � > 0 so large that� < �minn1; ��1; ��1��1minf
; �; R(l)i;2=2go : (4.37)Consider 0 < r � ~R(l)i;2 and z 2 PC(f)i. If z 2 Crit(J(f)), then z 2 Si(f) and we are done.Thus, we may assume that z =2 Crit(J(f)). Let s = s(�; �; r; z). By the de�nition of �4Krj(f s)0(z)j = (KA2)�12�#�rj(f s)0(z)j: (4.38)Suppose �rst that u(�; r; z) is well de�ned and s = u(�; r; z). Then by Proposition 4.17(4.5)or Proposition 4.17(4.6), applied with � = K, we see that the pointf s(z) is (Krk(f s)0(z)k; �=K2;Wh(�=K2))� h:s.l.e.:Using (4.38) it follows from Proposition 4.18(4.13) and Lemma 4.11 that the point z is(r; �;Wh(�=K2))-h:s.l.e.. If either u is not de�ned or s � u(�; r; z), then in view of Proposi-tion 4.18(4.12), there exists a 
riti
al point 
 2 Crit(f) su
h that jf s(z) � 
j � �rj(f s)0(z)j.Sin
e s � u, by Proposition 4.17 and (4.37) we get4Krj(f s)0(z)j � �rj(f s)0(z)j < �����1minf�; R(l)i;2=2g: (4.39)Sin
e z 2 PC(f)i, it implies that 
 2 Si(f). Therefore, by the assumptions of Lemma 4.28and by (4.39) we 
on
lude that 
 is (2�rj(f s)0(z)j; �; C(l)i;2)-h:s.l.e.. Consequently, in view of



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 41Lemma 4.7, the point f s(z) is (�rj(f s)0(z)j; 2�; 2hC(l)i;2)-h:s.l.e.. So, by Lemma 4.8 this point is(Krj(f s)0(z)j; 2��=K; (2�K�1)hC(l)i;2)� h:s.l.e.Using now formula (4.38) and Proposition 4.18(4.13) it follows from Lemma 4.11 that thepoint z is (r; 2K��; (2�K�1)hC(l)i;2) � h.s.l.e.. If z 2 Crit(J(f)), then by the de�nition ofPC(f)i we see that z 2 Si(f) and we are done in view of the assumption of the lemma andin view of the de�nitions of ~R(l)i;2 and ~C(l)i;2). The proof is 
ompleted.Lemma 4.29. If 
(f) = ;, then �he (F ) <1 for every bounded Borel set F � CI.Proof. Let qmin = minfqb : b 2 f�1(1)g:Take � 2 (0; 1) so small that if z 2 CI, then f jB(z;d) is 1-to-1for every d � �dist(z;Crit(f) [f�1(1)). Using indu
tion on i = 0; 1; : : : ; p, it follows immediately from Lemma 4.28 (whi
his an indu
tive step and for i = 0 the �rst step of indu
tion as S0(f) = ;), Lemma 4.27, andLemma 2.19 that ea
h point z 2 PC(f) is (r; �; G)� hs.l.e. for some � 2 (0; 1), G > 0, R > 0and all r 2 (0; R). Without loss of generality we may assume R 2 (0; 1) to be so small that��1jz � bj�qb � jf(w)j � �jz � bj�qb (4.40)and supfjwj : w 2 PC(f)g � ��1R�qmin � 8R (4.41)for all b 2 f�1(1), all z 2 B(b; R) and some � � 1. Fix a point z 2 F n Sing�(f) andr 2 (0; R). In view of Corollary 2.22 there exists the least n � 1 su
h that eitherdist(fn(z);PC(f)) � 8(K�)�1rj(fn)0(z)j or rj(fn)0(z)j � 18�R:There are the following three possibilities.10 K�1rj(fn)0(z)j < 18�R:This in parti
ular implies thatdist(fn(z);PC(f)) � 8(K�)�1rj(fn)0(z)j:20 K�1rj(fn)0(z)j � 18�R and dist(fn(z);PC(f)) > 8(K�)�1rj(fn)0(z)j:30 K�1rj(fn)0(z)j � 18�R and dist(fn(z);PC(f)) � 8(K�)�1rj(fn)0(z)j:
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onsider the 
ase 10. Sin
e 8(K�)�1rj(fn�1)0(z)j < dist(fn�1(z);PC(f)), we get8K�1rj(fn�1)0(z)j < �dist(fn�1(z);Crit(f)): (4.42)Suppose now that 8K�1rj(fn�1)0(z)j � �dist(fn�1(z); f�1(1)):This implies that there exists b 2 f�1(1) su
h that jfn�1(z) � bj < R. Hen
e, using (4.40),we get jfn(z)j � ��1jfn�1(z)� bj�qb � ��1R�qb:On the other hand, using (4.41), we obtainjfn(z)j � supfjwj : w 2 PC(f)g+ dist(fn(z);PC(f))� supfjwj : w 2 PC(f)g+ 8(K�)�1rj(fn)0(z)j� supfjwj : w 2 PC(f)g+ 8R � ��1R�qb:This 
ontradi
tion shows that8K�1rj(fn�1)0(z)j < �dist(fn�1(z); f�1(1)):Along with (4.42) and the de�nition of �, this implies that the map f restri
ted to the ballB(fn�1(z); 8K�1rj(fn�1)0(z)j), is univalent. It therefore follows from Koebe's 14 -theorem thatf�B(fn�1(z); 8K�1rj(fn�1)0(z)j)� � B(fn(z); 2K�1rj(fn)0(z)j): (4.43)Thus, there exists a unique holomorphi
 inverse bran
h f�1� : B(fn(z); 2K�1rj(fn)0(z)j) !B(fn�1(z); 8K�1rj(fn�1)0(z)j) of f sending fn(z) to fn�1(z). Sin
eB(fn�1(z); 8K�1rj(fn�1)0(z)j) \ PC(f) = ;there exists a unique holomorphi
 inverse bran
hf�(n�1)z : B(fn�1(z); 8K�1rj(fn�1)0(z)j)! CIof fn�1 sending fn�1(z) to z. Therefore, the 
ompositionf�nz = f�(n�1)z Æ f�1� : B(fn(z); 2K�1rj(fn)0(z)j)! CIis a well-de�ned holomorphi
 inverse bran
h of fn sending fn(z) to z. As dist(fn(z);PC(f)) <R, sin
e K�1rj(fn)0(z)j < R and sin
e ea
h point z 2 PC(f) is (r; �; G) � hs.l.e., we obtainthat me�B(fn(z); K�1rj(fn)0(z)j)� � G(K�1rj(fn)0(z)j)h:Using now Koebe's distortion theorem, we 
on
lude thatme(B(z; r)) � me�f�nz �B(fn(z); K�1rj(fn)0(z)j)��� K�hj(fn)0(z)j�hme(B(fn(z); K�1rj(fn)0(z)j))� K�hj(fn)0(z)j�hGhK�hrhj(fn)0(z)jh = (GK�2rh: (4.44)



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 43Let us now deal with the 
ase 20. In this 
ase the holomorphi
 inverse bran
h f�nz :B(fn(z); 2K�1rj(fn)0(z)j)! CI of fn sending fn(z) to z is well-de�ne. Using Koebe's distor-tion theorem and Lemma 4.15, we getme(B(z; r)) � me�f�nz �B(fn(z); K�1rj(fn)0(z)j)��� K�hj(fn)0(z)j�hme(B(fn(z); K�1rj(fn)0(z)j))� K�hj(fn)0(z)j�hCh �18R�� (K�1rj(fn)0(z)j)h= Ch �18R��K�2hrh (4.45)
Case 33. Suppose �rst that jfn�1(z)� bj � 12K�1rj(fn�1)0(z)jfor some pole b 2 f�1(1). ThenB(fn�1(z); K�1rj(fn�1)0(z)j � B(b; 12K�1rj(fn�1)0(z)j): (4.46)Sin
e 12K�1rj(fn�1)0(z)j � 116�R, it follows from Lemma 4.22 thatme�B(b; 12K�1rj(fn�1)0(z)j)� � C�12K�1rj(fn�1)0(z)j�(qb+1)h�2qb (4.47)for some universal 
onstant C > 0. Sin
e 2K�1rj(fn�1)0(z)j < 8K�1��1rj(fn�1)0(z)j �dist(fn�1(z);PC(f)), we see that there exists a unique holomorphi
 inverse bran
h f�(n�1)z :B(fn�1(z); 2K�1rj(fn�1)0(z)j)! CI of fn�1 sending fn�1(z) to z. Therefore, applying (4.46),(4.47) and Koebe's distortion theorem, we obtainme(B(z; r)) � me�f�(n�1)z �B(fn(z); K�1rj(fn�1)0(z)j)��� K�hj(fn�1)0(z)j�hme�B(fn�1(z); K�1rj(fn�1)0(z)j)�� K�hj(fn�1)0(z)j�hme�B(b; 12K�1rj(fn�1)0(z)j)�� K�hCj(fn�1)0(z)j�h�12K�1rj(fn�1)0(z)j�(qb+1)h�2qb� CK�h�K�1rj(fn�1)0(z)j�qb(h�2)rh� CK�h �18�R�qmax(h�2) rh:

(4.48)
So, suppose �nally that jfn�1(z)� bj > 12K�1rj(fn�1)0(z)j:



44 JANINA KOTUS AND MARIUSZ URBA�NSKIfor all poles b 2 f�1(1). Sin
e alsodist(fn�1(z);PC(f)) > 4K�1��1rj(fn�1)0(z)j; (4.49)we 
on
lude that the map f : CI ! CI, restri
ted to the ball B(fn�1(z); 12�K�1rj(fn�1)0(z)j),is univalent. It therefore follows from Koebe's 14 -theorem thatf�B(fn�1(z); 12�K�1rj(fn�1)0(z)j)� � B�18�K�1rj(fn)0(z)j�:Hen
e, there exists a unique holomorphi
 inverse bran
h f�1� : B�fn(z); 18�K�1rj(fn)0(z)j�!B(fn�1(z); 12�K�1rj(fn�1)0(z)j) of f sending fn(z) to fn�1(z). In view of (4.49) there existsa unique holomorphi
 inverse bran
h f�(n�1)z : B(fn�1(z); 12�K�1rj(fn�1)0(z)j) ! CI of fn�1sending fn�1(z) to z. Hen
e, the 
ompositionf�nz = f�(n�1)z Æ f�1� : B�fn(z); 18�K�1rj(fn)0(z)j�! CIis a well-de�ned holomorphi
 inverse bran
h of fn sending fn(z) to z. Sin
e 116�K�1rj(fn)0(z)j >2�7�2R, applying Koebe's distortion theorem and Lemma 4.15, we getme(B(z; r)) � me�f�(n�1)z �B(fn(z); 116�K�1rj(fn)0(z)j)��� K�hj(fn)0(z)j�hme�B(fn(z); (16K)�1�rj(fn)0(z)j)�� K�hCh(2�7�2R)j(fn)0(z)j�h�(16K)�1�rj(fn)0(z)j�h= (16)�1K�2h�Ch(2�7�2R)rh:Combining this inequality along with (4.44) (4.45) and (4.48), we 
on
lude that �he (F ) <1.We are done.Our last lemma in this se
tion is this.Lemma 4.30. If 
(f) = ;, then the spheri
al pa
king measure �h(J(f)) is �nite.Proof. Sin
e the pa
king measure �h is �-invariant, it follows from Lemma 4.29 andProposition 4.25 that �he�J(f) \ (B(0; 2R) nB(0; R))� � R2 for all R � 1. Sin
e in additiondPhd�he (z) = (1 + jzj2)�h and sin
e h > 1, we get�h�J(f) \ (CI nB(0; 1))� = 1Xn=0�h�J(f) \ (B(0; 2n+1) nB(0; 2n))�� 1Xn=0 2�2hn�he�J(f) \ (B(0; 2n+1) nB(0; 2n))�� 1Xn=0 2�2hn22n = 1Xn=0 2(2�2h)n <1:
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omplete.5. Invariant MeasuresIn this se
tion we deal with �-�nite invariant measures equivalent to the 
onformal measurem. We prove their existen
e, ergodi
ity, 
onservativity and we dete
t the points around whi
hthese measures are �nite or in�nite. This allows us to provide suÆ
ient 
onditions for their�niteness.5.1. �-�nite invariant measures equivalent to the 
onformal measure m. In order toprove Theorem 5.2 below we apply a general suÆ
ient 
ondition for the existen
e of �-�niteabsolutely 
ontinuous invariant measure proven in [15℄. In order to formulate this 
onditionsuppose that X is a �-
ompa
t metri
 spa
e, � is a Borel probability measure on X, positiveon open sets, and that a measurable map f : X ! X is given with respe
t to whi
h measure� is quasi-invariant, i.e. � Æ f�1 << �. Moreover we assume the existen
e of a 
ountablepartition � = fAn : n � 0g of subsets of X whi
h are all �-
ompa
t and of positive measure�. We also assume that �(X n Sn�0An) = 0, and if additionally for all m;n � 1 there existsk � 0 su
h that �(f�k(Am) \ An) > 0;then the partition � is 
alled irredu
ible. Martens' result 
omprising Proposition 2.6 andTheorem 2.9 of [15℄ reads the following.Theorem 5.1. Suppose that � = fAn : n � 0g is an irredu
ible partition for T : X ! X.Suppose that T is 
onservative and ergodi
 with respe
t to the measure �. If for every n � 1there exists Kn � 1 su
h that for all k � 0 and all Borel subsets A of AnK�1n �(A)�(An) � �(f�k(A))�(f�k(An)) � Kn �(A)�(An) ;then T has a �-�nite T -invariant measure � absolutely 
ontinuous with respe
t to �. Inaddition, � is equivalent with �, 
onservative and ergodi
, and unique up to a multipli
ative
onstant. Moreover, for every Borel set A � X�(A) = limn!1 Pnk=0 �(f�k(A))Pnk=0m(f�k(A0)) :The �rst result of this se
tion is the following.Theorem 5.2. There exists a �-�nite f -invariant measure � absolutely 
ontinuous with re-spe
t to h-
onformal measure m. In addition, � is equivalent with m and ergodi
.
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 point of f with some period p � 3. We putP3(f) = O+(f(Crit(f))) [ f�; f(�); : : : ; f p�1(�)g:Sin
e O+(f(Crit(f)) is a forward-invariant nowhere-dense subset of J(f) and sin
e the h-
onformal measure m is positive on nonempty open subsets of J(f), it follows from ergodi
ityand 
onservativity of m (see Theorem 4.24) that m(O+(f(Crit(f)))) = 0. Sin
e m has noatoms (see Theorem 4.24) we therefore obtain that m(P3(f)) = 0. We shall now 
onstru
tthe partition � of the set J(f) n P3(f). We shall 
he
k next that it satis�es the assumptionsof Theorem 5.1. We �rst de�ne the family of balls�B �z; 12dist(z; P3(f))��z2CInP3(f) :This family obviously 
overs CI n P3(f). Sin
e CI n P3(f) is an open set, it is a Lindel�of spa
e,and therefore we 
an 
hoose a 
ountable sub
over of CI n P3(f), whi
h we denote by�B �zi; 12dist�zi; P3(f)���1i=1 :We indu
tively de�ne a partition A = fAig1i=0 of CI n P3(f) as follows. LetA0 = �B �z0; 12dist(z0; P3(f))�� :Assume that we have de�ned the set A1; : : : ; An su
h thatAj � �B �zj; 12dist(zj; P3(f))��and IntAj 6= ;:Then An+1 we de�ne asAn+1 = �B �zn+1; 12dist(zn+1; P3(f))�� n n[j=1Aj:The set An+1 is disjoint with the sets A1; : : : ; An andAn+1 � B �zn+1; 12dist(zn+1; P3(f))� n n[j=1B �zj; 12dist(zj; P3(f))� :Thus either An+1 = ; or IntAn+1 6= ; and we remove all the empty sets.We shall now 
he
k that the partition is irredu
ible. And indeed, it follows from the 
on-stru
tion of the sets fAig1i=0 and 
ontinuity of the measure m that it suÆ
es to demonstratethat if z 2 CI, r > 0 and K � CI is a 
ompa
t set, then there exists n � 1 su
h thatfn0�B(z; r) n [k�0 f�k(1)1A � K n [k�0 f�k(1):
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e the set of repelling periodi
 points is dense in the Julia ([2℄, 
omp. [5℄), there thus existsa periodi
 point x 2 B(z; r), say of period q � 1. Sin
e x is repelling there exists s > 0 sosmall that B(x; s) � B(z; r) and f q(B(x; s)) � B(x; s). Sin
e Sj�1 f qj(B(x; s)) � CI, sin
eK is a 
ompa
t subset of CI and sin
e ff qj(B(x; s))g1j=1 is an in
reasing family of open sets,there thus exists k � 1 su
h that f qk(B(x; s)) � K.Let us 
he
k now the distortion assumption of Theorem 5.1. And indeed, in view of Koebe'sdistortion theorem there exists a 
onstant K � 1 su
h that if f�n� : B�zi; dist(zi; P3(f))�! CIis a holomorphi
 bran
h of f�n, then for every k � 0 and all x; y 2 Ak � B �zi; 12dist (zi; P3(f))�we have j(f�n� )0(y)jj(f�n� )0(x)j � K: (5.1)We therefore obtain for all Borel sets A;B � Ak with m(B) > 0 and all n � 0 thatm(f�n� (A))m(f�n� (B)) = RA j(f�n� )0jhdmRA j(f�n� )0jhdm � supAkfj(f�n� )0jhgm(A)infAkfj(f�n� )0jhgm(B) � Khm(A)m(B) :and similarly m(f�n� (A))m(f�n� (B)) � K�hm(A)m(B) :Sin
e by Theorem 4.24 the measure is 
onservative ergodi
, all the assumptions of Theorem 5.1have been 
he
ked and we are done.The following lemma easily follows from Theorem 5.1.Lemma 5.3. For every n � 0 we have 0 < �(An) <1.We say that the f -invariant measure � produ
ed in Theorem 5.2 is of �nite 
ondensationat x 2 J(f) if and only if there exists an open neighborhood V of x su
h that �(V ) < 1.Otherwise � is said to be of in�nite 
ondensation at x. We respe
tively say that x is a point of�nite or in�nite 
ondensation of �. We end this subse
tion with the following obvious results.Lemma 5.4. If x is a point of in�nite 
ondensation of �, then ea
h point of the 
losureffn(x) : n � 0g is also of in�nite 
ondensation of �.Lemma 5.5. The set of points of in�nite 
ondensation of measure � is 
ontained in the unionO+(Crit(f)) [ 
 [ f1g.Proof. If z =2 O+(Crit(f)) [ 
 [ f1g, then by lo
al �niteness of the family fAn : n � 0gthere exist an open neighborhood V of z and an integer k � 0 su
h that m�V nSkj=0Aj� = 0.
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e, in view of Lemma 5.3 and Theorem 5.2 (� � m) we get �(A) � Pkj=0 �(Aj) < 1.The proof is �nished.5.2. 1 is a Point of Finite Condensation of �.The goal of this subse
tion is to prove that1 is a point of a �nite 
ondensation of the measure�. We start with the following.Lemma 5.6. For every R > 1 large enough there exists a 
onstant C1(R) > 0 su
h thatm(Bb(R)) � C1(R)diamhs (Bb(R)).Proof. For every k � 0 let Ak;R = fz 2 CI : 2kR � jzj < 2k+1Rg. As in the proof ofLemma 3.2 let B+R = fz 2 BR n f1g : Imz > 0gB1R = fz 2 BR n f1g : Imz < 1g and B+R = fz 2 BR n f1g : Imz > 0g:We also put A+k;R = Ak;R \ B+R and A�k;R = Ak;R \ B�R . Using formula (2.3) we 
an write forall b 2 f�1(1), all j 2 f1; : : : ; qbg and all k � 0 thatm(f�1b;B+R ;j(A+k;R)) = ZA+k;R j(f�1b;B+R ;j)�jhdm � (1 + jbj2)�h(2kR) qb�1qb hm(A+k;R)and similarly m(f�1b;B+R ;j(A�k;R)) � (1 + jbj2)�h(2kR) qb�1qb hm(A�k;R)Thusm(f�1b;R;j(Ak;R)) = m(f�1b;R;j(A+k;R)) +m(f�1b;R;j(A�k;R)) � (1 + jbj2)�h(2kR) qb�1qb hm(Ak;R):Summing now over all j 2 f1; : : : ; qbg, we getm(Ak;R;b) � (1 + jbj2)�h(2kR) qb�1qb hm(Ak;R) (5.2)where Ak;R;b = Bb(R) \ f�1(Ak;R). Therefore, putting S = Pw2�(1 + jwj2)�h <1 (sin
e byTheorem 2.1 h > 1), we obtainm(f�1(Ak;R)) = Xb2f�1(1)m(Ak;R;b)= Xb2R\f�1(1) Xw2�m(Ak;R;b+w)� Xb2R\f�1(1) Xw2��1 + jb+ wj2��h(2kR) qb�1qb hm(Ak;R)� m(Ak;R) Xb2R\f�1(1)(2kR) qb�1qb h Xw2�(1 + jb + wj2)�h� m(Ak;R)S(2kR) q�1q h
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e m(Ak;R) � (2kR) 1�qq hS�1m(f�1(Ak;R)) where q = maxfqb : b 2 R \ f�1(1)g. Com-bining this and (5.2), we get for every b 2 f�1(1) thatm(Ak;R;b) � (1 + jbj2)�h(2kR)(1� 1q )h(2kR)( 1q�1)hS�1m(f�1(Ak;R))� (1 + jbj2)�hS�1m(f�1(Ak;R)) � (1 + jbj2)�hm(f�1(Ak;R))Summing now over all k � 0 we get m(Bb(R)) � (1 + jbj2)�hm(f�1(BR)) � (1 + jbj2)�h.Combining in turn this with (2.4) we getm(Bb(R)) � LhR hq diamhs (Bb(R)) (5.3)The proof is 
omplete.Lemma 5.7. Fix R > 2 suÆ
iently large. Re-numerating the elements of the partitionfAjg1j=0, we may assume that A0 � BR and diams(A0) = 1. For every b 2 f�1(1) and everyn � 0 let A(n) = f�n(A0) \ Bn, where Bn is a 
onne
ted 
omponent of f�n(BR). Then thereexists a 
onstant C2 > 0 su
h that m(Bn) � C2(R)m(A(n)).Proof. It follows from the 
onstru
tion of the partition fAngn�0 thatm(A(n)) � diamhs(A(n)) (5.4)Sin
e dist(0; A0) � R > 2 and sin
e diam(A0) = 1 using (2.3), and (2.4), we get for everypole b 2 f�1(1) thatdiams(A0;b)diams(Bb(R)) � (1 + jbj2)�1dist(0; A0) qb�1qb diams(A0)(1 + jbj2)�1R�1qb � R qb�1qb R 1qb = 1; (5.5)where A0;b = f�1(A0) \ Bb(R). Sin
e !(Crit(f)) is a 
ompa
t subset of the 
omplex planeCI, dist(!(Crit(f)); f�1(1)) > 0. Therefore there exists r > 0 su
h that for all R > 1 largeenough Bb(R) � B(b; r) and B(b; 2r) \ O+(Crit(f)) = ;. Sin
e Bn = f�(n�1)� (Bb(R)) foran appropriate holomorphi
 inverse bran
h f�(n�1)� : B(b; 2r) ! CI of f (n�1), it follows fromKoebes's distortion theorem and (5.5)diams(A(n))diams(Bn) = diams(f�(n�1)� (A0;b))diams(f�(n�1)� (Bb(R)) � diams(Ao;b)diams(Bb(R)) � 1and that diamhs (Bn)m(Bn) = diamhs(f�(n�1)� (Bb(R)))m(f�(n�1)� (Bb(R))) � diamhs (Bb(R))m(Bb(R)) :Combining the last two formulas and (5.4) we getm(A(n)) � diamhs(Bn) �  diamhs (Bb(R))m(Bb(R)) !m(Bn) � m(Bn)The proof is 
omplete.



50 JANINA KOTUS AND MARIUSZ URBA�NSKIWe are ready now to prove the main result of this se
tion.Theorem 5.8. 1 is the point of �nite 
ondensation of the measure �.Proof. Take R > 0 so large as required in Lemma 5.7. It follows from this lemma thatm(f�k(BR)) � C2(R)m(f�1(A0)) for every k � 0. Thus, applying Theorem 5.1 , we get�(BR) = limn!1Pnk=0m(f�1(BR))Pnk=0m(f�1(A0)) � C2(R) <1:We are done.5.3. All Points of Finite and In�nite Condensation. We say that z 2 J(f) n 
 isgeometri
ally good if m(Bn) � diamh(Bn) (5.6)for every set B of suÆ
iently small diameter 
ontaining x, every n � 0 and every 
onne
ted
omponent Bn of f�n(B). The dire
tion of the inequality above makes that 
he
king geo-metri
al goodness one 
an assume the sets B to be balls 
entered at x. The most generalsuÆ
ient 
ondition for �nite 
ondensation is the following.Lemma 5.9. If z 2 J(f) n 
 is geometri
ally good, then z is a point of �nite 
ondensationof measure �.Proof. Sin
e z =2 
, taking � > 0 suÆ
iently small, z =2 B(
; �). Set B = B(z; 
).Sin
e m(B) > 0 and m(Sn�0An) = 1, there exists i � 0 su
h that m(B \ Ai) > 0. Sin
eB \Ai \J(f) has a non-empty interior relative to J(f), there exists an open ball F � B \Aihaving nonempty interse
tion with J(f). Of 
ourse m(F ) > 0. For every n � 0 let Bn be a
onne
ted 
omponent of f�n(B) and let Fn � Bn be some 
onne
ted 
omponent of f�n(F )
ontained in Bn. Using Koebe's Distortion Theorem, I (Eu
lidean version) and the fa
t thatthe point z is geometri
ally good, we getm(Fn) � diamh(Fn) =  diam(Fn)diam(Bn)!h diamh(Bn) � m(Bn) diam(Fn)diam(Bn)!hApplying now Lemma 2.12 to the 
onne
ted sets F and B we obtainm(Fn) � m(Bn) diam(F )diam(B)!h :Thus nXk=0m(f�k(B)) � nXk=0m(f�k(F )) � nXk=0m(f�k(Ai)):
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e, using Lemma 5.3, we get �(B) � �(Ai) < 1 and therefore z is a point of �nite
ondensation of �.In order to make use of this lemma we need to provide suÆ
ient 
onditions for points to begeometri
ally good. This is done below.Lemma 5.10. If � is h-upper estimable at every point z 2 J(f) with the same estimability
onstant, then every point z 2 J(f) is geometri
ally good.Proof. The proof of this lemma follows by a straightforward indu
tive argument in
orpo-rating Koebe's Distortion Theorem, Lemma 4.13, �niteness of the equivalen
e 
lasses of therelation � on the set of 
riti
al points of f , Lemma 2.8, and equivalently (2.16).Theorem 5.11. The set of points of in�nite 
ondensation of � is 
ontained in the set ofparaboli
 points 
(f).Proof. The proof of Lemma 4.23 shows that ea
h point z 2 J(f) is upper estimable withrespe
t to the Eu
lidean h-
onformal measure me and so, also with respe
t to the measure m.Therefore the proof of Theorem 5.11 is 
ompleted by applying Lemma 5.10 and Lemma 5.9.Corollary 5.12. If 
 = ;, then there exists an f -invariant probability measure � equivalentto m.x6. Invariant measure - Paraboli
 points. From what we have shown in the previousse
tion, it is 
lear that in order to lo
alize the points of in�nite 
ondensation of � we have tolook at the paraboli
 points. Pro
eeding in exa
tly the same way as in Se
tion 6 of [22℄, we
an prove the following.Proposition 5.13. If ! 2 
 n O+(Crit(f)), then � is of in�nite 
ondensation at ! if andonly if h � 2p(!)p(!)+1 .Corollary 5.14. Ifmaxfqb : b 2 R \ f�1(1)g � sup( 2p(!)p(!) + 1 : ! 2 
) ;then the invariant measure � is �nite.
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 and h � 2p(!)p(!)+1 , then � has in�nite 
ondensation at !.Theorem 5.16. If 
 2 J(f) is a 
riti
al point of f of order q, ! = f(
) 2 
, and h � 2qp(!)p(!)+1 ,then ! is of in�nite 
ondensation of measure �.6. AppendixThe goal of this appendix is to provide a proof of Theorem 2.6. We �rst prove a versionof Przyty
ki's lemma from [19℄ for the sake of 
ompleteness and then we prove a version ofMane's theorem from [13℄. We de
ided to provide a full proof of this theorem sin
e its originalMane's proof 
ontains some minor misprints and it would be very diÆ
ult to indi
ate in whi
hpla
es and in whi
h way one needs to modify it.Lemma 6.1. For every integer K � 0 and every 0 < � < 1 the following holds. For every� > 0 and every � > 0 there exists Æ0 = Æ0(K; �; �; �) > 0 su
h that for every disk B(x; Æ) withÆ � Æ0 and every x 2 CI in the distan
e at least � apart from the set of paraboli
 points andattra
ting points, for every n � 0 and every 
onne
ted 
omponent W = Compf�n(B(x; Æ))su
h that fnjW has at most K 
riti
al points 
ounted with multipli
ities, for every 
omponentW 0 = Comp(f�n(B0)) in W , for the dis
 B0 = B(x; �Æ) we havediamW 0 � �diamW 0 ! 0 for n!1 uniformly (i.e. independently of the 
hoi
es of B and W 0).Proof. Suppose on the 
ontrary that there exist a sequen
e fxng1n=1 of points in the distan
eat least � apart from the set of paraboli
 points and attra
ting points, a sequen
e Æn & 0,a sequen
e of 
omponents Wn = Compf�kn(Bn) with kn ! 1, as n ! 1 su
h that thenumber of 
riti
al points of ea
h map fkn on Wn is bounded by K and W 0n, the sequen
easso
iate to Wn as in the statement of the lemma, su
h that limn!1 diam(W 0n) = 0. Thenfor ea
h n there exists L = L(n) : 0 � L � K su
h that there is no 
riti
al value of fknjWn inP (n) := B(xn; Æn(�+ (1� �) L+ 1K + 1)) nB(xn; Æn(�+ (1� �) LK + 1)):Without loosing generality we may assume that all the 
omponents W 0n interse
t the funda-mental region R. PutW (1)n := Compf�knB(xn; Æn(�+ (1� �) L(n)K + 1)))W (2)n := Compf�knB(xn; Æn(�+ (1� �)L(n) + 1K + 1 )))
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omponents 
ontaining W 0n, Pn :=W (2)n nW (1)nand for every 0 � m � kn, i = 1; 2,W (i)n;m = fkn�m(W (i)n ); Pn;m := fkn�m(Pn) = W (2)n;m nW (1)n;m:Let, for ea
h n, the number m = m(n) � kn be the least integer su
h thatdiamW (1)n;m � min(�; inf
1;
22Crit(f);
1 6=
2g dist(
1; 
2));So for every 0 � t < m(n) the set Pn;t is a topologi
al annulus. That is so be
ause atea
h step ba
k by f�1 from Pn;t�1 to Pn;t there is at most one bran
h point for f�1 fromW (i)n;t�1 to W (i)n;t; i = 1; 2. Now, all the annuli Pn;m(n)�1's have moduli bounded below by2�K(1 � �) 1K+1 . Sin
e in addition all the 
omponents W 0n interse
t the fundamental region<, it follows from Montel's Theorem that there exists a topologi
al (maybe not geometri
)annulus P 
ontained in all Pn;m(n)�1's for a subsequen
es ns, whi
h bounds a topologi
al diskD. So D � W (2)ns;m(ns)�1. Hen
e fm(ns)�1(D) � B(x; Æn). Passing to yet another subsequen
ewe may assume that the sequen
e xn 
onverges to a point y 2 CI at the distan
e at least � apartfrom the set of paraboli
 points and attra
ting points. Sin
e Æn ! 0, we have also m(n)!1.Thus D 
annot interse
t the Julia set J(f). If the were 
ontained in a preimage of a Siegeldisk or a Herman ring, the limit of diameters of iterate fm(ns)�1(D) would be positive. ThusD is either 
ontained in the basin of attra
tion to an attra
ting periodi
 orbit or a paraboli
periodi
 orbit. In either 
ase the limit of the sets fm(ns)�1(D) would be 
ontained in eitheran an attra
ting periodi
 orbit or a paraboli
 periodi
 orbit. Sin
e this limit would 
oin
idewith y, we get a 
ontradi
tion. The proof is 
omplete.Remark 6.2. Obviously this lemma remains true (with the proof required only minor modi-�
ations) if instead of the disk B(x; Æ) one takes the square 
entered at x and with edges oflength Æ. This is the version we will need in the next theorem.Theorem 6.3. Let f : CI ! CI be an ellipti
 fun
tion. If a point x 2 J(f) n 
(f) is not
ontained in the !-limit set of a re
urrent 
riti
al point, then for all � > 0 there exists aneighbourhood U of x su
h that:(a) For all n � 0, every 
onne
ted 
omponent of f�n(U) has diameter � �;(b) There exists N > 0 su
h that for all n � 0 and every 
onne
ted 
omponent V off�n(U), the degree of fnjV is � N ;Proof. The 
ore of the theorem is (a), from whi
h the property (b) will easily follow. Givenan open set U � CI denote 
(U; n) the set of 
onne
ted 
omponents of f�n(U). Observethat V 2 
(U; n) implies f j(V ) 2 
(U; n � j) for all 0 � j � n. If V 2 
(U; n) de�ne�(V; n) = #fx 2 V ; (fn)0(x) = 0g 
ounted with algebrai
 multipli
ity. A square is the setS of the form S = fz 2 CI : j<(z � p)j < Æ; j=(z � p)j < Æg. The point p is the 
enter and Æ
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enter p and radius Æ, then, given k > 0, denote by Sk thesquare with 
enter p and radius kÆ. If S is a square with radius Æ, denote by L(S) the familyof squares 
ontained in S 32 �S and having radius Æ=4. Denote by L�(S) the family of squaresS 32 � S and having radius Æ=4. Denote by L�(S) the family of squares S 320 with S0 2 L(S).Suppose that x is not a paraboli
 point or is 
ontained in the !-limit set of re
urrent 
riti
alpoint. Then there exists Æ0 > 0 su
h that(1) There is no 
riti
al point 
 of f su
h that there exists 0 � n1 � n2 satisfyingjfn1(
)� 
j < Æ0and jfn2(
)� 
j < Æ0(2) jx� pj > 10Æ0 for every paraboli
 or attra
ting periodi
 point p.Given � > 0 take �1 > 0 satisfying(3) 0 < �1 < minf�=10; Æ0=10g(4) if U is an open 
onne
ted set with diam(U) � 2�1 then diam(W ) � Æ0 for all W 2
(U; 1)Let N0 be the number of equivalen
e 
lasses of the relation � between 
riti
al points of f .Take N1 > 2 su
h that(5) If S is a square and V 2 
(S; n) satis�es �(V; n) � N0 + 1 then the number of
onne
ted 
omponents of f�n(S 23 ) 
ontained in V is � N1.Finally, take Æ given by(6) Æ = minfÆ0=10; �1=10; Æ(2N0; �120N1 ; 23 ; Æ0)g where Æ(2N0; �120N1 ; 23 ; Æ0) is given by Lemma 6.1.Let S0 be the square of 
enter x and radius Æ. Suppose that Theorem 6.3 fails for U = S0.Then there exists n > 0 and V 2 
(S0; n) with diamV � � � 10�1. On the other hand, by(1), diamS0 = 2p2Æ < 3Æ < �1: Hen
e there exists an integer n0 � 0 su
h that there existsV0 2 
(S 320 ; n0) satisfying(7) diam(f�(n0�i)(S0) \ f i(V0)) � �1 for all 1 � i � n0, and(8) diam(f�n0(S0) \ V0) > �1Sin
e diamS0 < �1 it follows that n0 > 0. Now, starting with S0 we shall 
onstru
t a sequen
eof squares S0; S1; S2; : : : and stri
tly positive integers n0 � n1 � n2 : : : satisfying(9) Sj+1 2 L�(Sj)(10) there exists Vj 2 
(S 32j ; nj) su
h thatdiam(f (�nj�i)(Sj) \ f i(Vj)) � �1for all i � i � nj and diam(f�nj(Sj) \ Vj) > �1:
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onstru
t su
h a sequen
e of squaresand integers, then Theorem 6.3 will be proved by 
ontradi
tion be
ause the 
ondition n0 �n1 � n2 : : : � nm � : : : > 0 implies that nj = ni for all � i for a 
ertain i. But (a) impliesthat the radius of Sj is (38)jÆ; in parti
ular diam(Sj)! 0 when j ! +1. But by (10),�1 < diam(f�nj(Sj) \ Vj) = diam(f�ni(Sj) \ Vj);Vj 2 
(S 32j ; nj) = 
(S 32j ; ni)Taking j ! +1; and re
alling that i is 
ontained and limj!1 diamSj = 0, we 
on
lude thatthe inequality above 
annot hold.The sequen
e fSjg and fnjg will be 
onstru
ted by indu
tion starting with S0. Suppose Siand ni 
onstru
ted for 0 � i � j. To �nd Sj+1 and nj+1 we begin by observing that from (a)it follows that if p 2 S 2 L�(Sj), then, byjp� xj � jXi=0 diam(Si) = j+1Xi=0(38)idiam(S0) = 2p2 j+1Xi=0(38)iÆ � 4p2Æ:Hen
e, if a point q satis�es dist(q; S) � Æ0, we havejq � xj � 4p2Æ + Æ0 � 2Æ0:By (2), this means that(11) dist(q; S) > Æ0 for all S 2 L�(Sj) and all paraboli
 or attra
ting periodi
 point q.For the indu
tion step (i.e. the 
onstru
tion of Sj+1 and nj+1), we shall use the followinglemma.Lemma 6.4. If U � CI is an open set and V 2 
(U; n) satis�esdiamf i(V ) � Æ0; 0 � i � nthen �(V; n) � N0:Proof. If �(V; n) � N0 + 1, there exists N0 + 1 di�erent points xi, 1 � i � N0 + 1, in Vjsu
h that (fnj )0(xj) = 0. This means that for ea
h 1 � i � N0 + 1 there exist 1 � mi < n,su
h that fmi(xi) is a 
riti
al point. Re
alling that N0 is the number of the equivalen
e
lasses of the equivalen
e relation �, it follows that there exists two di�erent points in the setfxi; 1 � i � N0 + 1g, that we shall denote by x1; x2, and two 
riti
al points 
1 and 
2 in thesame equivalen
e 
lass of the equivalen
e relation�, su
h that fmi(x1) = 
2 and fm2(x2) = 
2.Assume without loss of generality that 0 � m1 � m2. Then by the 
hoi
e of Æ0, m1 < m2 andjfm2�m1(
1); 
1)j = jfm2�m1(
2); 
1)j = jfm2(x1)� fm2(x2)j � diamfm2(Vj) � Æ0and jfn�m1 � (
1); xj = jfn�m1(fm1(x1))� xj = jfn(x1)� xj � Æ0
ontradi
ting property (1) of Æ0.
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laim that there exists S 2 L(Sj) that for some 0 < n � njhas V 2 
(S; n) with diamV � �110N1 . Suppose that the 
laim is false. Then, for all 1 � i � nj;diam(f i(Vj)) � diam�f�(nj�i)(Sj) \ f i(Vj)�+ supfdiam(W);W 2 
(S; nj � i); S 2 L(Sj)g� �1 + �110N1 � 2�1From this inequality applied to i = 1 and property (4), we havediam(Vj) � Æ0Moreover, sin
e 2�1 � Æ0 ( by (3)), diam(f i(Vj)) � Æ0for all 1 � i � nj, hen
e for all 0 � i � nj. By Lemma 6.4. This proves that �(Vj; nj) � N0.Then, sin
e Vj 2 
(S 23j ; nj) it follows from (5), (11) and Lemma 6.4 thatW 2 
(Sj; nj);W � Vj ! diam(W ) � �110N1Moreover, by the way N1 was 
hosen, we have#fW 2 
(Sj; nj);W � Vjg � N1and we are assuming thatS 2 L(Sj); U 2 (S; nj)! diam(U) � �10N1 :Now observe that Vj is the union of sets U 2 
(S; nj); U � Vj; S 2 L(Sj) and the setsW 2 
(Sj; nj);W � Vj. Moreover, for any two sets W 0, W 00 in this family there existW 0 = W0;W1; : : : ;Wk =W 00 in 
(Sj; nj) and 
ontained in Vj su
h that for all 0 � i < k thereexists Si 2 L(Sj) and Ui 2 
(Si; nj) su
h that U i \W i 6= ; U i \W i+1 6= ;. Thendiam(Vj) � N1 � �110N1 + �110N1� = �15
ontradi
ting the last inequality in 
ondition (10). This 
ompletes the proof of the 
laim. Nowwe 
an take S 2 L(Sj) su
h that diam(V ) � �10N1 for some V 2 
(S; n); 0 � n � nj. Take~V 2 
(S 32 ; n) 
ontaining V . Suppose that �( ~V ; n) � N0. Then by Lemma6.1 and 
ondition(6) diam(V ) � �120N1sin
e V 2 
((S 32 ) 23 ; n) and is 
ontained in ~V . This 
ontradi
ts the fa
t thatdiam(V ) � �110N1



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 57and proves �( ~V ; n) � N0 + 1. From Lemma 6.4, it follows thatdiam(f i( ~V )) > Æ0for some 0 � i � n. Now we de�ne Sj+1 = S 32 . Then f i( ~V ) 2 
(S 32 ; n� i) and diam(f i( ~V )) >Æ0 � 10�1. Moreover diamS 32j+1 � 2Æ < �1. Then there exists 0 � nj+1 � n � i � nj � i andVj+1 2 
(S 32j+1; nj+1) su
h that diam(f�nj+1(Sj+1) \ Vj+1) > �1and diam(f�nj+1+i(Sj+1) \ f i(Vj+1)) � �1:Observe that nj+1 > 0 sin
e diam�Sj+1� < 2Æ < �1. This 
ompletes the 
onstru
tion of thesequen
e fSjg and fnjg and the proof of part (a) of Theorem 6.3. Property (b) of Theorem 6.3follows from (a) and Lemma 6.4.Our destination in this appendix is the following.Proof of Theorem 2.6 If X is a 
ompa
t subset of the 
omplex plane CI the theoremimmediately follows from Theorem 6.3 and 
ompa
tness of X. So suppose that X � J(f) n
(f) is a 
losed subset of CI. Let � = dist(
(f); f�1(1)) > 0. In view of (2.2) and (2.4)there exists R > 0 so large that if jf(z)j � R=2, then for some b 2 f�1(1),z 2 Bb(R=2)jf 0(z)j � 2 and diam(Bb(R=2)) � �=2: (6.1)Consider now the 
ompa
t set Y = X[(CInB(
(f);�=2))nBR and the 
orresponding number0 < Æ � minf�; R=2g as
ribed to Y and the number minf�; R=2g. In order to 
omplete theproof it suÆ
es to show that if x 2 BR, then the diameter of ea
h 
onne
ted 
omponent Cn(x)of f�n(B(x; Æ)) does not ex
eed � for every � > 0. And indeed, �x w 2 f�n(x) \ Cn(x) andlet 1 � k � n be the least integer su
h that fn�k(w) =2 BR provided it exists. Otherwise, setk = n. We shall show by mathemati
al indu
tion thatdiam�fn�j(Cn(x))� � Æ � minf�; R=2g (6.2)for every 0 � j � k. For j = 0 this formula is true sin
e fn(Cn(x)) = B(x; Æ). So, suppose thatit is true for some 0 � j � k � 1. Sin
e fn�j(w) 2 BR and sin
e diam (fn�j(Cn(x))) � R=2,we 
on
lude that fn�j(Cn(x)) � BR=2: (6.3)It therefore follows from the �rst part of formula (6.1) thatdiam�fn�j+1j(Cn(x))� � 12diam�fn�j(Cn(x))� � Æ:This proves formula (6.2). It follows from (6.3) and the se
ond part of formula (6.1) thatfn�k(Cn(x)) � CI n B(
(f);�=2). Sin
e we also know that fn�k(w) =2 BR, we 
on
lude thatfn�k(w) 2 Y , we see that diam(Cn(x)) � minf�; R=2g � �. We are done.
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