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Abstract: The notion of a parabolic Cantor set is introduced allowing in the definition
of hyperbolic Cantor sets some fixed points to have derivatives of modulus one. Such
difference in the assumptions widely reflects in geometric properties of the Cantor set which
are studied in detail. It turns out that if the Hausdorff dimension of this set is denoted by h,
then its h-dimensional Hausdorff measure vanishes but the h-dimensional packing measure
is positive and finite. This measure can be also dynamically characterized as the only h-
conformal measure defined in a natural way appropriate in this context. It is relatively easy
to see that any two parabolic Cantor sets formed with the help of the same alphabet are
canonically topologically conjugate and we then discuss the rigidity problem of what are
the possibly weakest sufficient conditions for this topological conjugacy to be ”smoother”.
It turns out that if the conjugating homeomorphism preserves moduli of derivatives of
periodic points, then the dimensions of both sets are equal and the homeomorphism is
shown to be absolutely continuous with respect to the corresponding h-dimensional packing
measures. This property in turn implies the conjugating homeomorphism to be Lipschitz
continuous. Additionally the existence of the scaling function is shown and a version of
rigidity theorem, expressed in terms of scaling functions, is proven. We also study the
real analytic Cantor sets for which the stronger rigidity can be shown that the absolute
continuity of the conjugating homeomorphism alone implies its real analyticity.
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§1. Introduction. The ultimate goal of this paper is to classify parabolic Cantor sets
up to bi-Lipschitz and real analytic conjugacy. This is done in the last three sections of
the paper. The first 6 sections forming the preparation for the classification part occupy a
considerable part of the paper. In these sections we establish basic dynamical and geomet-
ric properties of a single parabolic Cantor set. The theory of parabolic Cantor sets takes
roots from the theory of parabolic rational maps and expanding cookie-cutter Cantor sets.
The former one shared larger part in this paper as a model and prototype for exploring
properties of a single map. In particular it equipped us with the powerful method of con-
formal measures which turn out to be very convenient tools when hyperbolicity fails. One
of our aims was to demonstrate in a relatively uncomplicated setting (extremely simple
phase space - just the interval) how this machinery works. it has turned out to be very
fruitful in various areas dealing with iterates of conformal maps. We mean here Kleinian
groups, particularly the pioneering work of Patterson (see [Pal], [Pa2]) who introduced the
concept of conformal measures, and developing his approach work of Sullivan (see [Su3]
and [Sub| for example). Sullivan has also brought the concept of conformal measures to
the setting of rational functions (see [Su4], comp. [DU5] for example). This has resulted
in a bunch of papers on the subject and subsequently, along with the ”jump” construction
(see Section 7), contributed to the recent development of the theory of conformal infinite
iterated function systems (see [Ba] and [MU] for example).

On the other hand the theory of expanding Cantor sets (see for example [Be], [LS], [Pr2],
[Pr3], [PT], [Sul], and [Su2]) where also a more complete collection of literature can be
found) mainly provided us with the framework to investigate conjugacy classes for parabolic
Cantor sets.

The part of the presentation of those properties of a single map which actually do not ap-
peal to the one-dimensional and totally ordered structures of the interval is to high degree
comparable with the presentation given in the papers [ADU], [DU1] - [DU4], [U1], and [U2]
for rational functions. In this respect the technical difference between parabolic Cantor
sets and parabolic rational functions is that these latter ones are not required to be analytic
- we actually attempt to work here with as little amount of smoothness as possible. One of
the primary tools as well here as in the setting of parabolic rational maps and expanding
Cantor sets is the bounded distortion of derivatives along long inverse branches of iterates.
It is the classical fact today that the distortion is bounded for expanding (hyperbolic) sys-
tems. In case of parabolic rational maps we have the Koebe distortion theorem at hands,
and finally this is a technical problem which focuses our attention in the second section of
this paper.

From the theory of expanding Cantor sets we mostly borrowed and adopted to our setting
the concept of scaling function and the rigidity problem. I contrast to what is going on in
the case of expanding Cantor sets, geometry of parabolic Cantor sets fails to be bounded.
Nevertheless it continues to be determined, up to the level of bi-Lipschitz conjugacy, by the
scaling function. The geometry is also determined (again up to bi-Lipschitz conjugacy) by
the packing measure class and the Hausdorff dimension of the Cantor set. This much less
evident than in the case of expanding sets. The point is that for expanding sets there is an
extremely simple relation between conformal (equivalently packing) measure of a ball and
the power of its radius, power taken with the exponent being the Hausdorff dimension of



the Cantor set under consideration. Namely, these two quantities are almost proportional
- their ratio stays bounded away from zero and infinity. For parabolic Cantor sets the
relation between radii of balls and their conformal measures is more complex. Proving
Lipschitz conjugacy becomes technically more involved.

Of special attention is Section 9, where dealing with real analytic systems, employing the
methods of complex analytic functions and, indirectly the concept of nonlinearity (see [Sul]
and [Pr3]), we prove a stronger version of rigidity that the absolute continuity (with respect
to packing measures) of the conjugating homeomorphism alone implies its real analyticity.

§2. Preliminaries. Let S' denote the unit circle {z € @ : |2| = 1} and let [ be the
normalized Lebesgue measure on S, [(S') = 1. Let I be a finite set consisting of at
least two elements and let {A; : j € I} be a finite collection of closed nondegenerate
and not overlapping subarcs (their intersections contain at most one point) of S1. Finally
let f: UjeI A; — S! be a C' continuous map, open onto its image with the following
properties:

2.1) Ifi,7 € I and A; N A; # 0, then f|a.ua, is injective.
( J i J

2.2) For every j € I the restriction f|a. is C'1¢ differentiable, that is the derivative
y J j
function f’|A; is Holder continuous with an exponent 6 > 0 which means that

1f'(y) — f'(2)| < Qly — x|

for some constant () > 0 and all z,y € A;.

(2.3) [f'(z)] > 1 for all z € ;e Aj but |f'(z)] = 1 may hold only if f(z) = =.

(2.4) If f(w) = w and |f'(w)| = 1, then the derivative f’ is monotone on each sufficiently
small one-sided neighborhood of w.

(2.5) There exists L > 2 such that if f(w) = w and |f’(w)| = 1, then there exists 0 < § =
B(w) < 0/(1 —60)(= oo if # = 1) such that

!/ _1 ’ _1

L
< —
sow |z —w|P row  Jr—w|f T 2

(2.6) For every i € I there exists I(i) C I such that f(A;) NU;er A5 = Ugerp) -

The reader should notice that in the case when the intervals I; are mutually disjoint, then
without loosing generality the circle S* can be replaced by a compact subinterval of IR. In
this case also the openness of f: [J;c;A; = S Land (2.1) follow automatically from other
assumptions.

Coming back to the general case, property (2.3) describes a kind of hyperbolicity and re-
quirement (2.6) establishes the Markov property which always gives rise to a nice symbolic
representation of f. In the sequel we will need f to satisfy one condition more. In order
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to express it and in order to express various properties of objects introduced above let us
prepare a suitable language. To begin with let A : I x I — {0,1} be the matrix (called
incidence matrix) defined by the requirement that A;; = 1 if and only if f(A;) D A;. The
last condition we need is that the matrix A is primitive which means that

(2.7) There exists ¢ > 1 such that all entries of A? are positive.

Let next ¥ C I*° be the space of all one-sided infinite sequences 7 = 79772 . .. acceptable
by A, that is such that A, , =1forall j =0,1,2,... and let ¥% be the set of all finite
sequences acceptable by A. We put ¥4 = ¥% U XS and for every integer n > 0 we let X7
be the subset of X% consisting of all words of length n + 1. Going on with notation, given
T € X4 and n > 0 we define 7|, = 797y ... 7T, to consist of the first n + 1 initial letters
of 7; if n + 1 exceeds the length of 7, then 7|, is just 7. Notice that 3% is compact and
by primitiveness of A it is nonempty. Notice also that X% is forward invariant under the
left-sided shift map (cutting out the first coordinate) which will be denoted by . For all
words 7 € ¥, n > 0 define

ATy =A, nfHA)N...0f™(AL)

Observe that A(7) is a nonempty closed subinterval of S'. Fix 7 € X% and consider the
descending sequence {A(7|,) : n > 0} of compact nonempty subintervals of S'. Then
the intersection (), 5o A(7],) is a closed nonempty subinterval of S'. We shall prove the
following.

Lemma 2.1. For every 7 € X% the set A(7) = (),,>0 A(T]) is a singleton. Even more,
the diameters of A(7|,) tend to zero uniformly with respect to n.

Proof. Let X} = {7 € X% : I(A(7)) > 0} and suppose that ¥ # 0. Since for any two
distinct elements 7,7 € X% the intersection A(7) N A(7) is either an empty set or a point,
the family ¥ contains an element of largest length. So, the remark that if 7 € £, then
also (1) € X% and I(A(a(7))) = I(f(A(7))) > I(A(T)), gives a contradiction and finishes
the proof of the first part of the lemma.

In order to prove the second part suppose to the contrary that 3¢ > 0 Vn > 0 37(") ¢
Y0 3k, > n such that I(7 ,(;Z)) > €. By compactness of X% we can find an accumulation

point 7 € X% of the sequence {7(™ : n > 1}. But keeping in mind that the sequence
of lengths {{(A(7],)) : » > 1} is decreasing this yields [(A(7],)) > € for all n > 1 and
consequently [(A(7)) > e. This however contradicts the first part of the lemma and
completes the proof. &

In view of Lemma 2.1 we can define a continuous map 7 : X% — S! putting m(7) = A(7).
The range of this map, the set J = J(f) = n(X¥%) is called the dynamical Cantor set
(DCS) associated to the dynamical system (f, I; Aj,j € I). Although J may happen to be
an interval, nevertheless we still choose the name Cantor set since we consider an interval
as a degenerate Cantor set, and since, which is perhaps a more important reason, .J is an
interval in, in some sense, exceptional cases only (see Theorem 2.4 below). Let us now
formulate the following obvious lemma.



Lemma 2.2. We have

(a) J = ﬂnZO Urezg A(r)

(b) J can be characterized as the set of those points of S* whose all positive iterates under
[ are defined (and therefore contained in (J;c7 A;).

(c) f7HI) =T = f(]).

(d) for=moo

Proof. Properties (a) and (b) are obvious. The relations f(J) C J = f~1(J) follow

-
immediately from (b), and the inclusion f(J) D J follows from (b) and primitiveness of
the matrix A. The property (d) follows from the definition of .J. [ )

For every 7 € ¥4 define J(7) = J N A(7). For every z € S and r > 0 define Bgi(z,7)
and Bjy(z,7) to be the balls centered at x with radius r respectively in the space S* and
J. Additionally let B(z,r) be the convex hull in S' containing B;(z,r). Note that if r is
sufficiently small (independently of r), then B(x,r) C | jer Aj. The next lemma provides
most basic ”formal” properties of the sets J(7). Its proof is of set-theoretic flavor and is
left for the reader.

Lemma 2.3. We have
(@) Yoy J = UTEEZ J(T).
(b) Yiresi\so) F(J(7) = J(o(r)) and f(A(r)) = A(o(7)).

A

Perhaps only a few words about the proof of (e) would be in order. Indeed, by primitiveness
of of A there exists k > 0 such that f"**(J(r)) = J for every 7 € ¥% and n = |7]| — 1.
So, the remark that each nonempty open subset of J contains a cylinder J(7) for some
T € X% completes the argument.

Lemma 2.4. The set J is either a topological Cantor set (perfect, totally disconnected)
or an interval. In particular, if el Aj is not an interval, then .J is a topological Cantor
set.

Proof. First we shall show that J contains at least two distinct points. Indeed, suppose
to the contrary that J is a singleton, say z. Then, as by the definition of .J, all sets
C(i), ¢ € I, are nonempty, we deduce that I consists of exactly two elements, say i; and
ig, and I;, N I;, = {z}. Thus f(z) = z and, as it follows from primitiveness of A that
f(Ai;) DA UA,, for j=1or j =2, we deduce from (2.1) that f(A;;) = S*. Therefore
applying (2.1) again we conclude that f is a homeomorphism of A;; onto S' which is a
contradiction and finishes the proof that .J contains at least two distinct points. Now, since
by primitiveness of A, for every 7 € ¥% there is an integer n > 0 such that f™(J(7)) = J,
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each cylinder J(7) contains at least two distinct points. Hence, applying Lemma 2.1 and
Lemma 2.3(a) finishes the proof of perfectness of .J.

In order to complete the proof of the first part it suffices now to show that if .J is not totally
disconnected, then it is an interval. Indeed, suppose that U is a nondegenerate interval
contained in J. Then U has a nonempty interior in J and by Lemma 2.3(e), J = f9(U)
for some ¢ > 0. So, J as a continuous image of a connected set is also connected. The
second part follows from the first one and the observation that by primitiveness of A, the
set J intersects each interval A;, j € I. &

Let
Q=Q(f)=(f)={weJ: f(w)=wand |f'(w)| =1}

Each point w € € is called a fixed parabolic point or shorter a parabolic point. For every
q > 1 consider now the system (f?, 19, A(7), 7 € I7). We shall prove the following.

Lemma 2.5. The set 7 consists of at least two elements, {A(7),7 € I9} is a finite
collection of not-overlapping closed intervals, and f9 : (J cp0 A(T) — S 1 is continuous.
Moreover,

(a) The system (f?,I7; A(7), T € 19) satisfies the the conditions (2.1) - (2.7).
(b) J(f?) = J(f)-
(c) Q(f7) = Q(f).

(d) If 7 € I? and w € Q(f) N A(7), then f?|s(,) is orientation preserving.

Proof. The first part of this lemma is obvious. Let us now deal with the item (a).
Condition (2.1) is satisfied since the composition of injective maps is injective and condition
(2.2) holds since the composition of C**? differentiable maps is C1*? differentiable. To
prove (2.3) notice that by the chain rule |(f9)"(x)| > 1 for all z € |, ;4 A(T) and suppose
that |(f9)'(z)| = 1. Then by the chain rule and (2.3) (for f) we have |f'(fi(x))| =1 for
all i = 0,1,...,9 — 1, and therefore, using the second part of (2.3) (for f), we conclude
that f(z) = x. Hence we have proved (2.3) for f? and simultaneously condition (c¢) of
our lemma. In order to prove (2.4) and (2.5) consider first two functions g and h defined
on a neighborhood of a point w, both keeping it fixed and and satisfying (2.3), (2.4), and
(2.5). Note that then both g and h have an inflection point at w, (9o h)'(y) —(goh)'(z) =
(9'(h(y) — g’ (h(z))) 1 (y) +g'(h(z)) (W (y) — k' (z)) and both summands have the same sign.
So, g o h has again monotone derivative on either side of w. Hence (2.4) for f9 follows by
induction. Also

(g o h)(z) =1 = (g0 h)'(z) = ¢'(w)h' (w)]
= |(g'(h(x)) — g'(W)H (z) + g (w) (W () = I'(w))]
= W ()]lg"(h(z)) = g"(w)| + |g" (@)| | () — h'(w)]
= [B(@)llg'(h(x)) = 1 + |g" (W)W () — 1]

where the third equality sign has been written since both numbers (¢'(h(x)) — ¢'(w))h'(z)
and ¢'(w)(h/(x) — h'(w)) are easily seen to have the same signs. Notice that by (2.5) for
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h, it follows from Mean Value Theorem that lim,_,,, |h|(mw_);‘|"| =1 and as
l9'(h(@)) =1 _ |¢'(h(z)) — 1| |h(z) —w/|’
|z — w|P h(z) —wlf |z —w|f

we conclude that (2.5) is satisfied for goh. Now, condition for f? also follows by induction.

Moving with the proof, condition (2.6) follows from Lemma 2.3(b) by induction and (2.7)
is satisfied since products of primitive matrices are again primitive. Property (d) can be
easily derived directly from definition. &

Besides of the formal value of Lemma 2.6 its practical advantage is that passing to the
second iterate of f one keeps the same Cantor set, the same set of parabolic points, and f?2
"preserves” one-sided neighborhoods of parabolic points. Therefore from now on we will
assume that already for f itself condition (d) of Lemma 2.5 is satisfied.

Lemma 2.6. For every n > 1 the set Per,,(f) = {x € J : f*(z) = x} is finite.

Proof. First note that in view of (2.3) and the left-hand side of (2.5) every point w €
has an open neighborhood in (J;c; A; on which |f'(z)] > 1 except for w itself. Therefore
Q2 is countable. Suppose now that Per,(f) is infinite for some n > 1 and let y be an
accumulation point of Per, (f). Since Per,(f) is closed, y € Per,(f). Note that for every
z € Per,(f) sufficiently close to y, the restriction f"|,,; is well defined and injective.

Pick one such z # y. Then |z — y| = |f"(2) — ["(y)| = f; |(f™) (z)| dz. But since  is
countable, so is the set {z : |(f™) (z)| < 1}, hence the last integral is greater than |z — y|.
This contradiction finishes the proof. &

Using our assumptions (2.1) - (2.7) and Lemma 2.6 we conclude that the number

. min{{([;) :i € I}
61 = 5 min{ min{dist(;, ;) :i,j € I, LN I =0}
min{|z — y| : z,y € Pera(f), z # y}

is positive.

Lemma 2.7. If 0 < § < §; and z € B(Pery(f),d) \ Per1(f), then there exists n > 1 such
that f"(x) ¢ B(Pery(f),9).

Proof. Suppose to the contrary that there exists © € B(Pery(f),0) \ Per1(f) such that
f™(x) € B(Pery(f),d) for all n > 1. Then there exists z € Peri(f) such that f"(z) €
B(z,6) for all n > 1. In view of (2.3) and (2.5) the sequence f2"(z) converges, say to ¥,
and y # z. But then f2(y) = y which contradicts the choice of § and finishes the proof. &

Recall that a continuous map S : X — X of a compact metric space X is expansive if
there exists a positive n such that for all z,y € X, © # y there exists n > 0 such that
dist(S™ (z), S™(y)) = .



Theorem 2.8. The map f : J — .J is open and expansive, and any positive number
n < 41 is an expansive constant for f.

Proof. In view of Lemma 2.2(c) we have f(W N .J) = f(W)nNJ for all subsets W of
UjeI Aj, and therefore the openness of f : J — J follows from the openness of f :
UjeI Aj — f(UjeI Aj). Let us now prove expressiveness of f :.J — J. Take 0 < 6 < §;
and suppose to the contrary that there are two distinct points x and y in J such that
|lf"(y) — f*(z)] < 0 for all n > 0. Let x = n(7) and y = 7(p), 7,p € . Since
x # y, there exists ¢ > 0 such that 7, # p,. Since f(x) € A, and fi(y) € A,,, we get
contradiction if A and A, are disjoint. So, A; NA, # 0, and let z be the only point
of this intersection. By the definition of 01, all the iterates f™|[fa(z),fa(y) are injective and
f™(z) lies between f97(x) and f7"(y). By (2.6) the point z, as well as all other points of the
intervals A, and A, _, is eventually periodic, say fP(f*(z)) = f*(z). But then it follows
from Lemma 2.7 that f*(z), f*(y) & B(f’(2),d) for some s < j < s+p—1,k > q+s, and
simultaneously f7(z) lies between f¥(z) and f¥(y). This contradiction finishes the proof.

L )

As an immediate consequence of this theorem, Lemma 2.2 of [DU2] and [Ru, p. 128], (see
also [PU]), we get the following.

Corollary 2.9. (Closing Lemma) For every £ > 0 there exists £ > 0 such that if n > 0 is
an integer, x € J, and |f™(x) — x| < &, then there exists a point y € J such that

f"y) =y and |f(y) - f(z)] <e
forall j =0,1,...,n— 1. [ )

The following last part of this section is devoted to prove the distortion properties of
iterates of f. First observe that for every w € () there is a continuous inverse branch
fol:B(w,d;) — St of f such that f;!(w) = w. By (2.3)

le(B(w, (51)) C B(w, (51)

and therefore all iterates f"(B(w,d1)) C B(w,d1), n > 1, are well defined. Moreover, by
property (d) of Lemma 2.5 the map f ! preserves one-sided neighborhoods of w.

Now, the same argument as in the proof of Lemma 2.6 shows that every connected com-
ponent of UjeI A; may contain at most one fixed point. So, since the sequence f;"(z) is
decreasing toward w, we obtain

(2.8) lim f)"(z) =w

n—0o0

for all w € Q and all z € B(w, §;). We shall prove the following.



Lemma 2.10. For all w € Q and all x € B(w, §1||f||71) \ {w} we have

e ) - w
@ —a = Z' @l T )

Proof. For every € B(w,d1||f||"Y) \ {w} and k > 1 let Fy(z) = SF_ |(f5")(z)|. Then

n=1

T k
/f_l( Bl = 32157 0) — @) = 15 @) = @)
w T n=1

By (2.5) all the functions |(f;™)’|, n > 1, are decreasing on either side of w in B(w,d1). In
particular Fy(f;1(y)) > Fr(t ) > Fy(z) for all f;1(z) <t <x. Thus |z — f;1(z)|Fr(z) <
1fo ) — fo 5 @) < o — fo )|Fi(f (). Therefore, letting k — oo, using (2.8),
and noting that B(w,d1||f||~ 1) C foN(B (w 1)), the required inequalities follow. )

Observe that in the proof of Lemma 2.10 we have not used the first part of (2.5) describing
the infinitesimal behavior of f around parabolic points, and this is the main reason we
decided to formulate and prove it. Incorporating formula (2.5) in its full strength we can
prove more, that the series > 7 |(f5™)'(x)|? converges. This will be done in several
consecutive lemmas. We begin with a generalization of a result of Thaler (see [Th]) which
actually goes back to the 19 th century. We provide a different more ”dynamical” proof
which is here due to L. Olsen.

Lemma 2.11. Let p,a, A > 0 be three positive numbers and let ¢ : (0, 4) — IR be a
real-valued function. If ¢(z) = z — azP™ 4+ o(xPT1) as z — 07, then there exists n € (0, A)
such that

—1/p

= (pa)

for all z € (0,n] and the convergence is uniform on compact subsets of (0, 7].

Proof. For every a > 0 define an auxiliary function ¢, : (0, 00] — (0, co] putting

T

$a(z) = (U + apa?) 1/

It is easy to check that with a,b > 0 the following conditions are satisfied.

(a) 0 < ¢g(z) <z forall z > 0.

(b) ¢a © ¢b qsa—i—b

(¢) ¢q is increasing.

(d) ¢g(z) =2 —azP™t + O(z**1) as z — 0.

() limy,_ oo n/P@7(x) = (pa)~1/? and the convergence is uniform on compact subsets of
(0, 00).



Perhaps only property (e) requires a proof. Here it is. Using (b) we get

(pan) Py (@) = (pan)'/? $na(z) = — 1

uniformly on compact subsets of (0, 00).

Now note that if g and 1 are two real-valued functions defined on the same interval of IR,
at least one of them, g or v is increasing, and if g < 9, then ¢ < ¢" for all n > 1. In
order to prove Lemma 2.11 fix 0 < ¢ < a. By (d) and the assumption on ¢ there exists
n € (0, A) such that ¢q4c) < ¢(x) < dg—e)(z) for all z € (0,7] and using (c) we therefore
get (o < ¢"(@) < ¢f,_.)(z) for all z € (0,n] and all n > 1. Thus, using (e), we can
write

(p(a+¢))~Y? = lim nl/pquZJrs(:c) < lim inf n/P¢" (z) < limsup n'/P¢™ (z)

n—oo n— o0 n—o00
< lim n'Pgp () = (p(a— €))7
n—0o0
So, letting ¢ — 0 finishes the proof. &

As an immediate consequence of Lemma 2.11 we get the following.

Corollary 2.12. Let p,a, A > 0 be three positive numbers and let ¢ : (0, A) — IR be a
real-valued function. If ¢(x) < z — axP*! for x € (0, A), then there exists € (0, A) such
that

8"(@) _

17, < (pa)~'/?

(a) lim sup —
n—oo N

for all x € (0,n] and the convergence is uniform on compact subsets of (0,n]. If instead
¢(x) < & — azPT! for z € (0, A), then

(b) lim inf " (x) > (pa)~ /P

n—oo n—1/p

Lemma 2.13. There exist constants 0 < § < §; and L; > 2 such that if w € Q and
z € B(w,6), then

(2L1)_1 S hInlI’lfM S limsup M

< Li/2
n—00 n_l/lg n—00 n_l/ﬂ - 1/

and the convergence is uniform on compact subsets of B(£2,9) \ €.
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Proof. First notice that by the Mean Value Theorem and since f is C' differentiable we
7 =wl — 1 Using this and boundedness of |f'(z)] from below and from

lz—w]
above we deduce that (2.5) remains true, perhaps with a bigger value of L, if we replace f
by fo1. Then for every z sufficiently close to w we have

have lim,_,,,

@) —el= [ sy @las [ 0-r o)
(2.a) <lz—w|— LB+ 1) Yo — w|ft

and similarly

T

i) —wl > [ ALl d
(2.b) > |z —w| - L(B+1)"z — w|PT
So, employing Lemma 2.11 completes the proof. &

We have enumerated inequalities (2.a) and (2.b) since these will be frequently used in the
sequel. As an immediate consequence of Lemma 2.13 we get the following.

Corollary 2.14. V(,cq)V(0<r<s) (2.1 (R)>1) V(2€B(w,5)\B(w,R)) V(n>1)

Ly(R)™' < < Mo El)/g_w| S o El)/ﬁ_w| < Ly(R)

Relying on this fact we shall prove the following.

Lemma 2.15. V(,c0)V(0<r<6) F(Lo(R)>2) V(2€B(w,0\B(w,R)) V(n>1)

Lo(r)t < WSO 1)

n-_ B8
Proof. Since all the functions |(f;™)'(2)|, n > 1, are monotone nearby w, we have
(29) [(f™) @)f5 (=) =2l < 1f5™(2) =[50 () < N (F Ifa ™ (2) = =l.

It follows from (2.a) and (2.b) that L=1(8+ 1)1 fo(2) —w|?*! < |f57(2) = fo "V (2)| <
L(B+1)7Yf;™(2) — w|P*! for all x € B(w,§). Hence combining Corollary 2.14 and (2.9)

we get

()] < LBED TRV
|(fw )( )|§ |f‘;1(2)_z|

and
LB+ 1) Ly (R)~(B+D

|fa'(2) - ]
11

_B+1
8

(5 DY ()] > 2




The proof is completed. L)

Since # < 0/(1—0), it follows from Lemma 2.15 that for every w € 2 and every =z € B(w, ¢)

(2.10) S @) < o

and the convergence is uniform on compact subsets of B(£2,9) \ €.
Now observe that for every € S! and every n > 1, if f*(x) is well-defined, then there
exists a continuous inverse branch f; " : B(f"(x),d2) — S! of f™ sending f"(z) to =,

where d; = min{l(f(4;)) : i € I}. We shall prove the following.

Lemma 2.16. Vi>o Yocs<1 Ik, (t,5)>0 In(t,s)>0 such that if x € St,yn >0, fo(x) is
well-defined, and dist(f™(z),Q2) > t, then for all points y, z € B(f™(x), min{4, st})

Ki(t,s)™' < w < Ki(t,s)

(fz")'(2)]
and )
Z (7)) (2))? < M{(t, s).

Moreover for every ¢t > 0 we have lims_,o K1(¢,s) = 1.

Proof. Set r = min{4, (1 — s)t}, A = A(t,s) = inf{|f'(2)| : 2 ¢ B(Q,r||f||”H} and
let K = K(t,s) > 0 be the supremum of the series appearing in (2.10) taken over the
set B(Q,7) \ B(Q,r||f||7Y). Fix y € B(f"(x), min{d, st}), for every 0 < j < n put
yi = f7(f-"(y)) and let p(j) be the number of integers 0 < i < n — 1 — j such that
f(y) ¢ B(Q,r||f'|”!). Define also increasing sequences 0 < k; < l; < n determined by
the requirements that

(a’) {ykjvykj-f—lv ) ylj} C B(Q7 T)

and

(b) If i & U;{kj, kj +1,...,1;}, then y; & B(Q, 7).

Since y = yn ¢ B(2,r), we conclude that for all j the point y;; € B(Q,7)\ B(Q,r||f'||71).
Thus S, 17 0]~ < (K 4+ DI (01,1~ < (K + A0 and then

n—1 n—1
ST )7 <Y (K + DATPE) £ Y A0 < (K1) A
1=0 J i€G i=0

)\9

(2.11) = (K + 1)ﬁ,

where the second inequality sign we could write since all the numbers p(l;) and p(¢), i € G,
are mutually distinct. So, the last part of the lemma is proven. As a matter of fact in what

12



follows we will need a slightly stronger version of this estimate where we let the point y vary
in B(f™(x), min{d, st}) with i. Let now z be another point in B(f™(z), min{d, st}). Then
using (2.2) and the mean value theorem we see that for every j there exists w() € [z, ]
such that

log | £ (z5)| = log |f () Il < If' ()] = |f (i)l < Qlzs — w;°
= Q™) (w7 — g’
< Q(2s)°| (/") (wf)
Hence applying (2.11), in fact its stronger version discussed above, we get

n—1

o5 (£ ()]~ og (™) ()| < 3 llog 17'(25)| — o | 3]
< @s1'Q Y |7 (W)
Jj=0 N
< (25t)°Q(K + Vw1

So, the first part of the proof is finished setting

0
Ki(t,s) = exp ((2st)9Q(K+ 1)%) .

In order to see that limg_,o K4 (¢, s) = 1 it suffices to notice that

;i_rf(l] A(t,s) = inf{|f'(2)| : z ¢ B(Q, min{d,¢})} > 1

and lims_,o K (¢, s) is finite as the supremum of the series appearing in (2.10) over the set
B(Q,min{d,t})\ B(Q2, min{d, ¢}/||f'||). The proof is finished. &

Observe that given w € € and 0 < ¢t < ¢, partitioning separately both connected com-
ponents of B(w,d) \ B(w,t) into finitely many segments of length < ¢/2, and increasing

K(t,t/2) if necessary, we derive from Lemma 2.16 the following.

Corollary 2.17. For every 0 < t < § there exists K(t) > 0 such that if z € S, n > 0,
f"™(z) is well-defined and belongs to B(w,d) \ B(w,t), then

W)
O™ = () = 10

for all points y, z lying in the same connected component of B(w,d) \ B(w,t) as f™(x).

13



Lemma 2.18. For every 0 < s < 1 there exists Ko(s) > 1 such that if z € S, n > 0, and
f™(z) is well-defined, then

Koot < Uz ;( Dl < i)

for all points y, z € B(f™(x), min{sdist(f"(x),Q),d/4}).

Before starting the proof let us give a few words of comment on this lemma. First of
all this is a substantial improvement of Lemma 2.16 since now the distortion constant
K>(s) is independent of the distance from f™(x) to Q; it depends only on the ratio of the
radius of the ball around f™(z) and dist(f™(x),2). Note also that the lemma is vacuous
if f(x) € Q.

Proof of Lemma 2.18. If dist(f"(x),Q) > §/2, then

s s )
(S/—Qdist(f”(x),ﬁ) < mdiam(Sl)i =53
and therefore it follows from Lemma 2.16 that any constant Ks(s) < K1(/2,2s/6) works in
this case. So, we can suppose that dist(f™(z), 2) < §/2 and let w € Q be the only point such
that |f™(2) —w| < §/2. Denote the ball B(f"(z), min{sdist(f™(z),2),d/4}) by B(f™(z)).
Since B(f™(z)) C B(f™(z),s|f"(z) — w|) C B(w,9), for every y € B(f™(x)) there exists a
unique integer k = k(y) such that f*(y) € B(w, §)\B(w,d/||f'||). Suppose now additionally
that f, ™ = f,™. Then for every y € B(f™(z)) we have f "(y) = f;(n+k)(fk(y)), thus by
Lemma 2.15 Ly (n+k)~ 7 < |(f:™) ()| < La(n+k)~ "7, where Ly = La(6/||f]|) is the
constant produced in Lemma 2.15. Since (1 —s)|f"(x) — w| § ly—w| < (1+9)|f"(z) —wl,
it follows from Corollary 2.14 that (1 — s)|f™(z) — w| < L1k~Y/# and (1 + s)|f™(z) — w| >
LT'k=Y8 where Ly = Li(5/||f']]). Thus

max{k(y) :y € BUY"(@)} _ (;21+5)"
min{k(y) : y € BU" (@)} = (Lll— )

Denote the number in the right-hand side of this inequality by a(s)? > 1. We then have
for all y, z € B(f"(x))

| S

sdist(f"(x),Q) =

(2" W) _ La(n+k(y ea (k) — 41 o
VG 1 e be)) B(ihg) <

and therefore we are done in this case. In the general case let 0 < 5 < n be the least
integer such that fi(z) € B(€,6/2) for all j < i < n. Then fi(z) = fo ™" (f*(x)) and
f.m= f =1, go f_("_i) where g is the inverse branch of f sending f*(z) to fi~1(x).
and f5 ) is the inverse branch of fi~! sending fi~ L(z) to x. Now, we have just proved
that f. =9 Yas the distortion bounded by a number depending only on s, a uniform

14



boundedness of distortion of g is obvious, and since the point f(~1)(z) is far away from Q

(at least at the distance > §/2), a uniform bound of the distortion of fg (=1 follows from
the first part of the proof. We are done. [ )

As an immediate consequence of Lemma 2.18 we get the following.

Corollary 2.19. For every sufficiently small 0 < v < 1, for every € S', and n > 0, such
that if f(z) is well-defined, then

for all points y, z € B(f™(x), vdist(f™(z),2)).

Our last result in this section is in some sense a partial improvement of Lemma 2.18 toward
attempting to have limg_,g K2(s) = 1.

Lemma 2.20. For every integer ¢ > 1 there exists an increasing function @, : (0,9) —
[1, 00] such that lim;_,o Q4(t) =1 and

for all points y,z € A, where A C B(f,t) is an arbitrary subarc of S such that # (A N
{f57(0B(w,d)):j > 0}) < q and z is any point in S* such that f™(z) is well defined and
f™(z) € B(A,t).

Proof. Observe that without loosing generality one can assume ¢ = 1. Take w € 0B(w, )
such that A C [w,w]. Suppose first that x = w is a parabolic point. Take any v € B(w,t).
In view of (2.4) we have |(f;") (v)| < |(f5™) (f51(v))| for all n > 1. On the other hand

(5 (0)]
S ()

(S5 ST @ = (£ ()] - <|(S™) @)1 (5 ()]

Hence

| < [ (S W)
- ) ()

for all n > 1. Since, by continuity of f’, we have lim, ., |f'(f;1(v))| = |f'(w)| = 1, it
follows from (2.12) and (2.4) (monotonicity of f') the existence of a function K;(¢) claimed
in the lemma as long as only the inverse branches of the form f ", w € €2, are involved. In
the general case using what has been proved above, one repeats the argument described
in the last part of the proof of Lemma 2.18. [ )

< |f'(f5 )l
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Frequently in the sequel, if there will be no specific requirements of how small v > 0 is
to be we will drop the dependence of Ka(7y) on « writing Ko for Ka(y). We end up this
section fixing the following notation

R(w) = B(w,6) \ B(w,d/I[f]])-

§3. Pressure and dimensions. This section is somewhat sketchy, of rather general
character and consists of two parts first of which is devoted to describe and discuss some
general facts from geometric measure theory, while the second one provides quick intro-
duction to the thermodynamic formalism and establishes some its basic applications in
geometric measure theory. This part mostly overlaps with respect to the contents as well
as with respect to the methods used with the paper [DU1].

To begin with given a subset A of a compact metric space (X,d), a countable family
{B(zi,r;)}32, of open balls centered at points of A is said to be a packing of A if and only
if for any pair ¢ # j

d(:L'i, .’Ej) >r; + Tj.

Given a nondecreasing function g : (0,¢) — (0, c0) for some £ > 0, the g-dimensional outer
Hausdorff measure Hy(A) of the set A is defined as

H,(A) = il;% inf{z g(diam(4;))},

where infimum is taken over all countable covers {4; : i > 1} of A by arbitrary sets whose
diameters do not exceed €. If g is of the form z! instead of writing H,: we write H; and
speak about ?-dimensional outer Hausdorff measure. In this case one will get comparable
numbers (in the sense that ratios are bounded away from zero and infinity) if instead of
covering A by arbitrary sets one considers only open balls centered at points of A.

The g-dimensional outer packing measure II;(A) of the set A is defined as
I, (A) = U}E{A{; I (A:) }

(A; are arbitrary subsets of A), where 117, the g-packing premeasure is given by:

M5(4) = inf sup{}  g(r:)}.

Here the supremum is taken over all packings {B(z;,r;)}32, of the set A by open balls
centered at points of A with radii which do not exceed . Similarly as in the case of
Hausdorff measures if g is of the form z! instead of writing II,+ we write IT; and speak
about t-dimensional outer packing measure. These two outer measures Hy, and 11, define
countable additive measures on Borel o-algebra of X. For additional properties of packing
measures and a comprehensive discussion of this and related notions the reader is referred
to the paper [TT] and [Ma] and [PU] books.
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The definitions of the Hausdorff dimension HD(A) of A and packing dimension PD(A) are
the following
HD(A) = inf{t : H;(A) = 0} = sup{t : H;(A) = oo}

and
PD(A) = inf{t : [I;(A) = 0} = sup{t : [I;(A) = co}.

Let now v be a Borel probability measure on X. Define the function p = ps(v) : X X
(0,00) = (0,00) by
v(B(z,r))

rt '
The following two theorems (see [DU3], [Fa], [Ma], [PU], and [TT] for example) are for our
aims the key facts from geometric measure theory. Their proofs are an easy consequence
of Besicovi¢ covering theorem (see [Gu)).

p(z,r) =

Theorem 3.1. Assume that X is a compact subspace of an d-dimensional euclidean space.
Then there exists a constant b(d) depending only on d with the following properties: If A
is a Borel subset of X and C' > 0 is a positive constant such that

(1) for all (but countably many) =z € A

limsup p(z,r) > C~ 1,

r—0

then for every Borel subset £ C A we have H,(F) < b(d)Cv(FE) and, in particular,
or
(2) for allz € A
limsup p(z,r) < C~1,

r—0

then for every Borel subset E C A we have H;(E) > Cb(d)~'v(E).

Theorem 3.2. Assume that X is a compact subspace of an d-dimensional euclidean space.
Then there exists a constant b(d) depending only on d with the following properties: If A
is a Borel subset of X and C' > 0 is a positive constant such that
(1) for allz € A
liminf p(z,r) < C™1,
r—0
then for every Borel subset E C A we have II;(E) > Cb(d)"v(E),
or
(2) for allz € A
liminf p(z,r) > C™1,
r—0
then for every Borel subset E C A we have II;(F) < b(d)Cv(FE) and, consequently,
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(1’) If v is non-atomic then (1) holds under the weaker assumption that the hypothesis of
part (1) is satisfied on the complement of a countable set.

Let us now pass to the dynamics and thermodynamic formalism. Let S : X — X be a
continuous map of a compact metric space X and let ¢ : X — IR be a continuous function.
Given an € > 0 and an integer n > 1 we say that a set FF C X is (n,¢)-separated if and
only if for all x,y € F, x # y there exists 0 < k < n — 1 such that dist(S*(z), S*(y)) > .
Let

n—1
E, = i%f Z exp(z ¢o Sj(x)),
§=0

rEF

where the infimum is taken over all maximal (in the sense of inclusion) (n,¢)-separated
sets. The topological pressure P(S,¢) of the map S and the function (potential) ¢ is
defined as the following limit.

1
P(S, ¢) = lim lim sup — log E,,
e— n

0 noco

In the case when the function f is identically equal to 0 the quantity FE, is the maxi-
mal cardinality of an (n,e)-separated set. The pressure P(S,0) is then rather called the
topological entropy of S and is denoted by hyop(.S).

A Borel measure y is said to be S-invariant if and only if poS~! = p. The measure y is said
to be ergodic if and only if all invariant sets A, that is satisfying equality u(A) = u(S~1(A)),
are either of measure 0 or their complements are of measure 0. If i is a Borel probability
measure invariant under S then (see [BK]) the following limit exists for p a.e. x € X

1
(3.1) h,(z) = lim lim sup - log u(By(z,¢€)),

e=0 pooo

where By, (z,¢) = {y € X : dist(S7(y), S/(x)) < e for all j = 0,1,...,n — 1}. The integral
[ h,(z)dp(z) is called the metric entropy of S with respect to the measure p and is
denoted by h,(S). If p is ergodic almost all numbers h,(z) are equal to h,(S). Usually
in the literature a different approach is used to define metric entropy, which is based on
the concept of partition. Formula (3.1) is then a deep theorem, called Brin-Katok formula
whose proof uses heavily Breiman-Shannon-McMillan theorem. By M (S), M,(S), M*(S)
and M1 (S) we denote respectively the set of all Borel probability measures invariant under
S, its subset of ergodic measures, measures of positive entropy, and ergodic measures of
positive entropy. The following formula

(3.2) P(S, ) = sup {hu<5>+ / ¢du} — sup {hu<8>+ / ¢du}

M(S) M. (5)

called the variational principle for topological pressure, or just variational principle, estab-
lishes basic relationship between the notions of pressure and entropy, and has been proven
in [Wal.
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Coming back to our continuous map f : J — J we recall first that the Lyapunov exponent
X (f) of f with respect to a measure 1 € M. (f) is defined as

w(h)= [ 1ogldu
We shall prove the following.

Proposition 3.3. If u € M.(f), then x,(f) > 0. Additionally x,(f) =0 < p(Q) =
1 ©pu(Q)>0 < p(p({w}) =1 for some w € €.

Proof. That x,(f) > 0 we see immediately from (2.3). The equivalence of the three last
properties follows from ergodicity of x, and p(£2) = 1 obviously implies that x,(f) = 0. If
() = 0, then there is a compact set K C J of positive p measure disjoint from Q (and
hence of positive distance from €2 apart) and therefore |f'|x > A for some A > 1. Since
by the Birkhoff ergodic theorem every typical point of u visits K with positive frequency,
keeping in mind (2.3) we deduce that x,(f) > 0. )

Let us now define the pressure function P(t), ¢ € [0, 00) putting

P(t) =P(fls, —tlog|f']).

Some basic elementary properties of this function are collected in the following proposition.

Proposition 3.4. The function ¢ — P(t) is continuous, non-increasing, and non-negative
if Q # (.

Proof. The continuity follows immediately from general facts about topological pressure
(see [Wal). In order to prove that P(¢) is decreasing, consider 0 < ¢; < t5. We see from
Proposition 3.3 that for p € M(f), hu(f) — tix, > hu(f) — tax,. Hence, applying the
variational principle it follows that P(¢) is non-increasing. If 2 # (), we can consider an
f-invariant probability measure v concentrated on a forward orbit of some point w € €.
Obviously h,(f) = x» = 0. Hence, again by the variational principle, P(t) > h,(f)—tx, =
0 for every t € [0,00). This completes the proof of the proposition. &

Recall that
HD(p) = inf{HD(Y) : u(Y) = 1}.

By definition, HD(p) < HD(J) < 2 and hence sup{HD(p) : p € MJF(f)} < 1. This
supremum is in the literature denoted by DD(.J) and called dynamical dimension of .J (see
[DU5], comp. [PU]). Let us recall also the famous formula for the Hausdorff dimension of
an ergodic measure of positive entropy invariant under a conformal map whose origins go
back to Billingsley’s work and probably even earlier. Up to our knowledge, in the context
of real one-dimensional dynamics, this formula has been proved by F. Hofbauer and P.

Raith in [HR] under possibly weakest assumptions, much weaker than required here. It
reads that if g € MF(f), then x,(f) > 0 and

(3.3) HD(y) =




We shall prove the following.

Lemma 3.5. We have

(a) P(t) > 0 for every t € [0,DD(.J)).

(b) If Q = (), then P(¢) < 0 for every ¢t € (DD(J),o0). If Q # (), then P(¢) = 0 for every
t € [DD(J), ).

(¢) Plio,pp(sy is injective.

Proof. For the sake of this proof let us denote the dynamical dimension DD(.J) by s. If t <

s then by (3.3) there exists p € M, (f) such thatt < h,(f)/x,- Hence P(t) > h,,(f)—tx. >

0 and (a) is proved. In order to prove (ii) consider any ¢ > 0 and suppose that P(t) > 0.

Then by (3.2), the variational principle, there exists p € M(f) such that h,(f)—tx, > 0.

So, in view of Proposition 3.3, h,(f) > 0, and by (3.3), s > HD(u) = h,(f)/x. > t. So,

P(t) <0 for t > s and (b) follows from Proposition 3.4. We will show (c). Assume that

P(t1) = P(t2) for some 0 < t; < t2 < s. As f|; is expansive, there exist py, us € M(f)

(see e.g. [Wa]) such that h,, (f) —tixu, = P(t1) = P(t2) = h,, (f) —taxu,. If xu, > 0 then

t1Xpus < taXp,. This implies that P(t1) > hy, (f) — tixu. > by, (f) — taxu. = P(t2) — a

contradiction. Therefore x,, = 0 and by (3.3), hy, (f) = 0. Thus P(¢;) = P(t2) = 0 which

contradicts part (a). &

It follows from this lemma that in the case when € # (), the graph of the pressure func-
tion P(t) looks like on the Figure 1; it has a phase transition at the point s = DD(J).
An intriguing problem arises of what kind this phase transition is. Is for example P()
differentiable at s or not? We will come back to this point at the end of Section 7; at this
moment we we shall prove the following.

Theorem 3.6. The function P(t) is differentiable at ¢ = DD(.J) if and only if there is no
equilibrium state of positive entropy for the potential —DD(.J) log |f'|.

Proof. For the sake of this proof set s = DD(.J). Of course we only need to consider the
left-hand side neighborhood of s. On the right-hand side P(¢) is perfectly analytic and
Lemma 3.5(b) shows that if P’(s) exists, then it must be equal to 0. So, suppose that there
is p, an equilibrium state for —slog|f’| with h,, > 0. Then by (3.3), x, > 0 and by (3.2),
the variational principle, for every ¢ > 0, we have P(t) — P(s) > h,, —tx, — (h, — sxu.) =

—(t — s)x,. Hence
P(t)—-P
lim sup L) = P()

< —xu <0
t s t—s o Xu

and P’(s) does not exist.

If, on the other hand P’(s) does not exist, then there exist a sequence t,, ,/* s and a number
o > 0 such that

(3.4) P(t,) — P(s) > o5 — tn).

Without loosing generality we may assume that the sequence p, of equilibrium states
for —t,, log |f’| converges in the weak topology of measures to an f-invariant measure px.
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Since, by Theorem 2.8, the map f : J — J is expansive, it follows from [Wa] that the
entropy function v — h,(f) is upper semi-continuous. This and the continuity of P(#)
imply that p is an equilibrium state for the potential —slog|f’|. We shall now show that
h, > 0 completing the proof. Indeed, it follows from (3.4) that for all n > 1 we have
hy,, —taXu, > P(s)+o(s—t,) > h,, —sxu,. Hence x,,, > o foralln > 1. By Lemma 3.5
we have h, —t,xu, = P(t,) > 0, whence liminf,,_, h, > so. Thus, applying the upper
semi-continuity of the entropy function again, we get h, > so > 0 which completes the
proof. [ )

64. Conformal measures and dimensions. This section constitutes a natural extension
of the previous one enriching its results by employing the method of conformal measures
along the lines worked out in [DU1], [DU5], and [U1] (see also [PU]). We begin this section
with the definition of conformal measures. Let ¢ > 0 be a real number. A Borel probability
measure m on the Cantor set J is called t-conformal for f if and only if

(4.1) m(f(A)) = /A £t dm

for every special set A C J, that is a Borel subset of .J such that f|4 is injective.

Notice that if m is ¢t-conformal, then

(4.2) m(f(A)) < /A It dm

for every Borel set A C .J. Observe also that for a measure m to be conformal it is enough
to check (4.1) for Borel subsets of elements of partition {A; : j € I'}. From (2.2) and
primitiveness of the incidence matrix A we immediately get the following.

Lemma 4.1. Any conformal measure for f is positive on nonempty open subsets of J.

Lemma 4.2. Let € J\ U, _, f7"(2). Then there exist an increasing sequence {n; =

nj(z) : j > 1} of positive integers, a sequence {r;(z)}32, of positive reals decreasing to 0,

and an element y € w(z) \ B(,d) with the following properties:

(a) y=lim;j_ o f ().

(b) [ (x) & B(€2,9) .

(¢) If m is a t-conformal measure for f, ¢ > 0, then there exists a constant B(m) > 1 such
that

) < "I < g,

for all j > 1.
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Proof. In view of Lemma 4.1

M = inf{m(B(z, K;?v6)): z € J} > 0.
It follows from Theorem 2.8 that if z € J \ U, —, f~"(£2), then there exists a sequence
{n; = n;(z) : 7 > 1} such that 5@ ¢ B(Q,6). Let fz 7 : B(f™(z),7v5) — S* be the
continuous inverse branch of f™ sending ™ (x) to x. Then it follows from Corollary 2.19,
that f; " (B(f"i(z),70)) D B(z,r;) and f" (B(z,r;)) D B(f" (z), K5 *y0), where

rj =rj(x) = K3 ' [(f7™) (f* (2))|v6 = K3 8| (f) (x)| 7.

Using conformality of m and Corollary 2.19 we can estimate

1> m(f" (B(z,r5))) = / (™) " dm > K5 (F™) (@) ['m(B(@, 7))

B(waTj)

= (v0)' K5 *'ry

7 m(B(w,15))

and
M <m(f* (B(z,r5))) = /B( ) ()" dm < K3|(f™) (@)]'m(B(x,75))
= (70)'r;'m(B(z,1;)).
Therefore M (yd)™" < M < K3'(y6)~t. Also, using (2.3) we can easily deduce that
J

lim; o0 [(f ) (f™ (7)) = 0 and consequently, r;(z) = K5 '|(f™) (x)|~*yd — 0. Since
J is compact, passing to a subsequence of j, property (a) will be also satisfied. &

Let us now give a proof of the following well-known fact from the geometric measure theory.

Lemma 4.3. Let p and v be Borel probability measures on Y, a bounded subset of a
Euclidean space. Suppose that there are a constantM > 0 and for every point x € Y a
decreasing to zero sequence {r;(x) : j > 0} of positive radii such that for all j > 1 and all
reY

W(Bla,r;(x)) < My(B(a,r;(x).
Then the measure p is absolutely continuous with respect to v and the Radon-Nikodym
derivative dyu/dv is uniformly bounded away from infinity .

Proof. Consider a Borel set £ C Y and fix ¢ > 0. Since lim;j_, o, rj(z) = 0 and since v
is regular, for every x € E there exists a radius r(z) being of the form r;(z) such that
v(Uzer B(z,r(x)) \ E) < e. Now by the Besicovi¢ theorem (see [Gu]) we can choose a
countable subcover {B(z;,r(x;))}2, from the cover { B(z,7(z))}zer of E, of multiplicity
bounded by some constant C' > 1, independent of the cover. Therefore we obtain

w(E) < ) w(B(zir(z:))) < MZV(B(%W(%)))
< MC’V( B(xi,r(xl)))
< MC(e j: v(E))
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Letting € N\, 0 we obtain v(E) < MCv(E). So i is absolutely continuous with respect to
v with Radon-Nikodym derivative bounded by MC. [ )

Let X = J\ Ur—, f~™(Q). As a direct consequence of the two previous lemmas we get
the following.

Lemma 4.4. Any two t-conformal measures for f : J — J restricted to the set X are
equivalent. Moreover their Radon-Nikodym derivative ¢ : X — IR is bounded away from
zero and infinity, and satisfies ¢(f(z)) = ¢(x) for almost every = € X.

Proof. Indeed, in view of Lemma 4.2 and Lemma 4.3 only the equation ¢(f(z)) = ¢(x)
requires a proof, which is obtained by direct computation. &

Lemma 4.5. If H; is the t—dimensional Hausdorff measure on J and m is a t-conformal
measure for T : J — J then H; is absolutely continuous with respect to m such that the
Radon—Nikodym derivative is bounded from above. Consequently ¢ > HD(J) and there is
no t-conformal measure for ¢ < HD(J).

Proof. Let F C J be any Borel set. Put E = XNF = F\J,_,T "(). Since the
set U, f7™(2) is at most countable, Hy(E) = H,(F). Fix n,e > 0. Since m is regular,
similarly to the argument used in the proof of Lemma 4.4, we can find a countable cover
{B(zi,r(x;))}2, of E of multiplicity bounded by M > 1 such that x; € E, the radius
0 < r(z;) < n is of the form r;(z;) for every i = 1,2,... (defined in Lemma 4.2) and such
that m(Ujo,; B(z;,7(z;)) \ E) < e. Hence, applying Lemma 4.2 to the measure m, we
obtain

erl < B(m Zm (@i, r(zi))) < B(m )Mm(_UB(xi’T(xi)))

< M B(m )(€+m(E))

Letting € N\, 0 and then n N\, 0 we get Hy(F) = Hi(E) < CB(m)m(E) < CB(m)m(F). &
Let e(.J) be the infimum of all exponents ¢ > 0 such that a t-conformal measure exists and
let §(J) be the first zero of the pressure function P(¢). The main result of this section is
the following.

Theorem 4.6. We have DD(J) = 6(J) = e(J) = HD(J) and an h-conformal measure
exists, where h denotes the common value of these three numbers.

Proof. That §(J) = DD(J) < HD(J) < e(J) we see from Lemma 3.5 and Lemma 4.5. So,
in order to complete the proof it suffices to find a §(.J)-conformal measure on J. But since
by Theorem 2.8 the mapping f : J — J is open and expansive, and since P(6(.J)) = 0, the
existence of such measure follows from Theorem 3.12 of [DUG]. &

It seems interesting to ask about other conformal measures for ¢ > h. If Q = (), then no such
measures exist. In the opposite case the do exist (since P(f) = 0) but are concentrated
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on the backward orbit of Q(f). We will never make use of this remark and the reader
interested in proofs is suggested to look at the paper [DU1].

65. Local behavior around parabolic points. In this section we examine the local
behavior of conformal measures around parabolic points. For every w € € let

a(w) =h+ p(w)(h—1).
We begin with proving the following.

Lemma 5.1. If m is an h-conformal measure for f : J — J, then 3¢, >1) V(wea) Y(o<r<1)

ot < B D) o
T
Proof. Fix a constant Ly = L1(d/||f’||), where the function L is described in Corol-
lary 2.14 and for every n > 1 define R,, = {z € B(w,8) : L7 'n™Y8 < |f7"(2) —w| <
Lin~Y/#}. By definition of R(w) and since ¢ is an expansive constant for f : J — .J, we
conclude that for every z € B(w,d) N J \ {w} there exists [ > 0 such that f'(2) € R(w).
Therefore, the set J N R(w) is nonempty and since J is perfect, it has nonempty interior
in J. Hence at least one of the connected components of R(w), denote it by Ry(w), has
positive measure m. By Corollary 2.14 there is ng > 1 such that f;"(z) € R,, for every
n > ng and every z € R(w). In other words this means that R,, D f;"(R(w)) for n > ny.

Thus
B< w) U Ry 5 U 75 R@) > | £ (Ro(w))
k=n

On the other hand, for any z € B(w J) \ {w} let I(z) > 0 be the smallest integer such
that f'(z) € R(w). Take n; > ng so large that if z € B(w, Lln_l/ﬁ) then [(z) > nyo.
Consider now any z € B(w, Lin~'/#) \ {w} with n > n;. Since I(2) > ng and f1*)(2) €
R(w) we conclude that z = (f"*)(2));(,) € Ry(,). Therefore L 'l(2)7'/# < Lyn='/# and

consequently I(z) > L7 *’n. Hence
Ly -1
B( 1/ﬁ> C sht{w} U U [ (R(w))
I1>L;%°

In view of Lemma 2.15 and the conformality of the measure m we get

oo

m(B(w,Lln_l/ﬁ)) > Zm( ZL _BT m(Ro(w))

> m hZ (k55" 2 m(Ro(w)) Ly "n((2n) =5 ")
_ o m(Ro(w))K—hL; (n=Y/B)al),
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where Ly = Ly(6/||f']]), and (using continuity of m in addition)
m(Bw, Lin~7) <m(m({w}u ) fIR@)) <Ly Y 0
I>L;*’n I>L7 28
< L (Lyn~ /Py

where L} > 0 denotes some constant. The proof is finished observing that the limit of
(nt1)"Y/8 . 1
T s L s

Now we shall prove a result which can be viewed as an improvement of Lemma 5.1.

Lemma 5.2. V(C>0) 3(02202@)21) v(wEQ) V(zeJ)

Cy Yz = w|*@ < m(B(z,(|z = w]) < Colz — w|*)

Proof. Let us first prove the right-hand side of this lemma. Consider z € B(w,d) such
that (14 ¢)|z —w| < 1. Then in view of Lemma 5.1, we have

m(B(z,¢lz — w]) < m(B(w, (1+ )z —w])) < O(1L + )|z — w70
< CLL+ )"z —wl™
If |z—w| > (1+¢) "t or z ¢ B(w,d), it is enough to apply the obvious estimate m(B(z, |z —
wl)) < 1.

In order to prove the left-hand side inequality suppose first that z € B(w,d) for some
w € Q and even more that |z —w| < ((L™1/2)Y where 8 = B(w). Let k > 0 be the largest
integer such that f;*(z) € B(z,(|z — w|). By a simple integration argument contained for
example in the proof of Lemma 2.13, it follows from (2.5) that

(5.1) LB+ 1) e —wf < [f5 (@) — 2] S LB+ 1) o — w]PF

for every x € B(w, d). Therefore

k
C(lr—wl <Y 159G = £ () < (k+ VLB + 1)z — w7,
§=0
whence k +1 > L7Y(B + 1)¢|z — w|™®. Thus by (5.1) we get k >
L713¢|z — w|7P. Letting now n > 0 be the least integer with f"(z) €
y = f"(z), it follows from Lemma 2.15 that

l + 1 where [ =
R(

1
w) and setting

k [
m(B(z (2 = wl) = Ym0 @), £7 ) = D_md(f5 0 (2), 157 ()
i i
=>_ /5D w), Z O/IF) " e
(5:2) > Lo(o/ |1 |P) i+ )7 5"
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Now it follows from Corollary 2.14 that with L; = L1(6/||f'||), we have n=*/# > L7t2—w],
whence n < L?|z — w|=#. Thus, combining this, (5.2), and since k > [ + 1 we get

B41

m(B(Z,C|Z—w|))ZL2(5/||f’||2)_hL_1ﬁC|Z w|™ B(L*B+L 1ﬂ0 (|Z_w| ﬁ)—Th
ZC|Z—w|_B|Z—w|(ﬁ+1)h Clz — |a(W)

with a universal constant C' depending on (. Thus the proof is finished since the case
|z—w| > (CL™1/2)Y/P for all w € Q is taken care by the observation that the infimum of all
measures m(B(z, ((CL=/2)Y/P), z € J, is positive which in turn follows from Lemma 4.1.

We want to end up this section with the following two results which although of global
character, are proved by employing a local argument. Moreover the second result is a
starting point for our all next considerations.

Theorem 5.3. We have h = HD(J) > max{f(w)/(f(w) + 1) : w € Q}.

Proof. Fix fix w € €. Since 0 is an expansive constant for f, the interior of at least one of
the two connected components of R(J), has a nonempty intersection with the set J. Call
it by Ro(w). Since by Theorem 4.6 there exists an h-conformal measure m for f:J — J,
it follows from Lemma 2.15 that

Z (W) > Lo(5/|1£]) Z s

B+1
Since m(Ro(w)) > 0, this formula implies that the series .°° n~ 7 " converges. There-

fore, h > B(w)/(B(w) + 1). The proof is finished. &

Theorem 5.4. There exists a unique (up to equivalence of measures) h-conformal measure.
Moreover this measure is continuous.

Proof. By Theorem 4.6 and Theorem 3.12 in [DU6] there is an h-conformal measure for f.
By Lemma 4.4, this measure, if continuous, is unique up to equivalence of measures. From
Lemma 2.15 and Theorem 5.3 we deduce that there exist constants ¢ > 0 and C' > 0 such
that for every fixed point w €  and every point w € R(w) 3(¢(w,2)>1) YVtzh—0) Y(k>1)

Z| |t<02n1+0

Let us now construct a special sequence of neighborhoods of €2. To this end fix w € (Q,
n > 1, and consider the two connected components V! and V2 of S\ f~"({w}) that
are adjacent to w. Define then W, = QU J,cq Vi) U V;? which is an open neighborhood
of Q and let K,, = {z € J : f¥(z) ¢ W, for every k > 0}. The sets K,, are closed
and forward invariant under f. Moreover the maps f|x, : K, — K, are open. Since
additionally, by Theorem 2.8, these are expansive, it follows from Theorem 3.12 in [DU6]
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and Theorem 4.6 that for every n > 1 there exists a number h,, < h and an h,-conformal
measure for f|x,. Notice that then my, (f(A)) > [, |f'|"* dm,, for every special set A C J
and my,(f(A)) = [, |f'|'"» dm,, for every special set A C J disjoint from W,. Let m be
an arbitrary weak accumulation point of the sequence {m,}22; in the weak-x topology
on J. Fix k£ > 1. Since f : .J — J is an open map it easily follows, see for ex. lemma
3.3 in [DU5], that m(f(A)) = [, |f'[“dm for every special set A C J disjoint from Wy
where t,, — u. Therefore, since {W,, : n > 1} is a descending sequence of sets such that
JNN,>1 Wn = €, letting k& — oo we conclude that this formula spreads out to every
special set A C J disjoint from Q. And since |f'(w)| = 1 for every w € €, it is true for
every special set A C J. Consequently m is a u—conformal measure for f : J — J. As
u < h, it follows from Theorem 4.6 that u = h.

In order to conclude the proof it is sufficient to show that m(£2) = 0. Since ¢ is an expansive
constant for f, we conclude that for every w # = € B(w,§)NJ there exists the least integer
n(z) > 0 such that f*(®) € R(w). Thus, for every open neighborhood V' C B(w,6) of w
we have VN J C sbi{w} U, 5, v) fo " (B(w)), where n(V) = min{n(z) : w # z € VN J}.
Using the properties of {m,,} and the definition of o, we therefore conclude that for every
k > 1 large enough

(V) < Om(R(w) Y. i

n=n(V)

Thus letting k& — oo we get m(V) < Cm(R(w)) Zzo:n(v) —~ which proves that m(w) = 0,
since n(V) — oo as V shrinks to w. L]

In Section 8 we shall show more, that there is only one such measure.

§6. Geometric measures. In this section following the ideas and exposition contained
in [DU3], [DU4], and [U2] we deal with geometric properties of the set .J. Recall that in
Section 4 we have defined X to be J\ U, —q f~"(%).

Lemma 6.1. If F' C J is a closed nonwhere dense (relative to .J) forward invariant subset
of J, then m(F) = 0.

Proof. Since m is nonatomic it suffices to show that m(F \ X) = 0. Denote by Z the set
of all points z € F'\ X such that

L m(Bn N (FAX)
r—0 m(B(z,r))

In view of the Lebesgue density theorem (see for example Theorem 2.10.11 in [Fal), m(Z) =

m(Y). Suppose now that m(Z) > 0 and fix # € Y. Let y and the sequence {n;} be the

objects associated to x produced in Lemma 4.2. Since F'is nonwhere dense in J and since

m is positive on nonempty open sets of .J for every j large enough m(B(f”J’ (x),79) \F) >

m(B(xz,v5/2) \ F) > 0. Therefore, as f~1(J\ F) C J\ F, the standard way of application
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of the bounded distortion property (Corollary 2.19 in our case) and conformality of m
gives

m(B(z,r) \ F)

lim su >0
o m(B(z,1)
which contradicts the definition of the set Z and finishes the proof. s

A point z € J is said to be transitive if w(z) = J. Consider a countable basis {V},}52; of
topology on J. By Lemma 6.1 and Lemma 2.3(e) every set K, = {z : f¥(2) ¢ V,,} is of
m measure zero and therefore m({ ;s U,>o f~%(Va)) = 0. Since the complement of this
set consists of transitive points, we obtain the following.

Lemma 6.2. m({z:w(z) =J}) =1.

Lemma 6.3. For every C3 > 0 there exists Cy > 0 such that if n > 0, f"(2) € B(w,9),
w e Q, and f*"(2) ¢ B(w,d) (in case n > 1), then for every r > 0 satisfying r|(f")"(2)| <
vOK; ' and r|(f™) (2)] > Cs|f™(z) — w| we have

el @)@ < MEED) < gy iy )y,
Proof. Since f"~1(2) ¢ B(w,?), applying Corollary 2.19 to the continuous inverse branch
" B(f™"(2),76) = St of f™ sending f™(z) to z. we obtain
(1112~ (™) ()T m(B(f" (=), K5l (F7)' (2)]) <
<m(B(z,r1)) <
(6.1) < (111K " [(f™) ()" m(B(f" (2), Kar| (/") (2)]))-
It follows from the last assumption of our lemma that the ball B(f™(z), Kor|(f™)'(2)|) is
contained in the ball B(w, (Ky 4+ C3')r|(f*)'(2)]). Thus, in view of Lemma 5.1,
m(B(z,1)) < CLllf [1K2)" (K2 + C5 H)* @ () (2)| " (r|(f")' () ).
Hence

m(B(z,r))

(6.2) h < Cl(||f/||K2)h(K2 + Cfg—l)ﬁ(w)(r|(fn)/(z)|)a(w)(h—1)'

If 5 K5 (/") (2)] > | f"(2) — w| then B(w, 3K 'r|(f*)'(2)]) € B(f™(2), K3 'rl(f™) (2)])
and by similar arguments as before we obtain

m(B(z,r))

> O (1K) T RER) T (] (£ ()Y,

(6.3)

If 2K 'r|(f")(2)] < |f"(2) — w| then using (6.1), assumption (b), and Lemma 5.2 with
&= C’3K2_1 we get

m(B(z,7)) > (Co(&) " (IF 1K)~ 1(F) ()] 7" (2) — w]*@)
> (Co(€)) 127 @ (|| F] 1 K2) " Ky (™) ()| (e () () )4
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and therefore

m(B(z,r))

T > (02 (E)2a(w) | |f/| |hK£L+a(w))—1(r|(fn)/(Z) |),3(w)(h—1).

This, (6.3), and (6.2) prove the lemma. &

Now we shall construct (positive) integer valued functions n(z,r), k(z,r) and u(z,r), (z €
J, 0 < r < 1), simultaneously proving their properties listed in Theorem 6.4 below.

Theorem 6.4. There exists Q > 1 such that for every pair (z,r), z € J, 0 < r < 1, there
exists a number G(z,r) € {f(w) : w € Q} U {0} such that

B
QL (rl(Fy () D < BT ¢ oy py e,
r

Moreover v (K| f'||) =1 f“(2)—w| < r|(f*)'(2)] < v0K5 " and there is a continuous inverse
branch f7%: B(f%(2),r|(f*)'(z)|) — S! sending f“(2) to z.
Proof. Suppose first that sup,,>o{7|(f")"(2)|} > v0(K2l|f'[|)~" and let n = n(z,7) > 0 be
a minimal integer such that r|(f™)(2)| > v6(Ka||f'|])~ . Then also 7|(f")(2)] < y6K;*.
We say that the pair (z,7) belongs to the family R if f"(z) ¢ B(2,0). Since the conformal
measure m is positive on nonempty open sets, inf{m(B(z, v6K5 2| f'|~") : z € J} > 0.
Therefore, using Corollary 2.19 we conclude the existence of a constant C's > 0 independent
of (z,7) € R and such that

m(B(z,r))

(6.4) c:l < T

< Cs.

So, in this case our theorem is proved setting u(z,7) = n(z,r).

Let w € Q. We say that (z,7) € R(w) if f*(z) € B(w,d). Let 0 < k = k(z,7) < n
be the least integer such that f7(z) € B(w,d) for every j = k,k+ 1,...,n. Consider all
the numbers r; = |f*(2) — w||(f*)'(2)|~! where i = k,k + 1,...,n. By the definition of
n(z,r) we have r, = |f™(2) — w||(f")(2)|7! < Ks||f'||(v6)~r and therefore there exists
a minimal k < u = u(z,r) < n such that r, < Ks||f’||(v6)~1r. Then

(6.5) VO(EIF N THF(2) — wl < rl(f) ()] < V0K

Thus, if u = k, then it follows from Lemma 6.3 with C5 = v6(K3||f'||)~! that there exists
a constant Cg > 0 such that

B(z,1))

66) Ol )@ < TEED) gy e,

So, we are done in this case. If u > k then r,_1 > Ksl|f'[|(7d)~r and therefore, using
(2.3) and (2.4), we get

) —w

= mlf’(f“‘l(z))rlru—l >l rusy > Ka(v8) "t
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Thus

(6.7) r|(f*) ()] < vO K54 (2) - wl.

Let f7%: B(f“(2),v|f“(2) —w|) = S! be the continuous inverse branch of f* which sends
() to z. Applying Lemma 5.2, it follows from formulas (6.7), (6.5), and Corollary 2.19
that formula (6.6) continues to hold in case u > k, with a possibly bigger constant than
Cg.

It remains to deal with the case when sup,,~o{r|(f*)"(2)|} < ¥0(K2||f'||)~*. Then by (2.3),
z€ J\Uj;Z, f7(Q). Let u=u(zr) >0 be the minimal integer such that T%(z) € Q and
let £ : B(f%(2), Kor|(f*)'(2)]) — S! be a continuous inverse branch sending 7%(z) to
z. Applying Corollary 2.19 we therefore obtain

K3 "(f*) ()| "m(B(f*(2), K3 7“|(f“) (2)]) <
m(B(z,7)) <
< Kh|(f“)'( T m(B(f" (2), Kar|(f*)'(2)]))-
and employing Lemma 5.1 finishes the proof. [ )

Lemma 6.5. There exists £ > 0 sufficiently small such that if x € J\ X, ¢ is a positive
integer, f9(x) € B(w,&), w € Q, and f971(z) ¢ B(%,0), then

u(z, YO (KL )7H (@) — wll(f) (@) 1) = ¢

Proof. We need to determine how small £ > 0 should be and our requirements are that
€ < 8/IIf'] and & < (LaLa|f'][)"1/F, where Ly = La(8/||f'||) and Ly = L1(8/||f'|]) are
constants taken from Lemma 2.15 and Corollary 2.14 respectively. Set

r =K [N ) = wl|(F9) (@)

Then q < n(x,r). Let [ > 1 be the minimal integer such that f4t!(z) € R(w). Then by
Corollary 2.14, |f9(z) — w| > Ly '1='/#. Hence, by Lemma 2.15 we get

Y (f9@) > LT > (LaLy) 7Y f9(a) — w] "+

Thus
rl(F ()] > v (K|~ (LaLy) 7 (2) —w| 7P > y6 K

So, n(z,r) < q + [ and therefore k(z,7) = ¢q. Finally from this, the definition of r, and
u(z,r) we conclude that u(z,r) = q. &

Theorem 6.6. We have 0 < I1;(J) < oo and Hp,(J) < oo. Additionally Hy(J) = 0 if and
only if h < 1. Moreover Il is equivalent to m with Radon-Nikodym derivative bounded
away from zero and infinity.
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Proof. The inequalities Hy(J) < o0, 0 < I, (J), and a uniform boundedness of dm/dIl,
follow from Lemma 4.5. Let @ = max{a(w) : w € Q}. Since h < 1, it follows from
Theorem 6.4 that lim inf,_,o m(B(z,7)/r" > Q= (v0 K5 1)*"»=1 for all z € .J. Therefore in
view of Theorem 3.2(2), dIl; /dm < b(1)Q(y6 K5 1)*( =) and 11}, (.J) < oo. Now it is left to
show that Hy, (J) = 0if h < 1. Let Jy = {z € J : w(z) NQ = 0}. It follows from Lemma 6.2
and Lemma 4.5 that Hp(Jy) = 0, whence we only need to show that Hy (X \ Jy) = 0, but
this follows immediately from Lemma 6.5, Theorem 6.4, and Theorem 3.1(1). The proof
is finished. &

The next result can be considered as a completion of Theorem 6.6.

Theorem 6.7. If J is disconnected, then h = HD(J) < 1. In particular the Lebesgue
measure of .J is equal to 0.

Proof. First we shall show that I(J) = 0. Indeed, if [(J) > 0, then in view of the Lebesgue
density theorem [ (B(z,r)N.J)/2r — 1 for l-a.e. = € J. Fix one such point z which addition-
ally does not belong to the countable set (J,—, f~™(Q). Let {r;(x)}32; be the sequence of
radii produced in Lemma 4.2 and let n; = n;(x), j > 1, be the sequence of positive integers
produced there. Recall that r; = K5 'v68|(f™)'(z)|~!. Since, by Lemma 2.4 .J is a compact
nowhere dense subset of S, the exists an arc A C B(f™ (x),d) \ J for every j sufficiently
large. But then by Corollary 2.19, I(fz ™ (A)) > K5 (™) (z)|71(A) > v~ 16~ !r; and
B(z,r;)NJ C fo 7 (B(f™ (z),v8) N J). Therefore we get

LI(A
1Brs) 1) < 21~ 11 (A) < 2y (1 1157
which contradicts our choice of = and shows that [(J) = 0. Hence Hy(.J) = 0 and the proof
is completed applying the middle part of Theorem 6.6. &

Remark 6.8. We would like to end up this section with the remark that making use of
the concept of the jump transformation (see the next section) one could prove, essentially
as in [DU4], that the box counting dimension of .J exists and coincides with HD(.J).

§7. Schweiger’s formalism and jump transformation. This section has rather
abstract character and is self-contained. We closely follow here Section 3 of [DU2] which
in turn is based on Schweiger approach given in [Sc]. A much more complete treatment of
the subject is presented in [ADU].

So, let (B, F, ) be a probability space and let T': B — B be a measurable and nonsingular
map. We assume that the transformation T admits a countable measurable partition
R = {B(k) : k € I} such that for every k € I

T(B(k))= |J B()  forsome I'(k) C I.
i€l (k)
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Any partition with this property is also called a Markov partition for 7. We assume that
the family

(7.1) {T(B(k)) : k € I} is finite.

The transition matrix A = (A4;;); jer associated to the Markov partition R is defined by

1 i T(B(z)) O B(j) -
ij = . . ) i,5 €1I.
0 if T(B(i))NB(j) =10
A sequence 7 = 79, T1,...,Tn, B > 1, is said to be A-admissible if A, = 1 for every
1 =20,1,...,n — 1. The matrix A is assumed to be irreducible, i.e. for all 7,5 € I there

exists an A-admissible sequence that begins with ¢ and ends with j.

We also assume that for every & € I there exists a measurable and nonsingular map
T, ' : T(B(k)) — B(k) which is the inverse to T'|p(). In particular, T : B(k) — T/(B(k))
is injective. For any A-admissible sequence 7 = 719, 74, ..., T, define

7" :T(B(1y-1)) — B(7o)

T = T‘|("‘1) 0Tt
(7.2) " Tin=1 ™

Let £(™ denote the family of all cylinders B(7) of length n. The family £ = (o7, £ is
supposed to generate the o-algebra F. We put

br(r) = P @)

for the Jacobian (with respect to A) of the mapping T~ ™ at the point © € T(B(,—1)). Fix
a constant C' > 1. A cylinder B(7) is called an R-cylinder if it satisfies ”Rényi’s condition”

ess sup{¢,(x) :x € T(B(1h—1))} < C ess inf{¢,(x) : © € T(B(1n-1))}-

The set of all R-cylinders with constant C' is denoted by G(C,T). We assume that there
exists a constant C' > 1 and a class R(C,T) C G(C,T) such that:

If B() €e R(C,T) then B(pr)e R(C,T)

for any A-admissible sequence p such that A, ; = 1. Note that for any B(r) € R(C,T)
with A(B(7)) > 0 and for any admissible sequence pry, one also obtains A(B(p7)) =

)\(Tp_|p|(B(7'))) > 0. For n > 1 let
D,, = {B(r) € L™ : B(r|,) € L\ R(C, T) for all 0 < 5 < n}.
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Our last assumption here is that

nlggoZA(B(T)) = 0.

The proofs of the following two results are elementary and go back to [Sc].

Lemma 7.1. Let E be a measurable set. Then, for any B(7) € £ N R(C, T), we have
NI (E)NB(1)) 2 C™' Ar(B(r, 1))(E) - A(B(7)),
where Ar(p(r,_,)) denotes the conditional measure of A on T'(B(7,-1)).

Lemma 7.2. Any cylinder is (mod A) a disjoint union of elements of R(C,T). Conse-
quently, the family R(C,T) generates the o-algebra F mod .

In order to prove ergodicity of T" with respect to A (see Theorem 1 of [Sc]), additional
arguments are required, involving the primitiveness of the matrix A. We therefore give a
full proof.

Theorem 7.3. The transformation 7" is ergodic with respect to the measure \.

Proof. Suppose that T-'(E) = E and A(E) > 0. Then it follows from Lemma 7.2 that
there exists [ > 1 and 7 € R(C,T) of length [ such that

(7.3) AMENB(r)) > 0.

Since T is nonsingular, we also have A\(T'(EN B(kg, k1, ..., k;)) > 0. Since T'(E) C E and
by (7.2) it follows that

(7.4) MENT(B(1i-1))) = MT(E)NTYB(r))) > MT'(E N B(r))) > 0.

Since the matrix A is irreducible, for every k € I there exists B(kp) € LG such that
A, .-, =1, where s = |p|. Therefore B(kpr) € R(C,T') and by (7.3), (7.4), and Lemma 7.1

ME N B(k)) > ME N B(kpr)) = MT~CH D (EY N B(kpr))
> C™ A (B(r, ) (E) - A(B(kpr)) > 0.

Consequently, for any j € I we have A(E NT(B(j)) > 0, and using (7.1), we see that
a = min{Arpg)(F) : ¢ € I} > 0. Hence by Lemma 7.1 again, one obtains for any
Z ¢ LN R(C,T) that A\(ENZ) = N(T~™(E)N Z) > C~'a\(Z). Therefore, using
Lemma 7.2, the indicator function of the set E is A-a.e. positive, which means that
A(E) = 1. The proof is finished. &

Let I(x) ={k € [ : x € T(B(k))}. Let us recall the following two elementary facts.
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Lemma 7.4. The transformation 7" admits a o—finite T—invariant measure equivalent to
A if and only if there exists a measurable function v such that

p)= 3 (TN @)de(z)  ae.

kel(x)

Lemma 7.5. If there is a constant D > 0 such that G(D,T) = L, then T admits a finite
T—invariant measure equivalent to A such that the Radon—Nikodym derivative is uniformly
bounded away from zero and infinity.

The right hand side of the formula in Lemma 7.4 may be regarded as the value of the
Perron—Frobenius operator associated to the measure A and applied to the function f.
Also notice that in the proof of Lemma 7.5, formula (7.1) is also used.

Let us now, for every n > 1, introduce the class
B, ={B(1) e R(C,T) : B(T|p-1) € Dp_1}.
Define the jump transformation 7* : B — B by
T*(x) =T"(x) if ze€B(r) and B(7) € B,.

It follows that 7™ is almost everywhere defined. Moreover, it is nonsingular and ergodic
with respect to A. Since for every B(7) € B,, we have T*(B(1)) = T(B(7,)), we conclude
that the family Uj’;l B,, is a Markov partition for 7% (usually infinite, even if R was finite).
The corresponding transition matrix is irreducible and (7.1) is also satisfied. Moreover:

Proposition 7.6. G(C,T*) = L£* and there exists a unique, ergodic, T*-invariant proba-
bility measure p* equivalent to A. Moreover, the Radon—Nikodym derivative ¢* = dp*/d\
satisfies D=1 < * < D for some constant D > 0.

The first statement of this proposition is contained in Lemma 5 of [Sc]. The existence of
p* follows then from Lemma 7.5. Uniqueness and ergodicity of pu* follow from standard
arguments and from ergodicity of T with respect to A. The main result of Schweiger’s
theory is the following.

Theorem 7.7. The transformation 7" admits a unique (up to a multiplicative constant),
o-finite, invariant measure p equivalent to A with Radon-Nikodym derivative % given by

the formula
d
W) = () + 30 3 0 ) ),

n=1D, ()

where D, (x) = {B(7) € D, : x € T(B(7,))}.

The existence of y is shown as in the proof of Theorem 2 in [Sc] — up to some minor changes.
Uniqueness of g (not included there) follows easily from ergodicity of T with respect to
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A. Finally, following [Sc|, we state the following necessary and sufficient condition for the
finiteness of the measure p.

Proposition 7.8. The measure p is finite (or equivalently the Radon-Nikodym derivative

Z—‘; is integrable) if and only if

Let us also mention the following technical result.

Lemma 7.9. Let ¢, resp. ¢+, denote the Jacobian of T, resp. the Jacobian of T*, (with
respect to A). Then

log ¢ € L1(p) if and only if logor« € Li(u*)

and in this case [;log¢rdp = [, log pp- dp*.
Remark 7.10. The irreducibility of the transition matrix has only been used to prove

ergodicity and uniqueness of invariant measures. All other results of this section are true
without this assumption.

Remark 7.11. In particular, in the context of a dynamical system (f, I; A, j € I) taking
R(C, f) the family of all the cylinders 7 = 79, 71,...,7, € X% such that

Uf )NQ =0,

where the union is taken over all the indexes j with A;; = 1. all the results obtained
in this section apply to the h-conformal measure m and the map f :.J — J. As one of
the consequences of this remark observe that combining Lemma 4.5, Theorem 5.4, and
Theorem 7.3 we get the following.

Theorem 7.12. There exists a unique h-conformal measure m for the map f : J — J.
Moreover this measure is continuous.

Now, as an immediate consequence of Theorem 7.7 we get the following.

Theorem 7.13. The map f : J — J admits a unique (up to a multiplicative constant) f-
invariant o-finite measure p equivalent (or equivalently absolutely finite) to the conformal
measure m.

Lemma 7.14. If F is a Borel subset of J and F N Q = (), then u(F) < +oc.
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Proof. First notice that defining the jump transformation we can also use the cylinder
sets {A; : 7 € X%} with a fixed integer ¢ > 1. This is possible since by Lemma 2.3
this family forms a Markov partition for f. Although in that way we will be getting
mutually different jump transformations, these will give raise to the same measure p up
to multiplicative constants. By the definition of £(C,T) it follows from Lemma 2.1 and
Theorem 7.7 that du/dm(x) = 1*(x) out of some neighborhood of €2 shrinking to €2 if
q — oo. Hence, invoking Proposition 7.6 finishes the proof. &

In the context of dynamical Cantor sets Proposition 7.8 leads to the following much more
effective criterion for the finiteness of the invariant measure p.

Theorem 7.15. The f-invariant o-finite measure pu, equivalent to the conformal measure

m, is finite if and only if
h > 2max{M twE Q}
Alw) +1
Proof. It follows from Lemma 2.15 and the choice of the family ®(C, f) that

S mBr) =33 Y et

n=1 D, n=1weQk>n
> Bl 1, X, | Ble)ti,
D) R D) Wi
wEN n=1 wENn=1
and this series converges if and only if 1 — B g‘(’fglh < —1 for all w € Q. Applying Proposi-

tion 7.8 finishes the proof. [ )
Combining this theorem and Theorem 3.6 we get the following.

Corollary 7.16. The following three conditions are equivalent.
(a) P'(t) does not exist.

(b) There exists a probability f-invariant measure v absolutely continuous with respect
th the conformal measure m.

(c) There exists an equilibrium state of positive entropy associated to the potential
—hlog|f'|.

Proof. The equivalence of conditions (a) and (b) follows from Theorem 3.6 and Theo-
rem 4.6.

In order to see that (c) implies (b) notice first that, in view of Theorem 7.13 measure v
is equivalent to m and therefore HD(v) = h. Since v is non-atomic and ergodic, using
the Birkhoff ergodic theorem we conclude that x, > 0. Hence by (3.3), h,(f) > 0 and
h, (f) — hxnu = 0. Since by Lemma 3.5, P(¢) > Ofor all ¢ > 0, we have shown that v is an
equilibrium state for —hlog |f'|.

The implication (b) = (¢) can be proven proceeding as in [Le]. &
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Corollary 7.17. If B(w) = 1 for all w € €, in particular if f € C?, then the measure y is
infinite.

Corollary 7.18. If the family ¢t — f; is a local perturbation of f around points of €2 such
that lim;_,+, f¢(w) = 0 for some ¢y, then for every ¢ sufficiently close to ¢y the corresponding
invariant measure p; is finite.

Proof. For the proof it suffices to notice that the local perturbations around €2 keep the
Hausdorff dimension of Jy, away from 0. &
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The sections 8,9, and 10, the last three sections of this paper, are devoted to study the
rigidity problem for parabolic Cantor sets. To be more precise we explore the problem
of what are necessary and sufficient conditions for two parabolic Cantor sets which are
topologically conjugate to be conjugate in a smoother manner like bi-Lipschitz continuous
or real analytic. In Section 8 we resolve this problem (see Theorem 8.1) in terms of spectra
of moduli of multipliers of periodic points as well as in terms of measure classes of of packing
measures and Hausdorff dimensions.

In Section 9 dealing with real analytic systems we prove (see Theorem 9.9) a much stronger
rigidity result that absolute continuity with respect to packing measures (the equality of
Hausdorff dimensions is not required!) implies that the conjugating homeomorphism is
real analytic.

In the last section, Section 10, we undertake the most geometrical approach defining and
proving the existence of the scaling function. We then express a partial solution of the
rigidity problem in terms of the these functions.

Our approach to the rigidity problem of parabolic Cantor sets is motivated by the results
and ideas used in the setting of hyperbolic systems. See for example [Sul], [Su2], [Pr2],
[Pr3], [PT], [LS], and [Be] where also a more complete collection of literature can be found.

68. Rigidity of dynamical Cantor sets. In this section we deal with two dynamical
systems (f,I; A j,7 € I) and (g,1; Ay ;,7 € I) assuming that these are set-theoretically
equivalent, that is that Ay, N Ay; # 0 if and only if Ay; N Ay ; # 0. Then the map
¢ :Jy — Jg given by the formula

¢(ms (7)) = mg(T)

is well defined (that is for all # € J¢ it does not depend on the choice of 7 € W]?l(x))
and moreover it can be easily checked that ¢ is a homeomorphism. Our main aim in this
section is to prove the following rigidity theorem.

Theorem 8.1. The following three conditions are equivalent.

(a) If z € Per,(f), then |(¢")(6(2))] = [(/")(2)I-
(b) The dimensions hy = HD(J¢) and hy = HD(J,) are equal and the homeomorphism

¢ transports the measure class of the packing measure II,, on J; onto the measure
class of the packing measure I, on J,,.

(c) Both homeomorphisms ¢ and ¢! are Lipschitz continuous.

We shall also provide the proof of the following theorem which sheds some light on what
is going on in the general case.

Theorem 8.2. The conjugacy ¢ : J; — J, is Holder continuous if and only if either both
Cantor sets J; and .J,; are hyperbolic or both are parabolic.

Since the proofs of Theorem 8.2 and the implication (b) = (c¢) have a considerable overlap,
we partially proceed with them simultaneously. In fact we begin with two general technical
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lemmas, then we prove the implication (¢) = (a) of Theorem 8.1 and we begin the proof
that (b) = (¢) including there the proof of Theorem 8.2. We end the section with the
implication (a) = (b).

The definition we intend to give now and the lemma following it involve only one single
dynamical system (f,I; Aj, j € I) and therefore formulating these and proving Lemma 8.4
we skip the subscript ” f” when dealing with the objects associated with this dynamical
system.

Definition 8.3. Suppose that a positive number ¢ < § is given. If w € Q we set R (w) =
B(w, )\ B(w,/||f'). If x and y (not necessarily different) are in the closure of the same
connected component of B(w,d) \ {w}, then we let z € {z,y} be the point lying farther
from w. By 0 < g = ¢q(x,y) < co we denote the largest integer such that f9(z) € [z,y]
and by p = p((,z,y) > 0 we denote the least integer such that f?(z) € R¢(w).

Lemma 8.4. V(g<¢<s) V0<e<¢) Vwen) YV(eryest) Jc(c,¢)) such that the following holds:

If z and y belong to the closure of the same connected component of B(w,d) \ {w} and

|fP(y) — fP(z)| > &, then

Blw)+1

e Bt 2
)Y ) W <ly—a| <CGEY (p+h)T W,
7=0 7=0

where we assume 07! = 1.

Proof. Without loosing generality we may assume that z = y, where z is described in
Definition 8.3. Suppose first that ¢ > 1. Then by the definitions of ¢ and p we have

qg—1

U 2 (HPW), 17 W) € [, 9]

=0

and
a

U FSOH(FSH P W))s P W)]) D [, 9]
Since fP(y) € R¢(w) it follows from (2.b) that |5 (fP(y)) — w| > r(C), where r({) =

¢/IF'Il = L(Bw) + 1)1 ¢PFL Hence [£5(f7(y)), fP(y)] € B(w,d) \ B(w,r(¢)) and ap-
plying Lemma 2.15 we get

g—1 q—1
r(OL r(O)S )7 < W) = P WILT )Y (i) < -y
Jj=0 7=0
and
d d B(w)+1
o=yl <15 (W) — PP @)L S 0+ ) N>+ 7
Jj=0 §=0
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. _ Blw)+1 _ B(w)+1
Since (p + q) P <(p+q-1)

q
—Lz O +4)"
J=0

, combining the last two displays we get

w)+1

q
_ Blw)+1
<|x—y|<5Lz E p+3) 7
J=0

and we are done in the case ¢ > 1.

If ¢ = 0, then we have [z,y] C f;P([f;'(y),y]) and similarly as above we get |z —
B(w)+1

y| < 6L2(r(¢))p~ # . On the other hand in this case [z,y] = f;P([f; (y),y]). Since

[fP(z), fP ()]  [f5H(fP(y)), fP(y)], similarly as before we get [fP(z), fP(y)] C B(w,d) \
B(w, T(C)) Therefore in view of Lemma 2.15

Blw)+1 )+1 B(w)+1
B

|z —yl > |fP(x) — [P (y)|La(r(¢)) " 'p™ > ELa(r(¢)) " p™
The proof is finished. &

Lemma 8.5. If J¢ and J,; are two dynamical Cantor sets and ¢ : Jf — J, is the canonical
topological conjugacy between them, then ¢(Qf) = Qg  if and only if 3, > 1 Vo € JpVn > 1

™ log | (") (2)] < log |(9™) (d(2)] < Klog|(f*) (w)].

Proof. A straightforward computation shows that if the second part of our equivalence
is satisfied, then ¢(Q2f) = Qg4. In order to prove the converse implication it is of course
sufficient to show only one of these two inequalities, say the second one. Take 0 < (; < df so
small that ¢(B(2¢, (1)) C B(€g,d4). Then there exist two universal constants 0 < Wy <1
and Wy > 1 such that for all w € Qf and all x € B(w, (1) \ Qf

By(w)+1 Bg(w)+1

' (@)] = Wep(z, ¢1) 7 and |g(z)| < Wyp(z, ¢1) 7+

Let now 0 < (2 < (1 be so small that for every w € Qy and for every x € B(w, (2) the
number p(z, () is so large that

log W 1
—+1> =
logp(l'aCl)

[N}

Let k1 = inf{|f'(z)| : € Jp \ B(Qf,¢1)} > 1. Using also the fact that f(Q2f) = Qg, we
can therefore conclude that

floglil] o, {5101 pfe) 1
ogry B @) @)

Now the straightforward application of the chain rule completes the proof. &

log g/ (¢(x)| < max } 2(1 + log Wg>} log | /()

Indeed, suppose that there is a periodic point z of period n

Proof that (¢) = (a).
| # |(f™)(2)]. Then without loosing generality we can suppose that

such that [(¢™)" (¢(z))
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[(g™) (p(2))| < [(f™)(2)]. Fix two numbers A, A2 > 1 such that [(¢")"(¢(2))| < A2 <
A1 < |(f™)(z)| and take 0 < ef < 07 and 0 < g4 < &4 so small that |(f™) (x)] > Ay for all
z € B(z,e5), [(g") (y)| < Apforally € B(¢(z),¢e4), andQS(JfﬂB(z £f)) C JyNB(P(2),¢e4).
Fix € J; N B(z,e4) \ {#}. Then for all k > 1 we have |f;™*(2) — 2| < A\[*|z — 2| and
19,75 (6(2)) — 6(2)] > A3 *[$(z) — #(z)|. Therefore

= o0

. 1950 (6(2)) = $(2)] - <ﬁ>k |6(2) — $(2)]
k— o0

k—oo |7k (z) — 2| A2 |z — 2|
and since g;(’zl)“((ﬁ(a:)) = ¢(f7"¥(x)), this shows that ¢ is not Lipschitz continuous. &

Proof that (b)) = (c). Since the two measures m, and mys o ¢! are equivalent, the
measures jy; and Wy o ¢~1 are also equivalent, whence, in view of Proposition 7.6 these are
equal as equivalent ergodic probability g*-invariant measures. Therefore, it follows from
the last part of this proposition that there exists M > 1 such that

_1 _ my(¢(A))
(8.1) Mg S S M

for all Borel subsets A of J¢. In order to continue the proof we need the following.

Lemma 8.6. If (b) is satisfied and w € Q¢, then ¢(w) € Q4 and B(¢(w)) = B(w).

Proof. Take e¢,e4 > 0 so small that ¢(J; N B(w,e¢)) C B(p(w),e4). Suppose now that
19'(p(w))] > 1 and fix 1 < A < [¢'(¢(w))|. Take 0 < e < g, so small that |¢'(z)] > A for all
z € B(¢p(w),e). Fix y € J;, N B(¢(w), ). By conformality of m, we have for all n > 0

mg (55 (). g5 ) < A"mg (L9l (), ) < A~

On the other hand, in view of Lemma 2.15, for all n > 0 we get

B(“’)+1h

mp([f5 (@7 W), £57 (@7 WD) 2 Lo p(R)n™ 2 g (15671 )), 67 (),

where R = |w — ¢~ (y)|. Therefore

mg (950 (W), 050 (1))

my([f "V (671 (), f™ (671 (1))
< (Lo s (R)yms([f51 (67 (), ¢ ()]))

-1 Bw)+1
A"y By P

Bw)+1
Since limy, 00 A™"n A "t — 0 and me([f7 o7 (y)), »~ (y)]) > 0 we arrive at a contra-

diction with (8.1) and the proof of the first part of Lemma 8.6 is finished.
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In order to prove the second part of the lemma we apply Lemma 2.15 again, this time to
the both maps f and g obtaining as a result the existence of a constant M > 0 such that
foralln>1
_ BN+l | Bw)+1
R hg+ tony <M
Thus hy(B(¢(w)) +1)/8(Pp(w)) = h¢(B(w) +1)/B(w). Since the dimensions h, and hy are
equal, we get 3(¢(w)) = f(w) which finishes the proof of Lemma 8.6. &

Now, let us continue the proof of the implication (b) = (c¢) including the proof of Theo-
rem 8.2. Fix 0 < n < 07/4 so small that if z,y € J; with |z —y| <, then |¢p(z) — ¢(y)| <
d4/4. Let 7 > 0 be so small that |z — y| < 7 implies |~ (z) — ¢~ (y)| < n/||f’|| and let
n1 > 0 be so small that |x — y| < n; implies that |¢(z) — ¢(y)| < 7/2. Finally let 7 > 0
be so small that if |z — y| < 7, then [¢=1(x) — ¢~ (v)| < m/||f'|]-

Consider now an arbitrary pair of points  # y € Jy with | —y| < n1/||f’||. Since by
Lemma 2.4 J; has no isolated points, in order to prove the Lipschitz continuity of ¢ we
may assume that m¢([z,y]) > 0. Then also mgy([z,y]) > 0. Let n = n(z,y) > 1 be the
least integer such that |f™(y) — f™(z)| > m1/||f'||. Then |f™(y) — f™(z)| < n1. We will
consider several cases.

Case 1. {f"(y), f™(x)} N (Jr \ B(Qf,n/||f']])) # 0. Without loosing generality we may
assume that f™(z) € J¢ \ B(Q¢,n/||f’||]) whence in view of Lemma 8.6 and the choice of
7 we have ¢"(z) € J, \ B(Q4, 7). Thus, applying Lemma 2.18 we get

)~ £ _

ly — x|

1 7 19" ((y)) — g™ (p(x))] ny/
K, 5(1/2)|(g™) (o(x))| < 50 = 6(0)] < Kg2(1/2)|(9") (¢(2))],

Using these two formulas and applying also Lemma 8.5 we now get

K7 5(1/2)|(f™) ()] < Ky2(1/2)[(f") ()],

|6(y) = d(2)] < %Kg(lﬂ)f(f,z(l/?)(l|f’||m_1)1/”|y —a|'"

which ends the proof of Holder continuity in this case.

To continue the proof of the implication (b) = (c¢) notice that we get two similar inequalities
for conformal measures

K 2 (1/2)|(f™ (@) " <

my([f" (=), " (y)]) <

ey S KA @,

and

g o e o e < P0IBT BWDD _ ey o
(172" (e < PRI < Kl 1/2)](6") (00"

It follows now from the above inequalities for measures, from (8.1) and since hy = h, that

(AR (1/2)
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Hence applying the inequalities involving distances we get

[¢) — o) K LK1(1/2) 19" (0(y) = g"(¢())] (KoK pa(1/2) M2/ T

v—a ) i) = Kekr "
and
9(s) — #()] (W) — " (6@ (7 (@)
y—a = KoK el T T e )
< (Kyakpat1/2) a

So, we are done in this case.

Case 2. {/"(y), ["(x)} C By,0/||f]]). Since [¢(y) — 6()| < m < n/2 < 57/2 there is
w € Qf such that f*(x), f"(y) € B(w,n/||f'||). Let us consider

Case 2.1. The two points f™(y) and f™(z) are in the same connected component of
B(w,n/||f'|) \{w}- Let 0 < k = k(x,y) < n be the least integer such that [f7(x), f/(y)] C
B(w,n/||f']]) for all k < j < n. Finally let ¢ = q(f*(z), f*(y)) and p = p(n, f*(x), f*(y)).
Since p > n—Fk, we get | fP+*(y) = fP*(2)| > | £ (y)—f"(@)| > m/||f'[]. Sincen1/[[f']] < n,
it follows from Lemma 2.14 that with the constant Cy = C(n,n1/||f'||) > 0 and 8 = f(w)
we have

_B+1
B

M=

(8.2) chpﬂ-% ) = @) <Y+ )

=0

Now, since ¢ is a topological conjugacy between f and g, we have q(g*(¢(z)), g*(6(y))) =
q(f*(x), f¥(y)). Let S be closure of the connected component of B(w,n/||f'||) \ {w} that
has non-empty intersection with {f*(z), f¥(y)} and let x = k(w) > 0 be the diameter

of $(S N Jg). Note that then p(xllg’||, g ((2)), g*(d(y))) = p(n, f*(x), f¥(y)), and as
g% (d(x)) — g*(¢(y))| > 71, using Lemma 8.6 and applying Lemma 8.4 for the map g, we

have

(O Z p+i) T <1gF () — D) < Cpu S 0+ )

§=0
where C;,, = C(k(w)]|¢'||, min{r, k(w)||g’||}) is the constant produced in Lemma 8.4
associated with the map g. Combining this formula and (8.2) we get
< 9" (e() - g*(¢(2))]
(8.3) (CyCy)~ L < < CrCy,
() — [ (@)] e

where Cy = max{Cy, : w € Q¢}. Observe now that by the definition of n and k we
have [f**(y) — 5= @)| < m/[1f']] and dist (2, {f*~ (y), f*(@)}) > 05/]f']. Hence
91 (@(y)) — 9" H(d(2))] < /2 and dist(Qq, {g*H(4(y)), 9" H($(2))}) > 7. So, repre-

senting inverse branches f % and g;(’;) respectively as the compositions f; (k=1 ff_kl_l(w)
—(k—1) 1 .
and Ip(x)  ©Igh-1(p(x)) it follows from Lemma 2.16 that

|5 (y) — £* (=)

ly — x|

(K1 (/2)1F DY ()] < < Kra(1/2)1F 115 ()]
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and

(Kg,1(1/2)[lg' N7 1(g") ($())] < < Kq1(1/2)llg'lll(g") ((2))],

So similarly as in the Case 1, applying Lemma 8.5 and using (8.3), we get

6(y) — ()] < Cly — 2|/,

where C' is a universal constant which finishes the proof of Holder continuity in this case.

Similarly for conformal measures

my ([f*(y), f*(@)])

) < 2N @)

(Kra(/2)1 1D @) <

and

V=R (kY n - mg(l9*(6()), 9" (8(=))])
(Kq.1(1/2)lg' )" I(g™) (d(2))* < N ORE)

< (Kg1(1/2)1g'ID"1(g") (6 ()"

From the last two inequalities (involving measures) and from (8.1) we derive

(K2 (1/2) L) M (K1 (1/2)llg'I)")
|(F5) (@)"

(

(

IN

|(g%) (p(=))|"
< (Kpa(L/2)11f1)" M2 (K g1 (1/2)]19 D"

Hence, applying the estimates for distances and (8.3), we get

6(y) — $(x)] , g (@) = gF (d(@)] [(FF) ()]
y—a = KW IE QNN G = Fm T [ @@
< (Kgn(1/2)[19'|K 5.1 (1/2)|1f'1])*M?/"C;C,
and
y—af / [/5(y) = FR@)] (%) (@)

—_92 _ _
> (Ky1(1/2)|l9'[|1K 2 (1/2)|£1) "M~/ (CpC,)
Therefore the proof is also finished in this case.
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Case 2.2. The two points f"(y) and f™(x) are in different connected components of
B(w,n/||f'|1) \ {w}. Then also f*(y) and f*(x) are in different connected components of
B(w,n/||f'll) \ {w}. Since the map f*|; ,; (even more, the map f™| 1) is well defined
there exists a (unique) point v € (z,y) such that f¥(v) = w, in particular v € J¢. Now,
note that since n(z,v),n(y,v) > n(x,y), both pairs (z,v) and (y,v) fall in the Case 2.1
(although it would not hurt us, the Case 1 is forbidden for the pairs (z,v) and (y, v) since,
by the choice of 71 and 72 the nth iterates of both points must be then out of {1y and
therefore the numbers |¢(z) — ¢(y)| and |z — v| are comparable as well as the distances
|p(y) — ¢(v)| and |y — v| are. Combining these together finishes the proof of Theorem 8.3
and the implication (b) = (c). )

In order to prove the implication (a) = (b) let us introduce the following notation. For
every x € Jy let

n(z) =loglg'(¢(x))| — log |f'(x)|

and if x € J¢ is a transitive point of the map f : Jf — Jf, which means that the closure
{f™(x) : n > 0} of the forward trajectory of = is equal to J¢, then for every n > 0 set

I
—

n

(8.4) u(f* (@) = ) n(f’(x))

<.
I
(@]

We shall first prove the following technical result.

Lemma 8.7. If = is a transitive point of f, then for every 0 < t < §/2 the function u
restricted to the set (J¢ \ B(Qy,t)) N {f™(x) : n > 0} is uniformly continuous.

Proof. Fix 0 < e < 1/2 and let 0 < { < et be a number less than the number produced
in Corollary 2.9 associated with et. Consider two points f™(z), f*(z) € J¢ \ B(Qy,1t)
with |f™(xz) — f™(x)| < (. Without loosing generality we may assume that m < n. Then
in view of Corollary 2.9 there exists a point y € J¢ such that f"~™(f™(y)) = f™(y)
and |fmHi(x) — fmH(y)| < et for all 5 = 0,1,...,n — m. Since by the assumption

Z?;}z n(f7(y)) = 0, we therefore get

u(f7(@) — (" i D=3 (@) - n(F W)

n—1

Z (log |9 (¢ (g (x)))] — log |9’ (6 (g” W))I) — (log | £ (f7 ()] — log |f'(F7())]))

(g" ™) (6(9™(x))) ‘ g | L))
(gm=m)"(¢(9™ () (fr=m) (fFm(y))
Thus, in order to show that |u(f”( )) —u(f™(z))| is small if ¢ > 0 is small it suffices to

)
prove that both numbers |log (g™ =) (¢(g™(x)))/ (g™~ ™) (¢(¢"(y)))| and the the number
[Tog [(f™~™)" (f™(x))/(f™™) (f™(y))| are small. Since ¢ is a homeomorphism it is enough

= log
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to establish this property for the latter number. And indeed, Since et < 6/4 < 0, it follows
from the properties of y that f™(y) = f;,ﬁ?;m)( f™(y)), where f};ﬁ’g)m), the continuous
inverse branch of f™~" sending f"(z) to f™(x) is defined on B(f™(z),d). Therefore, since
|f™(z) = f™(z)| < ¢ < 0/4, since |f"(x) — f™(x)| < et, and since dist(f"(x),Qf) > ¢, it
follows from Lemma 2.16 that

(=) (@) H
1 log K
ey )| = log K<)
and lim._,¢ | log K1 (t,e)| = 0. The proof is finished. &

Proceeding with the proof of the implication (a) = (b) we shall show the following.

Lemma 8.8. The functions log|f’(z)| and log|g’(¢(z))| are cohomologoous in the class
of continuous functions on Jy, that is there exists a continuous function w : Jy — IR such
that

log |g'(¢(2))] — log |f'(2)] = u(f(2)) — u(2)
for all z € Jy.
Proof. It follows from Lemma 2.3(e) that there exists a transitive point « € J¢. We shall

show that u defined by (8.4) on the forward trajectory of  extends continuously to J;
and satisfies the cohomological equation required in Lemma 8.8. First note that by (8.4)

(8.5) n(z) = u(f(2)) —u(z)

for all z € {f™(x) : n > 1} and in view of Lemma 8.7 u extends continuously to the set
J¢ \ Qg. Therefore (8.5) holds for all z € Jg \ (2 U f~1()). Using these two facts we
shall now show that u extends continuously to J; and that then (8.5) holds for all z € Q.
Indeed, let w € Qf. Take z € f~{w} \ {w} and define u(w) by the formula

u(w) = () + u(z).
We want to show first that u is continuous at w and that u(w) is independent of of the
choice of x € f~H{w} \ {w}. So, let y, — w, yn # w. Since by Theorem 2.8 the map
f+Jy — Jg is open there exists a sequence z,, — = such that f(z,) = y, and therefore
lim u(y,) = lim ((za) + () = n(o) +u(@) = u(w).

n— 00

The continuity of uw at w is therefore proven. In order to prove the independence of
r € f~Hw} \ {w} actually the same argument is employed. Take z € f~{w}\ {w}. Since
J is perfect there is a sequence of points z, € J¢ \ {2}, n > 1, tending to z. Since by
Theorem 2.8 the map f : J; — Jy is open, there exists a sequence v, € J; of points
tending to  and such that f(v,) = f(z,) for all n > 1. Hence

u(w) = n(x) +ulz) = lim (n(va) +u(vn))
= lim u(f(vn)) = lim w(f(zs)) = Tim (1(zn) + u(zn))

=1(2) + u(z).
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We have therefore obtained that u extends continuously to J; and that (8.5) holds for all
z € Qf \ Q. But since the functions appearing in (8.5) are continuous and Qy \ Qy is
dense in Jf, we conclude that (8.5) continuous to be true for all z € Jy. &

Proof of the implication (a) = (b). The proof we present here is similar to the Proof
of Lemma 4.2. In view of Lemma 8.8 we conclude the existence of a constant () > 1 such
that for all z € J; and all n > 1 we have

_1_ [(g™)(4(2)]
(8.6) QT < () <Q,

We shall show that the measure mg4o¢ is absolutely continuous with respect to the measure
m¢. So, take n > 0 so small that if |z — y| <7, then |¢p~!(z) — ¢~ (y)] < d. Fix v, >0
so small as required in Lemma 2.19 for the map g and then take vy > 0 so small as
required in Lemma 2.19 for the map f and moreover so small that if |z — y| < 6, then
|p(z) — d(y)| < vgn- As in the proof of Lemma 4.2 it follows from Theorem 2.8 that
for every x € Jp \ U,—, f7™(Q), there exists a sequence {n; = n;(z) : j > 1} such
that () ¢ B(Q,8). Let fz 7 : B(f™(z),v6) — S* be the continuous inverse branch
of f™ sending f™ (z) to . Then it follows from Corollary 2.19, that f"i(B(z,r;)) D
B(fm (x), K3 *(75)770) and

(8.7) my(B(z,15)) 2 Ky " (vp) P|(f™) ()| ",
where P = inf{m(B(z, K5 *(vs)ys0)) : 2 € J} > 0 and
rj =ri(@) = Ky (y)l(fa™) (% (@) 1vd = Kq ' (vp)v81(F™) ()| 7.

Since also B(z,7;) C fz 7 (B(f™ (x),7¢9)), by the choice of v; we get

¢(B(x,7)) C o(f7™ (B(f™ (2),7£9))) C gy (B(g" (d(x),vgm))

Since by the property (a), ¢(25) = €2, and since dist (f”( ),82s) > 0y, it follows from the

choice of i that dist (g™ (¢(z)), Qg) > n. Hence, applying Lemma 2.19 for g, using (8.6)
and (8.7) we get

g (B(B (@, 75(2))) < my (957 (Blg™ (9l >> ’Vgn)))
< K5 4 (vg)mg (B(g" (¢()),vgm) 1(9™) (¢())| "
< K% (79)|(9™) (¢( ))| <K () QM) ()| 7"
< K3 s(vp) K} ,(7g) Q" P~ mg (¢(B(,1(2)))

So, applying Lemma 4.3 finishes the proof. &
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§9. Real analytic systems. In this section we consider parabolic Cantor sets generating
by dynamical systems (f,I; Aj,j € I) with f being real analytic on each set A;. It turns
out that then the rigidity theorem, Theorem 8.1, takes on a much stronger form, namely in
the condition (b) the assumption of equality of Hausdorff dimensions can be dropped. In
order to meet this aim we work first with complex analytic extensions of f to get analyticity
of the Radon-Nikodym derivative dy/dm. This in turn, with the help of complex analytic
methods, implies real analyticity of the Jacobian of the map f : J — J with respect to the
measure p. The last step indirectly employing the concept of nonlinearity of expanding
dynamical Cantor sets due to Sullivan shows that the Jacobian is not everywhere locally
constant which constitutes the last major ingredient of the proof of real analyticity of the
conjugacy ¢. We begin with the following.

Definition 9.1. A dynamical system (f,I;A;, j € I) is said to be real analytic if the map
f: Ujel Aj — S! has a real analytic extension onto an open neighborhood of f : Ujel Aj

in St.

The remark that enables us to take advantage of the theory of complex analytic functions
is that for any real analytic dynamical system there exists an open in €, the set of complex
numbers, neighborhood H of f : jer Aj and an (analytic function on H whose restriction
to f:Ujer Aj coincides with f. We call this function the (complex) analytic extension of
f and we keep for it the same symbol f. Our exposition begins with citing the following
improved version of the Koebe Distortion Theorem proven in [Prl] (for the classical version
and some discussion of the subject see [Po| for example).

Lemma 9.2. (The Koebe distortion Theorem) Given an open bounded subset G of the
complex plane (' there exists a constant K > 1 such that if B(z,0) C G and H : B(z,0) —
G is a holomorphic univalent map, then for every 0 < A < 1 and every = € B(z,6) we have

|H' ()| [H'(2)]
|H'(2)|" [H'(x)]

<K({1-)"1

Switching to the setting of parabolic Cantor sets and using some ideas from [Prl] we shall
prove the following.

Lemma 9.3. Let V C J be an open neighborhood of €2. Then there exists an r > 0
such that for every x € J\ V, every n > 0 and every z € J N f~"(x) there is an inverse
(-analytic branch f;™ : Bg(z,2r) — € of f™ sending = to z. Additionally the diameters
of the sets ;" (B@(:c, 21")) converge to 0 uniformly with respect to variables n, z € J\ V,
and z € JN f,.

Proof. Since f: H — @ as analytic is open and since J is compact,
n=dist(J,0(HN f(H))) > 0.
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Hence, using compactness of J again we see that there exists s > 0 such that all the inverse
branches of f are well defined on the balls B(z, s), z € J. Suppose now additionally that
x ¢ V and consider an arbitrary infinite sequence x,, € J, n > 0, such that f(z,4+1) = z,
and g = z. Set

b = M (1/2)7 (2 0) @),

Tn+1

where t = dist(2, J\ V) and M (¢,1/2) is taken from Lemma 2.16. In view of Lemma 2.16
Yoo o < 1/2 and therefore the product II,>0(1 — b,) ™! converges. In fact it lies between
1 and e. Hence there exists r > 0 independent of = so small that

(9.1) 2rll,>0(1 — b,) "' < min{s, §,¢/2, s(2K M (t,1/2)) "'}

We shall show by induction that for every m > 1 there is an analytic inverse branch
fa e B(a:, 2rTl>n(1 — bk)_l) — (' sending z to x, and

[ (B(z,2rsn (1 — by)™")) C B(zn, s)

Indeed, for n = 0, f, 0 is the identity map and our assertion follows from (9.1). So, fix
some n > 0 and suppose that the assertion is true for this n. Then by the definition of

s the inverse branch f;(nﬂ) : B(a:, 2rl;>,(1 — bk)_l) — (' is also well-defined and by

n+1

Lemma 9.2 (the Koebe Distortion Theorem), the definition of b,’s and (9.1)

O (B2l - b)) €
C B(@ni1, 2Ty (1 - b) Kb (5 01) ()
C B(znt1,2rH>0(1 — be) ' K2M (t,1/2))
C B(%nt1,5)
Thus, the inductive reasoning is completed and as for every n, Ilg>, (1 —b) ™! > 1, the first

part of the lemma is proven. The second part follows now immediately from Lemma 2.1
and Lemma 9.2 (the Koebe Distortion Theorem). [ )

As an immediate consequence of Lemma 9.3 and Lemma 9.2 (the Koebe distortion theorem)
we get the following.

Corollary 9.4. Vi1 3g Vusq Veennv if [ : B(2,2r) — @'is an inverse branch of f"
then |(f, ™)' (z)] < A1 for every z € B(z,r).

Our next goal is to show that the Radon-Nikodym derivative du/dm allows a real analytic
extension, that is in fact even a complex analytic extension. In order to cope with this
problem we need to go back to Section 8 to examine the way the o-finite measure p has
been constructed. So, first we defined the jump transformation f* : J¢ \ Q setting

f*(lo ::lfn(m)+1(x)7
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where n(z) > 0 is the least integer n > 0 such that f"(z) ¢ U;c ;) A;- In Proposition 7.6
we claimed that there exists a unique, ergodic, f*-invariant probability measure p* equiv-
alent to m and ¢* = du*/dm satisfies D=1 < ¢* < D for some constant D > 0. Now
proceeding essentially as in the proof of Lemma 4.6 of [U1], we shall prove the following .

Lemma 9.5. If (f, J;) is real analytic, then there exists a (~analytic extension of ¢* =
dp* /dm onto an open neighborhood of ;. ; A;.

Proof. Let

£oLlm) > L), LOE= Y

ze(f*)~"'(z)

0(x)

be the Perron-Frobenius operator of the mapping f with respect to the measure m, that is
L(0) = d((0m) o (f*)~*)/dm. Therefore it follows from Proposition 7.6 that * = du*/dm

is the only positive fixed point of £. An easy computation shows that for every n > 1
n 0(x)

2 eO@= 2 G an

ze((f*)")~1(2)

For every z € S' and k& > 1 let n(z,k) = n(z) + 1 + n(f*(x)) + 1 + n((f*)2%(x)) +
1+ ... +n((f)*1(x)) + 1 (we make the convention n(w) = oo) for w € Q). Then
(f*)k(x) = f@F)(z). In view of Lemma 9.3 and the definition of the jump transformation
there exists 0 < R < 7 such that for every k > 1, every z € .J, and every x € (f*)~%(z) there
exists a unique holomorphic inverse branch f (n(m)k) : B(2,2R) — @ of (%) determined

n(z,k)

by the condition f V(o k) (z) = x. Since the map f mapping |J..; A, onto its image is

jel
open, using (9.2), we can write

O = > IS Wl ES )
z€(f*) k()

for every k > 1 and y € S* N B(z,2R). Since f ("(m "(S' N B(z,2R)) C S, we have

—n(x,k)\s
—n( v Fowry ) (W)
|(fu(x,(k5k))/(y)| = f_n((;,,i)( ) for all y € S* N B(z,2R).
v(z,k) Y

Thus

h

n(z,k),
93) LWy = > V- fowr W)

1
G k)(y) for every y € S* N B(z,2R),
z€(f*) " *(y) v(w,k)

where raising to the h-th power we have chosen the unique analytic branch sending z
to |(fU_(Z(,f)’k))’(z)|h which is well-defined since the set B(z,2R) is simply connected. Let
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M(z) = 2(m(B(z,R)))™! < +oo. Since 1 > m((f*)"™(B(z,R))) = fB(Z R) LF(1)dm,
there exists a point y; € B(z, R) such that

(9.4) L*1)(yr) < M(2).

In view of Lemma 9.3 there exists a constant N > 0 such that

Y

(9.5) —
f,,(w,(k)’ )(y)

<N forevery k>1, y€ B(z,R) and z € (f*)7%(2),

and in view of Lemma 9.2 (the Koebe Distortion Theorem)
-n .T,k n\x, k
B )] < KI5 ()

for every k > 1, y € B(z,R), and = € (f*)~*(2). Therefore, using (9.3), (9.4), and (9.5),
we get

h

—n(z,k)\s
y(fu:ck; )(y) —n(z
> e SNKP S0 (0 (g
z€(f*)~F(2) fu(m,k) (y) ze(f*)—*(2)
(NK)"L*(1) (yk)
< (NK)hM(z)

for every k > 1 and y € B(z, R). Hence the series appearing in (9.3) defines on B(z, R)
a holomorphic function for which we keep also the name £¥(1). It follows again from the
last display that

Zﬁj < (NK)"M(z) forevery k>1 and y € B(z,R)

Thus, by Vitali’s theorem, the family {; Z?;& £7(1)}22, of holomorphic functions on
B(z,R) is normal in the sense of Montel and therefore one can find an increasing to
infinity subsequence {k,}32; such that - Zf 1 £i(1) converges on B(z, R/2) uniformly
to an analytic function, say H : B(z, R/ 2) — @' Hence ¢* = H almost everywhere on
SN B(z,R/2). Thus the proof is finished since analyticity is a local property. &

Now, as an immediate consequence of Lemma 9.5 and Theorem 7.7, along with real ana-
lyticity of 1/]f'|", and Lemma 2.15, we get the following.

Lemma 9.6. The Radon-Nikodym derivative ¢ = du/dm has a real analytic extension to
the set [J;c; A;\ Q.

ol



Let now p, denote the Jacobian of the map f with respect to the measure p. Since
pu(x) = | (2)|"(f(z))/¢(z), we derive from Lemma 9.6 the following main technical
result about real analyticity.

Lemma 9.7. The Jacobian p, has a real analytic extension to the set (J;c; A; \ .
Our first consequence of Lemma 9.7 is the following.

Lemma 9.8. If (f, Aj, I) is a real-analytic parabolic system, then there is ¢ € I such that
the Jacobian p, of f with respect to the invariant measure p is not locally constant at any
point of A;.

Proof. Suppose to the contrary that every interval A; contains a point (not necessarily
lying in J) around which the Jacobian p, is constant. Then it follows from Lemma 9.7
that p, is constant on each whole interval A;, 5 € I. Denote this common value by p;.
Since p is invariant Zy -1 () pi—l(y) = 1 for p almost every x € J, and since each point
of J has at least two distinct preimages under f and since p is positive on non-empty open
sets, it follows that p,(y) > 1 for all y € f~'(z). Hence A = min{p; : j € I'} > 1. Take
now an arbitrary point w € Q and choose one point z € J N B(w,d) \ {w}. In view of
Lemma 7.14, p([f5*(2),2)) < oo. Thus

pll,2) = 3 (121, 2)) < A5 (), 2) = (A7), 7)) < o0

n>0 n>0

Choosing if necessary one point in J N B(w,d) \ {w} locating on the other side of w, we
therefore conclude that w has a neighborhood of finite p measure. Since €2 is finite the
same continues to be true for the whole set 2. Combining this fact and Lemma 7.14 we
deduce that p(J) < co. But this contradicts Corollary 7.17 and finishes the proof of the
lemma. &

Let us now proof the main result of this section.

Theorem 9.9. Let (J¢, f) and (J,,g) be two real-analytic parabolic systems and let
¢ : Jy — J, be the corresponding canonical topological conjugacy. If the homeomorphism
¢ transports the measure class of the packing measure Il , on Jy onto the measure class
of the packing measure II,, on Jy, then ¢ and ¢~ ! extend to real analytic maps on open
neighborhoods in S* respectively of .J; and J,. In particular HD(Jf) = HD(J,).

Proof. Fix an f-invariant measure py equivalent to the conformal measure mys. Since ¢
transports measure class of my to the measure class of conformal measure m,, the measure
g = puf o ¢~ 1 is g-invariant and equivalent with m,. Since ¢ is invertible it equivalently
means that pg, the Jacobian of ¢ with respect to the measures py and p, is equal to 1.
The formula g o ¢ = ¢ o f combined with the chain rule therefore give

Pg O P =ps My —ae.,
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where p, and py denote respectively the Jacobians of the maps g and f with respect to the
measures iy and py. Since the measure py is positive on non-empty open subsets of Jy
and since by Lemma 9.7, both sides of this equality are continuous on Jy \ (2 U@~ (€2y,)),
we get

(9-5) pg 0 d(x) = ps()

for all z € J¢\ (25 U ¢71(Qy)). Now Lemma 9.8 applied to the real analytic system
(g,J4) produces an open arc V C S! such that V N .J)g # 0 and py|y is injective. Let
W =¢~1(VNJ,). Since W is a non-empty subset of J; and since py(V) is an open subset
of IR, using (9.5), we deduce the existence of an open subset U of S\ (2 U¢™1(£2y)) such
that 0 AU NJr CW, ps(U) C pg(V) and

(9-6) $(@) = (pglv) ™" 0 py(z)

for all z € J; N U. In particular ¢| J;nu has a real analytic extension on U. Take now an
arbitrary point z € J¢. In view of Lemma 2.3(f) there exist y € JyNU and n > 0 such that
f"(y) = z. Taker > 0, depending on y and n, so small that there exists f, " : B(z,7) — St
a continuous inverse branch of f" sending z to y. We may additionally require r > 0 to
be so small that f,"(B(z,7)) C U and g"(pg|v)~" 0 psf;™"(B(z,7)) is well defined. From
¢pofr=g"og¢ (on Js) we deduce that ¢ = g" oo f"" on Jy N B(z,r). So, since f "
on B(z,r) is real analytic and since g™ is real analytic on any arc where it is well defined,
using (9.6) we deduce that g™ o (pglv)~" o pyo fi ™ : B(z,r) — S' gives a real analytic
extension of ¢|y.Ap(.r) to the ball B(z,r). Thus we have proved that every point of Jy
has an open connected neighborhood in S! to which ¢ can be extended in a real analytic
fashion. Now, to conclude the proof, it suffices to remark that any two of such real analytic
extensions, defined on respective intervals having non-empty intersections, coincide. &

610. The scaling function. In this section we collect some basic properties of the scal-
ing function associated with a cookie-cutter Cantor set construction, stressing differences
between parabolic and hyperbolic case. Next we formulate a rigidity theorem in terms of
scaling functions. Throughout the section we assume that the basic sets A;, j € I, are
mutually disjoint which implies that 3% = ¥°° is the full shift space over d = #1I elements,
m: %> — J is a homeomorphism, and .J is a topological Cantor set. Moreover we require
that for all j € I

(10.1) ra) o YJa

and the endpoints of the interval f(Aj) are contained in the union (J;; A;, hence are the
same for all j € I.

Recall that in Section 1 by A(7), 7 € ¥, we have denoted the interval A, N f~1(A,, )N
...Nf™(A;,). Now we want to extend this definition letting 7 be of the form pvy, where

93



p € ¥* and 7 ranges over the set G (consisting of d — 1 elements) of gaps between the
elements A;, j € I. We set

Alpy) = A(p) N f~UPIHD ()

and now we are in position to define the function S : £* — [0, 1]2¢~! putting for all T € X*

and j € IUG e
S() =8 = 52

Note that >, S(7)(j) = 1. We will also consider functions S defined on the dual shift

space »* consisting of all left-infinite words ...7,7,_1...70, 7 € I. Given n > 0 and
T € ¥* we define S, (1) = S(TuTn_1...70). S0, S, : ¥* — [0,1]2?7L. Our first aim is to
prove the following.

Theorem 10.1. The sequence {S, : £* — [0,1]2¢"1 : n > 1} converges uniformly. The
limit function S : ¥* — [0,1]2¢71, called the scaling function, is continuous.

Proof. Take j € ING. Fix also integers k,n > 0. Take an auxiliary x € A(T|ptk)-
In view of the Mean Value Theorem there exist y € A(1,j) and z € A(7|;) such that
[A(Tln4kd) | = [(L™) W] - |A(Ted)] and [[A(T|ngr) | = [(f) (2)] - |A(7k)]- Therefore

|A(T|n+k.7 ~A( Tk] |
|n+k |A(71)|
‘| |- JA(mg)| 1A Tk])|‘
() - 1A(e)] |A(7)]

|Sn4x(7)(5) = Sk(T) ()] =

_1A( Tk])| ‘|( ) ()| _1‘
|A(Tk)| [(f=")"(2)]
(10.2) " = Z;: 1‘

With the help of (10.2) we shall prove that all the sequences Sy, (.)(j), j € TUG, satisfy the
uniform Cauchy condition. Indeed, fix again 7 € TUG and € > 0. Take ¢ > 0 so small that
max{Q1(2¢) — 1,1 — Q1(2¢)"'} < &, where @1 is the function produced in Lemma 2.20.
Now fix A(e) > 0 so small that setting

Ky = K6/ |1, Lo /1L F 1D L8/ 11108 HIf N[~ CHDAe),

where the function K is produced in Lemma 2.16, it holds max{K; — 1,1 — K] '} < ¢/2.
Finally, in view of Lemma 2.1 we can fix k£ > 1 so large that

(10.3) diam(A(7])) < A(e)

for all 7 € X .
Take now an arbitrary 7 € ¥ and suppose that

dist(Q2, A(7|k)) > .
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Let ¢t > 0 be the least integer such that A(7|;) = f;(k_t)(A(ﬂt)) for some w € Q. Since
1 is positive, dist(Q, A(7]y)) > 6/||f'|]. If t = k, then diam(A(7];)) < A(e). Otherwise,
using Corollary 2.14 we conclude that dist(Q2, A(7|x)) < Li(6/||f'||)(k — t)~*/P. Hence
Li(8/||f'1) (k —t)~Y# >+ and therefore k —t < (L1(5/||f'||)1»~')?. Thus by Lemma 2.15
we get

diam(A([1)) > La(8/||£/l) 7 (5 = £)~"7 diam(A(r],))
> La(8/IIF'1) La(8/[£1) =P+ Dy diam(A(7 )

which implies that

diam(A(7],)) < La(8/[1 £ L1 (6/I1f1)* =P+ diam(A (7))
< Lo(8/[1/1NLa(8 /111D H~ D Ae).

Hence applying (10.2) and Lemma 2.16, it follows from the choice of k and 9 that for every
n > 0 we have

Stk (1) (7) = Sk(T) ()] < |Snar(T)(5) = Se(T) ()] + [Se(7)(7) — Se(7)(5)]
(10.4) <2max{|K; — 1|,|]1 - K;'} <¢

So, we can assume that
dist(Q, A(7|g)) < 1.

Then A(7]x) € B(£2,2¢). Therefore if 7| does not consist only of indices corresponding
to one parabolic point (so the assumptions of Lemma 2.20 are satisfied with ¢ = 1), the it
follows from (10.2), Lemma 2.20, and the choice of 1 that for every n > 0

[Sn4n(7)(5) = Sk(7) ()] < max{Q1(2¢) — 1,1 - Q7" (29)} <e.

Now, the only case left is when 7| consists of indices j, only for some w € €, where
Jw € I is determined by the requirement that w € A; . Since by the Mean Value Theorem
1fo (@) —w] _

rT—w
lim,, o0 S,l(jg;(j) is equal to 1 if j = j, and 0 otherwise. Hence taking k sufficiently
large, larger than required in (10.3) perhaps we see that |S,4x(7)(j) — Sk(7)(j)| < €
if T|pir = j7T*. Otherwise look at the largest number ¢ such that 7|, = jZ. Then
kE<qg<n+kand

lim,_,,, 1 and in view of Corollary 2.14 and Lemma 2.15 we deduce that

|Sn4k(T) () = Sk(T) )] < [Snik(T)(7) = Sqra(T) ()] + 1Sg4+1(7) (5) = Se(T) (D) |+
+184()G) - 5(r) ()]
As above |S,(7)(7) — Sk(7)(j)] < e. Moreover the first summand | S, 4% (7)(4) — Sq+1(7) ()|
is estimated from above by ¢ similarly as the two summands in (10.4) (¢+ 1 corresponds to

t) and in view of (10.2) applied with n = 1 the second summand |Sy4+1(7)(j) — Sq(7)(5)] is
less than ¢ if and only if diam(A(7]x)), and consequently also diam(A(7|)) is sufficiently
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small. Then [S,1x(7)(j) — Sk(7)(j)| < 3e which completes the proof of the uniform
convergence of the sequence S,,. Since all the functions S,, are obviously continuous the
limit function is also continuous and the proof is finished. &

Now we shall prove the fact, actually already proven in the course of the proof of The-
orem 10.1 which describes some differences between parabolic and hyperbolic dynamical
Cantor sets in the language of scaling functions.

Lemma 10.2. S(7)(j) = 0 if and only if for all n > 0, A(7,) is the (only) element
containing some w €  and A; does not contain w.

Proof. Suppose first that for all w € Q not all the elements A(7,), n > 0, contain w. If
A1) N Q # 0, set ¢ = 0. Otherwise there exists a least finite number ¢ > 1 such that
T4 # To. In any case dist(€2, A(7|4)) > /2. In view of the Mean Value Theorem there exist
y € Alrld) © Alrl,) and 2 € A(rl,) such that [A(Tlgsnd)] = (™) ()] - [A(r]yj)] and
IA(Tlg+n)| = |(fi ™)' (2)] - |A(T|q)|, where f, ™ denotes the inverse branch of f™ sending
A(Tlq) to |A(T|g4+n). Therefore

_ AT grnd) | NG O g o
a |A(T|q+n)| N |(ft_n)/(z)|8q( )(])

and applying Corollary 2.17 we get Syn(7)(4) > K1(6/2)71S,(7)(j)- So, letting n — oo
(and employing Theorem 10.1 of course), we get S(7)(j) > K1(6//2)71S,(7)(j) > 0.

Now suppose that A(7|,) = f;"(A,) for all n > 0 and some w € Q. If j is taken such

w

that w ¢ Aj, then in view of Lemma 2.15 and Corollary 2.14

Sqin(7)(9)

_B+1
8

_ |A(7]nd)| _ 12(6/2)n

= L1(6/2)La(6/2)n 1.

Hence S(7)(j) = 0. Since >, S(7)(j) = 1, the proof is completed. &

Corollary 10.3. If two dynamical Cantor sets J; and generated respectively by dynamical
systems (f,I,Af;,j € I) and (9,1, ;,j € I) have the same scaling functions, then the
topological conjugacy ¢ : Jy — J, sends the set of parabolic points of f onto set of
parabolic points of g.

Theorem 10.4. If two dynamical Cantor sets J¢ and J, generated respectively by dy-
namical systems (f,1,Ayf;,j € I) and (9,1, ;,7 € I) have the same scaling functions,
then the topological conjugacy ¢ : Jy — Jg is Lipschitz continuous.

Conversely, if the conjugacy ¢ : Jf — Jy is a C! diffeomorphism, then the Cantor sets .J;
and J,; have the same scaling functions.

Proof. Let us prove first the second part of this theorem.Indeed, keep the same notation
¢ for a C' extension of ¢ to an open neighborhood of J;. Decreasing this neighborhood
if necessary we can assume that ¢’, the derivative of ¢ nowhere vanishes. Therefore for
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every n > 0 sufficiently large and every 7 € X", the map ¢|a () 1s well defined and

¢(A¢(7)) = Ag(7). Now, in view of the Mean Value Theorem, for every 7 € X, every j € I
and every sufficiently large n > 0, there are y € A¢(7|,,5) C A¢(7|,) and z € Af(7|y) such

that [Ag(ln)| = |6/ ®)|c|A s (Tlnf)| and [Ag(7]n)] = ¢/ (2)[c]A s (]n)|. Thus

S0 = (81010

Since lim,, o |A(7T]5)| = 0, it follows from positiveness and continuity of ¢’ that
Sy(r)(i) = lim Syu(r)() = lim Sp(r)() = S5(7)())
finishing the proof of the second part of the theorem.

In order to prove the first part of this theorem we will show that condition (a) of Theo-
rem 8.1 is satisfied, that is that the spectra of moduli of periodic points of f and g are the
same. So, let z be an arbitrary periodic point of f, say of period ¢ > 1. For0 < j <g¢g—1
let f7(z) € Ag(r;) and let T = 7971 ... T4—1. Our aim is to show that |(g%)'(2)| = |(f9)'(2)|-
In view of Corollary 10.3 we may assume that neither z nor ¢(z) are parabolic. Denoting
by 7™ the concatenation of n words 7, we get

[Ag (" imo)| | [Af(T"H mo)|
[Ag(mm0)|  |Ap(7"70)|

_ |Ag(r" .. Tg—170)] _ |Ag(T" 7y ... Tg—1)| o |A, (T 7)) '
A )] A (T Tgm2)] T A (T )|
2t g . [Af(T" T Tg1) c [Ap (7" o)
[Ap(rir )| A )] T (A (T )]

= Sg(7" 7y .. Tqo1)(10)Sg(T" 1 . Tg—2) (Tg=1) - - . Sg(T"T1 ... Tg—2) (Tq—1)-
: Sf_l(TnTl .. .Tq_l)(TO)SJTI(T”Tl o Tg—2)(Tg—1) - .S;I(T”Tg)(ﬁ)

Thus, denoting by 7% € ¥ the infinite concatenation of 7’s we obtain

lim <|A9(T"“To)| . |Af(Tn+ITO)|> _

n—oo | |Ag(mmo)]  |Ag(T770)]
_ Sg(r°71 ... 1q—1)(10)  Sg(T%°71...7g-2)(1q—1)  Sg(7%°70)(71)
Sp(ror . .mgm1) (o) Sp(rT . Ty2)(Tg—1) T S§(7°70) (1)
(10.5) —1

On the other hand, since Af(7"7y) = fUAf(7" 1) and A, (7"710) = g9(Ay (7" 1), by
the Mean Value Theorem there are two points z, € Af(7"17y) and y,, € Ay(r" 7))
such that [Af(m"7o)| = [(f9)"(wn)||Af (7" 70)] and [Ag(r"70)| = [(97)' (yn) || Ag (7" 70)].
Combining these equalities and (10.5) we get

q\/ q\/

VG 6w

((F)' ()] moe [(f9) ()]

Applying now Theorem 8.1 completes the proof. &
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