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Abstract. We show that the Gibbs states (known from [9] to be unique) of
Hölder continuous potentials and random distance expanding maps coincide with
relative equilibrium states of those potentials, proving in particular that the lat-
ter exist and are unique. In the realm of conformal expanding random maps we
prove that given an ergodic (globally) invariant measure with a given marginal,
for almost every fiber the corresponding conditional measure has dimension equal
to the ratio of the relative metric entropy and the Lyapunov exponent. Finally
we show that there is exactly one invariant measure whose conditional measures
are of full dimension. It is the canonical Gibbs state.

1. Introduction

The thermodynamic formalism of random distance expanding maps has been
developed in [9]. It comprised and went beyond the previous work of Bogenschütz,
Gundlach, Kifer, and others (see [3], [4], [1], [6], [7], and the references therein) on
random symbolic dynamical systems and random infinitesimally expanding maps
on smooth Riemannian manifolds. The work [9] thoroughly explored the concept of
Gibbs states of appropriately defined Hölder continuous potentials. The work [11]
substantially developed the theory of relative equilibrium states of holomorphic
endomorphisms of the Riemann sphere and Hölder continuous potentials.

In the present paper, after some preliminaries, we firstly deal (in Section 5) with
equilibrium states of Hölder continuous potentials and random distance expand-
ing maps as defined in [9]. We prove that the Gibbs states (known from [9] to
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be unique) of such potentials coincide with relative equilibrium states of those
potentials, proving in particular that the latter exist and are unique.

Next, in Section 6, we deal with conformal expanding random maps. In [9] the
Hausdorff dimension of almost all fibers was identified as the only zero of the
expected pressure function, and the corresponding conditional (fiber) measures of
the canonical Gibbs state µh were shown to have the same dimension. In the
present paper we look at an arbitrary ergodic (globally) invariant measure with
a given marginal m. As our main result we prove that for m-almost every fiber,
the corresponding conditional measure has dimension equal to the ratio of the
relative metric entropy and Lyapunov exponent. As a complementary result we
show that the canonical Gibbs state µh is the only ergodic invariant measure whose
conditional measures have dimensions equal to Hausdorff dimensions of their fibers.
In short, the Gibbs state µh is the only invariant measure of full dimension.

2. Metric Random Dynamical Systems

We first recall the definition of a metric (measurable) random dynamical system.

Definition 2.1. A metric random dynamical system consists of the following ob-
jects:

• A Lebesgue probability space (X,F ,m)
• An ergodic invertible measure-preserving transformation θ : X → X
• A Lebesgue measurable space (J ,B) of the form

J =
⋃
x∈X

{x} × Jx

The spaces Jx, x ∈ X are called the fibers of the random dynamical system.
• A measurable transformation T : J → J of the form

T (x, y) = (θ(x), Tx(y)),

where Tx : Jx → Jθ(x).

Notation 2.2.
πX : J → X and πY : J → Y are the first and second projections, respectively.
For each x ∈ X, ix : Jx → J is defined by ix(y) = (x, y).

To do more dynamics, we define for every integer n ≥ 0 and for every x ∈ X

T nx := Tθn−1(x) ◦ Tθn−2(x) ◦ . . . ◦ Tx : Jx → Jθn(x),

so that

T n(x, y) = (θn(x), T nx (y))
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for all x ∈ X and for all y ∈ Jx. Throughout the whole paper we are concerned
with T -invariant probability measures on J with marginal m. By M1

m(J ) we
denote the collection of all probability measures µ on (J ,B) such that

µ ◦ π−1
X = m,

and we set

M1
m(T ) = {µ ∈M1

m(J ) : µ ◦ T−1 = µ}.
Denote by εX the partition of X into singletons. Since X is a Lebesgue space,
the partitions εX and π−1

X (εX) are measurable, and so each measure µ ∈ M1
m(J )

admits and is uniquely determined by its disintegration (µx)x∈X with respect to
the partition π−1

X (εX). In other words, there exists a system of measures (µx)x∈X
(called the canonical system of conditional measures), unique up to a set of m-
measure zero, such that for each x ∈ X, µx is a measure on the fiber Jx, and such
that

µ(g) =

∫
X

µx(gx)dm(x)

for every µ-integrable function g : J → R, where

gx = g ◦ ix.

Moreover, a measure µ ∈ M1
m(J ) is T -invariant, i.e. belongs to M1

m(T ), if and
only if

µx ◦ T−1
x = µθ(x)

for m-a.e. x ∈ X.
The rest of this section is concerned with relative entropies. We follow the stan-

dard notation from deterministic entropy theory as used for example in Chapters
1 and 2 of [10]. We recall the following definition:

Definition 2.3. If µ ∈M1
m(T ), and if α is a measurable partition of J finer than

π−1
X (εX), then we let

hµ(T |θ;α) := lim
n→∞

1

n
Hσ

(
αn
∣∣π−1
X εX

)
,

where

αn :=
n∨
j=0

T−jα.

Moreover, let

hµ(T |θ) := sup{hµ(T |θ;α)},
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where the supremum is taken over all measurable partitions α of J finer than
π−1
X (εX) and having finite entropy relative to π−1

X (εX), i.e.

Hµ(α|π−1
X (εX)) :=

∫
X

Hµx(αx)dm(x) < +∞,

where αx := i−1
x (α). The number hµ(T |θ) is called the entropy of T relative to θ

with respect to the measure µ.

To shorten notation, given a measure µ ∈M1
m(T ), we now denote by Aµ(T |θ) the

collection of all measurable partitions α of J finer than π−1
X (εX) and having finite

entropy relative to π−1
X (εX). By (µx,y)(x,y)∈J we denote the canonical system of

conditional measures of the measure µ with respect to the partition T−1(εJ ), i.e.
µx,y denotes the conditional measure supported on T−1

x (Tx(y)). As in the deter-
ministic case, a good way to calculate relative entropies is by means of generating
partitions.

Definition 2.4. A partition α finer than π−1
X (εX), i.e. belonging to Aµ(T |θ), is

said to be generating for T relative to θ if and only if

α∞ :=
∞∨
j=0

T−jα ≡µ εJ ,

where for two measurable partitions β1 and β2 on J , the relation β1 ≡µ β2 means
that there exists a measurable set Z ⊆ J with µ(J \Z) = 0 such that β1|Z = β2|Z .

We have the following:

Proposition 2.5. If T : J → J is a metric random dynamical system, if µ ∈
M1

m(T ), and if α ∈ Aµ(T |θ) is generating for T relative to θ, then

hµ(T |θ) = hµ(T |θ;α) = Hµ(εJ |T−1(εJ ))

=

∫
J

Hµx,y

(
εJx|T−1

x (Tx(y))

)
dµ(x, y)

=

∫
X

∫
Jx

Hµx,y

(
εJx|T−1

x (Tx(y))

)
dµx(y)dm(x).

This is an adaptation to the random setting of the well-known Kolmogorov-Sinai
generator theorem. Its statement and an outline of its proof can be found in [11].
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We end this section with a random version of the Shannon-McMillan-Breiman
theorem.

Theorem 2.6 (Theorem 2.2.5(iii) of [1]). If T : J → J is a metric random
dynamical system, if µ ∈M1

m,e(T ), and if α ∈ Aµ(T |θ), then for µ-a.e. (x, y) ∈ J ,

lim
n→∞

−1

n
log µx(α

n
x(y)) = hµ(T |θ;α).

3. Topological Random Dynamical Systems

We say that a metric random dynamical system T : J → J is topological if for
every x ∈ X, the fiber Jx is a compact metric space endowed with a metric ρx
whose Borel σ-algebra is equal to i−1

x (B), and if supx∈X diamx(Jx) < +∞.

Definition 3.1. We say that a topological random dynamical system T : J → J
is of global type if there exists a compact metric space (Y, ρ) such that

• For each x ∈ X, Jx ⊆ Y , and ρx = ρ|Jx . (Note that this condition implies
that J ⊆ X × Y .)
• B = (F ⊗ BY )|J , where BY is the σ-algebra of Borel subsets of Y .

If Jx = Y for all x ∈ X, then we say that T is of strongly global type. We call Y
the vertical space of the topological random dynamical system T : J → J .

Let T : J → J be a topological random dynamical system. We denote by
Cm(J ) the space of all measurable functions g : J → R such that gx is continuous
for all x ∈ X. We further define

C1
m(J ) :=

{
g ∈ Cm(J ) :

∫
X

‖gx‖∞ dm(x) < +∞
}
.

For each g ∈ Cm(J ) we let

Sn(g) :=
n−1∑
j=0

g ◦ T j.

Denote by M1
m,e(T ) the set of all ergodic elements of M1

m(T ). Let a function

φ ∈ C1
m(J ), routinely called in such a context a potential, be given. The number

P(φ, T |θ) := sup
µ∈M1

m(T )

(
hµ(T |θ) +

∫
J
φ dµ

)
= sup

µ∈M1
m,e(T )

(
hµ(T |θ) +

∫
J
φ dµ

)
is called the variationa pressure of φ and T relative to θ.

Given x ∈ X, ε > 0, and an integer n ≥ 0, we say that a set F ⊆ Jx is (x, n, ε)-
separated if for every two distinct points y, z ∈ F there exists j ∈ {0, 1, . . . , n− 1}
such that ρθj(x)(T

j
x(y), T jx(z)) > ε. If our random dynamical T : J → J is of
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strongly global type, then the following quantity, called topological pressure, is
well-defined (see [2]):

(3.1) Pt(φ, T |θ) := lim
ε→0

lim sup
n→∞

1

n

∫
X

log sup
E⊆Jx

(∑
y∈E

exp(Snφ(x, y))

)
dm(x),

where the supremum is taken over all (x, n, ε)-separated subsets E of Jx. By
saying that (3.1) is well-defined, we mean that for each n ∈ N the integrand is
measurable. We have the following variational principle:

Theorem 3.2 ([2]). If T : J → J is a topological random dynamical system of
strongly global type and if φ ∈ C1

m(J ) is a potential, then

Pt(φ, T |θ) = P(φ, T |θ).

The hypothesis of strongly global type is strong indeed, and in fact it is too strong
for this paper; we brought up the above result only for the sake of completeness.
In what follows we will however work with maps of global type which is a much
weaker and more frequently satisfied assumption.

We end this section by formulating the following definition of equilibrium states.
They will be a primary object of our considerations in Section 5.

Definition 3.3. If φ ∈ C1
m(J ), then a measure µ ∈ M1

m(T ) is called a relative
equilibrium state for the potential φ if

hµ(T |θ) +

∫
J
φ dµ = P(φ, T |θ).

In Section 5 we will deal with the issue of the existence and uniqueness of equilib-
rium states in the context of random distance expanding dynamical systems.

4. Distance Expanding Random Maps; Preliminaries

Modifying a definition from [9] we call a topological random dynamical system
T : J → J distance expanding if all the mappings Tx : Jx → Jθ(x), x ∈ X, are
open and surjective, and if there exist a measurable function η : X → (0,+∞) and
a real number ξ > 0 such that following conditions hold:

• (Uniform Openness)

Tx(Bx(z, ηx)) ⊇ Bθ(x)

(
Tx(z), ξ

)
for every (x, z) ∈ J .
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• (Measurably Expanding) There exists a measurable function γ : X →
(1,+∞) such that

ρθ(x)(Tx(y), Tx(z)) ≥ γxρx(y, z)

whenever x ∈ X, y, z ∈ Jx, and ρx(y, z) ≤ 2ηx.
1

• (Measurability of Degree) The map

X 3 x 7→ deg(Tx) := sup
y∈Jθ(x)

#
(
T−1
x (y)

)
is measurable.

• (Topological Exactness) There exists a measurable function nξ : X → N
such that

T
nξ(x)
x (Bx(z, ξ)) = J

θ
nξ(x)(x)

for all x ∈ X and for all z ∈ Jx.

• (Weak Perfectness)

ξ̂ := ess inf{inf{diamx(Bx(z, ξ)) : z ∈ Jx} : x ∈ X} > 0.

• (Lipschitz Continuity) There exists L ≥ 1 such that

ρθ(x)(Tx(y), Tx(z)) ≤ Lρx(y, z)

for all x ∈ X and for all y, z ∈ Jx.

• (Log Integrable Compactness) For every x ∈ X and for every r > 0 let Nx(r)
denote the minimal number of open balls with radii r needed to cover Jx.
We assume that there exists a measurable function N̂ : X → N such that

Nx(ξ̂/4L) ≤ N̂(x) for m-a.e. x ∈ X
and such that ∫

X

log N̂(x) dm(x) < +∞.

Let us make some comments about this definition. Of course, Log Integrable
Compactness holds if

ess sup{Nx(ξ̂/4L) : x ∈ X} < +∞,
and in particular if

ess sup{Nx(r) : x ∈ X} < +∞ ∀r > 0.

1In [9] the factor of 2 was incorrectly omitted from this inequality.
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Although this last condition looks somewhat restrictive, it is nevertheless always
satisfied if the random system T : J → J is of global type.

As a matter of fact the last three conditions of the above definition, i.e. Weak Per-
fectness, Lipschitz Continuity, and Log Integrable Compactness, were not needed
and did not appear in [9]. In the present paper we need them in order to construct
generating partitions with finite entropy. Thus the definition of a random distance
expanding map is more restrictive in the present paper than in [9].

We call a random distance expanding map T : J → J accessible if there exists
a partition α of J finer than π−1

X (εX) with the following two properties:

(a) There exists a log-integrable function N̂ : X → N such that

#(αx) ≤ N̂(x) for m-a.e. x ∈ X

(b) diamx(αx) ≤ ξ̂/(2L) for m-a.e. x ∈ X.

Any such partition α is called accessible for T . We note the following.

Proposition 4.1. Every random distance expanding map of global type is acces-
sible.

Proof. Let β = {B1, B2, . . . , BN} be a finite cover of Y by open balls with radii

ξ̂/4L. Define the partition γ = {C1, C2, . . . , CN} of Y by induction as follows.

C1 := B1

Cn+1 := Bn+1 \ (C1 ∪ C2 ∪ . . . ∪ Cn), 1 ≤ n ≤ N − 1.

Let
α := π−1

Y (γ) ∨ π−1
X (εX).

By its very definition α is finer than π−1
X (εX). Define N̂(x) := N ; then (a) clearly

holds. Also, for every 1 ≤ j ≤ n and every x ∈ X, we have that

diam(Cj ∩ Jx) ≤ diam(Cj) ≤ ξ̂/(2L),

and so (b) holds too. The proof is complete. �

The importance of accessible partitions lies primarily in the following fact:

Proposition 4.2. Every accessible partition for a random distance expanding map
T : J → J belongs to Aµ(T |θ) and is generating for every measure µ ∈M1

m(T ).

Proof. Let α be an accessible partition for T : J → J . Then

Hµ(α|π−1
X (εX)) =

∫
X

Hµx(αx) dm(x) ≤
∫
X

log N̂(x) dm(x) < +∞.
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It immediately follows from the conditions of Uniform Openness, Lipschitz Conti-
nuity, and Weak Perfectness that

(4.1) ηx ≥ ξ̂/(2L)

for m-a.e. x ∈ X.
Now fix an x ∈ X satisfying (4.1), and suppose that α∞x 6= εJx . Then there

exists A ∈ α∞x with #(A) ≥ 2. Fix distinct y, z ∈ A ∈ α∞x ; then

ρθn(x)(T
n
x (y), T nx (z)) ≤ diamθn(x)(T

n
x (A)) ≤ diamθn(x)(αθn(x)) ≤ ξ̂/(2L) ≤ ηx.

Thus by the condition of Measurably Expanding we have

(4.2) ρθn+1(x)(T
n+1
x (y), T n+1

x (z)) ≥ γθn(x)ρθn(x)(T
n
x (y), T nx (z)).

Let us write

γnx :=
n−1∏
i=0

γθi(x).

Then iterating (4.2) gives

ηx ≥ ρθn(x)(T
n
x (y), T nx (z)) ≥ γnxρx(y, z)

and in particular the sequence (γnx )∞1 is bounded. On the other hand, by Birkhoff’s
Ergodic Theorem,

(4.3) lim
n→∞

1

n
log γnx =

∫
X

log γ dm > 0

for m-a.e x ∈ X. Thus, if we let Z be the set of x for which both (4.1) and (4.3)
hold, then X \ Z has m-measure zero and for all x ∈ Z, α∞x = εJx . Thus the
partition α is generating and the proof is complete. �

Combining Proposition 4.2 with Proposition 2.5 and then with Theorem 2.6 yields
the following corollary which we will use twice in Section 6:

Corollary 4.3. If T : J → J is a random distance expanding map, if µ ∈
M1

m,e(T ), and if α is a partition which is accessible for T , then for µ-a.e. (x, y) ∈
J ,

lim
n→∞

−1

n
log µx(α

n
x(y)) = hµ(T |θ).
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5. Gibbs and Equilibrium Measures for Distance Expanding Random
Maps

Throughout this whole section T : J → J is an accessible random distance
expanding map. Following [9] fix α ∈ (0, 1]. By Hα(Jx) we denote the space of
Hölder continuous functions on Jx with exponent α. This means that φx ∈ Hα(Jx)
if and only if φx ∈ C(Jx) and vα(φx) <∞ where

vα(φx) := sup

{
|φx(y)− φx(z)|

ραx(y, z)
: y, z ∈ Jx

}
.

A function φ ∈ C1
m(J ) is called Hölder continuous with exponent α provided that

there exists a measurable function H : X → [1,+∞) such that

logH ∈ L1(m)

and

vα(φx) ≤ Hx for m-a.e. x ∈ X.
We denote the space of all Hölder continuous functions with fixed α and H by
Hα(J , H) and the space of all Hölder continuous functions with exponent α by
Hα(J ). Now, for every x ∈ X, we consider the transfer operator

Lx = Lφ,x : C(Jx)→ C(Jθ(x))

given by the formula

Lxgx(w) =
∑

z∈T−1
x (w)

gx(z)eφx(z), w ∈ Jθ(x).

This is obviously a positive linear operator; moreover, it is bounded and its operator
norm is bounded above by

‖Lx‖∞ ≤ deg(Tx) exp(‖φ‖∞).

For every n ≥ 0 and for µ-a.e. x ∈ X, we put

Lnx := Lθn−1(x) ◦ ... ◦ Lx : C(Jx)→ C(Jθn(x)).

Note that

Lnxgx(w) =
∑

z∈T−nx (w)

gx(z)eSnφ(x,z) , w ∈ Jθn(x) .

Then the dual operator L∗x : C∗(Jθ(x))→ C∗(Jx) is defined by

L∗x(µθ(x))gx := µθ(x)(Lxgx).

Proposition 5.1. Let T : J → J be a distance expanding random map, and let
ξ > 0 and η : X → (0,+∞) be as in the definition of distance expanding. For
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every (x, y) ∈ J , the map Tx has a unique inverse branch T−1
x,y : Bθ(x)(Tx(y), ξ)→

Bx(y, ηx). Furthermore,

(5.1) ρx(T
−1
x,y (z), T−1

x,y (w)) ≤ 1

γx
ρθ(x)(z, w) for all z, w ∈ Bθ(x)(Tx(y), ξ).

Proof. The existence of a unique inverse branch T−1
x,y : Bθ(x)(Tx(y), ξ)→ Bx(y, ηx) is

equivalent to the assertion that #(T−1
x (z)∩Bx(y, ηx)) = 1 for all z ∈ Bθ(x)(Tx(y), ξ).

Now ≥ is due to the Uniform Openness condition, while ≤ is due to the Measurably
Expanding condition (and the fact that ρx(z1, z2) ≤ 2ηx for all z1, z2 ∈ Bx(y, ηx)).
Finally, (5.1) is due to the Measurably Expanding condition. �

For (x, y) ∈ J and n > 1, we let

T−nx,y = T−1
x,y ◦ T−1

θ(x),Tx(y)
◦ . . . ◦ T−1

θn−1(x),Tn−1
x (y)

.

Then iterating (5.1) gives

ρx(T
−n
x,y (z), T−nx,y (w)) ≤ 1

γnx
ρθn(x)(z, w) for all z, w ∈ Bθn(x)(T

n
x (y), ξ).

Remark 5.2. In [9], the map T−nx,y was improperly called the “unique continuous
inverse branch of T nx defined on Bθn(x)(T

n
x (y), ξ) that sends T nx (y) to y.” Strictly

speaking this is incorrect, since the shift maps give counterexample to unique-
ness. However, if n = 1, then it is the unique inverse branch of Tx defined on
Bθ(x)(Tx(y), ξ) and taking values in Bx(y, ηx), as the above proposition shows.

Following [9] we call a measure µ ∈ M1
m(T ) a Gibbs state for a potential φ :

J → R if there exist measurable functions Dφ : X → [1,+∞) and R : X → R
such that

1

Dφ(x)Dφ(θn(x))
≤
µx(T

−n
x,y (Bθn(x)(T

n
x (z), ξ)))

exp(Snφ(x, z)− SnR(x))
≤ Dφ(x)Dφ(θn(x))

for every n ≥ 0, for m-a.e. x ∈ X, and for every z ∈ Jx.
Let us recall from [9] (p. 18) that a random distance expanding map T : J → J

is said to satisfy the measurability of cardinality of covers condition if there exists
a measurable function a : X → N such that for m-a.e. x ∈ X, there exists a
finite sequence w1

x, . . . , w
ax
x ∈ Jx such that

⋃ax
j=1Bx(w

j
x, ξ) = Jx, where ξ is as in

the definition of distance expanding. Every accessible random distance expanding

map satisfies the measurability of cardinality of covers condition since ξ̂/(2L) ≤
ξ. This means that for accessible random distance expanding maps, we can use
Theorem 3.3 and Proposition 4.8 of [9], which we repeat (slightly modified) below.2

2The measurability of cardinality of covers condition is not mentioned in the statement of
Proposition 4.8 of [9], but it is mentioned in Lemma 3.29 from which Proposition 4.8 follows.
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Theorem 5.3 (Theorems 3.1 and 3.3 of [9]). Let T : J → J be an accessible
random distance expanding map, and let φ : J → R be a Hölder continuous
potential. Then

(a) There exists a unique measurable function λ : X → (0,+∞) and a unique
measure νφ ∈M1

m(J ) such that

L∗xνφ,θ(x) = λxνφ,x for m-a.e. x ∈ X
(b) There exists a unique function q ∈ Cm(J ) such that

Lxqx = λxqθ(x) and νφ,x(qx) = 1 for m-a.e. x ∈ X.

Moreover qx ∈ Hα(Jx) for m-a.e. x ∈ X.
(c) If we let

µφ,x = qxνφ,x,

and if we let µφ be the unique measure in M1
m(J ) whose system of condi-

tional measures is (µφ,x)x∈X , then µφ is a T -invariant Gibbs state.

Theorem 5.4 (Proposition 4.8 of [9]). If T : J → J is an accessible random
distance expanding map, and if φ : J → R is a Hölder continuous potential, then
the measure µφ ∈M1

m(T ) defined in the previous theorem is the unique T -invariant
Gibbs state for φ.

Following [9] we put

EP(φ) =

∫
X

log λ dm.

The goal of this section is to prove that µφ is the unique equilibrium state for the

potential φ : J → R. Let L̂x := Lφ̂,x be the transfer operator with potential

φ̂x := φx + log qx − log qθ(x) ◦ Tx − log λx.

Then

L̂xgx =
1

qθ(x)
λ−1
x Lx(gxqx) for every gx ∈ L1(µx).

Consequently

(5.2) L̂x1x = 1θ(x)

and

(5.3) L̂∗xµφ,θ(x) = µφ,x

for m-a.e. x ∈ X.
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Our first step towards showing that µφ is a relative equilibrium state for φ is the
following lemma:

Lemma 5.5. If we let

(5.4) µ̂x,y = L̂∗x(δTx(y)),

then the collection of measures (µ̂x,y)(x,y)∈J is a disintegration of µφ with respect
to the partition T−1(εJ ).

Proof. First of all, note that the expression (5.4) depends only on T (x, y) =
(θ(x), Tx(y)), and thus

(5.5) µ̂x,y = µ̂x,y′

for every y′ ∈ T−1
x (Tx(y)) = T−1

x (εJθ(x))(y). Thus we may write µ̂x,T−1
x (w) to denote

the measure µ̂x,y for any y ∈ T−1
x (w). Also,

(5.6)

µ̂x,y(T
−1
x (Tx(y))) = L̂∗x(δTx(y))(1T−1

x (Tx(y))
)

= δTx(y)(L̂x1T−1
x (Tx(y))

)

=
(
L̂x1T−1

x (Tx(y))

)
(Tx(y))

= 1.

In general, by (5.3), we have

µφ,x(gx) =
(
L̂∗xµφ,θ(x)

)
(gx) = µφ,θ(x)

(
L̂xgx

)
=

∫
Jθ(x)

(
L̂xgx

)
(y) dµφ,θ(x)(y)

=

∫
Jθ(x)

δy(L̂xgx) dµφ,θ(x)(y)

=

∫
Jθ(x)

(
L̂∗xδy

)
(gx) dµφ,θ(x)(y)

=

∫
Jθ(x)

µ̂x,T−1
x (y)(gx) dµφ,θ(x)(y).
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Hence,

µφ(g) =

∫
X

µφ,x(gx) dm(x) =

∫
X

∫
Jθ(x)

µ̂x,T−1
x (y)(gx) dµφ,θ(x)(y) dm(x)

=

∫
X

∫
Jθ(x)

µ̂x,T−1
x (y)(gx) dµφ,x ◦ T−1

x (y) dm(x)

=

∫
X

∫
Jθ(x)

µ̂x,T−1
x (Tx(w))(gx) dµφ,x(w) dm(x)

=

∫
X

∫
Jθ(x)

µ̂x,w(gx) dµφ,x(w) dm(x)

=

∫
J
µ̂x,y(gx) dµ(x, y).

This equality along with (5.5) and (5.6) completes the proof. �

Now we are in position to prove the main result of this section.

Theorem 5.6. If T : J → J is an accessible distance expanding RDS and if
φ : J → R is a Hölder continuous potential, then P(T, φ) = EP(φ), and µφ is the
only relative equilibrium state for φ.

Proof. Consider an arbitrary measure µ ∈ M1
m(T ). Recall that (µx,y)(x,y)∈J de-

notes its canonical system of conditional measures with respect to the partition
T−1(εJ ). By the standard variational principle for finite sets we have for all
(x, y) ∈ J that

(5.7)

∫
T−1
x (Tx(y))

[
Hµx,y

(
εJx |T−1

x (Tx(y))

)
+ φ̂x

]
dµx,y =

= Hµx,y

(
εJx|T−1

x (Tx(y))

)
+

∫
T−1
x (Tx(y))

φ̂x dµx,y

≤ log
∑

w∈T−1
x (Tx(y))

eφ̂x(x,w)

= log
(
L̂x1x

)
(Tx(y)) = log 1 = 0.
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Thus, in view of Propositions 2.5 and 4.2, we get

hµ(T |θ)+
∫
J
φ̂ dµ =

=

∫
J

Hµx,y

(
εJx|T−1

x (Tx(y))

)
dµ(x, y) +

∫
J

∫
T−1
x (Tx(y))

φ̂x dµx,y dµ(x, y)

=

∫
J

∫
T−1
x (Tx(y))

[
Hµx,y

(
εJx|T−1

x (Tx(y))

)
+ φ̂x

]
dµx,y dµ(x, y)

≤ 0.

Thus,

hµ(T |θ) +

∫
J
φ dµ = hµ(T |θ) +

∫
J
φ̂ dµ+

∫
J

log λ(x) dµ(x, y)

≤
∫
X

log λ dm = EP(φ).

(5.8)

The variational principle for finite sets also asserts that the equality in (5.7) holds
if and only if

µx,y =

∑
w∈T−1

x (Tx(y))
eφ̂x(w)δw∑

w∈T−1
x (Tx(y))

eφ̂x(w)
=

∑
w∈T−1

x (Tx(y))

eφ̂x(w)δw

= L̂∗x(δTx(y)) = µ̂x,y.

(5.9)

Along with (5.8) and Lemma 5.5, this already shows that µφ is an equilibrium
state for φ and that P(T, φ) = EP(φ). We are thus left only to show that (5.9)
implies µ = µφ. And indeed, it follows from (5.9) that for every gx ∈ C(Jx) we
have (

L̂∗xµθ(x)
)
(gx) = µθ(x)(L̂xgx) =

(
µx ◦ T−1

x

)
(L̂xgx) = µx

(
(L̂xgx) ◦ Tx

)
=

∫
Jx

(
L̂∗xδTx(y)

)
(gx) dµx(y)

=

∫
Jx
µx,y(gx)dµx(y)

= µx(gx).

Thus, L̂∗xµθ(x) = µx, and so by induction,

L̂∗nx µθn(x) = µx

for all n ≥ 0. Therefore, applying Proposition 3.19 of [9] (uniform convergence of
the Perron-Frobenius operator), we get for m-a.e. x ∈ X and for every gx ∈ C(Jx)
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that
µx(gx) = lim

n→∞

(
L̂∗nx µθn(x)

)
(gx) = lim

n→∞
µθn(x)(L̂nxgx)

= lim
n→∞

µθn(x)(µφ,x(gx)1θn(x))

= lim
n→∞

µφ,x(gx)

= µφ,x(gx).

So, µx = µφ,x for m-a.e. x ∈ X, meaning that µ = µφ. The proof is complete. �

6. Fiberwise Hausdorff Dimension of Invariant Measures

In this section we deal with random conformal expanding maps.Their definition
is as follows. Firstly, we are given a topological random map f : J → J which
is of global type with a vertical space M . We further assume that M is a smooth
compact Riemannian manifold (possibly with boundary) and that there exists a
number κ > 0 such that

(a) B(Jx, κ) ∩ ∂M = ∅ for m-a.e x ∈ X.3

(b) There exists α > 0 such that all the fiber maps fx : Jx → Jθ(x) can be
extended to C1+α–conformal maps from B(Jx, κ) to M , denoted by the
same symbols fx, which satisfy:

(b1) There exists a number L′ > 1 and a measurable function γ : X → (1, L′)
such that

1 < γx ≤ |f ′x(z)| ≤ L′ < +∞
for m-a.e. x ∈ X and for all z ∈ B(Jx, κ), where |f ′x(z)| is the norm of the
derivative f ′x(z) of the map fx and the point z. By the conformality of fx,
the number |f ′x(z)| is simultaneously the similarity factor of f ′x(z).

(b2) J is fully invariant i.e.

Jx = f−1
x (Jθ(x)) for m-a.e. x ∈ X.

(b3) The function
Jκ 3 (x, y) 7→ log |f ′x(y)| ∈ R

belongs to Hα(Jκ), where

Jκ =
⋃
x∈X

{x} ×B(Jx, κ).

3The notation B(·, ·) with no subscript indicates that the ball is taken with respect to the
ambient space M . In particular Bx(y, r) = B(y, r) ∩ Jx.
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(c) The conditions of Measurability of the Degree, Topological Exactness, and
Weak Perfectness from the definition of distance expanding hold for every
ξ > 0.

If (a)-(c) are satisfied, then the map f is called a random conformal expanding
map.

The proofs of the following two statements are quite standard; see for instance [5]
p. 72 and [8] p. 73 for the corresponding proofs in their appropriate contexts. We
presnt them here for the convenience of the reader.

Proposition 6.1. Every random conformal expanding map is a random distance
expanding map.

Proof. Let f be a random conformal expanding map. Let β′ > 0 be the minimum
of the injectivity radius over the set M \ B(∂M, κ), and let β = min(β′, κ). Let
ξ = β/(2L′) and L = max(L′, diam(M)/κ). Let ηx = ξ for every x ∈ X. We
now claim that the conditions of Uniform Openness, Measurably Expanding, Lip-
schitz Continuity, and Log Integrable Compactness from the definition of distance
expanding are satisfied. Since the others were assumed to be satisfied, this will
show that f is a random distance expanding map. We will show the condition of
Measurably Expanding while the proof of the other three will be left to the reader.
Log Integrable Compactness follows just since f is of global type.

Fix x ∈ X and y, z ∈ Jx with ρ(y, z) ≤ 2ηx = 2ξ. Let γ1 : [0, 1] → M be a
length-minimizing geodesic from fx(y) to fx(z). Let t be the largest number such
that there exists a path δ1 : [0, t]→M such that fx ◦ δ1 = γ1. Then

`(δ1) ≤
1

γx
`(γ1|[0,t]) ≤

1

γx
`(γ) =

1

γx
ρ(fx(y), fx(z)) ≤ 1

γx
2L′ξ < 2L′ξ = β ≤ κ,

which implies that δ1(t) ∈ B(Jx, κ). If t < 1, then this implies that δ1 can be
extended, so t = 1. Let w = δ1(1), and note that

ρ(y, w) ≤ `(δ1) ≤
1

γx
ρ(fx(y), fx(z)).

On the other hand, fx(w) = γ1(1) = fx(z). To complete the proof we need to show
that w = z. Let δ2 : [0, 1]→M be a length-minimizing geodesic from y to z. Then
ρ(y, δ2(t)) ≤ 2ξ ≤ κ for all t ∈ [0, 1], so γ2 := fx ◦ δ2 : [0, 1] → M is well-defined.
Furthermore

`(γ2) ≤ L′`(δ2) ≤ 2L′ξ = β;

on the other hand

`(γ1) = ρ(fx(y), fx(z)) ≤ 2L′ξ = β.
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Thus, γ1 and γ2 are both paths from fx(y) to fx(z) of lengths less than or equal
to β. On the other hand, fx(y) ∈M \B(∂M, κ) by (a); thus the exponential map
expy is injective on B(0, β). Thus γ1 and γ2 can be pulled back to B(0, β), a simply
connected space. Thus γ1 and γ2 are homotopic in B(fx(y), β). The homotopy
can be pulled back via fx and thus δ1 and δ2 are homotopic. In particular their
endpoints must be equal, so w = z. �

For each (x, y) ∈ J and n ∈ N, let f−nx,y : B(fnx (y), ξ) → B(y, ξ) be the unique
continuous inverse branch of fnx such that f−nx,y (fnx (y)) = y. In the sequel we will
need the following lemma:

Lemma 6.2. There exists a measurable function Q : X → [0,+∞] which is finite
m-a.e. such that
(6.1)
B
(
y, e−Qθn(x)ξ

α|(fnx )′(y)|−1r
)
⊆ f−nx,y (B(fnx (y), r)) ⊆ B

(
y, eQθn(x)ξ

α|(fnx )′(y)|−1r
)
.

for every n ∈ N, for m-a.e. x ∈ X, for every y ∈ Jx, and for every r ∈ (0, ξ].

Proof. Define φ : J → R by

φ(x, y) := − log |f ′x(y)|.
Since φ ∈ Hα(Jκ) by assumption, there exists a log-integrable function H : X → R
such that φ ∈ Hα(Jκ, H). Following [9] we define the function Q : X → [0,+∞]
by

(6.2) Qx :=
∞∑
j=1

(
Hθ−j(x)

)(
γj
θ−j(x)

)−α
.

By Lemma 2.3 of [9], Q is finite m-a.e. and

|Snφ(x, f−nx,y (w1))− Snφ(x, f−nx,y (w2))| ≤ Qθn(x)

(
ρ(w1, w2)

)α
for all n ∈ N, for m-a.e. x ∈ X, for every y ∈ Jx, and for every w1, w2 ∈
B(fnx (y), ξ). In particular, for every w ∈ B(fnx (y), ξ) we have

|Snφ(x, f−nx,y (w))− Snφ(x, y)| ≤ Qθn(x)ξ
α

i.e.

(6.3) e−Qθn(x)ξ
α 1

|(fnx )′(y)|
≤ |(f−nx,y )′(w)| ≤ eQθn(x)ξ

α 1

|(fnx )′(y)|
.

Now fix x ∈ X satisfying (6.3) for every n ∈ N, y ∈ Jx, and w ∈ B(fnx (y), ξ).
Fix n ∈ N, y ∈ Jx, and r ∈ (0, ξ]. Now the second inclusion of (6.1) follows
directly from the second inequality of (6.3) and the mean value inequality. The
first inclusion of (6.1) is more subtle.
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Suppose that z ∈ B
(
y, e−Qθn(x)ξ

α |(fnx )′(y)|−1r
)
. Let δ : [0, 1] → M be a length-

minimizing geodesic from y to z.

Claim 6.3. δ(t) ∈ f−nx,y (B(fnx (y), ξ)) for all t ∈ (0, 1).

Proof. Suppose not; let t0 ∈ (0, 1) be the smallest value where the claim fails.
Then

(6.4) fnx (δ(t0)) ∈ ∂B(fnx (y), ξ).

On the other hand, for all t ∈ [0, t0), we have δ(t) = f−nx,y (fnx (δ(t))); letting w =
fnx (δ(t)), the first inequality of (6.3) can be rearranged to show that

(6.5) |(fnx )′(δ(t))| ≤ eQθn(x)ξ
α|(fnx )′(y)|.

Now by the mean value inequality we have

ρ(fnx (y), fnx (δ(t0))) ≤ eQθn(x)ξ
α|(fnx )′(y)|ρ(y, δ(t0))

< eQθn(x)ξ
α|(fnx )′(y)|ρ(y, z) ≤ r ≤ ξ,

which contradicts (6.4). /

Thus, (6.5) holds for all t ∈ (0, 1). Applying the mean value inequality yields
that z ∈ f−nx,y (B(fnx (y), r)), proving the first inclusion of (6.1). �

If µ ∈M1
m(f), then we call the number

χµ(f) :=

∫
J

log |f ′x(z)| dµ(x, z) ≥
∫
X

log γ dm > 0

the Lyapunov exponent of the invariant measure µ with respect to the conformal
map f . For each x ∈ X, the map fx : Jx → Jθ(x) is Lipschitz and expanding, and
so since µθ(x) = µx ◦ f−1

x , we have that HD(µθ(x)) = HD(µx). So, by the ergodicity
of m, the function X 3 x 7→ HD(µx) is constant m-a.e. We denote this common
number FD(µ) and call it the fiberwise Hausdorff dimension of the measure µ.
The first main result of this section is the following:

Theorem 6.4. If f : J → J is a random conformal expanding map and if
µ ∈M1

m(f) is ergodic then

FD(µ) = lim inf
r→0

log µx(Bx(y, r))

log r
=

hµ(f |θ)
χµ(f)

for m-a.e. x ∈ X and for µx-a.e. y ∈ Jx.

We will prove the second equality first, as two directions, which will be separated
as lemmas.
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Lemma 6.5 (≤ direction). With the hypotheses of Theorem 6.4 above,

lim inf
r→0

log µx(Bx(y, r))

log r
≤ hµ(f |θ)

χµ(f)

for m-a.e. x ∈ X and for µx–a.e. y ∈ Jx.

Proof. By Proposition 4.1 there exists a partition α accessible for the map f : J →
J .

Claim 6.6.

(6.6) αnx(y) ⊆ f−nx,y (Bθn(x)(f
n
x (y), ξ))

for all (x, y) ∈ J and for all integers n ≥ 0.

Proof. Fix z ∈ αnx(y). Then for all j = 0, . . . , n, we have f jx(z) ∈ αθj(x)(f
j
x(y));

since diam(αθj(x)) ≤ ξ, we have

f jx(z) ∈ Bθj(x)(f
j
x(y), ξ).

Let w = f−nx,y (fnx (z)); then

f jx(w) ∈ Bθj(x)(f
j
x(y), ξ) ∀j = 0, . . . , n,

and thus ρ(f jx(z), f jx(w)) ≤ 2ξ for all f = 0, . . . , n. Thus by the Measurably
Expanding condition

f j+1
x (z) = f j+1

x (w)⇒ f jx(z) = f jx(w)

for all j = 0, . . . , n− 1. Iterating gives z = w, so z ∈ f−nx,y (Bθn(x)(f
n
x (y), ξ)). /

On the other hand, by Lemma 6.2, we have

(6.7) f−nx,y
(
Bθn(x)(f

n
x (y), ξ)

)
⊆ Bx

(
y, eQθn(x)ξ

α |(fnx )′(y)|−1ξ
)
,

where Q : X → [0,+∞] is the (m-a.e. finite) function defined by (6.2). Now,
by Birkhoff’s Ergodic Theorem and by the ergodicity of the dynamical system
(θ : X → X,m), there exists a constant A ∈ (0,+∞) such that for m-a.e. x ∈ X
there exists an unbounded increasing sequence (nk(x))∞1 such that

(6.8) Qθnk (x)(x) ≤ A

for all integers k ≥ 1. Also, by Birkhoff’s Ergodic Theorem and by the ergodicity

of the dynamical system (f : J → J , µ), there exists a measurable set X̃ ⊆ X

such that m(X̃) = 1, and such that for all x ∈ X̃ there exists a Borel set J̃x ⊆ Jx
with µx(J̃x) = 1 such that for every ε > 0, every x ∈ X̃, and every y ∈ J̃x there
exists N(x, y) ≥ 1 such that

|(fnx )′(y)| ≥ eAξ
α

ξ exp ((χµ(f)− ε)n)



21

for all n ≥ N(x, y). Inserting this into (6.7) and using (6.8), formula (6.6) yields

αnk(x)x (y) ⊆ Bx (y, exp (−(χµ(f)− ε)nk(x)))

for all x ∈ X̃, for all y ∈ J̃x, and for all k ≥ 1 large enough so that nk(x) ≥ N(x, y).
Thus, putting

rk(x) = exp (−(χµ(f)− ε)nk(x)) ,

we get

log µx(Bx(y, rk(x)))

log rk(x)
≤ log µx(α

nk(x)
x (y))

log rk(x)
= − log µx(α

nk(x)
x (y))

(χµ(f)− ε)nk(x)
.

Applying Corollary 4.3, we have the following:

lim inf
r→0

log µx(Bx(y, r))

log r
≤ lim inf

k→∞

log µx(Bx(y, rk(x)))

log rk(x)

≤ −1

χµ(f)− ε
lim
k→∞

1

nk(x)
log µx(α

nk(x)
x (y))

=
hµ(f |θ)
χµ(f)− ε

.

So, letting ε↘ 0, we get that

lim inf
r→0

log µx(Bx(y, r))

log r
≤ hµ(f |θ)

χµ(f)

for all x ∈ X̃ and for all y ∈ J̃x. The proof is complete. �

Now, we shall prove the other inequality, i.e.

Lemma 6.7 (≥ direction). With the hypotheses of Theorem 6.4 above,

lim inf
r→0

log µx(Bx(y, r))

log r
≥ hµ(f |θ)

χµ(f)

for m-a.e. x ∈ X and for µx-a.e. y ∈ Jx.

Proof. Let Q : X → [0,+∞] be the (m-a.e. finite) function defined by (6.2). By
Birkhoff’s Ergodic Theorem and by the ergodicity of m, there exists a constant
A ∈ (0,+∞) and a measurable set X0 ⊆ X such that m(X0) = 1, and such that
for all x ∈ X0, if (nk(x))∞1 is the increasing sequence consisting of all n ≥ 0 such
that Qθn(x) ≤ A, then

lim
k→∞

nk+1(x)− nk(x)

nk(x)
= 0.
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Consequently, for all x ∈ X0 and for all ε > 0 there exists kε(x) ≥ 1 such that if
k ≥ kε(x), then

(6.9)
nk+1(x)− nk(x)

nk(x)
< ε.

Applying Corollary 9.1.9 of [10] (in the printed version) with ν = µ ◦ π−1
Y and

r = ξ̂/(2L) yields the existence of a finite partition P = {P1, P2, . . . , Pp} of Y into
Borel sets such that

diam(P) <
ξ̂

2L
, ν(∂P) = 0,

and such that for some constant C > 0, we have

ν(∂aP) ≤ Ca ∀a > 0,

where

∂aP :=

p⋂
j=1

⋃
i 6=j

B(Pi, a).

Then

α := π−1
Y (P) ∨ π−1

X (εX)|J

is an accessible partition.

Claim 6.8. For every ε > 0 there exists a measurable set X1
ε ⊆ X0 with m(X1

ε ) =
1, such that for every x ∈ X1

ε there exists a measurable set J 1
x,ε ⊆ Jx with

µx
(
J 1
x,ε

)
= 1 such that for every y ∈ J 1

x,ε, there exists an integer n
(1)
ε (x, y) ≥

nkε(x)(x) such that for every n ≥ n
(1)
ε (x, y),

(6.10) Bθn(x)(f
n
x (y), e−εn) ⊆ αθn(x)(f

n
x (y)).

Proof. By the fiberwise invariance of µ, we have for all (x, y) ∈ J

∞∑
n=0

µx(f
−n
x (∂e−εnαθn(x))) =

∞∑
n=0

µθn(x)(∂e−εnαθn(x)),
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and hence∫
X

(
∞∑
n=0

µx(f
−n
x (∂e−εnαθn(x)))

)
dm(x) =

∞∑
n=0

∫
X

µθn(x)(∂e−εnαθn(x)) dm(x)

=
∞∑
n=0

∫
X

µx(∂e−εnαx) dm(x)

≤
∞∑
n=0

ν(∂e−εnP)

≤ C
∞∑
n=0

e−εn < +∞.

Thus, there exists a measurable set X1
ε ⊆ X0 with m(X1

ε ) = 1 such that
∞∑
n=0

µx(f
−n
x (∂e−εnαθn(x))) < +∞ ∀x ∈ X1

ε .

Thus by the Borel–Cantelli lemma, for every x ∈ X1
ε there exists a measurable set

J 1
x,ε ⊆ Jx with µx

(
J 1
x,ε

)
= 1, such that for every y ∈ J 1

x,ε there exists n
(1)
ε (x, y) ≥

nkε(x)(x) such that y /∈ f−nx (∂e−εnαθn(x)) for all n ≥ n
(1)
ε (x, y). Equivalently,

fnx (y) /∈ ∂e−εnαθn(x).

This means that there exists j ∈ {1, 2, . . . , p} such that fnx (y) /∈
⋃
i 6=j B(Pi, e

−εn).

On the other hand, we have fnx (y) ∈ αθn(x)(f
n
x (y)) = Ps for some s ∈ {1, 2, . . . , p}.

We must have j = s, and so fnx (y) ∈ Ps \
⋃
i 6=sB(Pi, e

−εn). Therefore,

Bθn(x)(f
n
x (y), e−εn) ⊆ Ps = αθn(x)(f

n
x (y)),

implying that (6.10) holds. /

Let

X̂1 :=
∞⋂
k=1

X1
1/k ∩

∞⋂
j=0

θ−j({x ∈ X : µx(∂αx) = 0}),

and for each x ∈ X̂1, let

Ĵx,1 =
∞⋂
k=1

J 1
x,1/k \

∞⋃
j=0

f−jx ∂αθj(x)

Then m(X̂1) = 1, and µx(Ĵx,1) = 1 for all x ∈ X̂1.
As in the previous lemma, by Birkhoff’s Ergodic Theorem and by the ergodicity

of the dynamical system (f : J → J , µ), there exists a measurable set X̂2 ⊆ X̂1

with m(X̂2) = 1 such that for all x ∈ X̂2 there exists a measurable set Ĵx,2 ⊆ Ĵx,1



24 DAVID SIMMONS AND MARIUSZ URBAŃSKI

such that µx

(
Ĵx,2

)
= 1 and such that for every y ∈ Ĵx,2 and for every ε > 0, there

exists n
(2)
ε (x, y) ≥ n

(1)
ε (x, y) such that

(6.11) |(fnx )′(y)| ≤ e−Aξ
α

exp ((χµ(f) + ε)n)

for all n ≥ n
(2)
ε (x, y). Now fix x ∈ X̂2 and y ∈ Ĵx,2. Since y /∈ f−jx (∂αθj(x)) for all

j ∈ N, there exists K ≥ 1 (depending on x, y, and ε) large enough so that that
K−1ξ ≤ 1 and so that

(6.12) f qx
(
Bx

(
y,K−1ξ exp

(
−(χµ(f) + (2 + logL)ε)n(2)

ε (x, y)
)))
⊆ αθq(x)(f

q
x(y))

for all 0 ≤ q ≤ n
(2)
ε (x, y). Now for each n ∈ N let

sn(ε) := K−1ξ exp (−(χµ(f) + (2 + logL)ε)n) .

Fix an arbitrary n ≥ n
(2)
ε (x, y). By (6.12), we have that

(6.13) f qx (Bx (y, sn(ε))) ⊆ αθq(x)(f
q
x(y))

for all 0 ≤ q ≤ n
(2)
ε (x, y).

Claim 6.9. (6.13) also holds for q such that n
(2)
ε (x, y) ≤ q ≤ n.

Proof. Fix such a q. Since q ≥ nkε(x)(x), there exists a unique k ≥ kε(x) such that

(6.14) nk(x) ≤ q < nk+1(x).

Put

rk,n(x) := K−1ξ exp (−χµ(f)(n− nk(x))) exp (ε(nk(x)− (2 + logL)n)) .

Then by (6.11) we get

e−Aξ
α

rk,n(x)|(fnk(x)x )′(y)|−1 ≥ sn(ε)

and combining with Lemma 6.2 gives

f−nk(x)x,y

(
Bθnk(x)(x)

(
fnk(x)x (y), rk,n(x)

))
⊇ Bx

(
y, e−Aξ

α

rk,n(x)|(fnk(x)x )′(y)|−1
)

⊇ Bx (y, sn(ε)) .

Rearranging, we see that

fnk(x)x (Bx (y, sn(ε))) ⊆ Bθnk(x)(x)

(
fnk(x)x (y), rk,n(x)

)
.
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Now, by (6.9) and (6.14) we have q − nk(x) < εnk(x). We therefore obtain

f qx
(
Bx

(
y,sn(ε)

))
=

= f
q−nk(x)
θnk(x)(x)

(
fnk(x)x (Bx (y, sn(ε)))

)
⊆ f

q−nk(x)
θnk(x)(x)

(
Bθnk(x)(x)

(
fnk(x)x (y), rk,n(x)

))
⊆ Bθq(x)

(
f qx(y), rk,n(x) exp

(
(q − nk(x)) logL

))
⊆ Bθq(x)

(
f qx(y), rk,n(x) exp

(
εnk(x) logL

))
⊆ Bθq(x)

(
f qx(y), K−1ξ exp (ε (nk(x)− (2 + logL)n+ nk(x) logL))

)
= Bθq(x)

(
f qx(y), K−1ξ exp (ε(nk(x)− n)− εn+ ε(nk(x)− n) logL)

)
⊆ Bθq(x)

(
f qx(y), K−1ξe−εn

)
⊆ Bθq(x)

(
f qx(y), e−εn

)
⊆ αθq(x)(f

q
x(y)).

The last inclusion was written due to (6.10). /

Thus, (6.13) holds for all 0 ≤ q ≤ n. It follows that

(6.15) Bx (y, sn(ε)) ⊆ αnx(y)

for all x ∈ X̂2, for all y ∈ Ĵx,2, and for all n ≥ n
(2)
ε (x, y).

Now fix x ∈ X̂2 and y ∈ Ĵx,2. Since the sequence (sn(ε))∞1 is geometric, we have

lim inf
r→0

log µx(Bx(y, r))

log r
= lim inf

n→∞

log µx(Bx(y, sn(ε)))

log sn(ε)
.

On the other hand, by (6.15) we have

lim inf
n→∞

log µx(Bx(y, sn(ε)))

log sn(ε)
≥ lim inf

n→∞

log µx(α
n
x(y))

log sn(ε)

= lim inf
n→∞

log µx(α
n
x(y))

−(χµ(f) + (3 + logL)ε)n
.

Finally, Corollary 4.3 yields

lim
n→∞

log µx(α
n
x(y))

−n
= hµ(f |θ) for µ-a.e. (x, y) ∈ J

and combining everything gives

lim inf
r→0

log µx(Bx(y, r))

log r
≥ hµ(f |θ)
χµ(f) + (3 + logL)ε

for µ-a.e. (x, y) ∈ J .
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Now letting ε↘ 0 gives

lim inf
r→0

log µx(Bx(y, r))

log r
≥ hµ(f |θ)

χµ(f)
.

The proof of Lemma 6.7 is complete. �

Combining Lemmas 6.5 and 6.7 together with Theorem 8.6.5 of [10] (printed ver-
sion) proves Theorem 6.4.

We now want to address and fully answer the question of which invariant measures
are of full Hausdorff dimension. Specifically, for each t ∈ R consider the Hölder
continuous potential

J 3 (x, y) 7→ φt(x, y) := −t log |f ′x(y)|.
Let µt be its unique relative Gibbs/equilibrium state. It was proven in [9] that
there exists a unique h ∈ R such that EP(h) = 0. The proof of Theorem 5.2
(Bowen’s Formula) in [9] gives that

(6.16) FD(µh) = h = HD(Jx) ≥ 0 for m-a.e. x ∈ X.

Our second main theorem in this section is the following:

Theorem 6.10. If f : J → J is a random conformal expanding map, then µh, the
unique relative Gibbs/equilibrium state for the potential φh(x, y) := −h log |f ′x(y)|,
is the unique ergodic measure µ ∈M1

m,e(J ) such that

(6.17) FD(µ) = h(= HD(Jx)) for m-a.e. x ∈ X.

Proof. Obviously, formula (6.16) shows that µh satisfies (6.17). For the uniqueness,
suppose that µ satisfies (6.17), i.e. FD(µ) = h. Then by Theorem 6.4 we have that
hµ(f |θ) = hχµ(f), or equivalently, that hµ(f |θ) +

∫
φh dµ = 0. Since EP(h) = 0,

by Theorem 5.6 this means that µ is an equilibrium state for the potential φh. But
since µh is such a state, a different assertion of Theorem 5.6 yields µ = µh. The
proof is complete. �
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