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Abstract. We prove that if Jn(G) we denote the set of all numbers in [0, 1]
whose infinite continued fraction expansions have all entries in the finite set
{1, 2, . . . , n}, then limn→∞Hhn

(Jn(G)) = 1 = H1(J(G)), where hh is the Haus-
dorff dimension of Jn(G) and Hhn is the corresponding Hausdorff measure. We
also show that this property is not too common by constructing a class of in-
finite iterated function systems S on [0, 1], consisting of similarities, for which
limF→E HhF

(JF ) < HhS (JS); the upper limit is taken over finite subsets of the
countable infinite alphabet E.

1. Introduction

Let (X, ρ) be metric space and let A ⊂ X. Given t ≥ 0 we define

Ht(A) := lim
δ→0

inf
{ ∞∑
n=1

diamt(Un) :
∞⋃
n=1

Un ⊃ A, diam(Un) ≤ δ for all n ≥ 1
}

and Ht(A) is called the t-dimensional (outer) Hausdorff measure of A. The func-

tion A 7→ Ht(A) restricted to the σ-algebra of Borel sets of X is (an ordinary

non-negative σ-additive) measure. The number

HD(A) = inf{t > 0 : Ht(A) = 0}

is called the Hausdorff dimension of A. Frequently, especially in dynamics, if

0 < Ht(X) < +∞, one considers also normalized Hausdorff measure, i.e. the

function

A 7→ H1
t (A) := Ht(A)/Ht(X).

In order to avoid any confusion as to which Hausdorff measure we mean, we

frequently refer to Ht(A) as the numerical value of the Hausdorff measure of A.

In this paper we always consider the Hausdorff measure (and dimension) with

respect to the standard (Euclidean) metric on the ambient space which is with

no exception Rq with some integer q ≥ 1.

In agreement with notation of Section 3 by Jn(G) we denote the set of all numbers

in [0, 1] whose infinite continued fraction expansions have all entries in the finite

The research of M. Urbański supported in part by the NSF Grant DMS 1001874. The
research of A. Zdunik partially supported by the Polish NCN grant NN 201 607940.

1
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set {1, 2, . . . , n}. It is well-known (see [H1], comp. [MU1] and [MU2], where an

analogous statement is proved for all conformal iterated function systems), that

(1.1) lim
n→∞

HD
(
Jn(G)

)
= 1.

Motivated by this result and some continuity properties of the numerical value

of the Hausdorff measure of the limit sets in conformal dynamics (see [Ol] and

[SUZ]), we asked ourselves whether a continuity like in (1.1) holds on a deeper

level of Hausdorff measures. Armed with the theory of iterated function systems it

can be relatively easy to show that the continuity holds for normalized Hausdorff

measures in the weak∗ topology on Borel probability measures on the unit interval

[0, 1]. For the numerical values of Hausdorff measures the positiver answer is given

in Section 3 below; see Theorem 3.1. Its proof is in its majority number theoretical

slightly touching on iterated function systems. However, this result fits well into

the context of such systems. Section 4 briefly describes them and recalls Bowen’s

formula expressing the Hausdorff dimension of the limit set in dynamical terms.

If S = {φe}e ∈ E is a conformal iterated function systems satisfying the Open

Set Condition, then (see [MU2]

sup{HD(JF ) : F ⊂ E} = HD(JS)

where the supremum is taken over all finite subsets F of E and JF is the limit set of

the iterated function system {φe}e ∈ F . Motivated by this fact and Theorem 3.1

we asked ourselves whether

lim
F→E

HhF (JF ) = HhS (JS)

for all conformal iterated function systems satisfying the Open Set Condition; in

here hF = HD(JF ), hS = HD(JS) and Ht denotes always t-dimensional Hausdorff

measure. We show in Section 6 that the answer is in general negative. It is negative

already in the simplest possible situation to think about: linear (similarity), so no

distortion of derivative, IFS on [0, 1] whose limit set is all of [0, 1] but a countable

set (as is also the case for continued fractions). This shows that continued fractions

are very special amongst IFSs on [0, 1]. It also shows that bounded distortion of

derivative, one of the main technical issues in the proof of Theorem 3.1, is by

no means all what counts for the proof of this theorem. As a convenient tool to

prove discontinuity in the counterexample constructed in Section 6, we derived in

Section 5 a simple formula to express the Hausdorff measure of iterated function

systems consisting of similarities; this formula is of interest on its own.
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2. Selected Preliminaries from Geometric Measure Theory

In this section we collect some well-known general density theorems which

ultimately express the numerical value of Hausdorff measures in the form suitable

for our continuity considerations in the following sections. We start with the

following density theorem for Hausdorff measures (see [Ma] for example).

Fact 2.1. Let X be a metric space, with HD(X) = h, such that Hh(X) < +∞.

Then (see p. 91 in [Ma]),

lim
r→0

sup

{
Hh(F )

diamh(F )
: x ∈ F, F = F, diam(F ) ≤ r

}
= 1

for Hh–a.e. x ∈ X.

As an immediate consequence of this, we get the following, fundamental for us,

fact, which was extensively explored in [Ol] and [SUZ].

Theorem 2.2. If X is a metric space and 0 < Hh(X) < +∞, then

Hh(X) = lim
r→0

inf

{
diamh(F )

H1
h(F )

: x ∈ F, F = F, diam(F ) ≤ r

}
for H1

h–a.e. x ∈ X.

Since in all Euclidean metric spaces the diameter of the closed convex hull of

every set A is the same as the diameter of A, as an immediate consequence of

this theorem, we get the following.

Corollary 2.3. If X is a subset of a Euclidean metric space Rd and 0 < Hh(X) <

+∞, then

Hh(X) = lim
r→0

inf

{
diamh(F )

H1
h(F )

: x ∈ F, F ⊂ Rd is closed, convex, and diam(F ) ≤ r

}
for H1

h–a.e. x ∈ X.

Being even more specific, we get the following consequence.
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Corollary 2.4. If X is a subset of an interval ∆ ⊂ R and 0 < Hh(X) < +∞,

then

Hh(X) = lim
r→0

inf

{
diamh(F )

H1
h(F )

: x ∈ F, F ⊂ ∆ is a closed interval, and diam(F ) ≤ r

}
for H1

h–a.e. x ∈ X.

3. Continued Fractions

For every integer n ≥ 1 let gn : [0, 1]→ [0, 1] be given by the formula

(3.1) gn(x) =
1

n+ x
.

Note that there exists ξ > 0 such that for all n ≥ 1,

(3.2) gn

(
BC

(
1

2
,
1

2
+ ξ

))
⊂ BC

(
1

2
,
1

2
+ ξ

)
and gn : BC

(
1
2
, 1

2
+ ξ
)
→ BC

(
1
2
, 1

2
+ ξ
)

is a univalent map. The collection of

maps G := {gn}∞n=1, acting on both [0, 1] and BC
(

1
2
, 1

2
+ ξ
)
, forms a conformal

iterated function system in the sense of [MU2] and [MU1]. It is called called the

Gauss system. In view of (3.2), for every ω ∈ N∗1 :=
⋃
νn≥1Nn, say ω ∈ Nn, the

composition

gω := gω1 ◦ gω2 ◦ . . . ◦ gωn
is a well-define self-map of both BC

(
1
2
, 1

2
+ ξ
)

and [0, 1]. The map G : (0, 1] →
(0, 1], defined by the formula,

G(x) =
1

x
− n if x ∈

( 1

n+ 1
,

1

n

]
,

is called the Gauss map. Of course

G ◦ gn|[0,1) = Id|[0,1),

and iterating this formula,

G|ω| ◦ gω|[0,1) = Id|[0,1)

for every finite word ω ∈ N∗, where the latter throughout this section includes

the symbol “0” and g0 := Id. So, for every k ≥ 0, and every irrational number

x ∈ [0, 1],

Gk(x) ∈
[

1

ω(x)k+1 + 1
,

1

ω(x)k+1

]
,

where ω(x)k+1 is the (k + 1)th digit of the continued fraction expansion of x.

Given an arbitrary non-empty subset E of N we denote by JE(G) the set of all

numbers in [0, 1] whose infinite continued fraction expansions have all entries in

E. Of course

gω
(
JE(G)

)
⊂ JE(G)
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for all ω ∈ E∗, and moreover

JE(G) =
⋃
ω∈En

gω
(
JE(G)

)
.

Anticipating the terminology of the next section we call JE(G) the limit set of the

system GE := {gn : n ∈ E}, which is also a conformal iterated function system

in the sense of [MU2] and [MU1]. In this section we exclusively consider only

those systems where the set E is of the form Nn := {1, 2, . . . , n}, n ∈ N. We then

abbreviate GNn and JNn(G) to Gn and Jn(G) respectively. Let

hn := HD(Jn(G))

be the Hausdorff dimension of the limit set Jn(G). It follows from Theorem 1

(formula 7.11) in [H1], comp. [MU2], that

(3.3) lim
n→∞

hn = HD(J(G)) = 1,

In fact Theorem 1 in [H1] provides the rate of convergence of the sequence (hn)∞n=1

to 1:

(3.4) lim
n→∞

n(1− hn) =
6

π2
.

Since each Gn, n ≥ 2, is a finite conformal iterated function system consisting

of at least two elements, we have (see [H1] or [MU2] for instance) the following

well-known result.

0 < Hhn(Jn(G)) < +∞.
The main result of this section is this.

Theorem 3.1.

lim
n→∞

Hhn(Jn(G)) = 1 = H1(J(G)).

Of course H1(J(G)) = H1([0, 1]) = 1. So, only the first equality is to be proved.

We start it with a long series of lemmas.

If g : ∆1 → ∆2 is a differentiable diffeomorphism, we define

κ(g) := sup

{
|g′(y)|
|g′(x)|

: x, y ∈ ∆1

}
and call this number the distortion of the map g : ∆1 → ∆2. We say that g

has bounded distortion if κ(g) < +∞. The following lemma collects the basic,

straightforward to prove, properties of the concept of distortion.

Lemma 3.2. Let ∆i, i = 1, 2, 3, be some three intervals in R. Let Diff(∆i,∆j),

1 ≤ i, j ≤ 3 be the set of all diffeomorphisms from ∆i onto ∆j. Then
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(a) If g ∈ Diff(∆i,∆j), then κ(g) = κ(g−1)

(b) If g ∈ Diff(∆i,∆j), then κ(g) ≥ 1

(c) If g1 ∈ Diff(∆1,∆2) and g2 ∈ Diff(∆2,∆3), then κ(g2 ◦ g1) ≤ κ(g1)κ(g2).

(d) If g ∈ Diff(∆i,∆j) and ∆ is an interval contained in ∆1, then

κ−1(g)|g′(x)| · |∆| ≤ |g(∆)| ≤ κ(g)|g′(x)| · |∆|

for every x ∈ ∆i. In particular

κ−1(g) sup{|g′|} · |∆| ≤ |g(∆)| ≤ κ(g) inf{|g′|} · |∆|.

It follows from (3.2) and (3.1) that

gω

(
BĈ

(
1

2
,
1

2
+ ξ

))
⊂ BĈ

(
1

2
,
1

2
+ ξ

)
for all ω ∈ N∗, and that all maps gω

(
BĈ

(
1
2
, 1

2
+ ξ
))
→ C are 1-to-1 and holo-

morphic. As an immediate consequence of Koebe’s Distortion Theorem we get

therefore the following.

Lemma 3.3.

lim
t→0+

sup{κ(gω|∆) : ω ∈ N∗, intervals ∆ ⊂ [0, 1] with |∆| ≤ t} = 1.

Since

(3.5) lim
n→∞

sup{|gω([0, 1])| : ω ∈ Nn} = 0

(the convergence is even exponentially fast), as an immediate consequence of this

lemma we get the following.

Lemma 3.4.

lim
q→∞

sup{κ(gω|gτ ([0,1])) : ω ∈ N∗, |τ | = q} = 1.

We shall prove the following.

Lemma 3.5.

lim
n→∞

κ(gn) = 1.
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Proof. We have

|g′n(x)| = 1

(x+ n)2
,

and therefore,

κ(gn) =
(n+ 1)2

n2
→ 1 as n→∞.

�

Since |gn([0, 1])| = 1
n(n+1)

→ 0 as n → ∞, as an immediate consequence of this

lemma, Lemma 3.3, and Lemma 3.2, we get the following.

Lemma 3.6.

lim
n→∞

sup{κ(gω ◦ gn) : ω ∈ N∗} = 1.

We now pass to examine normalized Hausdorff measures. For every n ≥ 2 let

mn := H−1
hn

(Jn(G)) · Hhn|Jn(G).

We also frequently consider mn as a Borel probability measure on [0, 1], i.e.

mn(A) = H−1
hn

(Jn(G)) · Hhn

(
Jn(G) ∩ A

)
for Borel subsets A of [0, 1]. It follows from [MU2] that mn is the unique (proba-

bility) hn-conformal measure on Jn(G), meaning that

mn(gω(A)) =

∫
A

|g′ω|hndmn

for every Borel set A ⊂ [0, 1] and all ω ∈ N∗n.

We start with the following definition.

Definition 3.7. A family R of closed subintervals of [0, 1] is called extremal if

lim inf
n→∞

inf

{
|∆|hn
mn(∆)

: ∆ ∈ R
}
≥ 1.

Lemma 3.8. For every δ > 0 the family Rδ of all closed intervals ∆ ⊂ [0, 1] with

|∆| ≥ δ is extremal.
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Proof. Suppose on the contrary that for some δ > 0 the familyRδ is not extremal.

This means that there exist η ∈ [0, 1), an increasing sequence (nj)
∞
1 of positive

integers, and a sequence (∆j)
∞
1 of closed intervals in Rδ such that

(3.6) lim
j→∞

|∆j|hnj
mnj(∆j)

= η.

Passing to a subsequence we may assume that the left-hand endpoints and the

right-hand endpoints of ∆j converge respectively to a and b in [0, 1] with b−a ≥ δ.

Let ∆ := [a, b] ∈ Rδ. Since the sequence
(
mnj

)∞
1

converges weakly to m, the

Lebesgue measure on [0, 1], we get from (3.6) that

1 =
|∆|
m(∆)

≤ limj→∞ |∆j|hnj
lim supj→∞mnj(∆j)

= lim inf
j→∞

|∆j|hnj
mnj(∆j)

= η < 1.

This contradiction finishes the proof. �

Lemma 3.9.

lim inf
n→∞
r→0

{
rhn

mn([0, r])

}
≥ 1.

Proof. Fix N ≥ 2 so large that hN ≥ 3/4 and keep always n ≥ N . For every

∈ (0, 1/2) let sr ≥ 1 be the unique integer such that

1

sr + 1
< r ≤ 1

sr
.

We then have

mn([0, r]) ≤
∞∑
j=sr

mn(gj([0, 1])) ≤
∞∑
j=sr

||g′j||hn∞mn([0, 1])

≤
∞∑
j=sr

j−2hn

≤
∫ ∞
sr−1

x−2hndx

= (2hn − 1)−1(sr − 1)1−2hn .

Therefore,

(3.7)

mn([0, r])

rhn
≤ (2hn − 1)−1(sr + 1)hn(sr − 1)1−2hn

= (2hn − 1)−1

(
sr + 1

sr − 1

)hn
(sr − 1)1−hn

= (2hn − 1)−1

(
1 +

2

sr − 1

)hn
(sr − 1)1−hn

≤ (2hn − 1)−1(1 + 4r)hn(sr − 1)1−hn
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Of course if 0 < r ≤ 1
n+1

, then

mn([0, r])

rhn
= 0.

Hence, we can continue (3.7) assuming that r > 1
n+1

. Then sr < n+ 1, and (3.7)

along with (3.4) yield for all n ≥ 2 large enough the following.

mn([0, r])

rhn
≤ (2hn − 1)−1(1 + 4r)n1−hn ≤ (2hn − 1)−1(1 + 4r)n

7
π2n

= (2hn − 1)−1
(
n

1
n

) 7
π2 (1 + 4r).

Since limn→∞ hn = 1 and limn→∞ n
1
n = 1, this formula gives

lim sup
n→∞
r→0

{
mn([0, r])

rhn

}
≤ 1.

The proof is complete. �

For every ω ∈ N∗ let

B∗(gω(0), r) = [gω(0), gω(0) + r] and B∗(gω(0), r) = [gω(0)− r, gω(0)]

respectively if |ω| is even or odd. Let

B∗(ω) := {B∗(gω(0), r) : r ∈ (0, 1]}

We shall prove the following.

Lemma 3.10. For every ω ∈ N∗ the family B∗(ω) is extremal.

Proof. For all r ∈ (0, |gω([0, 1])|] there exists a unique r̂ ∈ (0, 1] such that

B∗(gω(0), r) = gω([0, r̂]).

By virtue of Lemma 3.2(d) this gives,

κ−1
(
gω|[0,r̂]

)
|g′ω(0)|r̂ ≤ r ≤ κ

(
gω|[0,r̂]

)
|g′ω(0)|r̂.

Hence,

(3.8)

rhn

mn(B∗(gω(0), r))
≥

κ−hn
(
gω|[0,r̂]

)
|g′ω(0)|hn r̂hn

κhn
(
gω|[0,r̂]

)
|g′ω(0)|hnmn([0, r])

= κ−2hn
(
gω|[0,r̂]

) r̂hn

mn([0, r])
.

Since limr→0 r̂ = 0, as an immediate consequence of Lemma 3.9 and Lemma 3.3,

we get the following.

lim inf
n→∞
r→0

rhn

mn(B∗(gω(0), r))
≥ 1.
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This means that for every ε > 0 there exist an integer Nε ≥ 2 and a radius

Rε ∈ (0, 1] such that

rhn

mn(B∗(gω(0), r))
≥ 1− ε

for all n ≥ Nε and all 0 < r ≤ Rε. Invoking now Lemma 3.8, we therefore get

lim
n→∞

inf
r∈(0,1]

{
rhn

mn(B∗(gω(0), r))

}
=

= lim
n→∞

min

{
inf

r∈(0,Rε]

{
rhn

mn(B∗(gω(0), r))

}
, inf
r∈(Rε,1]

{
rhn

mn(B∗(gω(0), r))

}}
≥ min

{
lim
n→∞

inf
r∈(0,Rε]

{
rhn

mn(B∗(gω(0), r))

}
, lim
n→∞

inf
r∈(Rε,1]

{
rhn

mn(B∗(gω(0), r))

}}
≥ min{1− ε, 1} = 1− ε.

Letting now ε→ 0+ our lemma follows. �

Now consider an arbitrary finite word ω ∈ N∗. Put k = |ω|. Since

gω(0) = gω|k−1(ωk−1)1(0)

if ωk ≥ 2, and

gω(0) = gω|k−2(ωk−1+1)(0)

if ωk = 1, and since |ω|k−1(ωk − 1)1| = |ω|+ 1 and |ω|k−2(ωk−1 + 1)| = |ω| − 1, as

an immediate consequence of Lemma 3.10, we get the following.

Corollary 3.11. For every ω ∈ N∗ let Re(ω) be the collection of all closed in-

tervals ∆ in [0, 1] having gω(0) as one of its endpoints. Then each family Re(ω),

ω ∈ N∗, is extremal.

If R and S are two families of closed subintervals of [0, 1], then

R ∗ S := {∆ ∪ Γ : ∆ ∈ R,Γ ∈ S, and #(∆ ∩ Γ) = 1}.

Of course the operation “∗” is is associative and commutative. Generalizing Def-

inition 3.7 we introduce the following.

Definition 3.12. A sequence (Rk)
∞
1 of families of closed subintervals of [0, 1] is

called extremal if

lim inf
n→∞
k→∞

inf

{
|∆|hn
mn(∆)

: ∆ ∈ Rk

}
≥ 1.
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The first obvious observations are these.

Lemma 3.13. If for every k ≥ 1, Rk ⊂ Sk and the sequence (Sk)∞1 is extremal,

then the sequence (Rk)
∞
1 is also extremal.

Lemma 3.14. A sequence (Rk)
∞
1 is extremal if and only if the sequence (

⋃
l=kRl)

∞
k=1

is extremal.

Lemma 3.15. If (Rk)
∞
1 and (Sk)∞1 are two extremal sequences, then the sequence

(Rk ∪ Sk)∞1 is also extremal.

Now we shall prove the following slightly more involved lemma.

Lemma 3.16. If (Rk)
∞
1 and (Sk)∞1 are two extremal sequences, then the sequence

(Rk ∗ Sk)∞1 is also extremal.

Proof. Fix ε > 0. By our hypothesis there exists Nε ≥ 2 such that

(3.9)
|Γ|hn
mn(Γ)

≥ 1− ε

for all n, k ≥ Nε and all Γ ∈ Rk∪Sk. Fix n, k ≥ Nε and ∆ ∈ Rk ∗Sk. This means

that

∆ = ∆− ∪∆+

with some ∆− ∈ Rk and ∆+ ∈ Sk such that D− ∩ ∆+ is a singleton. Now the

standard calculus argument shows that

xt + (1− x)t ≤ 21−t

for all t, x ∈ [0, 1]. Therefore we get

|∆−|hn + |∆+|hn
(|∆−|+ |∆+|)hn

=

(
|∆−|

|∆−|+ |∆+|

)hn
+

(
|∆−|

|∆+|+ |∆+|

)hn
≤ 21−hn .
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Hence, using also (3.9), we get

|∆|hn
mn(∆)

=
(|∆−|+ |∆+|)hn

mn(∆−) +mn(∆+)

≥ 2hn−1 |∆−|hn + |∆+|hn
mn(∆−) +mn(∆+)

≥ 2hn−1 min

{
|∆−|hn
mn(∆−)

,
|∆+|hn
mn(∆+)

}
≥ (1− ε)2hn−1

Invoking (3.3) this completes the proof. �

If R and S are two families of closed subintervals of [0, 1], we define

R⊗ S := R∪ (R ∗ S) ∪ S.

As an immediate consequence of Lemma 3.15 and Lemma 3.16 we get the follow-

ing.

Corollary 3.17. If (Rk)
∞
1 and (Sk)∞1 are two extremal sequences, then the se-

quence (Rk ⊗ Sk)∞1 is also extremal.

An immediate induction then yields the following.

Lemma 3.18. If T is a finite set and for every t ∈ T a sequence (Rk(t))
∞
k=1 is

extremal, then the sequence
(
⊗t∈TRk(t)

)∞
k=1

is also extremal.

Applying this lemma to a constant sequence we get the following.

Corollary 3.19. If T is a finite set and for every t ∈ T a family R(t) is extremal,

then the family ⊗t∈TR(t) is also extremal.

For every ω ∈ N∗ let R(ω) be the collection of all closed intervals ∆ in [0, 1]

containing gω(0). We can now easily upgrade Corollary 3.11 to the following.

Lemma 3.20. For every ω ∈ N∗ family R(ω), ω ∈ N∗, is extremal.

Proof. It suffices to notice thatR(ω) = Re(ω)⊗Re(ω) and to apply Corollary 3.11

along with Lemma 3.18. �
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Now for every integer k ≥ 1 let S−k be the family of all intervals of the form[
1

k
− r, 1

k

]
, r ∈

[
0,

1

k(k + 1)

]
.

We shall prove the following.

Lemma 3.21. The sequence (S−k )∞1 is extremal.

Proof. We start the proof in the same way as the proof of Lemma 3.10 with ω = k.

Formula (3.8) then says that

rhn

mn

([
1
k
− r, 1

k

]) ≥ κ−2
(
gk|0,r̂]

) r̂hn

mn([0, r̂])
≥ κ−2(gk)

r̂hn

mn([0, r̂])

for all r ∈
[
0, 1

k(k+1)

]
. Invoking now Lemma 3.10 and Lemma 3.5 completes the

proof. �

Now for every integer k ≥ 1 let S+
k be the family of all intervals of the form[

1

k + 1
,

1

k + 1
+ r

]
, r ∈

[
0,

1

k(k + 1)

]
.

We shall prove the following.

Lemma 3.22. The sequence (S+
k )∞1 is extremal.

Proof. Observe that for every r ∈
[
0, 1

k(k+1)

]
there exists a unique r̃ ∈ [0, 1] such

that [
1

k + 1
,

1

k + 1
+ r

]
= gk([1− r̃, 1]).

Proceeding now in the same way as that leading to (3.8), we get the following.

rhn

mn

([
1

k+1
, 1
k+1

+ r
]) ≥ κ−2

(
gk|[1−r̃,1]

) r̃hn

mn([1, 1− r̃])
≥ κ−2(gk)

r̃hn

mn([1, 1− r̃])
.

Invoking now Lemma 3.5 and Corollary 3.11 (with ω = 1), completes the proof.

�

Now we shall prove a purely computational lemma.

Lemma 3.23.

lim
k→∞

sup

{
(k − 1)−a − (k − 1 + q)−a

k−a − (k + q)−a
: α ∈ [1/2, 1], q ≥ 1

}
≤ 1.
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Proof. We have for all α ∈ [1/2, 1] all q ≥ 1, and all k ≥ 2 that

(k − 1)−a − (k − 1 + q)−a

k−a − (k + q)−a
=

(
k − 1

k

)−α (1−
(
k−1+q
k−1

)−α)(
1−

(
k+q
k

)−α)
=

(
k

k − 1

)α (1−
(
1 + q

k−1

)−α)(
1−

(
1 + q

k

)−α)
≤
(

k

k − 1

)
1−

(
1 + q

k−1

)−α
1−

(
1 + q

k

)−α .

Since limk→∞
k
k−1

= 1, it is therefore enough to show that

(3.10) lim
k→∞

sup

{
1−

(
1 + q

k−1

)−α
1−

(
1 + q

k

)−α : α ∈ [1/2, 1], q ≥ 1

}
≤ 1.

With α ∈ [1/2, 1] let

ψα(t) = 1− (1 + t)−α, t ≥ 0.

The Mean Value Theorem then gives.

(3.11)

ψα

(
q

k − 1

)
− ψα

( q
k

)
= α

(
q

k − 1
− q

k

)
(1 + ξ)−(1+α) ≤ q

k(k − 1)
(1 + ξ)−(1+α)

≤ 2q

k2
(1 + ξ)−(1+α)

≤ 2q

k2

(
1 +

q

k

)−(1+α)

for some ξ ∈
[
q
k
, q
k−1

]
and all k ≥ 2. Now, if q ≥ k, then ψα(q/k) ≥ 1 − 2−α ≥

1− 2−
1
2 = 1−

√
2

2
> 0. Hence,

ψα
(

q
k−1

)
− ψα

(
q
k

)
ψα
(
q
k

) ≤ 2

(
1−
√

2

2

)−1
q

k2

( q
k

)−(1+α)

= 2

(
1−
√

2

2

)−1

q−αkα−1

≤ 2

(
1−
√

2

2

)−1

q−α ≤ 2

(
1−
√

2

2

)−1

k−α

≤ 2

(
1−
√

2

2

)−1

k−
1
2 .

Equivalently,

(3.12)
ψα
(

q
k−1

)
ψα
(
q
k

) ≤ 1 + 2

(
1−
√

2

2

)−1

k−
1
2 .

So, assume that q ≤ k. Applying the Mean Value Theorem once more, we get

ψα

( q
k

)
= α

q

k
(1 + γ)−(1+α) ≥ α

q

k
2−(1+α) ≥ 1

2
2−2a

q

k
=

1

8

q

k
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for some γ ∈ [0, q/k] ⊂ [0, 1]. Therefore, using also (3.11), we get

ψα
(

q
k−1

)
− ψα

(
q
k

)
ψα
(
q
k

) ≤ 16
q

k2

(
1 +

q

k

)−(1+α) k

q
≤ 16

k
.

Equivalently,

ψα
(

q
k−1

)
ψα
(
q
k

) ≤ 1 +
16

k
.

Along with (3.12) this shows that (3.10) holds, and the proof is complete. �

Now for every k ≥ 2 let

M+
k =

{[
1

l + q
,
1

l

]
: k ≤ l, q ≥ 1

}
.

We shall prove the following.

Lemma 3.24. The sequence (M+
k )∞k=2 is extremal.

Proof. Since mn

([
0, 1

n+1

])
= 0 we are to show that

lim
k→∞
n→∞

inf


(

1
l
− 1

l+q

)hn
mn

([
1
l+q
, 1
l

]) : q ≥ 1, k ≤ l ≤ l + q ≤ n+ 1

 ≥ 1.

Equivalently,

lim
k→∞
n→∞

sup


mn

([
1
l+q
, 1
l

])
(

1
l
− 1

l+q

)hn : q ≥ 1, k ≤ l ≤ l + q ≤ n+ 1

 ≤ 1.

But

mn

([
1

l + q
,
1

l

])
=

l+q−1∑
j=l

mn

([
1

j + 1
,
1

j

])
≤

l+q−1∑
j=l

1

j2hn

≤
∫ l+q−1

l−1

x−2hndx

=
1

2hn − 1

(
(l − 1)1−2hn − (l − 1 + q)1−2hn

)
.

So, it is enough to show that

(3.13)

lim
k→∞
n→∞

sup

(l − 1)1−2hn − (l − 1 + q)1−2hn(
1
l
− 1

l+q

)hn : q ≥ 1, k ≤ l ≤ l + q ≤ n+ 1

 ≤ 1.
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Since 1/2 ≤ 2hn − 1 ≤ 1 for all n ≥ 2 large enough, by virtue of Lemma 3.23, it

thus suffices to show that

lim
k→∞
n→∞

sup

 l
1−2hn − (l + q)1−2hn(

1
l
− 1

l+q

)hn : q ≥ 1, k ≤ l ≤ l + q ≤ n+ 1

 ≤ 1.

We have

l1−2hn − (l + q)1−2hn(
1
l
− 1

l+q

)hn =

(l + q)1−2hn

((
l
l+q

)1−2hn
− 1

)
(l + q)−hn

(
l
l+q
− 1
)hn

= (l + q)1−hn

(
l+q
l

)2hn−1 − 1(
l+q
l
− 1
)hn

≤ (l + q)1−hn
l+q
l
− 1(

l+q
l
− 1
)hn = (l + q)1−hn

(
l + q

l
− 1

)1−hn

= (l + q)1−hn
(q
l

)1−hn
≤ (q(l + q))1−hn

≤ (l + q)2(1−hn) ≤ (n+ 1)2(1−hn)

≤
(

(n+ 1)
1
n

) 14
π2

,

where the last inequality holds for all n ≥ 2 large enough due to (3.4). Since

limn→∞(n+ 1)
1
n = 1, formula (3.13) is established and the proof is complete. �

For every k ≥ 1 let N+
k be the family of all closed intervals contained in [0, 1/k].

We shall prove the following.

Lemma 3.25. The sequence
(
N+
k

)∞
1

is extremal.

Proof. It follows from Lemmas 3.21 and 3.22 along with Lemma 3.15 that the

sequence (S−k ∪ S
+
k )∞1 is extremal. Hence, by virtue of Lemma 3.14 the sequence(⋃∞

l=k(S
−
k ∪ S

+
k )
)∞

1
is extremal. Since N+

k ⊂ S
−
k ⊕M

+
k ⊕S

+
k , the proof is therefore

concluded by invoking Lemma 3.24, Lemma 3.18, and Lemma 3.13. �

Let F be the family of all closed intervals in [0, 1]. We shall prove the following.

Proposition 3.26. The family F is extremal.
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Proof. Proceeding by contradiction suppose that the family F is not extremal.

This means that there are η ∈ (0, 1) and two sequences, (nj)
∞
1 of strictly increas-

ing positive integers, and (Fj)
∞
1 of closed intervals in [0, 1] such that

(3.14)
|Fj|hnj
mnj(Fj)

< η

for all j ≥ 1. For every j ≥ 1 let ω(j) ∈ N∗ be the longest word such that

Fj ⊂ gω(j)([0, 1]).

Denote

lj := |ω(j)|.

Fix

η < ξ < 1.

By Lemma 3.25 and Lemma 3.3 there exists an integer N ≥ 2 so large that if

Gk(Fj) ⊂ [0, 1/N ]

for some 0 ≤ k ≤ lj, then, with the help of Lemma 3.2(a),

(3.15) κ
(
Gk|Fj

)
< ξ/η

and

(3.16)
|Gk(Fj)|hnj
mnj(G

k(Fj))
> ξ.

Using these two latter inequalities alone and invoking (3.14), we get

(3.17)

η =
η

ξ
· ξ < κ−1

(
Gk|Fj

) |Gk(Fj)|hnj
mnj(G

k(Fj))
≤
|Fj|hnj inf{|(Gk)′||Fj}
mnj(Fj) inf{|(Gk)′||Fj}

=
|Fj|hnj
mnj(Fj)

. < η

This contradiction shows that

Gk(Fj) ∩ [1/N, 1] 6= ∅

for all j ≥ 1 and all 0 ≤ k ≤ lj. By the definition of ω(j) (particularly its length),

we then also have

(3.18) Glj(Fj) ∩
{

1

N
,

1

N − 1
,

1

N − 2
, . . . ,

1

2
, 1

}
6= ∅.

and

(3.19) Gk(Fj) ⊂
[

1

ij,k + 1
,

1

ij,k

]
for all 0 ≤ k ≤ lj − 1 and some ij,k ∈ {1, 2, . . . , N}. By Lemma 3.3 there exists

s ∈ (0, 1] so small that

(3.20) κ
(
gω|∆

)
< ξ/η
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for all ω ∈ N∗ and all intervals ∆ ⊂ [0, 1] with |∆| ≤ s. Now we shall show that

(3.21) lim
j→∞

max{|Gq(Fj)| : 0 ≤ q ≤ lj} = 0.

Indeed, assume on the contrary that this lower limit is positive. This means that

there exist θ > 0 and an integer P1 ≥ 1 such that

max{|Gq(Fj)| : 0 ≤ q ≤ lj} > θ

for all j ≥ P1. This in turn means that for every j ≥ P1 there exists qj ∈ {0, . . . , lj}
such that

(3.22) |Gqj(Fj)| > min{θ, s}.

We fix the least qj ∈ {0, . . . , lj} with this property. By Lemma 3.8 and by (3.14),

lim
j→∞
|Fj| = 0.

Therefore there exists P2 ≥ P1 such that qj ≥ 1 for all j ≥ P2. It then follows

from, (3.19), and the definition of qj (the least one) that

(3.23) γ ≤ |Gqj−1(Fj)| ≤ min{θ, s} ≤ s

for all j ≥ P2 and some γ > 0. Hence, in view of Lemma 3.8 again and of (3.22)

there exists P3 ≥ P2 such that

|Gqj−1(Fj)|hnj
mnj(G

qj−1(Fj))
> ξ

for all j ≥ P3. Making use of this formula, the far-most right-hand side of (3.23),

and (3.20), the calculation of (3.17) (with k = qj−1) goes through to yield η > η.

This contradiction finishes the proof of (3.21).

Now, because of (3.18), Lemma 3.20 implies that

lim
j→∞

|Glj(Fj)|hnj
mnj(G

lj(Fj))
≥ 1.

So there exists P4 ≥ 2 so large that

(3.24)
|Glj(Fj)|hnj
mnj(G

lj(Fj))
> ξ

for all j ≥ P4. On the other hand (3.21) entails

lim
j→∞
|Glj(Fj)| = 0.

Hence, there exists j ≥ P4 such that

|Glj(Fj)| ≤ s.

Having this, (3.24), and (3.20), the calculation of (3.17), performed the third time

(now with k = lj), yields again η > η. This contradiction finishes the proof. �
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As an immediate consequence of this proposition and Corollary 2.4, we get the

following.

(3.25) lim
n→∞

Hhn(Jn(G)) ≥ 1.

In order to complete the proof Theorem 3.1, we also need the following, much

easier to prove, formula.

(3.26) lim
n→∞

Hhn(Jn(G)) ≤ 1.

Indeed, let σ : NN → NN be the shift map, i.e. σ(ω) is uniquely defined be declaring

that for every n ∈ N its nth coordinate is equal to ωn+1. We denote by π(ω) the

unique element of [0, 1] whose continued fraction representation is equal to ω. So,

we have defined an injective Borel map π : NN → [0, 1]. Its restriction to NN
n is then

a Borel bijection onto Jn(G). Denote by m̃n the image of mn under the inverse

of π|NN
n
. It is known from [MU2] that there exists µ̃n, a unique Borel probability

measure σ-invariant measure on NN
n , absolutely continuous with respect to m̃n.

In addition, µ̃n is ergodic with respect to σ : NN
n → NN

n and equivalent to m̃n.

Now for every ω ∈ {1, 2, . . . , n}N let

Z(ω) := {j ≥ 1 : ωj = (σj−1(ω))1 = n}.

Because of Birkhoff’s Ergodic Theorem, ergodicity of the measure µ̃n, and positiv-

ity of µ̃n
([

1
n+1

, 1
n

])
, there exists a Borel set Γn ⊂ {1, 2, . . . , n}N with µ̃n(Γn) = 1

(equivalently m̃n(Γn) = 1) such that for every ω ∈ Γn the set

Zn(ω) := {j ≥ 1 : ωj = (σj−1(ω))1 = n}

is infinite. Now fix ε > 0. By virtue of Lemma 3.6 there exists Nε ≥ 1 such

κ
(
gω|j
)
≤ 1 + ε

for n ≥ Nε, all ω ∈ Γn, and all j ∈ Zn(ω). But then, using Lemma 3.2(d), we get

diamhn
(
gω|j([0, 1])

)
mn

(
gω|j([0, 1])

) ≤
κhn
(
gω|j
)

infhn{|g′|ω|j |}
infhn{|g′|ω|j |}

= κhn
(
gω|j
)
≤ κ

(
gω|j
)
≤ 1 + ε.

Along with (3.5) this implies that

lim
r→0

inf

{
diamhn(F )

mn(F )
: ω ∈ Γn, π(ω) ∈ F, diam(F ) ≤ r

}
≤ 1 + ε.

As mn(π(Γn)) ≥ m̃n(Γn) = 1, by Corollary 2.4, this gives that Hhn(Jn(G)) ≤ 1+ε

for all n ≥ Nε. The formula (3.26) is proved.

Now, formulas (3.25) and (3.26) taken together, prove Theorem 3.1.
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4. Short Preliminaries on Conformal Iterated Function Systems

Let (X, ρ) be a compact metric space. Let E be a countable set, either finite

or infinite, called in the sequel an alphabet. Fix a number s ∈ (0, 1). Suppose

that for every e ∈ E there is given an injective contraction φi : X → X. with a

Lipschitz constant ≤ s. The collection

S = {φe : X → X}e∈E

is called an iterated function system; briefly an IFS. Our main object of interest

is the limit set of the system S. We will now define it. For each ω ∈ E∗, say

ω ∈ En, we consider the map coded by ω:

φω := φω1 ◦ · · · ◦ φωn : X → X.

For every ω ∈ EN, the sets {φω|n
(
X
)
}n≥1 form a descending sequence of non-

empty compact sets and therefore
⋂
n≥1 φω|n

(
X
)
6= ∅. Since for every n ≥ 1,

diam
(
φω|n

(
X
))
≤ sndiam

(
X
)
,

we conclude that the intersection ⋂
n≥1

φω|n
(
X
)

is a singleton and we denote its only element by π(ω). In this way we have defined

the coding map π the coding map from the coding space to the limit set π:

π : EN → X

from EN to X. The set

J := JS = π(EN)

will be called the limit set of the IFS S. An IFS S is called conformal if the

following conditions are satisfied.

(a) X is a compact connected subset of a Euclidean space Rd and X = Int(X).

(b) (Cone Condition) There exist α, l > 0 such that for every x ∈ ∂X ⊂
Rd there exists an open cone Con(x, u, α) ⊂ Int(X) with vertex x, the

symmetry axis determined by the vector u ∈ Rd of length l and a central

angle of Lebesgue measure α. Here Con(x, u, α, l) = {y : 0 < (y − x, u) ≤
cosα||y − x|| ≤ l}.

(c) (Open set Condition; OSC). For all a, b ∈ E, a 6= b, it holds

φa(Int(X) ∩ φb(Int(X) = ∅.

(d) There exists an open connected set Rd ⊃ W ⊃ X such that for every

e ∈ E, the map φe extends to a C1 conformal diffeomorphism of W into

W .
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(e) (Bounded Distortion Property) There exist a constant K ≥ 1 and α ∈
(0, 1]such that ∣∣∣∣ |φ′ω(y)|

|φ′ω(x)|
− 1

∣∣∣∣ ≤ K||y − x||α

and

K−1 ≤ |φ
′
ω(y)|
|φ′ω(x)|

≤ K

for every ω ∈ E∗ and every pair of points x, y ∈ X.

Remark 4.1. Observe that the Cone condition is automatically satisfied if d = 1.

Also, (see [MU2]) the Bounded Distortion Property is satisfied if either d ≥ 2, or

else if d = 1 and the alphabet E is finite. It is also trivially satisfied whenever

the system S consists of similarities only. Finally, decreasing a constant K if

necessary, the latter property in (e) follows from the former.

For every t ≥ 0 define

P(t) := lim
n→∞

1

n
log

∑
ω∈En

‖φ′ω‖t∞.

The limit exists indeed since the corresponding sequence is subadditive. It is

called the topological pressure of t. If the system S consists of similarities only,

then the pressure is easy to calculate. We have,

P(t) = log
∑
e∈E

|φ′e|t.

The following formula, called Bowen’s formula, was proved in [MU2].

(4.1) HD(JS) = inf{t ≥ 0 : P(t) ≤ 0} = sup{HD(JF ) : F ⊂ E is finite}.

JF in here is the limit set of the iterated function system {φe : X → X}e∈F . If

all elements of the system S are similarities, then this formula simplifies to read

the following.

(4.2) HD(JS) = inf

{
t ≥ 0 :

∑
e∈E

|φ′e|t ≤ 1

}
= sup{HD(JF ) : F ⊂ E is finite}.

Remark 4.2. If there exists a parameter t ≥ 0 such that P(t) = 0, meaning that∑
e∈E

|φ′e|t = 1

in case of similarities, then this t is unique and is equal to HD(JS). The system

S is then called regular. All finite alphabet systems are obviously regular.
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5. Hausdorff Measures for Similarity IFSs

In this section we prove a considerably simplified formulas for the numeri-

cal value of the Hausdorff measure of the limit set of a conformal (either finite

or infinite) IFS consisting of similarities only. It will be extensively used in the

next section, where a counterexample for continuity of Hausdorff measure is con-

structed.

Theorem 5.1. If S = {φe : X → X}e∈E is a conformal (either finite or infinite)

IFS consisting of similarities only, and Hh(JS) > 0, then

Hh(JS) = inf

{
diamh(F )

H1
h(F )

: F ⊂ X, F = F

}
.

Proof. Since

inf

{
diamh(F )

H1
h(F )

: F ⊂ X, F

}
≤ lim

r→0
inf

{
diamh(F )

H1
h(F )

: x ∈ F, F = F, diam(F ) ≤ r

}
for every x ∈ X, as an immediate consequence of Theorem 2.2, we get that

(5.1) inf

{
diamh(F )

H1
h(F )

: F ⊂ X, F = F

}
≤ Hh(JS)

In order to prove the opposite inequality fix ε > 0. Denote the left-hand side of

(5.1) by L. Fix a closed subset F of X such that

(5.2)
diamh(F )

H1
h(F )

≤ L+ ε

and

H1
h(F ) > 0.

Given ω ∈ EN let

Z(ω) := {j ≥ 0 : σj(ω) ∈ π−1(F )}.

Since µ̃h(π
−1(F )) = µh(F ) > 0, it follows from Birkhoff’s Ergodic Theorem (and

ergodicity of µ̃h with respect to the the shift map σ : EN → EN that µ̃h(Γ) = 1,

where

Γ := {ω ∈N: Z(ω) is infinite}.

Let ω ∈ Γ and j ∈ Z(ω). Then

π(ω) = φω|j(π(σj(ω)) ∈ φω|j(F )

and, using (5.2),

diamh
(
φω|j(F )

)
H1
h

(
φω|j(F )

) =
|φ′ω|j |

hdiamh(F )

|φ′ω|j |
hH1

h(F )
=

diamh(F )

H1
h(F )

≤ L+ ε.
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Since Z(ω) is unbounded and since H1
h(π(Γ)) ≥ H̃

1

h(Γ) ≥ 1, the last two formulas,

in conjunction with Theorem 2.2 (π(ω) plays the role of x appearing there), imply

that Hh(JS) ≤ L + ε. Letting ε → 0+, this yields Hh(JS) ≤ L. Along with (5.1)

this completes the proof. �

Since in all Euclidean metric spaces the diameter of the closed convex hull of

every set A is the same as the diameter of A, as an immediate consequence of

this theorem, we get the following.

Corollary 5.2. If S = {φe : X → X}e∈E is a conformal (either finite or infinite),

IFS consisting of similarities only, Hh(JS) > 0, and X is a convex set, then

Hh(JS) = inf

{
diamh(F )

H1
h(F )

: F ⊂ X is closed and convex

}
.

Being even more specific, we get the following consequence.

Corollary 5.3. If S = {φe : X → X}e∈E is a conformal (either finite or infi-

nite) IFS consisting of similarities only, Hh(JS) > 0, and X is a closed bounded

subinterval of R, then

Hh(X) = inf

{
diamh(F )

H1
h(F )

: F ⊂ X is a closed interval

}
.

6. One Dimensional Linear Counterexample

One of the major technical issues in the proof of Theorem 3.1 was to have

the derivative distortion so close to one as desired. As the counterexample, for

continuity of the Hausdorff measure, described below shows, this was not the only

problem.

Example 6.1. We will construct by induction an infinite iterated function system

S = {φn : X → X}n∈N with the following properties.

(a) X = [0, 1].

(b) S consists of decreasing similarities only.

(c)
∞⋃
n=0

φn([0, 1]) = (0, 1]
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and, consequently,

JS = [0, 1] \
⋃
ω∈N∗

φω(0).

(d)

lim
n→∞

Hhn(Jn) = 0 < 1 = H1(JS),

where Jn = JSn is the limit set of the iterated function system Sn :=

{φ0, φ1, . . . , φn}, and hn := HD(Jn).

We define I1 := {1} and φ1 : [0, 1]→ [0, 1] to be the unique linear (decreasing)

map such that

φ1(0) = 1 and φ1(1) = 1/2.

Proceeding inductively suppose that n ≥ 2 and In−1, an initial finite block of

N has been defined along with the linear decreasing maps φi : [0, 1] → [0, 1],

i ∈ In−1, satisfying the following properties

(e) [
1

n− 1
, 1

]
⊂

⋃
i∈In−1

φi([0, 1]) ⊂
(

1

n
, 1

]
(f) φi(0) = φi−1(1) for all i ∈ In−1 \ {1}.

Let Nn−1 be the largest number in In−1. Fix a point ξn ∈
(

1
n+1

, 1
n

)
, for example

1
2

(
1

n+1
+ 1

n

)
. Let φNn−1+1 : [0, 1] → [0, 1] be the unique linear (decreasing) map

such that

(g) φNn−1+1(1) = ξn and φNn−1+1(0) := φNn−1(1) is the left-hand endpoint of⋃
i∈In−1

φi([0, 1]).

Let

R∗n := {φj : 1 ≤ j ≤ Nn−1 + 1}

and let

s∗n := HD
(
JR∗n

)
.

Fix

γn ∈ (s∗n, 1).

Take an integer kn ≥ 1 so large that

(6.1) (1− γn) log kn ≥ log n.

Since, by Remark 4.2 ,
Nn−1+1∑
i=1

|φ′i|s
∗
n = 1,
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there exists an ∈ (0, 1) so small that

(6.2)

Nn−1+1∑
i=1

|φ′i|γn + kna
γn
n =

∑
i∈In−1∪{Nn−1+1}

|φ′i|γn + kna
γn
n < 1.

Let

I∗n := {Nn−1 + 2, Nn−1 + 3, . . . , Nn−1 + kn + 2}
and let

In := In−1 ∪ {Nn−1 + 1} ∪ I∗n = {1, 2 . . . , Nn−1 + kn + 2}.
Now, for every Nn−1 + 2 ≤ i ≤ Nn−1 + kn + 2, let φi : [0, 1] → [0, 1] be a linear

(decreasing) map with the following properties:

(h) The scaling factor of φi is equal to an for all i = Nn−1+2, . . . , Nn−1+kn+2,

(i) φNn−1+2(0) = φNn−1+1(1),

(j) φi+1(0) = φi(1) for all i = Nn−1 + 2, . . . , Nn−1 + kn + 1.

We set

Rn := {φi}i∈In .
Formula (6.2) implies that

(6.3) sn := HD
(
JRn

)
< γn.

Now let

∆n :=
⋃
i∈In

φi([0, 1]).

By our construction ∆n ⊂ (0, 1] is a closed interval and we have

diamsn(∆n)

m̂n(∆n)
=

(knan)sn

knasnn
= ksn−1

n ,

where m̂n is the only sn-conformal measure for the system Rn. By (6.3) and (6.1),

we get

log
(
ksn−1
n

)
= (sn − 1) log kn < (γn − 1) log kn < − log n = log(1/n),

and therefore,

(6.4)
diamsn(∆n)

m̂n(∆n)
<

1

n
.

By construction, (In)∞1 is an ascending sequence of initial blocks of N,
⋃∞
n=1 In =

N, Rn+1|In = Rn, and we define

S =
∞⋃
n=1

Rn.

The required properties (a) and (b) then trivially hold for the system S. The

property (c) holds by virtue of (e), and (d) holds because of (6.2), which because

of Theorem 5.1, implies that H
(
JRn

)
< 1/n.
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