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Abstract. Developing the pioneering work of Lars Olsen, we deal with the question of
continuity of the numerical value of Hausdorff measures in topologized families of confor-
mal dynamical systems. We prove such continuity for hyperbolic polynomials from the
Mandelbrot set, and more genrally for the space of hyperbolic rational functions of a fixed
degree. We go beyond hyperbolicity by proving continuity for maps including parabolic
rational functions, for example that the parameter 1/4 is such a continuity point for qua-
dratic polynomials z 7→ z2 + c for c ∈ [0, 1/4]. We prove the continuity of the numerical
value of Hausdorff measures also for the spaces of conformal expanding repellers and par-
abolic ones, more generally for parabolic Walters conformal maps. We also prove some
partial continuity results for all conformal Walters maps; these are in general of infinite
degree. In order to do this, as one of our tools, we provide a detailed local analysis, uni-
form with respect to the parameter, of the behavior of conformal maps around parabolic
fixed poins in any dimension. We also establish continuity of numerical values of Hausdorff
measures for some families of infinite 1-dimensional iterated function systems.

1. Introduction

Let K(I) be the space of all non-empty compact subsets of the unit interval I = [0, 1]
topologized by the Hausdorff metric. As both the collection of all finite subsets and all
finite unions of non-degenerate subintervals of I are dense in K(I), the Hausdorff dimen-
sion function K(I) 3 F 7→ HD(F ) ∈ R is discountinuous at every point, the Hausdorff
dimension behaves badly indeed with respect to Hausdorff metric. This firmly suggest that
one should not expect too much from this function. It is therefore the more astonishing
that the situation changes dramatically when a dynamics is involved. Indeed, David Ruelle
has asserted in [Rue] that the function c 7→ J(z2 + c), the latter being the Julia set of the
quadratic polynomial z2+c, is not only countinuous but even real-analytic. A variety gener-
alization and extentions of Ruelle’s result then followed (cf. for example [UZi], [UZd], [U3]
or [AU]. These concerned hyperbolic systems, possiby being 1-to-infinity (iterated function
systems and transcendental functions), systems allowing critical points in the Julia sets,
and parabolic systems. All of them involved conformal measures. These are dynamically
defined objects, frequently of a transparent geometric meaning. More precisely, normalized
Hausdorff or packing measures. Having the machinery of thermodynamic formalism at
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hand (see [PU] or [MU3] for a contemporary exposition), it it not hard to prove that the
in the context of the above systems conformal measures vary continuously in the topology
of weak convergence.

A more subtle question is about regularity of the function ascribing to a system, or
parameter, the numerical value of the Hausdorff measure of the corresponding Julia or
limit set. The breakthrough came with the work of Lars Olsen ([Ol] who proved such
continuity for finite iterated function systems consisting of similarities and satisfying the
separation condition. In this paper we continue the direction of research originated by
Olsen. We work with Walters conformal systems that comprise all: conformal expanding
repellers, finite and infinite hyperbolic iterated function systems satisfying the separation
condition, and hyperbolic and parabolic rational functions. Concerning hyperbolic systems,
as the most transparent results we prove these.

Theorem. If (Tn : Xn
0 → Xn)∞n=1 is a sequence of conformal Walters maps converging

sub-finely to a conformal Walters map T : X0 → X, then

lim sup
n→∞

HhTn
(Xn
∞) ≤ HhT (X∞).

Here, Xn
∞ andX∞ are, respectively, limit sets of these Walters maps, hTn = HD(Xn

∞), and
hT = HD(X∞). The sub-fine convergence, and nice convergence are defined in section 9.
Walters maps are defined in section 7.

Theorem. With respect to the topology of sub-fine convergence, each conformal Walters
map S with HhT (X∞(S)) = 0 is a continuous point of the Hausdorff measure function
T → HhT (X∞(T )).

In the context of conformal expanding repellers or finite iteration function system the most
transparent results are these.

Theorem. If (Tn : Xn → Xn)∞1 is a sequence of conformal expanding repellers in Rq,
converging sub–finely to some conformal Walters map T : X → X, then

lim
n→∞

HhTn
(Xn) = HhT (X).

and

Theorem. If E is a finite set, then each contracting conformal iterated function system
S ∈ CIFS(X,E,A) satisfying the separation condition is a continuity point of the Hausdorff
measure function CIFS(X,E) 3 Φ→ HhΦ(JΦ) with CIFS(X,E) endowed with the metric d
given by formula (15.1).
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The latter one is a fairly far going generalization of the original result of Olsen ([Ol]). As
their immediate consequence, we have this.

Corollary. For every c ∈ C let Jc be the Julia set of the quadratic polynomial C 3 z → z2+c
and let hc = HD(Jc). Then the map C 3 c → Hhc(Jc) is continuous at each hyperbolic
element c ∈ C.

In the parabolic case, which is technically much more complicated than the hyperbolic one,
we proved the following.

Theorem. If (Tn : Xn → Xn)∞1 is a sequence of conformal parabolic Walters maps con-
verging nicely to some conformal parabolic Walters map T : X → X for which HD(X) > 1,
then limn→∞H

hTn (Xn) = HhT (X).

and

Theorem. If (Tn : Xn → Xn)∞1 is a sequence of finitely conformal Walters maps converg-
ing finely to some finitely conformal Walters map T : X → X for which HD(X) > 1, and
if its subsequence of all parabolic maps converges nicely to T , then limn→∞H

hTn (Xn) =
HhT (X).

As a consequence of the latter one, we get the following.

Corollary. For every c ∈ C let Jc be the Julia set of the quadratic polynomial C 3 z →
fc(z) = z2 + c and let hc = HD(Jc). Then

lim
R3c↗1/4

Hhc(Jc) = Hh1/4
(J1/4).

Corollary. For every λ ∈ C \ {0} let

fλ(z) = z(1− z − λ2z).

Let Jλ := J(fλ) be the Julia set of fλ and let hλ := HD(Jfλ). Then for R > 0 sufficiently
small, the function

D∗(0, R) := {λ ∈ C \ {0} : |λ| < R} 3 λ→ Hhλ(Jλ)

is continuous.

Proving continuity of Hausdorff measures for infinite systems is also fairly involved. We
devote to this end the last section of our paper and prove it for some selected subclass of
linear infinite iterated function systems as Theorem 16.1.
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Our general approach to the issue of continuity of Hausdorff measures is based on Olsen’s
intuitive formula expressing the value of Hausdorff measure in terms of normalized Haus-
dorff measure (conformal one) and diameters of the sets involved. The largest technical
challenge in our paper is caused by parabolic systems as it is a central issue for our ar-
guments to have a uniform behaviour of dynamics. In order to take rigorous care of this
problem we analyze in detail in several first sections the local behaviour of parabolic con-
formal maps in all dimensions, 1, 2, and 3, all of them requiring different treatment. We
then define Walters conformal maps, their various subclasses like expanding (hyperbolic)
and parabolic ones. In the next section we define and study the modes of convergence
of Walters maps. Having all this prepared, we prove in the following sections the actual
continuity properties of Hausdorff measures as described above.

2. Conformal Maps Parabolic at Infinity; the case q ≥ 3

Fix an integer q ≥ 3. Given a linear isometry D, i.e. D ∈ O(q), and given also c ∈ Rq,
let

ψD,c = D + c : Rq → Rq.

Let Par∞(q) be the image of O(q)×Rq under the map (D, c)→ ψD,c. We refer to Par∞(q)
as the space of conformal maps parabolic at infinity on Rq. Note that the map O(q)×Rq 3
(D, c)→ ψD,c is 1–to–1. For every ψ ∈ Par∞(q) there are then uniquely defined Dψ ∈ O(q)
and cψ ∈ Rq such that

(2.1) ψ = Dψ + cψ.

Since

Rq = Fix(Dψ)⊕Fix⊥(Dψ),

we can uniquely write

cψ = bψ + aψ,

where bψ ∈ Fix(Dψ) and aψ ∈ Fix⊥(Dψ). Iterating (2.1), we get for all n ∈ Z and all
z ∈ Rq that

(2.2) ψn(z) =
(n−1∑
j=0

Dj
ψ

)
aψ + nbψ +Dn

ψz.

Since

(2.3) (Dψ − id)
(n−1∑
j=0

Dj
ψ

)
aψ = Dn

ψaψ − aψ

and since ||Dn
ψaψ − aψ|| ≤ 2||aψ||, we therefore conclude that for all n ∈ Z,

(2.4)
∥∥ n∑
j=0

Dj
ψaψ
∥∥ ≤ 2||aψ|| · ||(Dψ − id)−1|Fix⊥(Dψ)||.
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For every R > 0 endow Par∞(q) with the pseudometric

ρR(S, T ) = ‖S|B(0,R) − T|B(0,R)‖∞ = sup{‖S(x)− T (x)‖ : x ∈ B(0, R)}.

Clearly ρR is in fact a metric on Par∞(q). Endow Rq
with the spherical metric ρ̂∗. Note

that each member T of Par∞(q) can be then treated as a continuous map from Rq
to Rq

by declaring that T (∞) =∞. Define the spherical metric ρ∗ on Par∞(q) by setting

ρ∗(T, S) = sup{ρ̂∗(T (x), S(x)) : x ∈ Rq}.

We shall prove the following

Proposition 2.1. All the metric ρR, R > 0, and ρ∗ are equivalent in the sense that they

induce the same topology on Par∞(q). With this topology, the map O(q) × Rq 3 (D, c)
ψ→

ψD,c ∈ Par∞(q) becomes a homeomorphism.

Proof. Denote the topologies generated by ρR, R > 0, respectively by τR. Denote the
topology generated by ρ∗ by τ∗. Finally let τ be topology on Par∞(q) induced by the
map ψ. Clearly, for every R > 0 the maps id : (Par∞(q), τ) → (Par∞(q), τR) and id :
(Par∞(q), τ∗)→ (Par∞(q), τR) are continuous. Now, if limn→∞ ψn = ψ in τR, then

cψ = ψ(0) = lim
n→∞

ψn(0) = lim
n→∞

cψn ,

so the function (Par∞(q), τR) 3 T → cT ∈ Rq is continuous. Furthermore,

lim sup
n→∞

{‖(Dψn −Dψ)|B(0,R)‖∞ ≤ lim sup
n→∞

{‖ψn − ψ)|B(0,R)‖+ ‖cψn − cψ‖}

≤ lim sup
n→∞

{‖(ψn − ψ)|B(0,R)‖}+ lim
n→∞

‖cψn − cψ‖

= lim
n→∞

ρR(ψn, ψ) = 0.

This means that the function (Par∞(q), τR) 3 ψ → Dψ ∈ O(q) is continuous. Along
with the previous assertion this gives that the map id : (Par∞(q), τR) → (Par∞(q), τ) is
continuous. And along with an even earlier assertion the identity map id : (Par∞(q), τ)→
(Par∞(q), τR) is a homeomorphism, or equivalently the metrics τ and τR induce the same
topology. Now assume that limn→∞ ψn = ψ in τ . Abbreviate

D := Dψ, Dn := Dψn , c := cψ, and cn := cψn .

We have for all x ∈ Rd that,

ρ̂∗(ψn(x), ψ(x)) =
2‖ψn(x)− ψ(x)‖

1 + ‖ψn(x)‖2)1/2(1 + ‖ψ(x)‖2)1/2

≤ ‖Dn −D‖‖x‖+ ‖cn − c‖
1 + ‖Dnx+ cn‖2)1/2(1 + ‖Dx+ c‖2)1/2

.

Disregarding finitely many terms we may assume without loss of generality that ‖cn‖ ≤
‖C‖+ 1 for all n ≥ 1. If ‖x‖ ≤ 2(‖c‖+ 1), then we get

ρ̂∗(ψn(x), ψ(x)) ≤ 4(‖c‖+ 1)(‖Dn −D‖+ ‖cn − c‖).



6 TOMASZ SZAREK, MARIUSZ URBAŃSKI, AND ANNA ZDUNIK

If ‖x‖ ≥ 2(‖c‖+ 1), then

ρ̂∗(ψn(x), ψ(x)) ≤ 2
‖x‖(‖Dn −D‖+ ‖cn − c‖)

(‖Dnx‖ − ‖cn‖)(‖Dx‖ − ‖c‖)
≤ 2
‖x‖(‖Dn −D‖+ ‖cn − c‖)
(‖x‖ − ‖c‖ − 1)(‖x‖ − ‖c‖)

≤ 2
‖x‖(‖Dn −D‖+ ‖cn − c‖)

‖x‖/2‖x‖/2
=

8

‖x‖
(‖Dn −D‖+ ‖cn − c‖)

≤ 4

(1 + ‖c‖)
(‖Dn −D‖+ ‖cn − c‖).

In either case, we get

(2.5) ρ̂∗(ψn(x), ψ(x)) ≤ 4(1 + ‖c‖)(‖Dn −D‖+ ‖cn − c‖).
Since ψn(∞) = ψ(∞) = ∞, the same estimate is true for x = ∞. It follows from (2.5)
that ρ̂∗(ψn, ψ) ≤ 4(1 + ‖c‖)(‖Dn − D‖ + ‖cn − c‖). Therefore limn→∞ ρ∗(ψn, ψ) ≤ 4(1 +
‖c‖)(limn→∞ ‖Dn−D‖+limn→∞ ‖cn− c‖) = 0. Thus, the identity map id : (Par∞(q), τ)→
(Par∞(q), τ∗) is continuous, and with above proved, it is a homeomorphism. The proof is
complete. �

From now on we consider Par∞(q) as a topological space with the topology established in
Proposition 2.1. Let G(q) be the set of all non–zero vector subspaces of Rq. We endow
G(q) with the following metric

dH(V,W ) = dH(V ∩ {x ∈ Rq : ‖x‖ = 1},W ∩ {x ∈ Rq : ‖x‖ = 1}),
where the second dH is the Hausdorff metric on the collection of all non–empty compact
subsets of Rq. Given 0 ≤ l ≤ q let

Par∞(q, l) = {ψ ∈ Par∞(q) : dim(Fix(ψ)) = l}.
We shall prove the following

Lemma 2.2. Fix 0 ≤ l ≤ q. Then the following maps are continuous.

(a) Par∞(q) 3 ψ 7→ aψ ∈ Rq

(b) Par∞(q) 3 ψ 7→ bψ ∈ Rq

(c) Par∞(q) 3 ψ 7→ cψ ∈ Rq

(d) Par∞(q, l) 3 ψ 7→ Fix(Dψ)
(e) Par∞(q, l) 3 ψ 7→ Fix⊥(Dψ).

Proof. Since cψ = ψ(0), the map ψ → cψ is continuous. So, (c) is proved. For every vector
subspace V of Rq put V1 = {x ∈ V : ‖x‖ = 1}. Now we shall prove item(d). To do this it
suffices to show that given ε > 0 there exists k ∈ N such that

(2.6) Fix1(Dψn) ⊂ B(Fix1(Dψ), ε)

and

(2.7) Fix1(Dψ) ⊂ B(Fix1(Dψn), ε)

for all n ≥ k, where B(A, r) = {x ∈ Rq : inf{‖x− a‖ : a ∈ A} < r}. Assume contrary and
suppose first that there is no k ≥ 1 such that (2.6) holds. Then there exists an increasing
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sequence (nj)
∞
1 such that Fix1(Dψnj

) * B(Fix1(Dψ), ε). This means that for every j ≥ 1

there exists xj ∈ Fix1(Dψnj
) such that

(2.8) ‖xj − b‖ ≥ ε

for all b ∈ Fix1(Dψ). Passing to a subsequence, we may assume without loss of generality
that (xj)

∞
1 converges to some vector x ∈ Rq. Then ‖x‖ = 1 and

Dψx = lim
n→∞

Dψnxn = lim
n→∞

xn = x.

So, x ∈ Fix1(Dψ) and, by (2.8), ‖x− b‖ ≥ ε for all b ∈ Fix1(Dψ). The contradiction shows
that (2.6) holds. Assume in turn that (2.7) fails. Then there exists an increasing sequence
(mj)

∞
1 such that Fix1(Dψ) * B(Fix1(Dψn), ε). This means that for every j ≥ 1 there exists

yj ∈ Fix1(Dψ) such that

(2.9) ‖yj − d‖ ≥ ε

for all d ∈ Fix1(Dψnj
). Passing to a subsequence we may assume without loss of generality

that (yj)
∞
1 converges to some vector y ∈ Rq. Then ‖y‖ = 1 and y ∈ Fix1(Dψ). On

the other hand, let for every j ≥ 1, {v(j)
1 , . . . , v

(j)
l } be an orthonormal basis of Fix(ψnj).

Passing yet to another subsequence we may assume without loss of generality that there
are vectors v1, . . . , vl ∈ Rq such that limj→∞ v

l
i = vi for all 1 ≤ i ≤ l. Then {v1, . . . , vl} is

an orthonormal set and

Dvi = lim
j→∞

Dψnj
v

(j)
i = lim

j→∞
vji = vi

for all i = 1, . . . , l. Thus Lin(v1, . . . , vl) ≤ Fix(Dψ) and, as both the spaces have the same
dimension, equal to l, they are equal That is

(2.10) Lin(v1, . . . , vl) = Fix(Dψ).

In virtue of (2.9) fixing a1, . . . , al ∈ R such that
∑l

i=1 a
2
i = 1 we have∥∥∥∥∥yj −

l∑
i=1

aiv
(j)
i

∥∥∥∥∥ ≥ ε

for all j ≥ 1. Therefore ∥∥∥∥∥yj −
l∑

i=1

aivi

∥∥∥∥∥ ≥ ε.

Along with (2.10) this means that ‖y−b‖ ≥ ε for all b ∈ Fix1(Dψ). Taking b = y ∈ Fix1(Dψ)
we get a contradiction. This proves part (d). Part (e) immediately follows from (b). Parts
(a) and (b) follow now from (c), (d) and (e) as the orthogonal projections from Rq onto
Fix1(Dψ) and Fix⊥(Dψ) are continuous. �

As a fairly straightforward consequence of this lemma, we shall prove the following.
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Lemma 2.3. For every 0 ≤ l ≤ q and every ψ ∈ Par∞(q, l) there exists a neighbourhood
V ′ψ of ψ in Par∞(q, l) such that

sup{‖(DA − id)−1|Fix⊥(DA)‖ : A ∈ V′ψ} < +∞.

Proof. Suppose for a contrary that there exists a sequence (ψn)∞1 ⊆ Par∞(q, l) such that

lim
n→∞

‖(Dψn − id)−1|Fix⊥(Dψn )‖ = +∞.

This means that there exists a sequence (xn)∞1 such that

xn ∈ Fix⊥(Dψn), ||xn|| = 1, and lim
n→∞

‖(Dψn − id)−1(xn)‖ = +∞.

Put yn := (Dψn − id)−1(xn) ∈ Fix⊥(Dψn). So xn = (Dψn − id)yn. Equivalently

(2.11)
xn
‖yn‖

= (id−Dψn)

(
yn

‖yn‖

)
.

Passing to a subsequence, we may assume without loss of generality that limn→∞(yn/‖yn‖) =
y with some y ∈ (Rq)1. It then follows from Lemma 2.2 that y ∈ Fix⊥1 (Dψ). But on the
other hand, follows from (2.11) that 0 = (Dψ − id)(y), which means that y ∈ Fix(Dψ).
This contradiction finishes the proof. �

As a direct consequence of this lemma and Lemma 2.2, we get the following.

Lemma 2.4. For every 0 ≤ l ≤ q and every ψ ∈ Par∞(q, l) there exists a neighbourhood
Vψ ⊂ V ′ψ of ψ in Par∞(q, l) such that

κψ := 2 sup{‖(DA − id)−1|Fix⊥(DA)‖ · ‖aA‖ : A ∈ Vψ} < +∞.

As an immediate consequence of this lemma, (2.2), and (2.4), we get the following strength-
ening of Lemma 9.2.3 in [MU3].

Lemma 2.5. For every 0 ≤ l ≤ q and every ψ ∈ Par∞(q, l) we have that

‖An(z)− nbA‖ ≤ ‖z‖+ κψ

for all A ∈ Vψ (Vψ and κψ coming from Lemma 2.4), all z ∈ Rq, and all n ∈ Z.

Remark 2.6. Assume from now on that l ≥ 1. In view of Lemma 2.2 we may and we do
assume that

0 < β−ψ := inf{‖bA‖ : A ∈ Vψ} ≤ β+
ψ := sup{‖bA‖ : A ∈ Vψ} < +∞

with Vψ being defined in Lemma 2.4 (and also appearing in Lemma 2.5).
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Given ψ ∈ Par∞(q, l), R > 0, and γ ∈ (0, π), let

Sψ(R, γ) := {z ∈ Rq : ‖z‖ ≥ R and ∠(z, bψ) < γ},
S∗ψ(R, γ) := {z ∈ Rq : ‖z‖ ≤ R and ∠(z, bψ) < γ}.

and
Sψ(r, R; γ) = Sψ(r, γ) ∩ S∗ψ(R, γ).

Lemma 2.7. With 1 ≤ l ≤ q and ϕ ∈ Par∞(q, l), for every Q > 0, every β ∈ (0, π) and
every α ∈ [0, β) there exists R > 0 such that

ψn(Sψ(R,α)) ⊂ Sψ(Q, β)

for all ψ ∈ Vϕ and all n ≥ 0.

Proof. For every ψ ∈ Par∞(q, l) let Pψ : Rq → Rbψ be the orthogonal projection onto
Rbψ and let P⊥ψ : Rq → (Rbψ)⊥ be the orthogonal projection onto (Rbψ)⊥, the orthogonal
complement of Rbψ. Formula (2.2) yields

Pψ(ψn(z)) = nbψ + Pψ(z) = nbψ + tψ(z)bψ,

and

P⊥ψ (ψn(z)) =
n∑
j=0

Dj
ψaψ +Dn

ψ(P⊥ψ (z)),

where tψ(z) ∈ R is uniquely determined by the relation P⊥ψ (z) = tψ(z)bψ. Assuming from
now on throughout the proof that ψ ∈ Vϕ, we get from (2.4) and Lemma 2.4 that

(2.12)

tan∠(ψn(z), bψ) =
||P⊥ψ (ψn(z))||

(tψ(z) + n)||bψ||
≤
κϕ + ||P⊥ψ (z)||
tψ(z)||bψ||

= tan∠(z, bψ) +
κϕ

tψ(z)||bψ||

≤ tanα +
κϕ

β−ϕ tψ(z)
.

Assume first β ∈ (0, π/2]. Fix δ > 0 so small that if γ ≥ 0 and tan γ < tanα + δ, then
γ < β. Now, if z ∈ Sψ(R,α) with some R > 0, then tψ(z) > 0 and

R2 ≤ ||z||2 = t2ψ(z)||bψ||2 + ||P⊥ψ (z)||2

≤ t2ψ(z)||bψ||2 + tan2(α)t2ψ(z)||bψ||2

= (1 + tan2 α)t2ψ(z)||bψ||2

≤ (1 + tan2 α)β+
ϕ ||bψ||2.

So,

tψ(z) ≥ (1 + tan2 α)−
1
2 (β+

ϕ )−1R.

Therefore, taking R > 0 so large that (1+tan2 α)−
1
2 (β+

ϕ )−1R ≥ Q and β+
ϕ (β−ϕ )−1κϕR

−1 < δ,
we are done in this case. So, assume that β ∈ (π/2, π). There then exists δ′ > 1 so close to 1
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that if cot γ > δ′ cotα, then γ < β. because of the previous case, taking z ∈ Sψ(R,α) with
some R > 0, we may assume without loss of generality that ∠(z, bψ) > π/2, i.e. tψ(z) < 0.
Then

cot∠(ψn(z), bψ) =
(tψ(z) + n)||bψ||
||P⊥ψ (ψn(z))||

≥ (tψ(z) + n)||bψ||
||P⊥ψ (z)|| − κϕ

=
(tψ(z) + n)||bψ||

||P⊥ψ (z)||
(
1− κϕ/||P⊥ψ (z)||

)
= cot∠(z, bψ)

(
1− κϕ/||P⊥ψ (z)||

)−1

> cotα
(
1− κϕ/||P⊥ψ (z)||

)−1
.

But

R2 ≤ ||z||2 = t2ψ(z)||bψ||2 + ||P⊥ψ (z)||2 ≤ (1 + cot2 α)||P⊥ψ (z)||2.
So,

||P⊥ψ (z)|| ≥ (1 + cot2 α)−
1
2R−1.

Therefore, taking R > 0 so large that (1+cot2 α)−
1
2R > Q and

(
1−κϕ(1+cot2 α)R−1

)−1
δ′,

we are done in this case too. The proof is complete. �

A complementary statement to the above is the following.

Lemma 2.8. With 1 ≤ l ≤ q and ϕ ∈ Par∞(q, l), for every R > 0 and every α ∈ [0, π), we
have that

lim
n→∞

sup{||ψn(z)|| : z ∈ S∗ψ(R,α), ψ ∈ Vϕ} = +∞

and

lim
n→∞

sup{∠(ψn(z), bψ) : z ∈ S∗ψ(R,α), ψ ∈ Vϕ} = 0

Proof. According to (2.12) and (2.2), for all ψ ∈ Vϕ, all z ∈ S∗ψ(R,α), and all n > 2||z||/β−ϕ ,
the following hold.

||ψn(z)|| ≥ |tψ(z) + n|||bψ|| ≥
1

2
||bψ||n ≥

1

2
||β−ϕ ||n

and

tan∠(ψn(z), bψ) =

∥∥∥∑n
j=0 D

j
ψaψ +Dn

ψ(P⊥ψ (z))
∥∥∥

(tψ(z) + n)||bψ||
≤ κϕ + ||z||

||bψ||
· 1

n
≤ κϕ +R

β−ϕ
· 1

n
.

We are done. �
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3. Conformal Parabolic Maps in Rq; the case q ≥ 3

Let U be an open subset of Rq. We recall that a C1 map ϕ : U → Rq is called conformal
if its derivative ϕ′(x) : Rq → Rq at every point x ∈ U is a similarity map. We denote the
corresponding similarity factor by |ϕ′(x)|. Of course, |ϕ′(x)| = ||ϕ′(x)||, the latter being
the operator norm of ϕ′(x). In this section we apply the results of the previous section to
study parabolic conformal maps at any dimension q ≥ 3. The parabolic fixed point need
not be any longer infinity but one can concjugate such map by an inversion sending this
fixed point to infinity. And at this moment the results of the previous section can be used.
We begin our analysis with a fairly general distortion theorem that holds for all conformal
maps in dimension q ≥ 3. A proof the just announced distortion theorem can be extracted
from the proof of Theorem 4.1.3 in [MU3]. However, because of its importance for the
treatment of the parabolic case and its shorteness, we include it below.

Theorem 3.1. Suppose V is a non-empty open connected subset of Rq, where q ≥ 3 and
F ⊂ V is a bounded set such that F ⊂ V . If ϕ : V → Rq is a conformal map, then

|ϕ′(x)|
|ϕ′(y)|

≤
(

1 +
diam(F )

dist(F, V c)

)2

for all x, y ∈ F .

Proof. In virtue of Liouville’s Theorem there exist a real scalar λ > 0, a linear isometry
A : Rq → Rq and points a ∈ Rq ∪ {∞}, and b ∈ Rq such that

ϕ = λA ◦ ia + b,

where ia : Rq → Rq
is the inversion with respect to the unite sphere centered at a in the

case when a ∈ Rq and i∞ = idRq . In this latter case our theorem is trivially true since
then the left hand side of its assertion is equal to 1. So, we may assume without loss of
generality that a ∈ Rq. By our hypothesis a /∈ V . Hence, if x, y ∈ F , then

‖x− a‖
‖y − a‖

≤ ‖x− y‖+ ‖y − a‖
‖y − a‖

= 1 +
‖x− y‖
‖y − a‖

≤ 1 +
diam(F )

dist(F, V c)
.

Thus,

|ϕ′(y)|
|ϕ′(x)|

=
λ‖y − a||−2

λ‖x− a||−2
=
‖x− y‖2

‖y − a‖2
≤
(

1 +
diam(F )

dist(F, V c)

)2

.

We are done. �

We now pass to actual analysis of parabolic conformal maps at dimension q ≥ 3. Recall
from Definition 9.2.1 in [MU3] that a conformal map ψ : Rq → Rq

, q ≥ 3 is called parabolic
if it has a fixed point ωψ ∈ Rq and a point ξ ∈ Rq \ {ω} such that |ψ′(ω)| = 1 and
limn→+∞ ψ

n(ξ) = ωψ. Let

(3.1) ψ̃ = iωψ ◦ ψ ◦ iωψ = iωψ ◦ ψ ◦ i−1
ωψ
.
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Then ψ̃(∞) =∞, and therefore, ψ̃ is conformal map parabolic at infinity, the class of maps
studied in detail in the previous section. We put

Dψ = Dψ̃, bψ = bψ̃ and κ = κψ̃.

It follows from (3.1) that ˜ψ−1 = ψ̃−1, and we conclude further that ψ−1 is also a parabolic
map, Dψ−1 = D−1

ψ and bψ−1 = −bψ. Given 1 ≤ l ≤ q. We denote by Par(q, l) the collection

of all those parabolic self–maps ψ of Rq
for which ψ̃ ∈ Par∞(q, l). We shall prove the

following.

Proposition 3.2. Suppose (ψn)∞1 is a sequence of parabolic self–maps of Rq
and ψ : Rq

�
is also a parabolic self–map. Then

(1) ψn → ψ with respect to the ρ∗ metric if and only if ψ̃n → ψ̃.
(2) If ψn → ψ (with respect to the ρ∗ metric), then ψn → ψ in Ck–norm, k ≥ 0, on

all compact subsets of Rq.
(3) If ψn → ψ, then ωψn → ωψ.

Proof. Item (3) is immediate. Indeed, if ω is any cluster point (in Rq
) of the sequence

(ωψn), say ω = limj→∞ ωψnj , then ψ(ω) = limj→∞ ψnj(ωψnj ) = limj→∞ ψnjωψnj = ω. Since

ψ has only one fixed point, namely ωψ, we must have ω = ωψ and item 3 is established.

Since all the inversions iωRq
�, ω ∈ Rq, are uniformly bi–Lipschitz (with the same bi–

Lipschitz constant) with respect to the spherical metric ρ̂∗, we have ψn → ψ if and anly if

iωψ ◦ψn◦iωψ → ψ̃. But because of (3) iωψn → iωψ with the metric ρ∗. Thus iωψ ◦ψn◦iωψ → ψ̃

iff iωψn ◦ψn◦iωψn → ψ̃. But this exactly means that ψ̃n → ψ̃. Item (1) is established. Dealing
with (2) notice that if ψn → ψ, then Dψn → Dψ by (1) and by Proposition 2.1. All higher

order derivatives of ψ̃n and ψ̃ vanish. So ψ̃n → ψ̃ in Ck for all k ≥ 0. Since, by (3),

iωψn → iωψ in Ck on Rq
for all k ≥ 0, and ψn = iωψn ◦ ψ̃n ◦ iωψn and ψ = iωψ ◦ ψ̃ ◦ iωψ , we

conclude that ψn → ψ in Ck, k ≥ 0, on Rq
. Part (2) follows. �

For all β ∈ [0, π] and all 0 ≤ r < R ≤ +∞ put

Sψ(r, R; β) = {z ∈ Rq : r ≤ ||z − ωψ|| ≤ R and |](z − ω, bψ))| ≤ β},
Sψ(R, β) = Sωψ(0, R; β)

and
S∗ψ(r, β) = Sωψ(r,+∞; β).

Since iωψ(R+bψ) = R+bψ and iωψ(Sψ̃)(r, R; β) = S∗ψ(R−1, r−1; β), as an immediate conse-
quence of Lemma 2.7 and Lemma 2.8, along with Proposition 3.2, we respectively get the
following.

Proposition 3.3. If 1 ≤ l ≤ q and ϕ ∈ Par(q, l), then there exists Wϕ, a neighborhood of
ϕ ∈ Par(q, l), such that for all ε > 0, all β ∈ (0, π) and every α ∈ [0, β) there exist δ > 0
such that if ψ ∈ Wϕ and n ≥ 0, then

ψn(Sψ(δ, α)) ⊂ Sψ(ε, β).
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Also

Proposition 3.4. If 1 ≤ l ≤ q and ϕ ∈ Par(q, l), then decreasing Wϕ from the previous
proposition if necessary, the folloging hold. For every R > 0 and every α ∈ (0, π),

lim
n→∞

sup{||ψn(z)− ωψ|| : z ∈ Sψ(R,α), ψ ∈ Wϕ} = 0

and
lim
n→∞

sup{∠(ψn(z), bψ) : z ∈ Sψ(R,α), ψ ∈ Wϕ} = 0.

4. Conformal Parabolic Maps in R2

In this section we deal with conformal parabolic maps in R2. There is a bigger variety of
them now than in the case of q ≥ 3 since the Liouville’s Theorem does not hold. However
each conformal map in C = R2 is either holomorphic or antiholomorphic and its second
iterate is then holomorphic. This observation forms the starting point of our anlysis in this
section.

Let ω ∈ Rq. A conformal map ϕ : V → C, where V is an open neighbourhood of ω, is
called parabolic if ϕ(ω) = ω and (ϕ2)′(ω) is a root of unity. Replacing ϕ by its sufficiently
high even iterate ϕk, k ≥ 1, we will have

ϕ : V → C holomorphic, ϕ(ω) = ω and ϕ′(ω) = 1.

We call such conformal parabolic maps simple. From now on, throughout this section
ϕ : V → C is assumed to be a simple parabolic conformal map. Represent locally, around
ω, the holomorphic map ϕ, in the form of its Taylor series:

(4.1) ϕ(z) = z + aϕ(z − ωϕ)p+1 + aϕ,p+2(z − ωϕ)p+2 + . . .

with some integer p ≥ 1 and aϕ ∈ C \ {0}. The set {z ∈ C : a(z − ωϕ)p < 0} is a union
of p rays l+(ω, 1), . . . , l+(ωϕ, p) emanating from ωϕ and forming consecutive angles equal
to 2π/p. These are referred to as attracting directions of the map ϕ at ωϕ. Likewise, the
set {z ∈ C : a(z − ωϕ)p > 0} is a union of p rays l−(ω, 1), . . . , l−(ω, p) emanating from ωϕ
and forming consecutive angles equal to π/p. These are referred to as repelling directions
of the map ϕ at ωϕ. For all j = 1, . . . , p and all η, δ, α > 0 let

Sj,±ωϕ (η, δ;α) := {z ∈ C : η ≤ |z − ωϕ| ≤ δ and ](z − ωϕ, l±(ωϕ, j)) ≤ α}
and

Sj,±ωϕ (δ;α) := Sj,±ωϕ (0, δ;α).

We also put
V = Vϕ.

and

Rϕ(z) =
∞∑
n=2

aϕ,p+n(z − ωϕ)p+n.
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So that

ϕ(z) = z + aϕ(z − ωϕ)pϕ+1 +Rϕ(z).

We further assume that ωϕ is the only fixed point of ϕ in Vϕ. Given p ≥ 1 we denote by
Par(2, p) the class of all simple parabolic bounded maps ϕ for which pϕ = p. We introduce
a topology, called parabolic, on Par(2, p) by saying that a sequence (ϕn)∞1 converges to
ϕ ∈ Par(2, p) if and only if there exists an open ball V ⊂ C such that

(a) Vϕ ∩
⋂∞
n=1 Vϕn ⊇ V

(b) ωϕ, ωϕn ∈ 1
2
V for all n ≥ 1

(c) ϕn → ϕ uniformly on V .
(d) limn→∞ aϕn = aϕ.

Remark 4.1. Note that, actually, item (d) follows from the previous ones.

We then also say that the sequence (ϕn)∞1 converges to ϕ parabolically.

Observation 1. If (ϕn)∞1 convereges to ϕ parabolically in Par(2, p), then limn→∞ ωϕn = ωϕ.

Proof. Let ω be an arbitrary cluster point of (ωϕn)∞1 . Then ω ∈ 1
2
V ⊂ V and, as ϕn → ϕ

uniformly, ϕ(ω) = limn→∞ ϕn(ωϕn) = limn→∞ ωn = ω. Thus ω = ωϕ, and the proof is
complete. �

With this observation, we readily get the following.

Observation 2. Suppose that ϕ and ϕn, n ≥ 1, are all in Par(2, p). If (a), (b) and (c)
hold, then

(1) limn→∞ aϕn = aϕ
(2) the sequence of maps (V 3 z 7→ aϕn(z−ωϕn)p+1)∞1 converges uniformly to the map

V 3 z 7→ aϕ(z − ωϕ)p+1.
(3) the sequence of maps (V 3 z → Rϕn(z))∞1 converges uniformly to the map V 3

z 7→ Rϕ(z)

Given an open ball V ⊂ C, we put

ParV (2, p) = {ϕ ∈ Par(2, p) : Vϕ ⊃ V andωϕ ∈
1

2
V }.

We introduce the metric ρV on ParV (2, p) as

ρV (ϕ, ψ) = ‖(ϕ− ψ)|V ‖∞.

Clearly (ParV (2, p), ρV ) is a complete metric space and we have the following.
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Observation 3. A sequence (ϕn)∞1 convereges to ϕ parabolically in Par(2, p) if and only if
there exists an open ball V ⊆ C such that

V ⊆ Vϕ ∩
∞⋂
n=1

Vϕn and lim
n→∞

ρV (ϕn, ϕ) = 0.

Now for every open ball V ⊆ C and every ϕ ∈ ParV (2, p) let ϕ0 : V − ωϕ → C be defined
by the formula

ϕ0 = T−1
ωϕ ◦ ϕ ◦ Tωϕ ,

where, we recall Tωϕ : C → C is the translation about the vector ωϕ. Then ϕ0 ∈
ParV−ωϕ(2, p) and ωϕ0 = 0. Moreover,

ϕ0(z) = z + aϕz
p+1 +R0

ϕ(z),

where R0
ϕ(z) = Rϕ(z + ωϕ) =

∑∞
n=2 aϕ,p+nz

p+n. In particular

aϕ0 = aϕ, aϕ0,p+n = aϕ,p+n (n ≥ 2) and Rϕ(z) = R0
ϕ(z − ωϕ).

Changing the system of coordinates by a rotation about the origin, we may assume without
loss of generality that aϕ ∈ R and aϕ > 0. Now, let p

√
z be the holomorphic branch of the

p-th radical defined on C \ (−∞, 0] and sending 1 to 1. Define then the holomorphic map
H : C \ (−∞, 0]→ C by the formula

H(z) =
1
p
√
z
,

and consider the conjugate map

ϕ̃0 = H−1 ◦ ϕ0 ◦H : U :=
(
C \ (−∞, 0] ∩H−1(V − ωϕ)

)
→ C,

where H−1(w) = 1
wp

. For all z ∈ U we have

(4.2)

ϕ̃0(z) = H−1
(
ϕ0(H(z))

)
= H−1

(
H(z) + aϕ,nH(z)p+1 +

∞∑
n=2

aϕ,nH(z)n+p
)

= H−1

(
1
p
√
z
− aϕz−

p+1
p +

∞∑
n=2

aϕ,nz
− p+n

p

)

= H−1

(
1
p
√
z

(
1 + aϕz

−1 +
∞∑
n=2

aϕ,nz
− p+n−1

p

))
=

z(
1 + aϕz−1 +

∑∞
n=2 aϕ,nz

− p+n−1
p
)p

Set w = H(z) = z−
1
p and put

(4.3) Gϕ(w) = 1 + aϕw
p +

∞∑
n=2

aϕ,n(0)wp+n−1, w ∈ V − ωϕ.

Keep ϕ ∈ ParV (2, p). Take Wϕ, the largest open ball centered at 0 and contained in Vωϕ
but so small that ‖(Gϕ − 1)|Wϕ‖∞ < 1/8. Now notice that the function BV (ϕ, ηϕ) 3 ψ 7→
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(Gψ − 1)|1/2Wϕ is continuous if (Gψ − 1)|1/2Wϕ is considered as an element of the Banach
space of bounded holomorphic functions defined on an 1/2Wϕ endowed with the supremum
norm. Fix ηϕ > 0 so small that if ψ ∈ BV (ϕ, ηϕ), then

(4.4) Wψ ⊇
5

8
Wϕ,

1

2
aϕ ≤ |aψ| ≤ 2aϕ and

1

2
aϕ ≤ Re(aψ) ≤ 2aϕ.

Therefore there exists δϕ ∈ (0, ηϕ) so small that

(4.5) ‖(Gψ − 1)| 1
2
Wϕ
‖∞ <

1

4

for all ψ ∈ BV (ϕ, δϕ). Write

(4.6) Ĝψ = G−pψ | 12Wϕ
.

It then follows from (4.5) that Ĝψ : 1
2
Wϕ → C is a holomorphic function and

(4.7) ‖Ĝψ‖∞ ≤
(

4

3

)p
.

From (4.3) we get that

Ĝψ(0) = 1,
∂kĜψ(w)

∂wk

∣∣∣
0

= 0 for all k = 1, 2, ..., p− 1, and
∂pĜψ(w)

∂wp

∣∣∣
0

= p!aψ.

(4.8) Ĝψ(w) = 1 + paψw
p +

∞∑
n=1

bn(ψ)wp+n

with some appropriate coefficients bn(ψ), n ≥ 1. Write

Bψ(w) =
∞∑
n=1

bn(ψ)wn, w ∈ 1

2
Wϕ.

It follows from (4.8) that Bψ is a holomorphic function. Invoking (4.7) and (4.4), we get
that

(4.9)

|Bψ(w)| ≤

∣∣∣∣∣Ĝψ(w)− 1− paψwp

wp

∣∣∣∣∣ ≤ |Ĝψ(w)|+ 1 + p|aψ||w|p

|w|p

≤ 1 + (4/3)p + p(R
(1)
ϕ )p|aψ|

(R
(1)
ϕ )p

≤Mϕ := (R(1)
ϕ )−p(1 + (4/3)p + 2p|aϕ|(R(1)

ϕ )p)

for all w ∈ ∂B(0, R
(1)
ϕ ), where R

(1)
ϕ is the radius of 1

4
Wϕ. It then follows from the Maximum

Modulus Theorem that

|Bψ(w)| ≤Mϕ

for all w ∈ B(0, Rϕ) and all ψ ∈ BV (ϕ, δϕ). Hence, it follows from Cauchy’s Formula that

(4.10) |B′ψ(w)| ≤Mϕ(R(1)
ϕ )−2.
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For all ψ ∈ BV (ϕ, δϕ) and all w ∈ B(0, R
(1)
ϕ ). Hence (remember that Bψ(0) = 0) there

exists 0 < Rϕ ≤ R
(1)
ϕ so small that

(4.11) |Bψ(w)| < 1

4
paϕ

for all ψ ∈ BV (ϕ, δϕ) and all w ∈ B(0, Rϕ). Going back to the variable z = w−p we get
from (4.2), (4.3), (4.6), and (4.8) that,

(4.12)

ψ̃0(z) = zĜψ(H(z)) = z(1 + paψH(z)p +
∞∑
n=1

bn(z)H(z)p+n)

= z(1 + paψ
1

z
+

1

z

∞∑
n=1

bn(ψ)H(z)n)

= z + paψ +Bψ(H(z)),

for all ψ ∈ BV (ϕ, δϕ) and all z ∈ Bc(0, R−pϕ ). So, using also (4.11) we get that,

Re(ψ̃0(z))− (z + paψ)) = Re(Bψ(H(z))) > −1

4
paϕ.

Thus

(4.13)
Re(ψ̃0(z)) > Re(z) + Re(paψ)− 1

4
paϕ > Re(z) +

1

2
paϕ −

1

4
paϕ

= Re(z) +
1

4
paϕ

for all ψ ∈ BV (ϕ, δϕ) and all z ∈ Bc(0, R−pϕ ). Therefore, using (4.11) again,

|ψ̃0(z)| ≤ |z|+ |paψ|+ |Bψ(H(z))| ≤ |z|+ 2paϕ +
1

4
paaϕ ≤ |z|+ 3paϕ.

By an obvious induction we get from this and (4.13) that

(4.14) Re(z) +
1

4
paϕn ≤ Re(ψ̃n0 (z)) ≤ |ψ̃n0 (z)| ≤ |z|+ 3paϕn

for all ψ ∈ B(ϕ, δϕ) and all z ∈ C with Re(z) > R−pϕ .

Now given α ∈ (0, π) and t > 0 let

∆(α, t) = {z ∈ C : ∠([z, t], [t,+∞)) ≤ α}.
We shall prove the following.

Lemma 4.2. If ϕ ∈ ParV (2, p) and α ∈ (0, π), then there exists tα > R−pϕ such that for all
ψ ∈ BV (ϕ, δϕ), we have that

ψ̃0(∆(α, tα)) ⊂ ∆(α, tα).

Proof. Assume first that 0 < α < π/2. In view of (4.10), there exists 0 < Rα ≤ Rϕ so
small that

(4.15) |Bψ(w)| < 1

2
paϕ tanα
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for all ψ ∈ BV (ϕ, δϕ) and all w ∈ B(0, Rα). Take tα to be an arbitrary real number larger
than R−pα . Fix z ∈ ∆(α, tα). This means that

|Im(z)| ≤ tanα(Re(z)− tα).

It then follows from (4.12) and (4.13) that,

Re(ψ̃0(z))− tα
|Im(ψ̃0(z))|

≤ |Im(z) +Bψ(H(z))|
Re(z) + 1

2
paϕ − tα

≤ |Im(z)|+ |Bψ(H(z))|
cotα|Im(z)|+ 1

2
paϕ

≤ tanα
|Im(z)|+ 1

2
paϕ tanα

|Im(z)|+ 1
2
paϕ tanα

= tanα.

So, we are done in this case and we may assume that α > π/2. First take κα > 0 so small
that

(4.16) (1 + | cotα|)κα <
1

4
paϕ.

Then, in view of (4.10), there exists 0 < Rα ≤ Rϕ so small that

(4.17) |Bψ(w)| < κα

for all ψ ∈ BV (ϕ, δϕ) and all w ∈ B(0, Rα). Now, take tα > 0 so large that

(4.18) B(0, R−pα ) ⊂ C \∆(α, tα).

This equivalently means that tα > R−pα ; the latter number is larger than R−pϕ . It follows

from (4.13) that if z ∈ ∆(α, tα) and Re(z) > tα, then ψ̃0(z) ∈ ∆(α, tα). So, suppose that

z ∈ ∆(α, tα) and Re(z) ≤ tα. Seeking contradiction, assume that ψ̃0(z) /∈ ∆(α, tα) and
|Im(z)| ≤ κα. Then, κα ≥ |Im(z)| ≥ | tanα|(tα − Re(z)). Equivalently, Re(z) − tα ≥
−| cotα|κα. So, as z ∈ ∆(α, tα), by (4.13), (4.18), (4.17), and (4.16), we get that,

Re(ψ̃0(z))− tα > Re(z)− tα +
1

4
paϕ − κα ≥

1

4
paϕ − (1 + | cotα|)κα > 0.

So, ψ̃0(z) ∈ ∆(α, tα). This contradiction shows that |Im(z)| > κα. Also, applying (4.12)
and using (4.17), we get that

|Im(ψ̃0(z))| = |Im(z) +Bψ(H(z))| ≥ |Im(z)| − |Bψ(H(z))| ≥ |Im(z)| − κα.
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Then, by the same token as above, we get

tα − Re(ψ̃0(z))

|Im(ψ̃0(z))|
≤ tα − Re(ψ̃0(z))

|Im(z)| − κα

≤ (tα − Re(z))− paψ + κα
|Im(z)| − κα

≤ | cotα||Im(z)| − paψ + κα
|Im(z)| − κα

=
| cotα|(|Im(z)| − κα)− (paψ − | cotα|κα) + κα

|Im(z)| − κα

= | cotα| − paψ − (1− | cotα|)κα
|Im(z)| − κα

≤ | cotα| −
1
2
paϕ − (1− | cotα|)κα
|Im(z)| − κα

< | cotα|.

This shows that ψ̃0(z) ∈ ∆(α, tα), and the proof is complete. �

Now we shall prove the following.

Lemma 4.3. If ϕ ∈ ParV (2, p), then for every α ∈ (0, π) and every R > 0, we have

lim
n→∞

sup{∠(ψ̃n0 (z), [0,+∞)) : ψ ∈ BV (ϕ, δϕ) and z ∈ B(0, R) ∩∆(α, tα)} = 0,

where tα > R−pϕ is the number produced in Lemma 4.2.

Proof. Since tα > R−pϕ , looking at Lemma 4.2 and applying sufficiently many times (4.13),

we conclude that there exists an integer n1 ≥ 1 such that Re(ψ̃n1
0 (z)) > R−pϕ for all ψ ∈

BV (ϕ, δϕ) and all z ∈ B(0, R)∩∆(α, tα). It therefore follows from the left–hand side of(4.14)
that with some integer n2 ≥ n1, we have for all ψ ∈ BV (ϕ, δϕ), all z ∈ B(0, R) ∩∆(α, tα),
and all n ≥ n2 that

|ψ̃n0 (z)| ≥ Re(ψ̃n0 (z)) >
1

8
paϕn.

It then follows from (4.12) that for all n ≥ n2, we have

|Im(ψ̃n+1
0 (z))| = |Im(ψ̃n0 (z)) +Bψ(H(ψ̃n0 (z)))|

≤ |Im(ψ̃n0 (z))|+ |Bψ(H(ψ̃n0 (z)))|
≤ |Im(ψ̃n0 (z))|+Mϕ(R(1)

ϕ )−2|H(ψ̃n0 (z)|

≤ |Im(ψ̃n0 (z))|+Mϕ(R(1)
ϕ )−2|ψ̃n0 (z)|−

1
p

≤ |Im(ψ̃n0 (z))|+ 8pMϕ(R(1)
ϕ )−2(paϕ)−

1
pn−

1
p .

Therefore, using the right–hand side of (4.14), for every n ≥ n2 we get that

|Im(ψ̃n0 (z))| ≤ |Im(ψ̃n2
0 (z))|+ C(1)

ϕ

n−1∑
k=n1

k−
1
p ≤ C(2)

ϕ + C(3)
ϕ n1− 1

p ,
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with some positive constants C
(1)
ϕ , C

(2)
ϕ and C

(3)
ϕ . Combining this with the left hand side

of (4.14), our lemma follows. �

Passing from ψ̃0 back to ψ, as an immediate consequence of the last two lemmas and
formulas (4.13) and (4.14), we get the following.

Proposition 4.4. If ϕ ∈ ParV (z, p), then there exists δϕ > 0 such that for all ε > 0 and
all α ∈ (0, π/p) there exists δ > 0 such that

(a) For all ψ ∈ BV (ϕ, δϕ), all the iterates ψn, n ≥ 0, are well defined and injective on
the set Sj,+ωψ (δ;α) for all j = 1, . . . , p and

ψn(Sj,+ωψ (δ;α)) ⊆ Sj,+ωψ (ε;α)

for all n ≥ 0.
(b) For every η ∈ (0, δ),

lim
n→∞

sup{|ψn(z)− ωψ| : ψ ∈ BV (ϕ, δϕ), z ∈ Sj,+ωψ (η, δ, α)} = 0.

(c) For every 0 < η < δ there exists a constant K̂η ≥ 1 such that

|(ψn)′(ζ)|
|(ψn)′(ξ)|

≤ K̂η

for all ψ ∈ BV (ϕ, δϕ), all j = 1, . . . , p, all ξ, ζ ∈ Sj,+ωψ (η, δ, α), and all n ≥ 0.

(d) For all ψ ∈ BV (ϕ, δϕ) and for every 0 < η < δ,

lim
n→+∞

sup{∠([ψn(z), ωψ], l+(ωϕ, j)) : ψ ∈ BV (ϕ, δϕ), z ∈ Sj,+ωψ (η, δ, α)} = 0

5. Parabolic Maps in R

Finally, let us briefly consider the case when q = 1. Let V ⊆ R be a bounded open interval.
We fix a point ω ∈ V . We call a C1+ε map ϕ : V → R parabolic if (with ωϕ = ω)

ϕ(ωϕ) = ωϕ, ϕ′(ωϕ) ∈ {−1, 1}
and

(5.1) ϕ(x) = ωϕ + ϕ′(ωϕ)(x− ωϕ) + aϕ|x− ωϕ|p+1 + o(|x− ωϕ|p+1)

for all x ∈ V close enough to ωϕ, where aϕ 6= 0 and p > 0 are arbitrary real numbers. We
set V = Vϕ. Write uniquely Vϕ = V +

ϕ ∪V −ϕ , where V +
ϕ is a subinterval of Vϕ having ωϕ as its

left-hand endpoint and V −ϕ is a subinterval of Vϕ having ωϕ as its right-hand endpoint. We
put sgn (V +

ϕ ) = 1 and sgn (V −ϕ ) = −1. We define V a
ϕ to be V +

ϕ if sgn (aϕ)ϕ′(ωϕ)sgn (V +
ϕ ) < 0

and to be V −ϕ if sgn (aϕ)ϕ′(ωϕ)sgn (V
)
ϕ < 0. A comprehensive treatment of the local behavior

of one-dimensional parabolic maps can be found in [U2]. Given a real number p > 0, we
denote the collection of all corresponding 1-dimensional parabolic maps by Par(1, p). As



CONTINUITY OF HAUSDORFF MEASURE FOR CONFORMAL DYNAMICAL SYSTEMS 21

in the case of q = 2, we introduce a topology, called parabolic, on Par(1, p) by saying that
a sequence (ϕn)∞1 converges to ϕ ∈ Par(1, p) if and only if there exists an open interval
V ⊂ R such that

(a) Vϕ ∩
⋂∞
n=1 Vϕn ⊇ V

(b) ωϕ, ωϕn ∈ 1
2
V for all n ≥ 1

(c) ϕn → ϕ uniformly on V .
(d) limn→∞ aϕn = aϕ.

We then also say that the sequence (ϕn)∞1 converges to ϕ parabolically.
As in the case q = 2, given an open interval V ⊂ R, we put

ParV (1, p) = {ϕ ∈ Par(1, p) : Vϕ ⊃ V andωϕ ∈
1

2
V }.

We introduce the metric ρV on ParV (1, p) as

ρV (ϕ, ψ) = ‖(ϕ− ψ)|V ‖∞ + |aϕ − aΨ|.

Clearly (ParV (1, p), ρV ) is a complete metric space and we have the following.

Observation 4. A sequence (ϕn)∞1 converges to ϕ parabolically in Par(1, p) if and only if
there exists an open interval V ⊆ R such that

V ⊆ Vϕ ∩
∞⋂
n=1

Vϕn and lim
n→∞

ρV (ϕn, ϕ) = 0.

With the techniques and tools developed in [U2], we can prove in the case q = 1 the
following result forming a 1-dimensional counterpart of Proposition 4.4.

Proposition 5.1. If ϕ ∈ ParV (z, p), then there exists δϕ > 0 such that for all ε > 0 there
exists δ > 0 such that

(a) For all ψ ∈ BV (ϕ, δϕ), all the iterates ψn, n ≥ 0, are well defined on the set
V a
ψ ∩ (ωψ − δ, ωψ + δ) and

ψn
(
V a
ψ ∩ (ωψ − δ, ωψ + δ)

)
⊆ B(ωψ, ε)

for all n ≥ 0.
(b)

lim
n→∞

sup{|ψn(z)− ωψ| : ψ ∈ BV (ϕ, δϕ), z ∈ V a
ψ ∩ (ωψ − δ, ωψ + δ)} = 0.

(c) For every 0 < η < δ there exists a constant K̂η ≥ 1 such that

|(ψn)′(ζ)|
|(ψn)′(ξ)|

≤ K̂η

for all ψ ∈ BV (ϕ, δϕ), all ζ, ξ ∈ V a
ψ ∩ {t ∈ R : η ≤ |t− ωψ| < δ}, and all n ≥ 0.
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(d) Furthermore, there exists a monotone increasing function K : [0, 1) → [1,+∞)
such that limt→0K(t) = K(0) = 1 and

|(ψn)′(y)|
|(ψn)′(x)|

≤ K(t)

for all ψ ∈ BV (ϕ, δϕ), all z ∈ (ωψ − δ, ωψ + δ) \ {ωψ}, and all x, y ∈ (z − t|z −
ωψ, z + t|z − ωψ), and all n ≥ 0.

6. Parabolic Maps; Local Behavior III.

As a fairly straightforward consequences of Section 3, Section 4, and Section 5 one can
prove (see Section 9.2 and 9.3 of [MU3] for the cases q ≥ 3 and q = 2 respectively, and [U2]
for the case q = 1) the following.

Proposition 6.1. Suppose that ϕ is a simple parabolic conformal map acting in an arbitrary
phase space Rq, q ≥ 1. Let p = 1 if q ≥ 3, let p ≥ 1 be the integer coming from (4.1) if
q = 2 and let p > 0 be the real number coming from (4.1) if q = 1. Let V be an open ball
contained in Vϕ and contaning ωϕ if q = 1, 2. Let Wϕ come from Proposition 3.3 if q ≥ 3
and let δϕ come form Proposition 4.4 and Proposition 5.1 if q = 2 and q = 1 respectively.
Then for every ε > 0 and every α ∈ (0, π/p) there exists δ > 0 such that for every η ∈ (0, δ)
there are constants Aϕ > 1 and an integer sϕ ≥ 1 such that for all ψ ∈ Wϕ if q ≥ 3 or
ψ ∈ BV (ϕ, δϕ) if q = 1, 2, (call jointly such a neighborhood of ϕ by Z(ϕ)) the following
hold. For all j = 1, . . . , p, all z ∈ Sj,+ωψ (η, δ;α) (with appriopriately adjusted meaning if

q = 1 or q ≥ 3) and all n ≥ 1 we have,

(a)

A−1
ϕ n−1/p ≤ ‖ψn(z)− ωψ‖ ≤ Aϕn

−1/p

and
(b)

A−1
ϕ n−(p+1)/p ≤ |(ψn(z))′| ≤ Aϕn

−(p+1)/p

(d)

‖ψn(z)− ψk(z)‖ ≤ Aϕ(k−1/p − n−1/p)

if 1 ≤ k < n and
(e)

‖ψn(z)− ψk(z)‖ ≥ A−1
ϕ (k−1/p − n−1/p)

if, in addition, n− k ≥ sϕ.

Let
A(w; r, R) := {z ∈ C : r < |z − w| < R}

be the annulus centered at a point w ∈ C and with the inner radius r and outer radius R.
As an immediate consequence of this proposition we get the following.

Proposition 6.2. With the setting of Proposition 6.1 we have
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(a)

ψn(Sj,+ω (η, δ;α)) ⊆ A(ωψ;A−1
ϕ n−1/p, Aϕn

−1/p)

and
(b)

A−1
ϕ n−(p+1)/p ≤ diam(ψn(Sj,+ωψ (η, δ;α))) ≤ Aϕn

−(p+1)/p

perhaps with a larger constant Aϕ in (b) than its counterpart in item (b) of Proposition 6.1.

7. Walters Maps

Let X0 be an open and dense subset of a compact metric space X endowed with a metric
ρ. Let Ω be a finite subset of X0. We call a continuous map T : X0 → X Walters if the
following conditions are satisfied:

(1) Ω is a union of periodic orbits of T .

(2) The set T−1(x) is countable for each x ∈ X and there exists ξ = ξT > 0 such that
T−1(B(x, 2ξ)) can be written uniquely as a disjoint union of open sets {By(x) :
y ∈ T−1(x)} such that y ∈ By(x) and T : By(x)→ B(x, 2ξ) is a homeomorphism
from By(x) onto B(x, 2ξ). The corresponding inverse map from B(x, 2ξ) to By(x),
y ∈ T−1(x), will be denoted by T−1

y .

(3) If x ∈ X∞(T ) :=
⋂∞
n=0 T

−n(X) and ρ(T n(x),Ω) ≤ 2ξ for all n ≥ 0, then x ∈ Ω.

(4) For every θ > 0 there exists δ = δθ ∈ (0, ξ) such that for every x ∈ X \ B(Ω, θ)
and every n ≥ 0, the set T−n(B(x, 2δ)) can be written uniquely as a disjoint
union of open sets {By(n, x) : y ∈ T−n(x)} such that y ∈ By(n, x) and the map
T n : By(n, x) → B(x, 2δ) is a homeomorphism from By(n, x) onto B(x, 2δ). The
corresponding inverse map from B(x, 2ξ) to By(n, x) will be denoted by T−ny .

(5) For every θ > 0 there exists nθ ≥ 1 such that if x ∈ X and

B(Ω, θ) ∩ {T k(x) : 0 ≤ k ≤ nθ} = ∅,

then

ρ(T nθ(w), T nθ(z)) ≥ 4ρ(w, z)

for all w, z ∈ T−nθx (B(T nθ , 2δθ)).

(6) ∀ ε > 0 ∃ s > 0 ∀x ∈ X T−s(x) is ε–dense in X.

(7)

T−1
y (B(ω, 2ξ)) ∩B(Ω, ξ) = ∅

for all ω ∈ Ω and all y ∈ T−1(ω) \ {ω}.
(8) For every θ > 0 there exists an integer kθ ≥ 1 such that if x ∈ X \ Ω, T j(x) ∈

X ∩ B(Ω, θ) for all j = 0, 1, ..., kθ − 1, and T kθ(x) /∈ B(Ω, θ), then the map
T kθ : Bx(kθ, T

kθ(x)) → B(T kθ(x), 2δ) is Lipschitz continuous with some Lipschitz
constant ≥ 2.
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A Walters map is referred to as finitely Walters map if X0 = X. Note that then each
inverse image T−1(x), x ∈ X, is finite, in fact sup{#T−1(x) : x ∈ X} < +∞.

A Walters map is called conformal if X ⊂ Rd, d ≥ 1, and if the following hold.

(8) For every x ∈ X and every y ∈ T−1(x), the inverse map

T−1
y : B(x, 2ξ)→ By(x)

has a unique conformal C1–extension to the open ball Bd(x, 2ξ) ⊂ Rd. We assume
in addition that the functions

Bd(x, 2ξ) 3 z → ‖DzT
−1
y ‖

are all Hölder continuous with the same Hölder exponent α and Hölder constants
bounded above by C‖DxT

−1
y ‖ with some constant C independent of x and y. In

the case when q ≥ 2, this is automatically satisfied with α = 1.
(9) For every θ > 0, every x ∈ X \ B(Ω, θ), every n ≥ 0 and every y ∈ T−n(x),

the map T−ny : B(x, 2δθ) → X has a unique conformal extension to the open ball

Bd(x, 2δθ) ⊂ Rd.

A Walters map is called expanding if Ω = ∅. A finitely Walters conformal map is called
parabolic if Ω 6= ∅ and for any ω ∈ Ω (with period n(ω) ≥ 1) T n(ω) is a parabolic conformal
map on some neighborhood of ω. A conformal expanding finitely Walters map is referred
to as conformal expanding repeller.

The following bounded distortion properties follow from (8) and (9) along with Theorem 3.1
if q ≥ 3, from Koebe’s Distortion Theorem if q = 2, and considerations following closely
[U2] if q = 1.

Since we will be interested in the value of the Hausdorff measure Hh(X∞), we may, without
loss of generality, pass to so high iterate of T that all parabolic point, i.e. members of Ω,
become simple.

As an immediate consequence of Theorem 3.1 and Koebe’s Distortion Theorem, we get the
following.

Fact 7.1. (Bounded Distortion Property I) If d ≥ 2, the the following holds. For
every β > 0 there exists β∗ ∈ (0, 1] such that if T : X0 → X is a Walters conformal map,
θ > 0, x ∈ X \B(Ω, θ), n ≥ 0, y ∈ T−ny (x) and w, z ∈ B̄(x, β∗δθ), then

(1 + β)−1 ≤
|(T−ny )′(w)|
|(T−ny )′(z)|

≤ (1 + β).

Also,

K := K1 = sup

{ |(T−ny )′(w)|
|(T−ny )′(z)|

: w, z ∈ B̄(x, δθ)

}
< +∞,

with the supremum being taken also over all θ > 0, x ∈ X \B(Ω, θ), n ≥ 0 and y ∈ T−n(x).
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and

Fact 7.2. Assume d ≥ 2. Fix β > 0. Then the the following holds. Let T : X0 → X be a
Walters conformal map. If x ∈ X, w, z ∈ B(x, β∗ξT ), and y ∈ T−1(x), then

(1 + β)−1 ≤
|(T−1

y )′(w)|
|(T−1

y )′(z)|
≤ (1 + β).

As fairly straightforward consequence of the definition of a Walters map, particularly of
property (5) and (8), we get the following.

Lemma 7.3. Le T : X0 → X be a Walters map, and fix θ > 0. If x ∈ X and (nj)
∞
1 is

an incereasing sequence of iterates of T such that T nj(x) /∈ B(Ω, θ) for all j ≥ 1, then the
Lipschitz constants of the maps T nj : Bx(nj, T

nj(x))→ B(T nj(x), 2δ) diverge to infinity.

We recall that rational function f : C → C is called parabolic if its Julia set contains no
critical points but contains at least one parabolic periodic point and it is called hyperbolic
if its Julia set contains no critical points nor parabolic periodic periodic points. If the
map f is hyperbolic, then its restriction to its Julia set J(f) forms a conformal expanding
repeller. If, on the other hand, the map f is parabolic, then each parabolic point must
be necessairly rationally indifferent, meaning that its multiplier is a root of unity, and the
function f restricted to its Julia set J(f) forms a finite parabolic conformal Walters map

8. Walters Conformal Maps; Conformal Meaures

Throughout this section T : X0 → X is assumed to be an arbitrary conformal Walters
map. We recall that

X∞ =
∞⋂
n=0

T−n(X).

We say that a Borel finite measure mt, t ≥ 0, supported on X∞, is t–conformal if

mt(T
−1
y (A)) =

∫
A

|(T−1
y )′(z)|tdmt(z)

for all x ∈ X, all y ∈ T−1(x), and all Borel sets A ⊂ B(x, 2ξ). Note that then

mt(T
−n
w (A)) =

∫
A

|(T−nw )′(z)|tdmt(z)

for all θ > 0, all n ≥ 0, all x ∈ X \B(Ω, θ), all ω ∈ T−n(x), and all Borel sets A ⊂ B(x, 2ξ).
Observe that if h = HD(X∞) and Hh is the h–dimensional Hausdorff measure on X∞, then
Hh is h–conformal, and, if Hh(X∞) > 0, then so is also its normalized version Hh/Hh(X).
We denote it by

H1
h|X∞ .

We shall prove the following.
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Lemma 8.1. Let T : X0 → X be a conformal Walters map. If mt is an atomless t–
conformal measure on X0 for the map T , then mt(X0 \U∞) = 0, for every non-empty open
set U ⊂ X, where

U∞ = {x ∈ X∞ : T n(x) ∈ U for infinitely many n ≥ 0}.

Proof. Since T−1(U) is an open subset of X, it suffices to show that mt(X∞ \ U1) = 0,
where

U1 = {x ∈ X∞ : T n(x) ∈ U for at least one n ≥ 1}.
In view of condition (6) it suffices to prove the lemma for every non-empty open subset
U ⊂ X which is δξ/8–dense in X. Select a finite set F ⊂ U which is δξ/8–dense in X, and
let γ ∈ (0, (2K2)−1δξ) be so small that⋃

z∈F

B(z, γ) ⊂ U.

Fix an arbitrary point x ∈ X∞ \
⋃∞
n=0 T

−n(Ω) and a real number s > 0. In view of (2a)
and (4) there exists n ≥ 1 so large that

T n(x) ∈ X \B(Ω, ξ) and K−1|(T n)′(x)|−1δξ < s.

Now, by the definition of the set F , there exists y ∈ F such that ρ(T n(x), y) < γ. So,
B(y, γ) ⊂ U ∩B(T n(x), 2γ) ⊂ U ∩B(T n(x), δξ). Hence

(8.1) T−nx (B(y, γ)) ⊆ U1,

and, by Bounded Distortion Property (Fact 7.1),

(8.2) mt(T
−n
x (B(y, γ))) ≥ K−t|(T n)′(x)|−tmt(B(y, γ)) ≥MγK

−t|(T n)′(x)|−t,

where Mγ = inf{mt(B(z, γ)) : z ∈ X} > 0 since supp(mt) = X. Also, by the same
Bounded Distortion Property (Fact 7.1)

(8.3)
T−nx (B(y, γ)) ⊆ T−nx (B(T n(x), K−2δξ)) ⊆ B(x,K−1|(T n)′(x)|−1δξ)

⊆ T−nx (B(T n(x), δξ))

and
mt(B(x,K−1|(T n)′(x)|−1δξ)) ≤ mt(T

−n
x (B(T n(x), δξ))

≤ Ktmt(B(T n(x), δξ))|(T n)′(x)|−t

≤ Ktmt(X)|(T n)′(x)|−t.
Combining this, (8.3), (8.1), and (8.2), we get

mt(B(x,K−1|(T n)′(x)|−1δξ) ∩ U1)

mt(B(x,K−1|(T n)′(x)|−1δξ))
≥ mt(T

−n
x (B(y, γ)))

mt(B(x,K−1|(T n)′(x)|−1δξ))

≥ MγK
−t|(T n)′(x)|−t

Ktmt(X)|(T n)′(x)|−t

= Mγ(mt(X)K2t)−1

> 0.
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Hence,

mt((X∞ \ U1) ∩B(x,K−1|(T n)′(x)|−1δξ))

mt(B(x,K−1|(T n)′(x)|−1δξ))
=

=
mt(B(x,K−1|(T n)′(x)|−1δξ))−mt(B(x,K−1|(T n)′(x)|−1δξ) ∩ U1)

mt(B(x,K−1|(T n)′(x)|−1δξ))

= 1− mt(B(x,K−1|(T n)′(x)|−1δξ) ∩ U1)

mt(B(x,K−1|(T n)′(x)|−1δξ))
≤ 1−Mγ(mt(X)K2t)−1 < 1.

Therefore,

lim inf
r→0

mt(B(x, r) ∩ (X∞ \ U1))

mt(B(x, r))
≤ lim inf

n→∞

mt((X∞ \ U1) ∩B(x,K−1|(T n)′(x)|−1δξ))

mt(B(x,K−1|(T n)′(x)|−1δξ))

≤ 1−Mγ(mt(X)K2t)−1

< 1.

Hence, it follows from Lebesgue’s Density Theorem that mt((X∞ \U1)\
⋃∞
n=0 T

−n(Ω)) = 0.
Since the conformal measure is assumed to be atomless, this yields mt(X∞ \ U1) = 0. We
are done. �

Definition 8.2. Let T : X0 → X be a conformal Walters map and put h = HD(X∞).
The map T : X0 → X is said to be regular if there exists an h–conformal Borel probability
measure mh on X∞ such that mh(Ω) = 0; otherwise the map T is called irregular.

The following theorem collects the basic properties of regular and irregular conformal Wal-
ters maps.

Theorem 8.3. Let T : X0 → X be a conformal Walters map. Then the following hold.

(a) If T is regular, then
(a1) The conformal measure mh is atomless, unique up to a uniformly bounded,

above and away from zero, Radon-Nikodym derivative, and
(a2) Hh|X∞ << mh.
(a3) The Radon–Nikodym derivative dHh

dmh
is uniformly bounded above.

(b) If T is a conformal expanding repeller, then
(b1) 0 < Hh(X∞ = X) < +∞,
(b2) The conformal measure mh is unique and equal to H1

h|X .
(b3) In particular the map T is regular.

(c) If T is parabolic then T is regular and
(c1) If h < 1, then Hh(X∞ = X) = 0.
(c2) If h ≥ 1, then 0 < Hh(X∞ = X) < +∞.
(c3) The conformal measure mh is unique and equal to H1

h|X .

Proof. The proof of item (a) is standard. It employes the reasoning from [DU1] or The-
orem 2.13 in [KU] for example. Item (c) is essentially known since the work [Bo] of R.
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Bowen. Its complete proof can be found in [PU]. Finally, to prove item (c), notice first
that it can be easily seen that the map T : X → X is expansive. Therefore, see for example
[PU], it has Markov partitions of arbitrariy small diameters. This permits us to associate
with T its jump transformation T ∗ as in [DU2]. This jump transformation is a jump-like
conformal map in the sense of [KU]. We are then done by invoking Theorem 3.3 from [KU].
�

If Ht(Y ), a t-dimensional Hausdorff measure of a Borel subset Y of some metric space
is positive and finite, then we denote by H1

t |Y , the normalized t-dimensional Hausdorff
measure restricted to Y . Precisely,

H1
t (A) =

Ht(A)

Ht(Y )

for every Borel set A ⊂ Y . We have already observed that in the context of Theorem 8.3,
if 0 < Hh(X∞) < +∞, then

mh = H1
h|X∞ .

9. Modes of convergence

Since our ultimate results will be about continuity of Hausdorff measure, we need a right
notion of convergence of conformal Walters maps. We say that a sequence (Tn : Xn

0 →
Xn)∞n=1 of conformal Walters maps converges strongly to a conformal map T : X0

0 → X =
X0 if the following conditions are satisfied

(1) There exists a bounded open neighborhood U of X in Rq such that Xn ⊆ U for
all n ≥ 0 and each map Tn, n ≥ 1, and T extend conformally to a map from U to
Rq. We keep for these extensions the same symbols Tn and T respectively.

(2) Xn → X in K(U), the space of all non–empty compact subsets of U endowed with
the Hausdorff metric

(3) ξ− := lim infn→∞ ξn > 0
(4) lim infn→∞ δn,θ > 0 for all θ > 0.
(5) limn→∞ inf{|T ′n(z)| : z ∈ U} > 0
(6) limn→∞ ‖T ′n‖∞ < +∞,

where δn,θ and ξn are respective constants for the map Tn.

We say that a sequence (Tn : Xn
0 → Xn)∞n=1 of conformal Walters maps converges sub–

finely to a conformal Walters map T : X0 → X if it converges strongly and the following
conditions are satisfied

(7) limn→∞ hn = h, where hn = HD(Xn
∞), n ≥ 1, and h = HD(X∞).

(8) Hhn(Xn
∞) > 0 for all n ≥ 1 and T : X∞ → X is regular.

(9) (H1
hn
|Xn
∞)∞1 converges weakly to mh, all measures treated as Borel probability

measures on U .

We say that a sequence (Tn : Xn
0 → Xn)∞n=1 of finitely Walters conformal maps converges

finely to a finitely Walters conformal map T : X0 → X if it converges sub–finely and the
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following holds. All the maps Tn, T , n ≥ 1, extend conformally to all of U and

lim
n→∞

Tn = T

in the space C1(U).

We say that a sequence (Tn)∞1 of conformal expanding repellers converges C1–uniformly to
an expanding conformal repeller T if (1) is satisfied and Tn → T in C1(U). We reword the
following well-known fact.

Proposition 9.1. If a sequence (Tn)∞1 of conformal expanding repellers converges C1–
uniformly to an expanding conformal repeller T , then (Tn)∞1 converges finely.

We say that a sequence (Tn)∞1 of parabolic Walters conformal maps converges nicely to
a parabolic Walters conformal map T if it converges to T strongly, (8) holds, and the
following conditions are satisfied.

(10) Tn → T in C1(U)
(11) For every parabolic point ω of T , there exists θ > 0 such that (T un |B(ω,θ))

∞
1 con-

verges to T u|B(ω,θ) in ParB(ω,θ)(q, p(ω)), where u ≥ 1 is so large that each parabolic
point of T is simple for T u.

(12) For all but finitely many n ≥ 1, Ω(Tn) ⊆ B(Ω(T ), θ).

The method of the proof of the main result in [UZd2] gives the following.

Proposition 9.2. If a sequence (Tn)∞1 of parabolic Walters conformal maps converges
nicely to a parabolic conformal map T , then this sequence (Tn)∞1 convereges finely to T .

We shall now describe the structure of parabolic Walters conformal maps in sufficiently
small neighborhoods of their parabolic points.

Lemma 9.3. Let T : X0 → X be a parabolic Walters conformal map. Assume without loss
of generality that the positive integer u resulting from item (11) is equal to 1. Let θ also
come from item (11). Fix an open neighborhood W of T in the topology of nice convergence,
so small that if Q ∈ W , then for every parabolic point ω of T there exists a unique parabolic
point ωQ ∈ B(ω, θ) of Q, and Q|B(ω,θ) ∈ Z(T |B(ω,θ)), where the neighborhood Z(T |B(ω,θ))
of T |B(ω,θ) comes from Proposition 6.1. Then for every parabolic point ω of T and every
α ∈ (0, π/p(ω)) there exists η > 0 such that

X∞(Q) ∩B(ωQ, η) ⊂
p(ωQ)⋃
j=1

Sj,−ωQ (η, α) and X(Q) ∩B(ωQ, η) ⊂
p(ωQ)⋃
j=1

Sj,−ωQ (η, α),

the latter resulting from the former since X(Q) = X̄∞(Q).
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Proof. Ascribe δ > 0 to ε = 2ξ according to Propositions 3.3, 4.4, and 5.1. Seeking
contradiction suppose that there exist a sequence (Tn)∞n=1 of Walters conformal maps in
W converging nicely to the Walters conformal map T , and a sequence (xn)∞n=1 of points

respectively inX∞(Tn)∩B(ωQ, δ)\
⋃p(ωn)
j=1 Sj,−ωn (δ, α) such that limn→+∞ ||xn−ωn|| = 0, where

ωn = ωTn . Since p(ωn) = p(ω) for all n ≥ 1, passing to a subsequence, we may further
assume without loss of generality that xn ∈ Si,+ωn (η, (π/p)− α) for all n ≥ 1 and some 1 ≤
i ≤ p(ω). But then, by Propositions 3.3, 4.4(a), and 5.1(a), T k1 (x1) ∈ X∞(T1) ∩ B(ω1, 2ξ)
for all k ≥ 0, and it thus follows from item (3) of the definition of Walters maps that
x1 = ω1. This contradiction finishes the proof. �

As an immediate consequence of this lemma, looking at Proposition 3.3 and Theorem 3.1
in the case when q ≥ 3, in Proposition 4.4(a) and Koebe’s Distortion Theorem in the case
when q = 2, and in Proposition 5.1 in the case when q = 1, we get the following.

Lemma 9.4. With the settings of Lemma 9.3, there exists ξ > 0 sufficiently small that
there exists a monotone increasing function K : [0, 1) → [1,+∞) such that limt→0K(t) =
K(0) = 1 and

|(Q−nz )′(y)|
|(Q−nz )′(x)|

≤ K(t)

for all q ∈ W , all ω ∈ Ω, all n ≥ 0, all z ∈
⋂n
j=0Q

−j(X(Q)) such that Qn(z) ∈ B(ωQ, ξ)

and all x, y ∈ B(Qn(z), t‖Qn(z)− ω‖).

In the case when a conformal Walters map is generated by a conformal GDMS (Graph
Directed Markov System) S = {ϕh : Xt(k) → Xi(k)}k∈N satisfying the separation condition,
we also consider the subsystems Sn = {ϕk : Xt(k) → Xi(k)}k∈Nn , where Nn = {1, 2, . . . , n}
and are interested in the problem of whether

lim
n→∞

Hhn(JSn) = Hh(JS),

where hn = HD(JSn) and h = HD(JS). It is by the way known (see [MU3]) that
limn→∞ hSn = hS.

10. First continuity related technical results

Given an integer q ≥ 1, ξ, δ, γ > 0 let Wq(ξ, δ, γ) be the collection of all conformal Walters
maps for which

ξT ≥ ξ, δξ/8 ≥ δ and inf{|T ′(x)| : x ∈ X0(T )} ≥ γ−1.

In this section we shall prove the following technical lemma.

Lemma 10.1. Given ξ, δ, γ > 0 we have

lim
r→0

sup

{
HhT (A ∩X∞(T ))

diamhT (A)
: 0 < diam(A) ≤ r, T ∈ Wq(ξ, δ, γ)

}
≤ 1.
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Proof. First, note that the limit exists, since the above function is increasing (as a function
of r).

Let
W+
q ξ, δ) = {T ∈ Wq(ξ, δ, γ) : Hh(X∞) > 0}.

Clearly, for every r > 0, the following two suprema are equal.

sup

{
HhT (A ∩X∞(T ))

diamhT (A)
: A is a Borel set, 0 < diam(A) ≤ r, T ∈ Wq(ξ, δ, γ)

}
and

sup

{
HhT (A ∩X∞(T ))

diamhT (A)
: A = A, A is convex 0 < diam(A) ≤ r, T ∈ W+

q (ξ, δ, γ)

}
.

We shall prove that the upper limit, as r → 0, of the latter suprem is ≤ 1. Fix κ > 0. Take

r =
1

2
{δ, ξ/8}min{κ∗, (6K2)−1}min{1, γ−1}.

Consider an arbitrary closed set contained in Rq such that 0 < diam(A) ≤ r. Having
T ∈ W+

q (ξ, δ, γ) we may assume without loss of generality that

A ⊆ B(X, r).

If A ∩ B(ΩT , ξ/9) 6= ∅, then A ⊆ B(ω, ξ/4) for some ω ∈ ΩT . Fix an arbitrary x ∈ A and
z ∈ T−1(ω) \ {ω}. Let y = T−1

z (x). Then

T−1
y (A) ⊆ T−1

z (B(ω, ξ/4)),

and, according to item (7) of the definition of Walter maps,

T−1
y (A) ∩B(ΩT , ξ) = ∅.

Since diam(A) < κ∗ξ and A ⊆ B(x, diam(A)) ⊆ B(x, 2ξ) we may apply Fact 7.2 to get

(10.1)

HhT (T−1
y (A ∩X∞(T )))

diam(T−1
y (A))

≥
(1 + κ)−h|(T−1

y )′(x)|hTHhT (A ∩X∞(T ))

(1 + κ)h|(T−1
y )′(x)|hTHhT (A ∩X∞(T ))

= (1 + κ)−2hHhT (A ∩X∞(T ))

diamhT (A)
.

So, our task is to estimate from above the quotient

HhT (Γ′ ∩X∞(T ))

diamhT (Γ′)

for every closed set Γ′ ⊂ B(X, γr) such that

Γ′ ∩B(ΩT , ξ/8) = ∅ and diam(Γ′) < γr.

Add to Γ′ one suffiiently small ball so that the resulting set Γ has the following properties

(1) Int Γ 6= ∅
(2) Γ ⊆ B(X, γr)
(3) diam(Γ) < γr
(4) Γ ∩B(ΩT , ξ/8) = ∅
(5)

HhT (Γ∩X∞(T ))

diamhT (Γ)
≥ (1 + κ)−h

HhT (Γ′∩X∞(T ))

diamhT (Γ′)
.
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Fix a point w ∈ X∞ ∩ Int(Γ) such that with some η > 0,

(10.2) B(w, 2η) ⊂ Int(Γ).

Lemma 1.7 from [Fa] tells us that there exists R > 0 so small that

(10.3)
∞∑
i=1

diamhT (Ui) ≥ (1 + κ)−hTHhT

(
X∞(T ) ∩

∞⋃
i=1

Ui

)

for any countable collection {Ui}∞i=1 of sets with diameters ≤ R. For every x ∈ B(w, η)∞,
let (nj(x))∞j=1 be the increasing sequence of all positive integers n such that T n(x) ∈ Int(Γ),
in particular T n(x) /∈ B(Ω, ξ/8). Consider the family

G = {T−nj(x)
x (Γ) : x ∈ B(w, η)∞ and j ≥ 1}.

We shall prove the following.

Claim 1. The family G is a Vitali relation (in the sense of Federer (see p. 51 in [Fe]) for
the measure HhT restricted to the set B(w, η)∞.

Proof. Fix x ∈ B(w, η)∞. It follows from Lemma 7.3 and Bounded Distortion that

(10.4)

lim sup
j→∞

diam(T−nj(x)
x (Γ)) ≤ lim sup

j→∞
diam(T−nj(x)

x (B(T nj(x)(x), δ/4K2))

≤ lim sup
j→∞

1

2K
δ|(T nj(x))′(x)|−1

= 0.

This means, in Federer’s terminology that the relation G is fine at the point x. Aiming to
apply Theorem 2.8.17 from [Fe], we set

Bj(x) = T−nj(x)
x (Γ),

and

δ(Bj(x)) = diam(T−nj(x)
x (Γ)).

Fix τ ∈ (1, 2). With the notation from page 144 in [Fe], we get by the Bounded Distortion
Property (Fact 7.1), (2), (3), (4), and the choice of r that

B̂j(x) =
⋃
{B : B ∈ G, B ∩Bj(x) 6= ∅, δ(B) ≤ τδ(Bj(x))}

⊂ B

(
x, (1 + τ)2K

1

6
δK−2|(T nj(x))′(x)|−1

)
⊂ B

(
x,K−1δθ|(T nj(x))′(x)|−1

)
⊂ T−nj(x)

x (B(T nj(x)(x), δ)).
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Hence, putting rj(x) = |(T nj(x))′(x)|−1, we get from Fact 7.1, Lemma 8.1 with mt =
HhT |X∞(T ) and from (10.2) that

δ(Bj(x)) +
HhT (B(w, η)∞ ∩ B̂j(x))

HhT (B(w, η)∞ ∩Bj(x))
=

= δ(Bj(x)) +
HhT (B̂j(x) ∩X∞(T ))

HhT (Bj(x) ∩X∞(T ))

≤ 2Kδrj(x) +
HhT (T

−nj(x)
x (B(T nj(x)(x), δ) ∩X∞(T )))

HhT (T
−nj(x)
x (B(T nj(x)(x), η) ∩X∞(T )))

≤ 2Kδrj(x) +
KhT |(T nj(x))′(x)|−hTHhT (B(T nj(x)(x), δ) ∩X∞(T ))

K−hT |(T nj(x))′(x)|−hTHhT (B(T nj(x)(x), η) ∩X∞(T ))

≤ 2Kδrj(x) +K2hTM−1
η ,

where Mη = inf{HhT (B(z, η) ∩X∞(T )) : z ∈ X} > 0. Hence, using (10.4), we get

lim sup
j→∞

(
δ(Bj(x)) +

HhT (B̂j(x) ∩X∞(T ))

HhT (Bj(x) ∩X∞(T ))

)
≤ K2hTM−1

η < +∞.

Thus, all the hypothesis of Theorem 2.8.17 in [Fe] are verified and the proof of Claim 1 is
complete. �

In virtue of Claim 1 there exists a countable Λ ⊆ N×B(w, η)∞ such that

(a) The family {Bγ1(γ2) ∩B(w, η)∞ : (γ1, γ2) ∈ Λ} consist of mutually disjoint sets.

(b) Hh

(
B(w, η)∞ \

⋃
(γ1,γ2)∈ΛBγ1(γ2)

)
=0, so Hh

(
X∞(T ) \

⋃
(γ1,γ2)∈Λ, Bγ1(γ2)

)
=0.

(c) diam(Bγ1(γ2)) < R for all (γ1, γ2) ∈ Λ.

It then follows from Lemma 8.1, (2), (3), (4), the Bounded Distortion Property (Fact 7.1),
and the choice of R that
(10.5)

Hh(X∞(T )) = Hh(B(w, η)∞) = Hh

B(ω, η)∞ ∩
⋃

(γ1,γ2)∈Λ

Bγ1(γ2)


=

∑
(γ1,γ2)∈Λ

HhT (B(w, η)∞ ∩Bγ1(γ2)) =
∑

(γ1,γ2)∈Λ

HhT

(
Bγ1(γ2) ∩X∞(T )

)
≥ (1 + κ)−hT

∑
(γ1,γ2)∈Λ

|(T γ1)′(γ2)|−hHhT

(
Γ ∩X∞(T )

)
= (1 + κ)−hT

∑
(γ1,γ2)∈Λ

|(T γ1)′(γ2)|−hT diamhT (Γ)
HhT

(
Γ ∩X∞(T )

)
diamhT (Γ)

≥ (1 + κ)−2hT
HhT

(
Γ ∩X∞(T )

)
diamhT (Γ)

∑
(γ1,γ2)∈Λ

diamhT (Bγ1(γ2)).
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Using further (c), (b), and (10.3), we now continue as follows.

HhT (X∞(T )) ≥ (1 + κ)−3hT
HhT

(
Γ ∩X∞(T )

)
diamhT (Γ)

HhT

X∞(T ) ∩
⋃

(γ1,γ2)∈Λ

Bγ1(γ2)


= (1 + κ)−3hT

HhT

(
Γ ∩X∞(T )

)
diamhT (Γ)

HhT

(
X∞(T )

)
.

Hence
HhT

(
Γ ∩X∞(T )

)
diamhT (Γ)

≤ (1 + κ)3hT .

Along with (5) and (10.1) this gives

HhT

(
A ∩X∞(T )

)
diamhT (A)

≤ (1 + κ)6hT ≤ (1 + κ)6q.

As κ > 0 was arbitrary, we are done. �

11. Upper semi–continuity of Hausdorff measure.

We recall first the following “density” theorem for Hausdorff measures (see [Ma] for
example).

Fact 11.1. Let X be a metric space, with HD(X) = h, such that Hh(X) < +∞. Then (see
p. 91 in [Ma]),

lim
r→0

sup

{
Hh(F )

diamh(F )
: x ∈ F, F = F, diam(F ) ≤ r

}
= 1

for Hh–a.e. x ∈ X.

This fact yields the following strengthening of Lemma 10.1.

Corollary 11.2. Given ξ, δ, γ > 0 we have

lim
r→0

sup

{
HhT (A ∩X∞(T ))

diamhT (A)
: 0 < diam(A) ≤ r, T ∈ Wq(ξ, δ, γ)

}
= 1.

Recall that if in addition Hh(X) > 0, then we denote by H1
h the normalized h–dimensional

Hausdorff measure on X, i.e.

H1
h(A) =

Hh(A)

Hh(X)
for every Borel set A ⊆ X. As an immediate consequence of the above fact we get the
following.

Corollary 11.3. If X is a metric space and 0 < Hh(X) < +∞, then

Hh(X) = lim
r→0

inf

{
diamh(F )

H1
h(F )

: x ∈ F, F = F, diam(F ) ≤ r

}
for Hh–a.e. x ∈ X.
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Because of the Converse Frostman Lemma, we also have the following.

Lemma 11.4. If X is a metric space, Hh(X) = 0 and µ is an arbitrary locally finite Borel
measure on X, then

lim
r→0

inf

{
diamh(F )

µ(F )
: x ∈ F, F = F, diam(F ) ≤ r

}
= 0

for µ–a.e. x ∈ X.

In virtue of Lemma 10.1, in the context of conformal Walters maps, we get the following
“one sided” improvement of Corollary 11.3.

Corollary 11.5. Given ξ, δ, γ > 0 for every κ > 0 there exists r > 0 such that

inf

{
diamhT (F )

H1
hT

(F )
: F Borel, 0 < diam(F ) ≤ r

}
≥ (1 + κ)−1HhT (X∞(T ))

for all T ∈ W+(ξ, δ, γ).

Our first continuity result is this.

Theorem 11.6. If (Tn : Xn
0 → Xn)∞n=1 is a sequence of conformal Walters maps converging

sub-finely to a conformal Walters map T : X0 → X, then

lim sup
n→∞

Hhn(Xn
∞) ≤ Hh(X∞),

where we put hn = HD(Xn
∞) and h = HD(X∞) .

Proof. Fix ε > 0. Because of the sub-fine convergence of (Tn)∞1 to T , Corollary 11.5 yields
a number α > 0 and an integer q1 ≥ 1 such that

(11.1)
diamhn(F )

H1
hn

(F ∩Xn
∞)
≥ (1 + ε)−5Hhn(Xn

∞)

for all n ≥ q1 and all Borel sets F ⊆ U with 0 < diam(F ∩ Xn
∞) ≤ α. Consider first the

case when Hh(X
0
∞) > 0. In virtue of Corollary 11.3 there exists a closed set E ⊆ U such

that 0 < diam(E ∩X0
∞) < α/2 and

Hh(X
0
∞) ≥ (1 + ε)−1 diamh(E ∩X0

∞)

H1
h(E ∩X0

∞)
.

Consequently,

Hh(X
0
∞) ≥ (1 + ε)−2 diamh(B(E ∩X0

∞, r))

H1
h(E ∩X0

∞)
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for all r > 0 small enough, say 0 < r ≤ η1 < α/2. Since

lim
n→∞

hn = h and lim
r→0

diam(B(E ∩X0
∞, r)) = diam(E ∩X0

∞),

this implies that

(11.2) Hh(X
0
∞) ≥ (1 + ε)−3 diamhn(B(E ∩X0

∞), r)

H1
h(E ∩X0

∞)

for al r > 0 sufficiently small, say 0 < r ≤ η2 ≤ η1 and all n ≥ 1 large enough, say
n ≥ q2 ≥ q1. Now, since the probability measures H1

hn
|Xn
∞ regarded as Borel probability

measures on U converge weakly to the probability measure H1
h|X∞ also regarded as a Borel

probability measure on U , we get that

H1
h(E ∩X0

∞) ≤ (1 + ε)H1
hn(B(E ∩X0

∞, η2) ∩Xn
∞)

for all n ≥ 1, say n ≥ q4 ≥ q3. Inserting this to (11.2), we get that

Hh(X
0
∞) ≥ (1 + ε)−4 diamhn(B(E ∩X0

∞, η2)

H2
hn

(B(E ∩X0
∞, η2) ∩Xn

∞)

for all n ≥ q4. Combining this with (11.1), we obtain

Hhn(Xn
∞) ≤ (1 + ε)10Hh(X

0
∞)

for all n ≥ q4. Hence, we are done in the case when Hh(X
0
∞) > 0. So, suppose that

Hh(X∞) = 0. Then in view of Lemma 11.4 there exists a closed set F ⊆ X0
∞ such that

0 < diam(F ) < α/2 and

diamh(F )

mh(F )
≤ ε(1 + ε)−8,

where mh is an h–conformal measure on X0
∞ for the map T . Hence with s ∈ (0, α/2)

sufficiently small
diamh(B(F, s))

mh(F )
≤ ε(1 + ε)−7.

Since limn→∞ hn = h, this implies that

(11.3)
diamhn(B(F, s))

mh(F )
≤ ε(1 + ε)−6

for all n ≥ 1 large enough, say n ≥ n1 ≥ q1. Since the sequence (H1
hn

)∞1 converges weakly
to mh, for all n ≥ 1 large enough, say n ≥ n2 ≥ n1 we have mh(F ) ≤ (1 + ε)H1

hn
(B(F, s)).

Along with (11.3) this yields

diamhn(B(F, s1))

H1
hn

(F )
≤ ε(1 + ε)−5.

Since diam(B(F, s)) < α and n ≥ q1, we may insert this inequality to (11.1) to get
Hh(X

n
∞) ≤ ε. We are done. �

As immediate consequences of Theorem 11.6 we get the following.
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Corollary 11.7. With respect to the topology of sub-fine convergence, each conformal Wal-
ters map S with HhT (X∞(S)) = 0 is a continuity point of the Hausdorff measure function
T → HhT (X∞(T )).

12. Conformal Expanding Repellers

Given δ, γ > 0 let CERq(δ, γ) be the collection of all conformal expending repellers T in
Rq for which δξT ≥ δ and ‖T ′‖∞ ≤ γ; we do not impose any a priori condition on ξT . We
shall prove the following.

Lemma 12.1. Fix δ, γ > 0. Then for all β > 0 and all ε > 0 there exists α > 0 such that

inf

{
diamhT (E)

H1
hT

(E)
: α ≤ diam(F ) ≤ β

}
≤ (1 + ε)Hh(X∞(T ))

for all T ∈ CERq(δ, γ).

Proof. We may assume without loss of generality that β ∈ (0, δ/4). Fix η > 0 so small
that (1 + η)2q+1 < ε. Let η∗ > 0 be associated to η > 0 according to Fact 7.1 (Bounded
Distortion Property). In virtue of Corollary 11.3 for every T ∈ CERq(δ, γ) there exist
x ∈ X and a closed convex set F ⊆ X with x ∈ F , diam(F ) ≤ β and such that

(12.1)
diamhT (F )

H1
hT

(F )
≤ (1 + η)HhT (X).

Let n ≥ 0 be the largest integer such that

(12.2) diam(T n(F )) ≤ η∗β < β.

It then follows from the definition of β (as less than δ/4) and Fact 7.1 (Bounded Distortion
Property) applied to an appropriate continuous inverse branch of T n mapping T n(F ) onto
F . that

diam(T n(F )) ≤ (1 + η)|(T n)′(x)| diam(F )

and

H1
hT

(T n(F )) ≥ (1 + η)−hT |(T n)′(x)|hTH1
hT

(F ).

Hence, using (12.1), we get that

(12.3)

diamhT (T n(F ))

H1
hT

(T n(F ))
≤ (1 + η)2hdiamh(F )

H1
hT

(F )
≤ (1 + η)1+2hTHhT (X)

≤ (1 + η)2q+1HhT (X)

< (1 + ε)HhT (X).

As T ∈ CERq(δ, γ),

η∗β < diam(T n+1(F )) ≤ ‖T ′‖∞ diam(T n(F )) ≤ γ diam(T n(F ))

Hence diam(T n(F )) ≥ γ−1η∗β. Put α = γ−1η∗β. Along with (12.2) and (12.3) this com-
pletes the proof. �
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Our two main results in this section are the following.

Theorem 12.2. If (Tn : Xn → Xn)∞1 is a sequence of conformal expanding repellers in
Rq, converging sub–finely to some conformal Walters map T : X → X, then

lim
n→∞

HhTn
(Xn) = HhT (X).

Proof. Put

hn := hTn and h := hT .

First note that there exists a bounded open set U such that Xn ⊂ U for all n ≥ 1. In view
of Theorem 11.6 , we then only need to show that

lim inf
n→∞

Hhn(Xn) ≥ Hh(X).

If Hh(X) = 0, we are obviously done. So, suppose that Hh(X) > 0. Denote the normalized
Hausdoff measures H1

hn
and H1

h respectively by mhn and mh. Because of sub–fine conver-
gence there exist δ > 0 and γ > 0 such that Tn ∈ CERq(δ, γ) for all n ≥ 1 sufficiently large,
disregarding finitely many of them, we may assume without loss of generality that for all
n ≥ 1. Fix an arbitrary ε ∈ (0, 1). In virtue of Corollary 11.5 there exists β ∈ (0, 1/4) so
small that

(12.4)
diamh(F )

mh(F )
≥ (1 + ε)−1Hh(F ),

whenever F ⊆ X∞ and diam(F ) ≤ 2β. Associate to ε and β the number α > 0 according
to Lemma 12.1. In view of this lemma and regularity of measure mhn , for every n ≥ 1
there exists a compact set En ⊆ Xn such that

α ≤ diam(En) ≤ β

and

(12.5)
diamhn(En)

mhn(En)
≤ (1 + ε)Hhn(Xn).

Passing to a subsequence if necessary, we may assume that the limit limn→∞Hhn(Xn) exists.
Then, passing further to a subsequence, we may assume without loss of generality that the
sequence (En)∞1 converges in K(U). Let E = limn→∞En ⊂ X. Then α ≤ diam(E) ≤ β.
Fix r ∈ (0, β/4) so small that

diam(B(E, 2r)) ≤ (1 + ε) diam(E).

Then, take k1 ≥ 1 so large that

diam(E) ≤ (1 + ε) diam(En) and En ⊆ B(E, r)

for all n ≥ k1. We then have for all n ≥ k1 that

(12.6)
diamhn(En)

mhn(En)
≥ (1 + ε)−2hn

diamhn(B(E, 2r))

mhn(B(E, r))
.
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Since limn→∞ hn = h, we have for all n ≥ 1 large enough, say n ≥ k2 ≥ k1, that

diamhn(B(E, 2r)) ≥ (1 + ε)−1diamh(B(E, 2r))

and

(1 + ε)−2hn ≥ (1 + ε)−3h ≥ (1 + ε)−3q.

Inserting this into (12.6) and using (12.5), we get that

Hhn(Xn) ≥ (1 + ε)−(3q+2) diamh(B(E, 2r)

mhn(B(E, r))
.

Now, since the sequence (mhn)∞1 converges weakly to the measure mh∞ , there exists k3 ≥ k2

such that mhn(B(E, r)) ≤ mh(B(E, 2r)) for all n ≥ k3. Hence

Hhn(Xn) ≥ (1 + ε)−(3q+2) diamh(B(E, 2r))

mh(B(E, 2r))
, k ≥ k3.

Noting that diam(B(E, 2r)) ≤ 2β and employing finally (12.4), we get that

Hhn(Xn) ≥ (1 + ε)−(3q+3)Hh(X
∞)

for all n ≥ k3. Letting ε → 0, we thus get that lim infn→∞Hhn(Xn) ≥ Hh(X
∞). This

finishes the proof. �

As an immediate consequence of this theorem and Proposition 9.1, we get the following.

Theorem 12.3. The map T 7→ HhT (X(T )) is continuous on the space of conformal ex-
panding repellers endowed with the topology of C2-uniform convergence.

There are several immediate consequences of this theorem.

Corollary 12.4. For every c ∈ C let Jc be the Julia set of the quadratic polynomial C 3
z → z2 + c and let hc = HD(Jc). Then the map C 3 c → Hhc(Jc) is continuous at each
hyperbolic element c ∈ C.

13. Parabolic Walters conformal maps

Recall that a finitely Walters conformal map T : X → X is called parabolic if Ω(T ) 6= ∅.
We then have

#T := sup{#T−1(z) : z ∈ X} < +∞.
For every ω ∈ Ω(T ) and 0 < η < θ put

LTθ (ω) =

p(ω)⋃
j=1

Sj,−ω

(
θ, θ/2,

π

4p(ω)

)
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and, for all n ≥ 1,

LTθ,n(ω) :=
n⋂
j=0

T−j(B(ω, θ)) ∩ T−n(LTθ (ω))

The choice of the angle π
4p(ω)

is entirely arbitrary. In fact any angle in (0, π
4p(ω)

) would be

equally good. Because of requirement (11) of nice convergence, looking at Lemma 9.3, we
deduce from Proposition 6.1 the following.

Lemma 13.1. If a sequence (Ti)
∞
i=1 of parabolic Walters maps converges nicely to a para-

bolic Walters map T , then for every θ > 0 small enough there exist integers iθ, kθ ≥ 1, real
numbers ηθ ∈ (0, θ), Aθ > 1 and an integer s = sθ ≥ 1 with the following properties. For
all n ≥ 1 put LTiθ,n(ω) := LTiηθ,θ,n(ω). If i ≥ iθ and ω ∈ Ω(Ti), then

(a)

X(Ti) ∩B(ω, θ) ⊆
∞⋃
n=0

LTiθ,n(ω).

(b) If x ∈ LTiθ,n(ω), then

(13.1) A−1
θ n−

1
p ≤ ‖x− ω‖ ≤ Aθn

− 1
p

and

(13.2) A−1
θ n

p
p+1 ≤ |(T ni )′(x)| ≤ Aθn

p
p+1 .

(c) If in addition y ∈ LTiθ,k(ω) and 1 ≤ k < n, then

(13.3) A−1
θ (k−

1
p − n−

1
p ) ≤ ‖y − x‖ ≤ Aθ(k

− 1
p − n−

1
p ),

where the first inequality holds assuming in addition that n− k ≥ sθ.

Since this is crucial for the subsequent proofs, we want to stress at this moment that
constant Aθ above is indeed independent of n. Increasing this constant if necessary, we get
from (13.2) and (13.1) that for all i ≥ iθ and all n ≥ 1,

(13.4) A−1
θ n−

p+1
p ≤ diam(LTiθ,n(ω)) ≤ Aθn

− p+1
p ,

(13.5) LTiθ,n(ω) ⊆ A(ω,A−1
θ n−

1
p , Aθn

− 1
p ).

Since the maps T ni |LTiθ,n(ω) are bounded–to–1 independently of i and n, it follows from

conformality of the measure mhTi
and from (13.2) that, with possibly larger Aθ,

(13.6) A
hTi
θ n−

p+1
p
hTi ≤ mhTi

(LTiθ,n(ω)) ≤ A
hTi
θ n−

p+1
p
hTi

for all n ≥ 1. On the other hand, it follows from (13.3) that

(13.7) diam(F ) ≥ A−1
θ |n

− 1
p − k−

1
p |
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for every set F ⊆ Rq such that F ∩LTiθ,k(ω) 6= ∅, F ∩LTiθ,n(ω) 6= ∅ and |n− k| ≥ sθ. Now, set

Qθ,i :=

(
A

2hTi
θ

(
p+ 1

p
hTi − 1

))−1

·min
{

2−
p+1
p
hTi , (1− 2−

1
p )hTi

}
.

Since hT >
p
p+1

(see [ADU], where this was proved for parabolic rational functions, and the

same argument continues to hold for parabolic Walters maps), after dropping off finitely
many i’s if necessary, it follows from condition (7) of sub-fine convergence, which in turn
results from nice convergence by virtue of Proposition 9.2, that

Qθ := inf
i≥1
{Qθ,i} > 0.

Lemma 13.2. Assume that a sequence (Ti)
∞
i=1 of parabolic Walters maps converges nicely

to a parabolic Walters map T and hTi ≥ 1 for all i ≥ 1. If ω ∈ Ω(Ti) and F ⊆
⋃n
j=k L

Ti
θ,j(ω)

is an arbitrary set such that F ∩ LTiθ,k(ω) 6= ∅ and F ∩ LTiθ,n(ω) 6= ∅ with n− k ≥ sθ, then

diamhi(F )

mhTi
(F )

≥ Qθminhi−1{k, n− k},

where hi := hTi.

Proof. In view of (13.6) and (13.7) along with the integral comparison test, we have

(13.8)

diamhi(F )

mhi(F )
≥ A−hiθ (k−

1
p − n−

1
p )hi∑n

j=kmhi(Lj(ω))
≥ A−hiθ (k−

1
p − n−

1
p )hi∑n

j=k A
hi
θ j
− p+1

p
hi

≥ A−2hi
θ

(k−
1
p − n−

1
p )hi∑n

j=k j
− p+1

p
hi

≥ A−2hi
θ

(
p+ 1

p
hi − 1

)
(k−

1
p − n−

1
p )hi

(k1− p+1
p
hi − n1− p+1

p
hi)
.

Now, let us estimate the quantity

( 1
k1/p − 1

n1/p )hi

(k1− p+1
p
hi − n1− p+1

p
hi)

in the following two ways.

Case 1. n ≤ 2k. Applying the Mean Value Theorem, we get two real numbers k ≤
a, b ≤ n such that

(13.9) k−
1
p − n−

1
p =

1

p
a−

1
p
−1(n− k)

and

(13.10) k1− p+1
p
hi − n1− p+1

p
hi =

(
p+ 1

p
hi − 1

)
b−

p+1
p
hi(n− k).
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Hence
(k−

1
p − n−

1
p )hi

k1− p+1
p
hi − n1− p+1

p
hi

=

(
phi
(
p+ 1

p
hi − 1

))−1
b
p+1
p
hi

a( 1
p

+1)hi
(n− k)hi−1

=

(
phi
(
p+ 1

p
hi − 1

))−1(
b

a

) p+1
p
hi

(n− k)hi−1

≥ 2−
p+1
p
hi

(
phi
(
p+ 1

p
hi − 1

))−1

(n− k)hi−1.

Case 2. n ≥ 2k.

(k−
1
p − n−

1
p )hi

k1− p+1
p
hi − n1− p+1

p
hi

=
k−

hi
p (1− ( k

n
)

1
p )hi

k1− p+1
p
hi(1− ( k

n
)
p+1
p
hi−1)

≥ khi−1

(
1−

(
k

n

) 1
p

)hi

≥ (1− 2−
1
p )hikhi−1.

These two cases along with (13.8) yield

diamhi(F )

mhi(F )
≥ Qθminhi−1{k, n− k}.

The proof is complete. �

Having this lemma proved, we can establish a parabolic counterpart of Lemma 12.1.

Lemma 13.3. Assume that (Tn : Xn → Xn)∞1 is a sequence of parabolic Walters conformal
maps converging nicely to some parabolic Walters conformal map T : X → X. If h = hT >
1, then ∀ ε > 0 ∀ β > 0∃α > 0 ∃ j ≥ 1∀n ≥ j

inf

{
diamhn(E)

mhn(E)
: α ≤ diam(E) ≤ β

}
≤ (1 + ε)Hhn(Xn).

where hn := hTn.

Proof. Assume without loss of generality that ε < 1. Take η > 0 so small that (1+η)2q+1 <
1 + ε. Let η∗ > 0 be associated to η > 0 according to Fact 7.1 (Bounded Distortion
Property). Since (Tn)∞1 converges strongly to T , we have

ξ := inf{ξn : n ≥ 1} > 0, δ := inf{δn : n ≥ 1} > 0, and γ := sup{||T ′n||∞ : n ≥ 1} < +∞.
Fix θ ∈ (0, ξ/2). We may assume without loss of generality that β < 1

4
{1, δθ}. In virtue of

Corollary 11.3 for every n ≥ 1 there exist xn ∈ Xn and closed convex set Fn ⊆ Xn such
that xn ∈ Fn, diam(Fn) ≤ β and

(13.11)
diamhn(Fn)

mhn(Fn)
≤ (1 + η)Hhn(Xn).

On the other hand, in virtue of Theorem 11.6 there exists n1 ≥ 1 such that

(13.12) Hhn(Xn) ≤ (1 + η)Hh(X)
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for all n ≥ n1. Let
κ := (hT − 1)/2 > 0,

let
Zθ := (Q−1

θ 4q+1Hh∞(X))1/κ, u := max{sθ, Zθ}, and η̂ := K−1(1 + η),

where the function K : [0, 1) → [1,∞) comes from Lemma 9.4 (distortion estimate) and
h = HD(X). Finally, let η̃ ∈ (0, η∗] be so small that

(13.13) (Aθβ)−p
(
η̂

η̃

)p
− u > A2

θη̂
−1(1 + u)1/p.

Given n ≥ n1, let jn ≥ 0 be the largest integer such that

(13.14) diam(T kn (Fn)) ≤ η̃β

for all 0 ≤ k ≤ jn. We then have,

η∗β < diam(T jn+1
n (Fn)) ≤ ‖T ′n‖∞ diam(T jnn (Fn)) ≤ 2‖T ′‖∞ diam(T jnn (Fn)).

Hence,

(13.15) diam(T jnn (Fn)) ≥ (2‖T ′‖∞)−1η̃β.

Consider now two cases. Assume first that T jnn (F ) ∩ Bc(Ω(Tn), θ) 6= ∅. It then follows
from (13.14), the fact that η̃ ≤ η∗, and the choice of β, that Fact 7.1 applies to the inverse
branch T−jnn,xn : B(T jnn (xn), η̃δ)→ Rq, to give

diamhn(T jnn (Fn))

mhn(T jnn (Fn))
≤ (1 + η)hndiamhn(Fn)

(1 + ε)−hnmhn(Fn)
= (1 + η)2hn

diamhn(Fn)

mhn(Fn)
≤ (1 + η)2q diamhn(Fn)

mhn(Fn)
.

Along with (13.11) this gives that

(13.16)
diamhn(T jnn (Fn))

mhn(T jnn (Fn))
≤ (1 + η)2q+1Hhn(Xn) < (1 + ε)Hhn(Xn).

Together with (13.15), which determines α, this finishes the proof in our first case. So,
suppose on the other hand that

T jnn (Fn) ⊆ B(ω, θ)

with some ω ∈ Ω(Tn). Let 0 ≤ in ≤ jn be the least integer such that

T kn (Fn) ⊆ B(ω, θ)

for all in ≤ k ≤ jn. Then T in−1
n (Fn) ∩ Bc(Ω(Tn), θ) 6= ∅, and as η̃ ≤ η∗ it follows from

(13.14) that Fact 7.1 applies for the inverse branch T
−(in−1)
n,xn : B(T in−1

n (xn), η∗δ) → Rq, to
give (comparing it with Tn once)

(13.17) (1 + η)−2q diamhn(T inn (Fn))

mhn(T inn (Fn))
≤ (1 + η)−2hn

diamhn(T inn (Fn))

mhn(T inn (Fn))
≤ diamhn(Fn)

mhn(Fn)

and, in view of (13.11) and (13.12),

(13.18)
diamhn(T inn (Fn))

mhn(T inn (Fn))
≤ (1 + η)2q+1Hhn(Xn) ≤ (1 + η)2(q+1)Hh(X).
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Let

kn = min{j ≥ 1 : LTnθ,j(ω) ∩ T inn (Fn) 6= ∅} and ln = sup{j ≥ 1 : LTnθ,j(ω) ∩ T inn (Fn) 6= ∅}.
Consider two cases. First assume that

(13.19) ln − kn ≥ sθ.

It then follows from Lemma 13.2 that

diamhn(T inn (Fn))

mhn(T inn (Fn))
≥ Qθminhn−1{kn, ln − kn} ≥ Qθminκ{kn, ln − kn}

for all n ≥ n2 ≥ n1 so large that hn − 1 > κ > 0. Applying (13.18), we thus get

Qθminκ{kn, ln − kn} ≤ (1 + η)2(q+1)Hh(X) ≤ 4q+1Hh(X),

or equivalently
min{kn, ln − kn} ≤ Zθ.

Considering two subcases assume first that kn ≤ Zθ. It then follows from (13.19), (13.7),
and (13.9), that

diam(T inn (Fn)) ≥ A−1
θ (k−1/p

n l−1/p
n ) ≥ 1

p
Z
− p+1

p

θ (ln − kn) ≥ sθ
p
Z
− p+1

p

θ .

Thus, invoking (13.18), we are done in this case too. Now, consider jointly the, whatsoever,
remaining case

(13.20) ln − kn ≤ u := max{sθ, Zθ}.
Let

k∗n := min{a ≥ 1 : LTnθ,a(ω) ∩ T jnn (Fn) 6= ∅}
and

l∗n := sup{a ≥ 1 : LTnθ,a(ω) ∩ T jnn (Fn) 6= ∅}.
Then k∗n = kn + (jn − in), l∗n = ln + (jn − in), and it follows from (13.20) that

(13.21) l∗n − k∗n ≤ u.

Now, if

(13.22) diam(T jnn (Fn)) ≤ η̂ dist(ω, T jnn (Fn)),

It then follows from Lemma 9.4 that

diamhn(T jnn (Fn))

mhn(T jnn (Fn))
≤ (1 + η)hn|(T jnn )′(xn)|hndiamhn(Fn)

(1 + η)−hn|(T jnn )′(xn)|hnmhn(Fn)
= (1 + η)2hn

diamhn(Fn)

mhn(Fn)

≤ (1 + η)2q diamhn(Fn)

mhn(Fn)
.

Inserting this to (13.11) we thus get that

diamhn(T jnn (Fn))

mhn(T jnn (Fn))
≤ (1 + ε)2q+1Hhn(Xn) < (1 + ε)Hhn(Xn).

Along with (13.15) this finishes the proof if (13.22) holds. So, assume finally that

(13.23) diam(T jnn (Fn)) ≥ η̂ dist(ω, T jnn (Fn)).
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Cover T jnn (Fn) by the sets LTnθ,k∗n(ω), LTnθ,k∗n+1(ω), . . . , LTnθ,l∗n(ω), i.e. write

(13.24) T jnn (Fn) =

l∗n⋃
a=k∗n

(T jnn (Fn) ∩ LTnθ,a(ω)).

Since Lθ,b(ω) ∩ Lθ,b+1(ω) 6= ∅ for all b ≥ 0 for all b ≥ 0 (this can be assured by taking
0 < η < θ sufficiently small), we get from (13.24), (13.4) and (13.21), that

(13.25) diam(T jnn (Fn)) ≤
l∗n∑

a=k∗n

diam(LTnθ,a(ω)) ≤
l∗n∑

a=k∗n

Aθa
− p+1

p ≤ Aθu(k∗n)−
p+1
p .

On the other hand, it follows from (13.23), (13.24) and (13.27) that

(13.26) diam(T jnn (Fn)) > η̂A−1
θ (l∗n)−

1
p ≥ η̂A−1

θ (k∗n + u)−
1
p .

Combining this with (13.25), we obtain A−1
θ η̂(k∗n + U)−

1
p ≤ Aθu(k∗n)−

p+1
p or equivalently

(13.27) k∗n ≤ A2
θη̂
−1(1 + u/k∗n)

1
p .

On the other hand, combining (13.26) with (13.14), we get that η̂A−1
θ (k∗n + u)−

1
p ≤ η̃β, or

equivalently,

k∗n ≥ (Aθβ)−p
(
η̂

η̃

)p
− u.

However, along with (13.27) this contradicts (13.13) ruling out the case under consideration
and finishing the proof. �

Having this lemma we can repeat the proof of Theorem 12.2 verbatim to get the following.

Theorem 13.4. If (Tn : Xn → Xn)∞1 is a sequence of conformal parabolic Walters maps
converging nicely to some conformal parabolic Walters map T : X → X for which HD(X) >
1, then limn→∞HhTn

(Xn) = HhT (X).

Combining this theorem with Theorem 12.2, we get this.

Theorem 13.5. If (Tn : Xn → Xn)∞1 is a sequence of finitely conformal Walters maps
converging finely to some finitely conformal Walters map T : X → X for which HD(X) > 1,
and if its subsequence of all parabolic maps converges nicely to T , then limn→∞HhTn

(Xn) =
HhT (X).

As a fairly immediate consequences of this theorem, we get the following.
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Corollary 13.6. For every c ∈ C let Jc be the Julia set of the quadratic polynomial C 3
z → fc(z) = z2 + c and let hc = HD(Jc). Then

lim
R3c↗1/4

Hhc(Jc) = Hh1/4
(J1/4).

Proof. Indeed, all the maps fc with c ∈ [0, 1/4) are conformal expanding repellers when
restricted to their Julia sets and, it was established in [BZ] (comp. Proposition 9.2) that
(fcn : Jcn → Jcn)∞1 converges finely to f1/4 : J1/4 → J1/4 if R 3 cn ↗ 1/4. It was proved
in [Z] and [U1] that HD(J1/4) > 1. So, a direct application of Theorem 12.2 finishes the
proof. �

Corollary 13.7. For every λ ∈ C \ {0} let

fλ(z) = z(1− z − λ2z).

Let Jλ := J(fλ) be the Julia set of fλ and let hλ := HD(Jfλ). Then for R > 0 sufficiently
small, the function

D∗(0, R) := {λ ∈ C \ {0} : |λ| < R} 3 λ→ Hhλ(Jλ)

is continuous.

Proof. The fact that the map D∗(0, R) 3 λ → fλ is continuous with respect to the nice
convergence topology was essentially proved in [AU]. The fact HD(Jλ) > 1 follows from
[U1]. So, the direct application of Theorem 13.4 finishes the proof. �

14. Graph Directed Markov Systems; Preliminaries

Suppose we are given an oriented multigraph < E, V > consisting of countably many edges
E and finitely many vertices V . Suppose also that an incidence matrix A : E×E → {0, 1} is
given. Any finite word ω ∈ E∗ =

⋃∞
n=0 E

n is called A-admissible provided that Aωiωi+1
= 1

for all 1 ≤ i ≤ |ω|− 1, where |ω| is the length of ω. The set of all finite A-admissible words
is denoted by E∗A and the set of all words of some length 0 ≤ n ≤ ∞ is denoted by En

A. The
matrix A is called finitely irreducible if there exists a finite set λ ⊆ E∗A such that for all
α, β ∈ E∗A there exists γ ∈ λ such that αβγ ∈ E∗A. The matrix A is called finitely primitive
if the set λ can be chosen to consist of the words with the same length. Assume further that
an integer number d ≥ 1 is fixed and for every v ∈ V a compact connected set Xv ⊆ Rd is
given, and an open connected set Wv ⊇ Xv is also given. Assume also that two functions
i, t : E → V are given with the property that Aab = 1 whenever t(a) = i(b). In most known
natural examples this implication goes in fact in both directions, but we do not assume
this. Assume lastly that for every e ∈ E a continuous injective map ϕe : Wt(e) → Rd is
given. Fix also a finite set Ω ⊆ E such that t(e) = i(e) for all e ∈ Ω. Call a word ω ∈ E∗A
hyperbolic if either ω|ω| /∈ Ω or ω|ω|−1 6= ω|ω| and ω|ω| ∈ Ω. All the objects introduced above
are required to satisfy the following conditions.
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(2a) Xv = IntXv for all v ∈ V .
(2b) ϕe(Xt(e)) ⊆ Xi(e) for all e ∈ E. this enables us to define for every ω ∈ E∗A, say

ω ∈ En
A, the map ϕω := ϕω1 ◦ϕω2 ◦ ...◦ϕωn : Xt(ωn) → Xi(ω1). Put also t(ω) = t(ωn)

and i(ω) = i(ω1).
(2c) (Open Set Condition) ϕa(IntXt(a))

⋂
ϕb(IntXt(b)) = ∅ whenever a, b ∈ E and

a 6= b.
(2d) (Cone Property) There exists γ > 0 such that for every v ∈ V and for every x ∈ Xv

there exists an open cone Cone(x, γ) ⊆ IntXv with vertex x, central angle γ and
some altitude l which may depend on x.

(2e) If ω ∈ E∗A is a hyperbolic word, then ϕω : Xt(ω) → Xi(ω) extends to a C2-conformal
map from Wt(ω) to Wi(ω). This conformal map is defined by the same symbol ϕω.

(2f) (Bounded Distortion Property) There exists K ≥ 1 such that for every hyperbolic
word ω ∈ E∗A and all x, y ∈ Wt(ω),

|ϕ′ω(y)|
|ϕ′ω(x)|

≤ K.

Here and in the sequel for any conformal mapping ϕ, |ϕ′(z)| denotes the similarity
factor (equivalently its norm as a linear map from Rd into Rd) of the differential
ϕ′(z) : Rd → Rd. In addition, if ϕ : Wv → Rd for some v ∈ V , then

||ϕ′|| := sup{|ϕ′(x)| : x ∈ Wt(ω).

(2g) There are constants α > 0 and L ≥ 1 such that∣∣|ϕ′e(y)| − |ϕ′e(x)|
∣∣ ≤ ||ϕ′e||||y − x||α

for all e ∈ E and all x, y ∈ Wt(e).
(2h) For every hyperbolic word ω ∈ E∗A, ||ϕ′ω|| < 1.
(2i) For every e ∈ Ω, t(e) = i(e) and there exists a unique fixed point xe of the map

ϕe : Xt(e) → Xi(e). In addition, |ϕ′e(xe)| = 1.
(2j) For every e ∈ Ω,

lim
n→∞

diam(ϕen(Xt(e))) = 0.

This implies that
∞⋂
n=0

ϕen(Xt(e)) = {xe}.

Any system S satisfying the above conditions is called a conformal graph directed Markov
system. If Ω = ∅ the system S is called hyperbolic and if Ω 6= ∅, it is called parabolic. The
set Ω is referred to as the set of parabolic vertices, the maps ϕe, e ∈ Ω, are called parabolic
maps, and xe, e ∈ Ω, are called parabolic fixed points. We could have in principle provided
a somewhat less restrictive definition of a parabolic graph directed Markov system allowing
finitely many parabolic periodic points (fixed points of ϕω, ω ∈ E∗A) that are not necessarily
fixed points, but then passing to a sufficiently large iterate Sn = {ϕω : ω ∈ E∗A} we would
end up in a parabolic system as described above. Notice also that our assumptions imply
each map ϕω : Xt(ω) → Xi(ω) such that i(ω) = t(ω) to have a unique fixed point, call it xω,
and that the diameters diam(ϕnω(Xt(ω))) converge to zero exponentially fast unless ω ∈ Ω∗.
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It is not difficult to prove (the same argument as in the proof of Lemma 8.1.2 in [MU3]
goes through) that

(14.1) lim
n→∞

sup
ω∈EnA
{diam(ϕω(Xt(ω)))} = 0.

Since for every ω ∈ E∞A , {ϕω|n(Xt(ω))}∞n=1 is a descending sequence of compact sets, this
implies that the intersection

⋂∞
n=1 ϕω|n(Xt(ωn)) is a singleton. Call its only element π(ω).

We thus have a well-defined map

π : E∞A → X :=
⋃
v∈V

Xv.

Fixing s > 0 and endowing E∞A with the metric ds(ω, τ) = exp(−s|ω ∧ τ |), where ω ∧
τ is the longest common initial subword of ω and τ , the map π : E∞A → X becomes
uniformly continuous. Its image, π(E∞A ), is called the limit set of the attractor of the graph
directed Markov system S, and is denoted by Js or simply by J if only one system is under
consideration. It satisfies the equation

J =
⋃
e∈E

ϕe(J ∩Xt(e)).

A conformal graph directed Markov system S is referred to as a conformal iterated function
system if the set of vertices V is a singleton and the incidence matrix A consists of 1s only.

A conformal graph directed system S = {ϕe}e∈E is said to satisfy the separation condition
if

ϕa(X) ∩
⋃

b∈E\{a}

ϕb(X) = ∅

for all a ∈ E. Then a global map T :
⋃
e∈E ϕe(X)→ X is well-defined, given by the formula

T (ϕe(x)) = x, x ∈ X.

Since T (JS) = JS, we have also T (JS) = JS. By the separation condition, T−1(JS) =⋃
e∈E ϕe(JS) ⊂ JS is an open set of JS. Observe also that

T−1(JS) =
⋃
e∈E

ϕe(JS) ⊇
⋃
e∈E

ϕe(JS) = JS.

So,

T−1(JS) = JS,

and we may regard the transformation T : T−1(JS) → JS as a conformal Walters map

with X = JS and X0 = T−1(JS). The Walters conformal map T : T−1(JS) → JS is then
expanding if the original system S was hyperbolic and it is parabolic if the original system
S was parabolic.
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15. Finite Graph Directed Markov Systems; Continuity of Hausdorff
Measure

Let E be a finite set, let A : E × E → {0, 1} be a primitive incidence matrix, and let
X be a compact connected subset of Rq such that IntX = X. Let CGDMS(X,E,A) be
the collection of all contracting conformal graph directed Markov systems modelled on the
alphabet E with the incidence matrix A and the phase space X. The Walters conformal
map associated to each member of CGDMS(X,E,A) is a conformal expanding repeller.
The space CGDMS(X,E,A) is endowed with metric d given by the following form

(15.1) d(Φ,Ψ) =
∑
e∈E

(‖ϕe − ψe‖∞ + ‖ϕ′e − ψ′e‖∞)

The topology induced by the metric d is called the topology of uniform convergence. The
subset of CGDMS(X,E,A) consisting of all its elements satisfying the separation condition
is an open set. As was proved in [1] and [2], the convergence, with respect to this topology,
of elements of CGDMS(X,E,A) to an element satisfying the separation condition, entails
the sub-fine convergence of Walters expanding maps associated with them. So, as an
immediate consequence of Theorem 12.2 we get the following.

Theorem 15.1. If E is a finite set and A : E × E → {0, 1} is a primitive incidence ma-
trix, then each contracting conformal graph directed Markov system S ∈ CGDMS(X,E,A)
satisfying the separation condition (if E is finite this simply means that if a, b ∈ E and
a 6= b, then ϕa(X) ∩ ϕb(X) = ∅) is a continuity point of the Hausdorff measure function
CIFS(X,E,A) 3 Φ → HhΦ(JΦ) with CIFS(X,E,A) endowed with the metric d given by
formula (15.1).

Let SGDMS(X,E,A) denote the subspace of CGDMS(X,E,A) consisting of all similarities.
As a direct application of Theorem 15.1, we get the following.

Corollary 15.2. If E is a finite set and A : E×E → {0, 1} is a primitive incidence matrix,
then each contracting graph directed Markov system S ∈ SGDMS(X,E,A), so consisting of
similarities, satisfying separation condition is a continuity point of the Hausdorff measure
function SGDMS(X,E,A) 3 Φ→ HhΦ(JΦ).

If all entries of A are 1s only (the case of iterated function systems) we write CIFS(X,E)
for CGDMS(X,E,A) and SIFS(X,E) for SGDMS(X,E,A). The two special but very
important special cases respectively of Theorem 15.1 and Corollary 15.2 are these.

Theorem 15.3. If E is a finite set, then each contracting conformal iterated function
system S ∈ CIFS(X,E,A) satisfying the separation condition is a continuity point of the
Hausdorff measure function CIFS(X,E) 3 Φ → HhΦ(JΦ) with CIFS(X,E) endowed with
the metric d given by formula (15.1).
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and

Corollary 15.4. If E is a finite set, then each contracting iterated function system S ∈
SIFS(X,E), so consisting of similarities, satisfying the separation condition is a continuity
point of the Hausdorff measure function SIFS(X,E) 3 Φ→ HhΦ(JΦ).

This corollary is the result proved by L. Olsen in [Ol].

16. Infinite Iterated Function Systems

In this section we shall describe a class of conformal infinite Walters expanding maps the
Hausdorff measure function restricted to which is continuous. It will be more convenient
for us to use the language of iterated function systems. Let X ⊆ R be a closed bounded
interval. Given κ ∈ (0, 1), γ > 1, an integer l ≥ 0 and ξ ∈ (0, 1] such that (1 − κξ)γξ > 1
let SIFS(X;κ, γ, l, ξ) be the collection of all conformal hyperbolic iterated function systems
S = {ϕi}i∈N acting on X and consisting of similarities with the following properties.

(a) diam(ϕn+1(X)) ≤ κ diam(ϕn(X)) for all n ≥ l.
(b) max(ϕn+1(X)) < min(ϕn(X)) for all n ≥ l.
(c) (max(ϕn+1(X)),min(ϕn(X)) ∩

⋃
j∈N\{n,n+1} ϕj(X) = ∅ for all n ≥ l.

(d) min(ϕn(X))−max(ϕn+1(X)) ≥ γ diam(ϕn(X)) for all n ≥ l.
(e) HD(JS) ≥ ξ.

The main result of this section is the following.

Theorem 16.1. Consider κ, γ, l, ξ with (1− κξ)γξ > 1. Then the function

SIFS(X;κ, γ, l, ξ) 3 S 7→ HhS (JS)

is continuous with the topology of fine convergence on SIFS(X;κ, γ, l, ξ).

Proof. Suppose that (Sn)∞1 converges finely to S∞ in SIFS(X;κ, γ, l, ξ). Apply Corol-
lary 11.3 for the set X becoming JSh . It yields that for every n ≥ 1 there exists a finite
word ω(n) ∈ N∗ long enough so that

diamhn(ϕ
(n)

ω(n)(X))

mhn(ϕ
(n)

ω(n)(X))
> ((1− κξ)γξ)−1Hhn(JSn).

Since the all the maps ϕω(n) are similarities, we therefore get that

(16.1)
diamhn(X)

mhn(X)
=

diamhn(ϕ
(n)

ω(n)(X))

mhn(ϕ
(n)

ω(n)(X))
> ((1− κξ)γξ)−1/2Hhn(JSn).
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Consider now an arbitrary set F ⊆ X such that

F ∩
l−1⋃
j=1

ϕ
(n)
j (X) = ∅ and #{j ∈ N : ϕ

(n)
j (X) ∩ F 6= ∅} ≥ 2.

Let pn = min{j : ϕ
(n)
j (X) ∩ F 6= ∅} ≥ 2 and let qn = sup{j : ϕ

(n)
j (X) ∩ F 6= ∅}. Then

qn > pn and, using (a), we get that
(16.2)

mhn(F ) ≤
qn∑
j=pn

mhn(ϕ
(n)
j (X)) =

qn∑
j=pn

‖(ϕ(n)
j )′‖hn = (diam(X))−hn

qn∑
j=pn

diamhn(ϕ
(n)
j (X))

≤ (diam(X))−hn
qn−pn∑
j=0

κjhndiamhn(ϕ(n)
pn (X))

≤ (diam(X))−hn(1− κhn)−1diamhn(ϕ(n)
pn (X)).

On the other hand, since the gap between ϕ
(n)
pn (X) and ϕ

(n)
pn+1(X) lies between the endpoints

of F , we get from (d) that diam(F ) ≥ γ diam(ϕ
(n)
pn (X)). Combining this with (16.2) and

(16.1) we obtain

(16.3)

diamhn(F )

mhn(F )
≥ (1− κhn)γhndiamhn(X) ≥ (1− κξ)γξ diamhn(X)

mhn(X)

≥ ((1− κξ)γξ)1/2Hhn(JSn),

where the last inequality holds for all n ≥ 1 large enough. Now fix a non-empty closed set
Fn ⊆ Jsn containing at least two points and such that

(16.4)
diamhn(Fn)

mhn(Fn)
< ((1− κξ)γξ)1/2Hhn(JSn).

Let k ≥ 0 be the the least integer such that Fn ⊆ ϕ
(n)
ω (JSn) with some word ω of length

k. Then En := (ϕ
(n)
ω )−1(Fn) ⊆ JSn and it intersects at least two distinct sets of the form

ϕ
(n)
e (X), e ∈ N. Since (ϕ

(n)
ω )−1 is a similarity and using (16.4), we get

(16.5)
diamhn(En)

mhn(En)
=

diamhn(Fn)

mhn(Fn)
< ((1− κξ)γξ)1/2Hhn(JSn).

Combining this with (16.3), we see that En ∩
⋃l−1
j=0 ϕ

(n)
j (X) 6= ∅ and therefore

diam(En) ≥ min{dist(ϕ(n)
a (X), ϕ

(n)
b (X)) : 1 ≤ a < b ≤ l}

≥ 1

2
min{dist(ϕ(∞)

a (X), ϕ
(∞)
b (X)) : 1 ≤ a < b ≤ l} := ∆,

where the last inequality holds for all n ≥ 1 large enough. Thus, it follows from this,
Corollary 11.3, (16.4), and the equality of (16.3) that

(16.6) inf

{
diamhn(E)

mhn(E)
: E ⊆ X, diam(E) ≥ ∆

}
≤ Hhn(Xn).
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Now the proof goes in the same way as the proof of Theorem 12.2 with (12.5) replaced by
(16.6). We are done. �
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[DU2] M. Denker, M. Urbański, On absolutely continuous invariant measures for expansive rational maps

with rationally indifferent periodic points, Forum Math. 3(1991), 561-579. 8
[Fa] K. Falconer, The Geometry of Fractal Sets, Cambridge University Press 1985. 10
[Fe] H. Federer, Geometric Measure Theory, Springer, 1969. 10, 10
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[U1] M. Urbański, On Hausdorff dimension of Julia set with a rationally indifferent periodic point, Studia

Math. 97 (1991), 167 – 188. 13, 13
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