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Abstract

We study the entropy production for inverse SRB measures for a class of hyperbolic folded

repellers presenting both expanding and contracting directions. We prove that for most such

maps we obtain strictly negative entropy production of the respective inverse SRB measures.

Moreover we provide concrete examples of hyperbolic folded repellers where this happens.
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1 Introduction.

In this short note we study certain properties related to the entropy production of invariant measures

on a repeller Λ for a smooth C2 endomorphism f : M →M , defined on a Riemannian manifold M .

By repeller we mean a compact invariant set Λ for which there exists a neighbourhood U such

that Ū ⊂ f(U) and such that Λ = ∩
n≤0

fn(U). Sometimes we will call such repellers, folded repellers

to emphasize that the map is not necessarily invertible on them. We shall work in the sequel with

hyperbolic saddle-type repellers, i.e f is assumed to be hyperbolic as a non-invertible map on Λ

(see [16], [9], etc.) and it has both stable and unstable directions in the tangent bundle; the map

f is not assumed to be expanding on Λ. For Anosov diffeomorphisms or for diffeomorphisms

having a hyperbolic attractor, we have the existence of Sinai-Ruelle-Bowen (SRB) measures (see

for instance [17], [4], [14], [1], [2], [3], [20], etc.) SRB measures exist also for smooth endomorphisms

with hyperbolic attractors and are equal to the equilibrium measures of the unstable potentials,

on inverse limit spaces (see [12]). In [8] it was introduced also an inverse SRB measure µ−

on a hyperbolic folded saddle repeller Λ, which may be interpreted as the distribution of past

trajectories of Lebesgue almost all points in a neighbourhood of Λ; this includes also the case of

Anosov endomorphisms.

For a non-invertible smooth map f on a Riemannian manifold M and an f -invariant probability

µ onM , Ruelle defined in [15] the entropy production of µ by ef (µ) := Ff (µ)−
∫

log |det(Df)(x)|dµ(x),

where Ff (µ) is the folding entropy of µ with respect to f . Ff (µ) is defined as the conditional entropy

Hµ(ε|f−1ε), where ε is the single point partition. In general it is a natural problem to establish the

sign of the entropy production of an invariant measure.
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We are concerned here with finding the sign of the entropy production especially for inverse

SRB measures, and to prove that there are many (in a certain sense to be discussed later) examples

of repellers whose respective inverse SRB measures have negative entropy production rate. We

study first the case of hyperbolic repellers, then the case of Anosov endomorphisms and their

associated inverse SRB measures. In particular this applies to hyperbolic toral endomorphisms fA,

and perturbations of them. Recall that perturbations of hyperbolic toral endomorphisms are not

necessarily conjugated to the linear toral endomorphisms ([11]).

Here we will show in Proposition 1 that for hyperbolic saddle-type repellers, the entropy

production of the respective inverse SRB measure µ− is less or equal than 0, and that it is equal to

0 only if µ− is equal to the SRB measure µ+, in which case the Jacobian (in the Euclidean sense)

is cohomologous to a constant. Moreover we show that in fact most maps in a neighbourhood

of a given Anosov endomorphism f , have inverse SRB measures with strictly negative entropy

production. Then in Corollary 1 we prove that for most endomorphisms in the sense discussed in

Proposition 1, the associated inverse SRB measure is not a limit of measures of type 1
n

∑
0≤k<n

ρ◦f−k,

where ρ is absolutely continuous with respect to Lebesgue measure.

In Corollary 2 we construct explicit examples of perturbations of hyperbolic toral endomor-

phisms, whose inverse SRB measures have strictly negative entropy production. Also in the same

Corollary we show that there are examples of perturbations of toral endomorphisms whose forward

SRB measures have strictly positive entropy production.

Finally in Corollary 3 we study the entropy production also for a hyperbolic folded repeller

which is not Anosov.

2 Entropy production for inverse SRB measures. Examples of

repellers.

Let us consider a C2 non-invertible map f : M → M on a compact Riemannian manifold M , and

Λ be a transitive repeller of f , such that f is hyperbolic on Λ. Sometimes Λ may be the whole

manifold as in the case of Anosov endomorphisms. Hyperbolicity is understood here in the sense

of non-invertible maps, i.e the unstable tangent spaces depend on the whole backward trajectories

from the inverse limit space Λ̂ := {x̂ = (x, x−1, x−2, . . . , ) with x−i ∈ Λ, f(x−i) = x−i+1, i ≥ 1}, see

[16], [9]. Also the local unstable manifolds depend on backward trajectories; there is some r > 0

and local stable and local unstable manifolds, W s
r (x) and W u

r (x̂) for any x̂ ∈ Λ̂. We use a standard

notation, namely Dfs(x) := Df |Es
x
, x ∈ Λ and Dfu(x̂) := Df |Eu

x̂
, x̂ ∈ Λ̂. Examples and properties

of endomorphisms with some hyperbolicity have been studied by many authors, for instance [4],

[11], [16], [18], [6], [19], [7], [9], etc. Notice that if Λ is a repeller, then the local stable manifolds are

contained in Λ. Hyperbolicity on Λ assures the existence of a unique equilibrium (Gibbs) measure

µφ for any given Hölder continuous potential φ on Λ; equilibrium measures are of great interest

and have been studied intensively in the literature (for instance [17], [1], [14], [3], [5], [9], etc.)

Let us now recall the notion of inverse SRB measure, introduced in [8]. Let Λ be a connected
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hyperbolic repeller for a C2 endomorphism f : M →M defined on a Riemannian manifold M , and

assume f has no critical points in Λ. We assume that each point in Λ has a constant number

of f -preimages in Λ; this happens for instance if Λ is a connected repeller (see [8]). Let V be a

neighbourhood of Λ in M and for any z ∈ V define the measures

µzn :=
1

n

∑
y∈f−nz∩V

1

d(f(y)) . . . d(fn(y))

n∑
i=1

δf iy, (1)

where d(y) is the number of f -preimages belonging to V of a point y ∈ V (d(·) is called also

the degree function). Then we proved in [8] that there exists an f -invariant measure µ− on Λ, a

neighbourhood V of Λ, a Borel set A ⊂ V with m(V \A) = 0 (where m is the Lebesgue measure on

M) and a subsequence nk →∞ so that for any z ∈ A, µznk
→
k→∞

µ−. The measure µ− is called the

inverse SRB measure on the repeller. It was proved in [8] that µ− is equal to the equilibrium

measure of Φs(x) := log |detDfs(x)|, x ∈ Λ. This inverse SRB measure is not just the SRB measure

for f−1, since f is non-invertible. From [8] µ− is the unique f -invariant measure µ which has

absolutely continuous conditional measures on local stable manifolds; if f |Λ is d-to-1, then µ− is

also the unique f -invariant probability on Λ satisfying an inverse Pesin entropy formula:

hµ−(f) = log d−
∫

Λ

∑
i,λi(µ−,x)<0

λi(µ
−, x)mi(µ

−, x)dµ−(x), (2)

where λi(µ
−, x) are the Lyapunov exponents of µ− at x, with multiplicity mi(µ

−, x). At the same

time, for an Anosov endomorphism f on M (or for a hyperbolic attractor), we know from [12] that

there exists a unique SRB measure µ+ which satisfies a Pesin entropy formula, and which is the

projection of the equilibrium measure of the unstable potential Φu(x̂) := − log |detDfu(x̂)|, x̂ ∈ M̂ .

We give now the definition of folding entropy, and entropy production, according to Ruelle [15].

Definition 1. Let f : M →M be an endomorphism and µ an f -invariant probability on M , then

the folding entropy Ff (µ) of µ is the conditional entropy: Ff (µ) := Hµ(ε|f−1ε), where ε is the

partition into single points. Also define the entropy production of µ by:

ef (µ) := Ff (µ)−
∫

log |detDf(x)|dµ(x)

From [13] it follows that we can use the measurable single point partition ε in order to desin-

tegrate the invariant measure µ into a canonical family of conditional measures µx supported on

the finite fiber f−1(x) for µ-a.e x. Thus the entropy of the conditional measure of µ on f−1(x) is

H(µx) = −Σy∈f−1(x)µx(y) logµx(y). From [10] we have also Jf (µ)(x) = 1
µf(x)(x) , µ− a.e x, hence

Ff (µ) =

∫
log Jf (µ)(x)dµ(x) (3)

The following Proposition gives conditions for Anosov endomorphisms to have inverse SRB

measures of negative entropy production, and shows that ”many” endomorphisms fall in this cate-

gory. An important class of Anosov endomorphisms to which the next Proposition applies, are the

hyperbolic toral endomorphisms and their perturbations.
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Proposition 1. Let f be a C2 endomorphism on a connected Riemannian manifold M and let Λ

be a hyperbolic saddle-type repeller for f such that f is d-to-1 on Λ, and f has no critical points in

Λ. Consider an arbitrary small C2 perturbation g of f and let µ−g be the inverse SRB measure of g

on the respective hyperbolic repeller Λg. Then:

a) eg(µ
−
g ) ≤ 0 and Fg(µ

−
g ) = log d.

b) If f is an Anosov endomorphism onM , then there exists a neighbourhood V of f in C2(M,M)

and a set W ⊂ V such that W is open and dense in the C2 topology in V and s.t for any g ∈ W
we have eg(µ

−
g ) < 0.

Proof. a) If g is close enough to f then it has a repeller Λg close to Λ, and g is also hyperbolic

on Λg and does not have critical points in Λg. Since g is a small perturbation of f and since Λg is

a repeller, it follows that every point in Λg has exactly the same number d of g-preimages in Λg.

From the discussion above, since g has no critical points, we can construct the inverse SRB measure

µ−g which is the equilibrium measure of the stable potential Φs
g(x) = log |detDgs(x)|, x ∈ Λg; this

implies that µ−g is ergodic too, and its Lyapunov exponents are constant µ−g -a.e on Λg. Thus from

[8], it follows that µ−g is the weak limit of a sequence of measures of type (1), where the degree

function d(·) is constant and equal to d everywhere near Λg.

This implies then that the Jacobian of µ−g is constant and equal to d; indeed for any small

borelian set B, we have that a point x ∈ g(B) if and only if there is exactly one g-preimage x−1 of

x in B, hence we can use this fact in the above convergence of measures towards µ−. Therefore

Fg(µ
−
g ) =

∫
log Jg(µ

−
g )(x)dµ−g (x) = log d

And from (2) we have that

hµ−g (g) = log d−
∑

λi(µ
−
g )<0

λi(µ
−
g ),

where the negative Lyapunov exponents are repeated according to their respective multiplicities.

Thus if eg(µ
−
g ) > 0, it would follow from the g-invariance of µ−g , that

Fg(µ
−
g ) >

∫
log |detDg|dµ−g =

1

n

∫
log |detDgn|dµ−g , n ≥ 1

Hence from the last two displayed formulas and Birkhoff Ergodic Theorem, we obtain hµ−g (g) >∑
λi(µ

−
g )>0

λi(µ
−
g ), which gives a contradiction with Ruelle’s inequality. Hence for any perturbation g,

eg(µ
−
g ) ≤ 0

b) From [12] we can construct the SRB measure of f , denoted by µ+
f , which is the projection

by π∗ of the equilibrium measure of Φu
f (x̂) = − log |detDfu(x̂)|, x̂ ∈ M̂ . In particular µ+

f is ergodic,

hence its Lyapunov exponents are constant µ+
f -a.e. If the entropy production ef (µ+

f ) were strictly

negative, then Ff (µ+
f ) <

∫
log |detDf |dµ+

f . Since from [6], hµ+f
(f) ≤ Ff (µ+

f ) −
∑

λi(µ
+
f )<0

λi(µ
+
f ),
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it would follow that hµ+f
(f) <

∑
λi(µ

+
f )>0

λi(µ
+
f ), which is a contradiction to the fact that the SRB

measure satisfies Pesin entropy formula. Consequently,

ef (µ+
f ) ≥ 0

Now if ef (µ−f ) = 0, then Ff (µ−f ) =
∫

log |detDf |dµ−f ; hence from the Birkhoff Ergodic Theorem

and [6] we obtain:

hµ−f
(f) =

∫
log |detDf |dµ−f −

∑
λi(µ

−
f )<0

λi(µ
−
f ) =

∑
λi(µ

−
f )>0

λi(µ
−
f ),

where the positive Lyapunov exponents are repeated according to their multiplicities. Thus from the

uniqueness of the f -invariant measure satisfying Pesin entropy formula, we obtain that µ−f = µ+
f .

Recalling from above that µ−f is the equilibrium measure of the stable potential Φs and µ+
f is the

equilibrium measure of the unstable potential Φu, we see from Livshitz Theorem (see [5]), that

µ−f = µ+
f if and only if |detDf | is cohomologous to a constant.

Now if g is a small perturbation of f , it follows from above and from Livshitz Theorem (see

for instance [5]), that |detDg| is cohomologous to a constant if and only if there exists a constant

c such that for any n ≥ 1, Sn(|detDg|)(x) = nc, ∀x ∈ Fix(gn). As the set of g’s not satisfying the

above equalities is open and dense in V , we obtain the conclusion.

A particular case where Proposition 1 applies is for a hyperbolic (linear) toral endomorphism fA,

and for smooth perturbations g of fA. Unlike for hyperbolic toral automorphisms, perturbations

of hyperbolic toral endomorphisms are not necessarily conjugated to the linear ones (see [11]). For

toral endomorphisms fA, it is easy to see that the entropy production of any invariant measure

is non-positive, i.e efA(µ) ≤ 0. However we see later in Corollary 2 that this is not true for

perturbations of fA.

Now for an Anosov endomorphism f and an absolutely continuous measure ρ with respect to

the Lebesgue measure on M , let us consider the measures:

1

n

∑
0≤k<n

ρ ◦ f−k, (4)

Corollary 1. Consider an Anosov endomorphism f on the compact connected Riemannian mani-

fold M such that f has no critical points in M , and |detDf | is not cohomologous to a constant on

M . Then the inverse SRB measure µ−f is not a weak limit of a sequence of type (4).

Proof. As was proved in [15], the entropy production of any limit of measures of type (4) is non-

negative. On the other hand, if |detDf | is not cohomologous to a constant, then ef (µ−f ) < 0. Thus

in our case µ−f is not a weak limit of measures of type (4).

We now give concrete examples of Anosov endomorphisms and of repellers whose inverse SRB

measures have negative entropy production:
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Corollary 2 (Inverse SRB measure with negative entropy production). Consider the hyperbolic

toral endomorphism on T2 given by f(x, y) = (2x+2y, 2x+3y) (mod 1) and its smooth perturbation

g(x, y) = (2x+ 2y + εsin2πy, 2x+ 3y + 2εsin2πy) (mod 1)

Then the inverse SRB measure of g has negative entropy production, while the SRB measure of g

has positive entropy production, i.e

eg(µ
−
g ) < 0 and eg(µ

+
g ) > 0

Proof. First of all we notice that f is given by an integer valued matrix A which has one eigenvalue

larger than 1 and another eigenvalue in (0, 1), hence f is an Anosov endomorphism on T2. Thus for

ε > 0 small enough, we have that g (which from its expression, is well defined as an endomorphism

on T2) is hyperbolic as well. We calculate now the determinant of the derivative of g as

detDg(x, y) = 2 + 4πεcos2πy

Now, from Proposition 1 we see that eg(µ
−
g ) < 0 if and only if the function |detDg| is cohomol-

ogous to a constant. But this is equivalent from the Livshitz conditions ([5]) to the fact that there

exists a constant c such that

Sn(|detDg|)(x) = nc, x ∈ Fix(gn), n ≥ 1

In our case let us notice that both (0, 0) and (0, 1
2) are fixed points for the map g. However

|detDg(0, 0)| = 2 + 4πε, whereas |detDg(0,
1

2
)| = 2− 4πε

So the Livshitz condition above is not satisfied, and |detDg| is not cohomologous to a constant.

Hence according to Theorem 1 we obtain eg(µ
−
g ) < 0 and eg(µ

+
g ) > 0.

Example. There exist also examples of fractal non-invertible hyperbolic repellers (f,Λ)

which are not Anosov endomorphisms, but which are d-to-1 for some integer d and we can still

construct the inverse SRB measures. We follow here the idea of [8] to employ smooth (say C2)

perturbations of certain product basic sets. For these examples as well, we can apply the fact that

the Jacobian of the inverse SRB measure µ− is constant, the equality in the inverse Pesin entropy

formula for the measure µ− (see (2)), and Ruelle’s inequality. In this way we obtain the same result

as in Proposition 1 a). For instance, let us take f : PC1 × T2 → PC1 × T2 given by

fg([z0 : z1], (x, y)) = ([zk0 : zk1 ], g(x, y)),

where k ≥ 2 is fixed, and g is a C2 perturbation of a hyperbolic toral endomorphism fA : T2 → T2

without critical points. Then fg has a connected hyperbolic repeller Λ := S1 × T2 in the phase

space P1C× T2, and fg is k|det(A)|-to-1 on Λ.
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Let us consider now the following smooth perturbation of fg, namely fε,g : PC1×T2 → PC1×T2,

fε,g([z0 : z1], (x, y)) :=
(

[zk0 + εzk1 · e2πi(2x+y) : z2
1 ], g(x, y)

)
From its construction we see that fε,g is well defined as a C2 endomorphism on PC1×T2. It follows

from Proposition 3 of [8] that fε,g has a connected hyperbolic repeller

Λε,g := ∩
n≤0

fnε,g(V ),

for a neighbourhood V of Λ. Also Λε,g is close to Λ, fε,g has stable and unstable directions on

Λε,g, and fε,g is k|det(A)|-to-1 on Λε,g. The repeller Λε,g has a complicated fractal structure with

self-intersections. From [8] it follows that the endomorphism fε,g has an inverse SRB measure µ−ε,g
on Λε,g.

Corollary 3. In the above setting for any C2 perturbation g of a hyperbolic toral endomorphism

fA : T2 → T2, it follows that the entropy production of the inverse SRB measure of the associated

endomorphism fε,g : PC1 × T2 → PC1 × T2 is negative, i.e

efε,g(µ−ε,g) < 0

Proof. Since Λε,g is a connected repeller, it follows from Propositions 1 and 3 of [8], that the number

of fε,g-preimages in Λε,g of a point from Λε,g, is constant. Then we can apply [8] (see also (2)) to

show that

hµ−ε,g(fε,g) = Ffε,g(µ−ε,g)−
∑

λi(µ
−
ε,g)<0

λi(µ
−
ε,g),

where the Lyapunov exponents are repeated according to their multiplicities. Then as in the proof

of Proposition 1 a), we see that efε,g(µ−ε,g) ≤ 0. However we cannot have efε,g(µ−ε,g) = 0 since

otherwise, as in the proof of Proposition 1 b) it would follow that the inverse SRB measure µ−ε,g
satisfies the equality in the (usual) Pesin formula. Then from a Volume Lemma (see [12]), this

would imply that Λε,g is an attractor.

But from construction, the basic set Λε,g is a hyperbolic repeller close to Λ, thus it cannot

have a neighbourhood U with fε,g(U) ⊂ U ; hence Λε,g is not an attractor. Therefore for any

C2 perturbation g of fA, the entropy production of the inverse SRB measure of the associated

endomorphism fε,g is negative, i.e efε,g(µ−ε,g) < 0.
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