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Abstract. Motivated by the work of D. Y. Kleinbock, E. Lin-
denstrauss, G. A. Margulis, and B. Weiss [7, 8], we explore the
Diophantine properties of probability measures invariant under the
Gauss map. Specifically, we prove that every such measure which
has finite Lyapunov exponent is extremal, i.e. gives zero measure
to the set of very well approximable numbers. We show on the
other hand that there exist examples where the Lyapunov expo-
nent is infinite and the invariant measure is not extremal. We
provide a partial converse to B. Weiss’s result of Khinchine type
[12] by constructing a large class of measures, which are both con-
formal and Ahlfors regular, and for which the divergence of Weiss’s
series entails the ψ-approximability of almost all numbers.

1. Introduction

Definition 1.1. Let ψ : N → (0,∞) be any function. We recall that
an irrational x ∈ [0, 1] is ψ-approximable if there exist infinitely many
p/q ∈ Q such that

(1.1)

∣∣∣∣x− p

q

∣∣∣∣ ≤ ψ(q).

We recall the following facts and definitions from the classical theory
of Diophantine approximation:

• Every x is ψ-approximable when ψ(q) = q−2.
• x is badly approximable if there exists ε > 0 such that x is

not ψ-approximable when ψ(q) = εq−2. The set of badly ap-
proximable numbers has Hausdorff dimension one but Lebesgue
measure zero.
• x is very well approximable if there exists c > 0 such that x is
ψ-approximable when ψ(q) = q−(2+c). The set of very well ap-
proximable numbers has Hausdorff dimension one but Lebesgue
measure zero.

M. Urbański was supported in part by the NSF Grant DMS 1001874.
1



2 LIOR FISHMAN, DAVID SIMMONS, AND MARIUSZ URBAŃSKI

• x is a Liouville number if for all c > 0 the number x is ψ-
approximable when ψ(q) = q−c. The set of Liouville numbers
has Hausdorff dimension zero.

1.1. Extremal measures. A measure1 µ on R is said to be extremal
if the set of very well approximable numbers is null with respect to
µ. In other words, µ behaves like Lebesgue measure with respect to
very well approximable numbers. This definition was introduced by D.
Y. Kleinbock, E. Lindenstrauss, and B. Weiss in [7], as a generaliza-
tion of the notion of an extremal manifold, which was defined by V.
Sprindžuk. B. Weiss [12] proved that measures which satisfy a certain
decay condition, called absolutely decaying, are extremal.

Definition 1.2. For α > 0, a measure µ on R is said to be absolutely α-
decaying if there exists C > 0 such that for all x ∈ R, for all 0 < r ≤ 1
and for all 0 < ε ≤ 1 we have

(1.2) µ(B(x, εr)) ≤ Cεαµ(B(x, r)).

It is said to be absolutely decaying if it is absolutely α-decaying for
some α > 0.

We recall also that for δ > 0, a measure µ on R is Ahlfors δ-regular
if there exist positive constants C1 and C2 such that

C1r
δ ≤ µ(B(x, r)) ≤ C2r

δ

for all x in the topological support of µ and for all 0 < r ≤ 1. Examples
of Ahlfors regular measures include Lebesgue measure and the Haus-
dorff measure on certain fractals such as the Cantor set. Any Ahlfors
δ-regular measure on R is automatically absolutely δ-decaying.

Generalizations of Weiss’s result to higher dimensions have been con-
sidered by Kleinbock, Lindenstrauss, and Weiss [7]. However, for the
purposes of this paper we will consider only Weiss’s original result and
not the higher dimensional generalizations.

Let G : [0, 1]→ [0, 1] be the Gauss map, i.e.

(1.3) G(x) =

{
1
x
− b1/xc x > 0

0 x = 0
,

where bxc is the integer part of x. A measure µ is invariant with
respect to the Gauss map if µ ◦ G−1 = µ. In this paper we consider
the extremality of probability measures invariant with respect to the
Gauss map. Specifically, we show that if an invariant measure µ has
finite Lyapunov exponent, then µ is extremal.

1In this paper all measures are assumed to be Borel and locally finite.
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Definition 1.3. If µ is a probability measure on [0, 1] invariant with
respect to the Gauss map, then the integral

χµ(G) =

∫
log |G′|dµ

is called the Lyapunov exponent of the measure µ with respect to the
Gauss map G.

Theorem 2.1. If µ is a probability measure on [0, 1]\Q invariant with
respect to the Gauss map G with finite Lyapunov exponent χµ(G), then
µ is extremal.

The assumption that χµ(G) < ∞ is a very reasonable assumption
which is satisfied for a large class of dynamically defined measures;
see Section 4. In particular there exist measures which satisfy this
assumption but are not absolutely decaying. It is also a necessary
assumption, as seen from the following:

Theorem 4.5. There exists a measure µ invariant with respect to the
Gauss map which gives full measure to the Liouville numbers. In par-
ticular, µ is not extremal.

1.2. A theorem of B. Weiss. Weiss’s result mentioned above re-
garding the extremality of absolutely decaying measures is in fact a
corollary of the following Khinchine-type theorem:

Theorem 1.4 (Weiss [12]). Fix 0 < α ≤ 1, and suppose that µ is an
α-absolutely decaying measure on R. If ψ : N → (0,+∞) and if the
series

(1.4)
∞∑
q=1

q2α−1ψ(q)α

converges, then µ-almost every point of R is not ψ-approximable.

Note that when µ is Lebesgue measure and α = 1, then this theorem
corresponds to the convergence part of the classical Khinchine theorem.

Fix 0 < α ≤ 1, a measure µ, and a function ψ : N → (0,∞). We
shall say that the converse to Theorem 1.4 holds for α, µ, and ψ if the
divergence of the series (1.4) implies that µ-almost every point of R is
ψ-approximable. Then the divergence part of the classical Khinchine
theorem says precisely that if α = 1, if µ is Lebesgue measure, and if
ψ is nonincreasing, then the converse to Theorem 1.4 holds.

Let us note that it is possible to have an absolutely α-decaying mea-
sure µ and a nonincreasing function ψ for which the converse to The-
orem 1.4 does not hold. Indeed, any absolutely α-decaying measure is
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also absolutely α′-decaying for any 0 < α′ < α, but it is easy to find a
function ψ such that the series (1.4) converges with α = α and diverges
with α = α′. Thus, if we are to find a converse to Theorem 1.4, then µ
being absolutely α-decaying is not the right hypothesis.

Question 1.5 (Weiss, private communication). What is the right hy-
pothesis?

To clarify the question further, we give the following answer, which
was also known to Weiss:

Answer 1.6. The right hypothesis cannot be a geometrical hypothesis.

By a “geometrical” hypothesis, we mean a hypothesis which is in-
variant under translations, i.e. if µ satisfies the hypothesis then any
translated version of µ also satisfies the hypothesis. For example, the
hypothesis that µ is absolutely α-decaying and the hypothesis that µ
is Ahlfors α-regular are both geometrical hypotheses. Answer 1.6 can
be restated more formally as follows:

Theorem 1.7. Let ν be a measure on R and fix 0 < α < 1. Then
there exists y ∈ R and a nonincreasing function ψ such that if

µ = ν ◦ (x 7→ x+ y)−1

then the converse to Theorem 1.4 does not hold.

Proof. Let ψ be any function for which (1.4) converges at α = 1 but
diverges at α = α. For example,

ψ(q) =
1

q2 log1/α(q)
.

By Khinchine’s theorem, almost no point with respect to Lebesgue
measure is ψ-approximable. By Fubini’s theorem, for Lebesgue almost
every y ∈ R and for ν-almost every x, the point x+y is ψ-approximable.
This implies the existence of a number y as stated in the theorem (in
fact it implies the full measure of such ys). �

On the other hand, we give a positive answer to Question 1.5 by ex-
hibiting a large class of measures for which the converse to Theorem 1.4
holds. To construct these, we fix a set I ⊆ N and let

JI = {x ∈ [0, 1] \Q : the continued fraction entries of x lie in I}.
Theorem 6.1. Fix an infinite set I ⊆ N, and let h be the Hausdorff
dimension of JI . Assume that the h-dimensional Hausdorff measure Hh

restricted to JI is Ahlfors h-regular. Then the converse to Theorem 1.4
holds for α = h, µ = Hh �JI

, and for any function ψ for which the
function q 7→ q2ψ(q) is nonincreasing.
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Thus, the class of measures for which the converse to Theorem 1.4
holds contains the class of measures

{Hα �JI
: I ⊆ N is infinite and Hα �JI

is Ahlfors α-regular}.
However, it is not a priori clear that this class is nonempty.

Theorem 7.1. For every 0 < δ ≤ 1 there exists an infinite set I ⊆ N
such that HD(JI) = δ and such that Hδ �JI

is Ahlfors δ-regular.2

Combining Theorems 6.1 and 7.1 in the obvious way yields the fol-
lowing corollary:

Corollary 1.8. For every 0 < α ≤ 1, there exists an Ahlfors α-regular,
and therefore absolutely α-decaying, measure µ such that the converse
to Theorem 1.4 holds for every function ψ for which the function q 7→
q2ψ(q) is nonincreasing.

In the case α = 1, the measure is simply Lebesgue measure.
In addition to partially answering Question 1.5, Corollary 1.8 can

also be viewed as demonstrating the optimality of Theorem 1.4. Indeed,
the theorem shows that the series (1.4) cannot be replaced by any series
which converges for a larger class of functions ψ, even if the hypothesis
of absolute α-decay is replaced by the stronger hypothesis of Ahlfors
α-regularity.

In the process of proving Theorems 6.1 and 7.1, we establish the
following criterion for determining whether Hα �JI

is Ahlfors regular.
This improves more complicated criteria which can be found in [9].

Theorem 5.5 (Abridged). Fix an infinite set I ⊆ N, and let h =
HD(JI). The following are equivalent:

(a) Hh(JI) > 0 and Ph(JI) <∞.
(b1) Hh �JI

is Ahlfors h-regular.
(c1) For all y ∈ I and r ≥ 1

#(B(y, r) ∩ I) � rh.

Thus the Ahlfors regularity of JI is equivalent to the “dual Ahlfors
regularity” of the generating set I.

Note that it is possible for (c1) to be satisfied for some h 6= HD(JI).
In such a case, the set JI is not Ahlfors regular.

The structure of the paper is as follows: In Section 2, we will prove
Theorem 2.1. In Section 3, we will recall some basic definitions and
theorems from the theory of conformal iterated function systems, which

2Here and from now on HD(S) denotes the Hausdorff dimension of a set S. Hδ(S)
and Pδ(S) denote its δ-dimensional Hausdorff and packing measure, respectively.
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are needed to prove Theorems 4.5, 5.5, 6.1, and 7.1. In Section 4, we
will give some examples of measures which satisfy the hypotheses of
Theorem 2.1, and we shall prove Theorem 4.5. In Section 5 we will
discuss various characterizations of Ahlfors regularity and semiregular-
ity of JI , and we shall prove Theorem 5.5. In Section 6 we shall prove
Theorem 6.1 and in Section 7 we shall prove Theorem 7.1.

The interdependence of the sections is as follows: Section 4 depends
on Sections 2 and 3; Section 5 depends on Section 3; Section 6 depends
on Sections 2, 3, and 5; Section 7 depends on 3 and 5.

Acknowledgments: The authors would like to thank B. Weiss for
suggesting Question 1.5, and would like to thank both D. Y. Kleinbock
and B. Weiss for reading the manuscript and making helpful sugges-
tions. The third-named author was supported in part by the NSF
Grant DMS 1001874.

2. Proof of Theorem 2.1

In this section we will prove the following theorem:

Theorem 2.1. If µ is a probability measure on [0, 1]\Q invariant with
respect to the Gauss map G with finite Lyapunov exponent χµ(G), then
µ is extremal.

2.1. A relation between continued fractions and Diophantine
approximation. As the first step in the proof of Theorem 2.1, we
establish a relation between the continued fraction expansion of an
irrational x ∈ [0, 1] with its Diophantine properties. This relation may
be compared to Theorem 8.5 of [6].

Definition 2.2. For a function ψ : N → (0,∞), let us say that x is
ψ-well approximable if x is εψ-approximable for every ε > 0.

Remark 2.3. ψ-well approximability implies ψ-approximability but
not vice-versa; for example, if x is a badly approximable number and
ψ(q) = 1/q2 then x is ψ-approximable but not ψ-well approximable.

Lemma 2.4. Fix an irrational x ∈ [0, 1] and let [0;ω0, ω1, . . .] be the
continued fraction expansion of x. Let (pn/qn)∞n=0 be the convergents of
x. Let ψ : N→ (0,∞) be a function satisfying

ψ(q) ≤ 1

q2

for all q. Then x is ψ-well approximable if and only if for every K > 0
there exist infinitely many n ∈ N such that

(2.1) ωn ≥ Kφ(qn),
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where

φ(q) :=
1

q2ψ(q)
≥ 1.

Proof. Fix an irrational x ∈ [0, 1]. We recall the following well-known
facts (see e.g. [5] or [1]):

(i) If p/q is a rational approximation of x such that |x − p/q| <
1/(2q2), then p/q is a convergent of x.

(ii) For every n ∈ N we have

(2.2)
1

qn(qn + qn+1)
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qnqn+1

and

(2.3) qn+1 = ωnqn + qn−1.

From (i), it follows that for any 0 < ε ≤ 1/2, (1.1) cannot be satisfied
for any p/q which is not a convergent. Thus, we may restrict our
attention to approximations of x which are convergents. Fix n ∈ N,
and note that by (2.3) we have

qn+1 � 3ωnqn

and thus (2.2) implies ∣∣∣∣x− pn
qn

∣∣∣∣ � 1

q2
nωn

.

Thus, x is ψ-well approximable if and only if for every ε > 0 there exist
infinitely many n ∈ N such that

1

q2
nωn
≥ εψ(qn) =

ε

q2
nφ(qn)

.

(We are using the ε to absorb the constant coming from the asymp-
totic.) Rearranging and letting K = 1/ε yields the lemma. �

Definition 2.5. For x ∈ [0, 1], let

ξ(x) = b1/xc
be the first entry in the continued fraction expansion of x, so that
ξ(Gn(x)) = ωn for all n. Let

η = log(1 + ξ).

Corollary 2.6. Fix an irrational x ∈ [0, 1] and let [0;ω0, ω1, . . .] be the
continued fraction expansion of x. Then the following are equivalent:

(i) The number x is very well approximable.

3Here and from now on � denotes a multiplicative asymptotic.
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(ii) There exists c > 0 such that for infinitely many n ∈ N,

(2.4) log(1 + ωn) ≥ c

n−1∑
j=0

log(1 + ωj),

or equivalently,

(2.5) η(Gn(x)) ≥ c
n−1∑
j=0

η(Gj(x)).

Formula (2.5) will be more useful than (2.4) for our ergodic theory
purposes.

Proof. We first give some bounds for qn in terms of the continued frac-
tion entries ω0, . . . , ωn−1. The upper bound is easy: the recursion equa-
tion (2.3) implies that

qn ≤
n−1∏
j=0

(ωj + 1).

In the other direction, we divide into cases according to whether n is
even or odd. If n = 2k then

qn ≥
k−1∏
j=0

(ω2jω2j+1 + 1) ≥
n−1∏
j=0

√
ωj + 1

and if n = 2k + 1 then

qn ≥ ωn−1qn−1 ≥
1√
2

n−1∏
j=0

√
ωj + 1.

Let t ≥ 0. Taking logarithms, we can rewrite the above inequalities as

(2.6)
1

2

n−1∑
j=0

η(Gj(x))− log(
√

2) ≤ log(qn) ≤
n−1∑
j=0

η(Gj(x)).

Now the corollary follows immediately from (2.6) together with Lemma
2.4, and the following characterization of the set VWA:

An irrational x ∈ [0, 1] is very well approximable if and
only if there exists c > 0 such that it is ψ-well approx-
imable where ψ(q) = q−(2+c).

�

Using (2.6) and Lemma 2.4, we also deduce the following:

Corollary 2.7. Fix an irrational x ∈ [0, 1]. Then the following are
equivalent:
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(i) x is a Liouville number.
(ii) For all c > 0, there exist infinitely many n ∈ N such that (2.5)

holds.

Remark 2.8. The well-known fact that an irrational x ∈ [0, 1] is badly
approximable if and only if its continued fraction entries are bounded
is also a corollary of Lemma 2.4.

2.2. Proof of Theorem 2.1. We first of all note that it suffices to
consider the case where µ is ergodic with respect to G, since if χµ
is finite, then χν is finite for almost all measures ν in the ergodic
decomposition of µ. Since the set VWA is invariant with respect to the
Gauss map, it follows that any ergodic measure must give either zero
or full measure to VWA.

Let µ be an ergodic invariant measure whose Lyapunov exponent
χµ =

∫
log |G′|dµ is finite. Let η be as in Definition 2.5. Since η(x) �

−2 log(x) = log |G′(x)|, it follows that
∫
ηdµ is also finite. On the other

hand, η is a strictly positive function and so we have

(2.7) 0 <

∫
ηdµ <∞.

We claim that µ is extremal. Suppose to the contrary that µ-almost
every number x ∈ [0, 1] is very well approximable. It then follows from
Corollary 2.6, (2.7), and the Birkhoff ergodic theorem that for µ-almost
all such numbers x, we have that

lim inf
n→∞

1

n

n−1∑
j=0

η(Gj(x)) ≤ 1

cx
lim sup
n→∞

1

n
η(Gn(x)) = 0

with some cx > 0 coming from Corollary 2.6. Invoking the Birkhoff
ergodic theorem again, we conclude that

∫
ηdµ ≤ 0. This contradiction

finishes the proof.

3. Iterated function systems and conformal measures

Our main example of a measure invariant with respect to the Gauss
map will be the unique invariant probability measure absolutely con-
tinuous to a conformal measure associated with an iterated function
system consisting of inverse branches of the Gauss map. In this sec-
tion we recall the definitions and main theorems. All theorems in this
section except for those in Subsection 3.5 were proven first in [9] and
also in a more general context in [10].
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3.1. IFSs and continued fractions. For each i ∈ N, consider the
map gi : [0, 1]→ [0, 1] defined by

gi(x) =
1

i+ x
.

The map gi is an inverse branch of the Gauss map G. For any set
I ⊆ N, the collection of maps SI = {gi}i∈I is a conformal iterated
function system (see [9] or [10] for the definition).

Given ω = ω0ω1ω2 . . . ωn−1 ∈ Nn, let

gω := gω0 ◦ gω1 . . . ◦ gωn−1 : [0, 1]→ [0, 1],

so that

gω(x) =
1

ω0 +
1

ω1 +
1

. . . +
1

ωn−1 + x

.

In particular,
gω(0) = [0;ω0, ω1, . . . , ωn−1].

Let
JI =

⋂
n∈N

⋃
ω∈IN

gω([0, 1]).

The set JI is called the limit set of the IFS SI . It coincides with the set
of all irrational numbers in [0, 1] whose continued fraction entries all lie
in I. If I is infinite, then the set JI \JI consists of the set of all rational
numbers whose continued fraction entries all lie in I. Moreover, JI is
forward invariant under the Gauss map G, i.e.

G(JI) = JI .

3.2. A formula for the Hausdorff dimension of JI. Fix I ⊆ N.
A famous formula of R. Bowen relates the Hausdorff dimension of JI
to an invariant of the IFS SI called the topological pressure. Below we
describe this invariant and state Bowen’s formula.

Given t ≥ 0, the following limit exists and is called the topological
pressure of the IFS SI at the parameter t:

PI(t) := lim
n→∞

1

n
log
∑
ω∈In

‖g′ω‖t∞.

Theorem 3.1 (Bowen’s formula; Theorem 4.2.13 of [10]). For any set
I ⊆ N,

HD(JI) = inf{t ≥ 0 : PI(t) ≤ 0}.
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In particular, HD(JI) is the unique zero of PI if such a zero exists.

We will need also the following theorem:

Theorem 3.2 (Theorem 2.1.5 of [10]). Given t ≥ 0, for every set
I ⊆ N the function I 7→ PI(t) is continuous in the following sense:

PI(t) = lim
N→∞

PI∩{1,...,N}(t).

3.3. Conformal measures. Conformal measures are an important
tool for understanding the geometry of the limit set JI . In many
cases they coincide with either the normalized Hausdorff measure or
the normalized packing measure.

Definition 3.3. Fix t ≥ 0 and I ⊆ N. A probability measure m on
[0, 1] is called t-conformal with respect to the iterated function system
SI if m(JI) = 1 and if

m(gi(A)) =

∫
A

|g′i|tdm

for every Borel set A ⊆ [0, 1] and for every i ∈ I.

Definition 3.4. Fix I ⊆ N. The system SI is said to be regular if
there exists t ≥ 0 such that PI(t) = 0.

Proposition 3.5 (Theorem 4.2.9 of [10]). Fix I ⊆ N. The following
are equivalent:

(a) The IFS SI is regular.
(b) There exists a measure m and t ≥ 0 such that m is t-conformal.

Furthermore, in this case m and t are both unique, and P (t) = 0.

Corollary 3.6. Fix t ≥ 0 and I ⊆ N. Then if P (t) = 0, then there
exists a measure m which is t-conformal.

Proof. Since P (t) = 0, it follows that the IFS SI is regular, so by
Proposition 3.5, there exists a measure m and a number t′ ≥ 0 such that
m is t′-conformal and P (t′) = 0. But since P is strictly decreasing (part
(b) of Proposition 4.2.8 of [10]), we have t = t′, so m is t-conformal. �

Proposition 3.7. Fix I ⊆ N, and suppose that the IFS SI is regular.
Let mI be the unique conformal measure, and let h = HD(JI), so that
mI is h-conformal. Then there exists a unique Borel probability G-
invariant measure µI on JI absolutely continuous with respect to mI .
This measure is ergodic and equivalent to mI . The logarithm of the
corresponding Radon-Nikodym derivative is a bounded function on JI .

Proof. See Theorem 2.4.3 and part (c) of Corollary 2.7.5 in [10]. �
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Proposition 3.8.

(a) If the hI-dimensional Hausdorff measure of JI is positive (it is
always finite), then the system SI is regular and we have

mI =
HhI �JI

HhI (JI)
.

(b) If the hI-dimensional packing measure of JI is finite (it is always
positive), then the system SI is regular and we have

mI =
PhI �JI

PhI (JI)
.

Proof. An argument analogous to the proof of the change of vari-
ables formula demonstrates that both of the above expressions are hI-
conformal. The proposition therefore follows from Proposition 3.5. �

3.4. Regularity properties of the IFS SI. Fix I ⊆ N. In this
subsection we discuss properties of the IFS SI that are stronger than
just regularity.

Let
θI := inf{t ≥ 0 : PI(t) < +∞}.

We have the following simple characterization of the number θI :

Proposition 3.9.

θI = inf{t ≥ 0 :
∑
i∈I

‖g′i‖t∞ < +∞} = inf{t ≥ 0 :
∑
i∈I

i−2t < +∞}.

Proof. The first equation is part (a) of Proposition 4.2.8 of [10]; the
second follows from the fact that ‖g′i‖∞ = i−2 for all i ∈ N. �

Definition 3.10. Fix I ⊆ N. The system SI is said to be strongly
regular if there exists t ≥ 0 such that 0 < PI(t) < +∞, and it is called
cofinitely regular (or hereditarily regular) if PI(θI) = +∞.

We have the following:

Proposition 3.11 (Theorem 4.3.5 of [10]).

(a) Every cofinitely regular system is strongly regular and every
strongly regular system is regular.

(b) For each strongly regular system SI , we have HD(JI) > θI .

Proposition 3.12 (Theorem 4.3.4 of [10]). Fix I ⊆ N. The system SI
is cofinitely regular if and only if the series∑

i∈I

‖g′i‖θI
∞ =

∑
i∈I

i−2θI

diverges.
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Recall from Section 1 that if µ is a probability measure on [0, 1] is
invariant with respect to the Gauss map G : [0, 1] → [0, 1], then the
integral

χµ(G) =

∫
log |G′|dµ

is called the Lyapunov exponent of the measure µ with respect to the
Gauss map G. We have the following:

Proposition 3.13. Fix I ⊆ N. If the system SI is strongly regular,
then χµI

(G) < +∞.

Proof. By part (b) of Proposition 3.11, we have hI > θI . Fix θI < t <
hI . Then by the definition of θI , the series∑

i∈I

i−2t

converges. Now we can estimate the Lyapunov exponent of µI as fol-
lows:∫

log |G′|dµI �
∫
ηdmI =

∑
i∈I

log(1 + i)mI(gi([0, 1]))

�
∑
i∈I

log(1 + i)i−2hI .
∑
i∈I

i−2t <∞.

�

3.5. Two lemmas. Each of the two lemmas in this subsection will be
used several times throughout the remainder of the paper.

For every set I ⊆ N and for every t ≥ 0 let

λt(I) = ePI(t).

Lemma 3.14 (Lemma 4.3 of [4]). Fix δ > 0. Let i ≥ 2 and let I be a
finite subset of N \ {i}. Then

(3.1) λδ(I) +

(
1

i+ 1

)2δ

≤ λδ(I ∪ {i}) ≤ λδ(I) +

(
2

i+ 2

)2δ

.

Remark 3.15. Applying Theorem 3.2 to this lemma, we conclude that
(3.1) holds in fact for all sets I ⊆ N \ {i}.

Recall that we have defined ξ(x) = b1/xc to be the first entry of the
continued fraction expansion of x. For any ω ∈ Nn, let

Sω := gω([0, 1]) = {x ∈ [0, 1] : ξ(Gj(x)) = ωj ∀j = 0, . . . , n− 1},
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i.e. Sω is the set of all numbers whose continued fraction expansions
begin with the sequence ω0, . . . , ωn−1. Furthermore, for each k ∈ N let

S+
ω,k =

⋃
i≤k

Sωi.

Lemma 3.16. Fix I ⊆ N, and suppose that the IFS SI is regular.
Let hI be the Hausdorff dimension of JI and let mI be the unique hI-
conformal measure of SI . Then

(3.2)
mI(Sωi)

mI(Sω)
≥ 1

4hI
i−2hI

and

(3.3)
mI(S

+
ω,k)

mI(Sω)
≤ 1− 1

4hI

∑
i∈I
i>k

i−2hI .

Proof. It is clear that (3.3) follows from (3.2). To demonstrate (3.2),
note that since mI is hI-conformal we have

mI(Sωi)

mI(Sω)
=
mI(gωi([0, 1]))

mI(gω([0, 1]))
=

∫
|(g′ωi(x)|hI dmI(x)∫
|g′ω(x)|hI dmI(x)

≥
min[0,1] |g′ω|hI

max[0,1] |g′ω|hI
min
[0,1]
|g′i|hI .

On the other hand, we have (see [9], line -10 of p.4997, or by direct
computation)

max[0,1] |g′ω|
min[0,1] |g′ω|

≤ 4

which yields (3.2). �

4. Extremality of conformal measures

Fix I ⊆ N, and suppose that the IFS SI is regular. In this section we
discuss the extremality of the measures mI and µI defined in Section 3.
Note that since mI and µI are absolutely continuous to each other, mI

is extremal if and only if µI is.
By Theorem 2.1, if χµI

< +∞, then µI is extremal. By Propo-
sition 3.13, if SI is strongly regular, then χµI

< ∞. The following
proposition gives very general sufficient conditions for SI to be strongly
regular:

Proposition 4.1. If I ⊆ N, then any of the following three conditions
entail strong regularity of the iterated function system SI , and thus the
extremality of the measures mI and µI :
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(a) I is finite.
(b) The series

∑
a∈I a

−2θI diverges.
(c) The Hausdorff dimension of the limit set of the IFS is strictly

greater than 1/2.
(d) 1, 2 ∈ I.

Proof. Item (a) follows directly from the definition (we have 0 < PI(0) <
∞); item (b) follows from (a) of Proposition 3.11 and Proposition 3.12;
item (c) follows from Theorem 4.3.10 of [10] along with the observation
that θI ≤ θN = 1/2; item (d) follows from item (c) and the fact, proven
in [2], that h{1,2} = HD(J{1,2}) > 1/2. �

Remark 4.2. In case (a), the extremality of µI is obvious since its
topological support JI is contained in the set of badly approximable
numbers (see Remark 2.8).

Remark 4.3. The main result of [11], namely, the extremality part of
Theorem 4.5 of that paper, can be deduced from part (b) of Proposition
4.1.

Example 4.4. Fix a ≥ 2 and let I be the geometric series I =
{a, a2, . . .}. Then condition (b) of Proposition 4.1 is satisfied. Thus
the measure µI is extremal. On the other hand, µI is not absolutely
decaying (see below), so the extremality of µI does not follow from
Weiss’s theorem (Theorem 1.4).

Proof that µI is not absolutely decaying. Fix n ∈ N, and let xn = a−n ∈
JI . Then

B

(
xn,

1

an
− 1

an + 1

)
∩ JI = B

(
xn,

1

an
− 1

an+1

)
∩ JI .

If µ were absolutely α-decaying, we would therefore have

1 =
µ
[
B
(
xn,

1
an − 1

an+1

)]
µ
[
B
(
xn,

1
an − 1

an+1

)] ≤ C

(
1
an − 1

an+1
1
an − 1

an+1

)α

�
(

1/a2n

1/an

)α
=

1

anα
,

which is a contradiction for n large enough. �

The remainder of this section will be devoted to proving the following
theorem:

Theorem 4.5. There exists a measure µ invariant with respect to the
Gauss map which gives full measure to the Liouville numbers. In par-
ticular, µ is not extremal.
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The measure µ will be of the form µI for some I ⊆ N defining a
regular system SI .

Define a sequence of finite subsets IN ⊆ N recursively in the following
manner:

1. Let I0 = �.
2. Suppose that the set IN−1 has been defined. Let MN−1 =

max(IN−1). (By convention let max(�) = 0.)
3. Choose mN ∈ N large enough so that:

log(1 +mN) ≥ N4N log(1 +MN−1)(
2

mN + 2

)2δ

≤ 2−N .

4. Let RN ⊆ {mN , . . .} be a finite set satisfying:

(4.1) 1− 2−(N−1) ≤ λδ(IN−1 ∪RN) < 1− 2−N .

(The existence of such a set RN is verified below.)
5. Let IN = IN−1 ∪RN and then go back to step 2.

We now check that in step 4, it is always possible to find a set RN

which satisfies (4.1). We first claim that

(4.2) λδ(IN−1) < 1− 2−N < λδ(IN−1 ∪ {mN , . . .}).

Indeed, the left inequality follows from the induction hypothesis (or by
direct computation in the case N = 1). The right hand side follows
from Lemma 3.14 and the fact that the series

∞∑
i=mN

(
1

i+ 1

)2δ

diverges (since δ ≤ 1/2).
It follows from (4.2) that there exists K ∈ {mN , . . .} so that

λδ(IN−1 ∪ {mN , . . . , K}) < 1− 2−N

≤ λδ(IN−1 ∪ {mN , . . . , K + 1}).

Let RN = {mN , . . . , K}. By Lemma 3.14, we have

λδ(IN−1∪{mN , . . . , K}) ≥

≥ λδ(IN−1 ∪ {mN , . . . , K + 1})−
(

2

(K + 1) + 2

)2δ

≥ 1− 2−N − 2−N = 1− 2−(N−1)

which demonstrates (4.1).
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Let

I =
⋃
N

IN .

By Theorem 3.2, we have λδ(I) = 1, and thus PI(δ) = 0. By Corol-
lary 3.6 and Proposition 3.7 we have that HD(JI) = δ, and that
there exists a δ-conformal measure mI and an absolutely continuous
G-invariant measure µI . To complete the proof we need to show that
mI , and thus µI , gives full measure to the set of Liouville numbers. To
this end, fix N ∈ N. By Lemma 3.14 we have

(4.3) 1−λδ(I∩{1, . . . ,MN}) ≤
∑
i∈I

i>MN

(
2

2 + i

)2δ

≤ 4δ
∑
i∈I

i>MN

(
1

1 + i

)2δ

.

Fix ω = (ωj)
n−1
j=0 ∈ Nn. It then follows from (3.3) and (4.3) that

mI(S
+
ω,MN

)

mI(Sω)
≤ 1− 1

16δ
(1− λδ(I ∩ {1, . . . ,MN})),

where Sω and S+
ω,k are defined as in Lemma 3.16. Invoking (4.1) gives

(4.4)
mI(S

+
ω,MN

)

mI(Sω)
≤ 1− c2−N ,

where c = 1/16δ. Now for each n ∈ N let

Sn,N = {x ∈ [0, 1] : ξ(Gj(x)) ≤MN ∀j = 0, . . . , n− 1}.

Formula (4.4) yields

mI(Sn+1,N)

mI(Sn,N)
≤ 1− c2−N .

Iterating yields

mI(Sn,N) ≤ (1− c2−N)n.

Letting n = 4N , we see that

mI(S4N ,N) ≤ e−c2
N

and thus
∞∑
N=0

mI(S4N ,N) <∞.

Thus by the Borel-Cantelli lemma, mI-almost every point x ∈ JI lies
in only finitely many sets of the form S4N ,N . Fix such a point x, and
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we will show that x is a Liouville number. By Corollary 2.7, it suffices
to demonstrate that for all c > 0 we have

(4.5) η(Gn(x)) ≥ c

n−1∑
j=0

η(Gj(x))

for infinitely many n ∈ N, where η is defined as in Definition 2.5.
Indeed, for all but finitely many N ∈ N, we have x /∈ S4N ,N and
so there exists n ≤ 4N such that ξ(Gn(x)) > MN . Without loss of
generality, we may assume that n is minimal with this property, i.e.
ξ(Gj(x)) ≤ MN for all j < n. Now, since I does not contain any
numbers between MN and mN+1, we have ξ(Gn(x)) ≥ mN+1 and thus

η(Gn(x)) ≥ log(1 +mN+1) = N4N log(1 +MN)

≥ N
n−1∑
j=0

log(1 + ξ(Gj(x)))

= N
n−1∑
j=0

η(Gj(x))

which demonstrates that (4.5) has infinitely many solutions. Thus the
proof of Theorem 4.5 is complete.

5. Combinatorial characterizations of Ahlfors
regularity

In this section we prove Theorem 5.5 which gives a combinatorial
characterization of Ahlfors regularity of JI . We begin by recalling the
following theorems:

Theorem 5.1 (Theorem 4.1 of [9]). Fix a set I ⊆ N, and suppose that
the IFS SI is regular. Let h = HD(JI), and let mI be an h-conformal
measure. Then the following are equivalent:

(a) Hh(JI) > 0.
(b)

(5.1) sup
k1<k2

(k1k2)
h

(k2 − k1)h

∑
i∈I

k1≤i≤k2

i−2h <∞.

(c) mI is Ahlfors h-lower regular i.e.

mI(B(x, r)) . rh ∀x ∈ JI ∀r ≤ 1.
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Proof. The equivalence of (a) and (b) is proven in Theorem 4.1 of [9].
The implication (a)⇒(c) follows from the last line of the proof of the
implication (c)⇒(a) of Theorem 4.5.3 of [10] (just before the mass
distribution principle is applied), and the implication (c)⇒(a) is the
mass distrubution principle. �

Theorem 5.2 (Theorem 5.1 of [9]). Fix an infinite set I ⊆ N, and
suppose that the IFS SI is regular. Let h = HD(JI), and let mI be an
h-conformal measure. Then the following are equivalent:

(a) Ph(JI) <∞.
(b) Both of the following hold:

inf
k1<k2

B
(

2k1k2
k1+k2

,1
)
∩I 6=�

(k1k2)
h

(k2 − k1)h

∑
i∈I

k1≤i≤k2

i−2h > 0

inf
k≥1

kh
∑
i∈I
i≥k

i−2h > 0.

(c) mI is Ahlfors h-upper regular i.e.

mI(B(x, r)) & rh ∀x ∈ JI ∀r ≤ 1.

Note that the assumption that I is infinite is necessary in this theorem
since any finite IFS satisfies (a) and (c) but not (b).

Proof. The equivalence of (a) and (b) is proven in Theorem 5.1 of [9].
The implication (a)⇒(c) follows from the last line of the proof of the
implication (c)⇒(a) of Theorem 4.5.5 of [10] (just before the mass dis-
tribution principle for packing measure is applied), and the implication
(c)⇒(a) is the mass distrubution principle for packing measure. �

We can add new equivalences to Theorems 5.1 and 5.2 as follows:

Theorem 5.3. (a)-(c) of Theorem 5.1 are equivalent to the following:

(d) Both (i) and (ii) hold:
(i) For all y ∈ N and for all 1 ≤ r ≤ y/2,

#(B(y, r) ∩ I) . rh.

(ii) For all k ∈ N, ∑
i∈I
i>k

i−2h . k−h.

Theorem 5.4. (a)-(c) of Theorem 5.2 are equivalent to the following:

(d) Both (i) and (ii) hold:
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(i) For all y ∈ I and for all 1 ≤ r ≤ y/2,

#(B(y, r) ∩ I) & rh.

(ii) For all k ∈ N, ∑
i∈I
i>k

i−2h & k−h.

Proof of Theorems 5.3 and 5.4. By way of illustration we shall show
that (d) of Theorem 5.3 implies (b) of Theorem 5.1. The proof of the
other implications are left to the reader.

Fix k1 < k2. If I ∩ [k1, k2] = �, then the pair (k1, k2) does not
contribute to the supremum (5.1). Thus, suppose that I ∩ [k1, k2] 6= �,
and fix y ∈ I ∩ [k1, k2]. Let r = max(k2 − y, y − k1). If r ≤ y/2, then
we have

2

3
k2 ≤ y ≤ 2k1

r ≤ k2 − k1 ≤ 2r

and thus by (d)(i) of Theorem 5.3 we have

(k1k2)
h

(k2 − k1)h

∑
i∈I

k1≤i≤k2

i−2h � (y2)h

rh

∑
i∈I

k1≤i≤k2

y−2h

= r−h#(I ∩ [k1, k2])

≤ r−h#(I ∩B(y, r)) . r−hrh = 1.

On the other hand, suppose that r ≥ y/2. Then

k2 − k1 ≥ r ≥ k1

2

k2 ≥
3

2
k1

k2 − k1 ≥
k2

3

and thus by (d)(ii) of Theorem 5.3 we have

(k1k2)
h

(k2 − k1)h

∑
i∈I

k1≤i≤k2

i−2h ≤ (k1k2)
h

(k2/3)h

∑
i∈I
i≥k1

i−2h

� kh1
∑
i∈I
i≥k1

i−2h . kh1k
−h
1 = 1
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Thus either way we have

(k1k2)
h

(k2 − k1)h

∑
i∈I

k1≤i≤k2

i−2h . 1,

which is equivalent to (5.1). �

If we restrict our attention to sets I which satisfy both the conditions
of Theorem 5.1 and those of Theorem 5.2, then we get even more
characterizations:

Theorem 5.5. Fix an infinite set I ⊆ N, and let h = hI = HD(JI).
Then (a)-(c3) are equivalent and imply (d)-(e):

(a) Hh(JI) > 0 and Ph(JI) <∞.
(b1) Hh �JI

is Ahlfors h-regular.
(b2) Ph �JI

is Ahlfors h-regular.
(b3) The IFS SI is regular and mI is Ahlfors h-regular.
(b4) The IFS SI is regular and µI is Ahlfors h-regular.
(c1) For all y ∈ I and r ≥ 1

(5.2) #(B(y, r) ∩ I) � rh.

(c2) Both of the following hold:
(i) (5.2) holds for all y ∈ I and 1 ≤ r ≤ y/2.

(ii) There exists m ∈ N such that for all k ∈ N, we have
[k,mk] ∩ I 6= �.

(c3) Both of the following hold:
(i) (5.2) holds for all y ∈ I and 1 ≤ r ≤ y/2.

(ii) For all k ∈ N we have

(5.3)
∑
i∈I
i>k

i−2h � k−h.

(d) θI = h/2.
(e) The IFS SI is cofinitely regular.

Proof. Let us first assume that SI is regular. Then the equivalence of
(a), (b3), and (c3) follows directly from Theorems 5.3 and 5.4. The
equivalence of (b3) and (b4) follows from part Proposition 3.7. To see
that (b1) and (b3) are equivalent, note that by part (a) of Proposi-
tion 3.8, if the equivalence fails then Hh(JI) = 0. But in this case,
clearly (b1) and (a) are both false, so since (a) is equivalent to (b3)
we have (b1)⇔(b3). A similar argument yields the equivalence of (b2)
and (b3).

We next show that (c1)⇔(c2)⇔(c3)⇒(d), (e). In these proofs we do
not assume regularity of SI .
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Proof of (c3)⇒(c2). Suppose that (c3) holds. Let C be the implied
constant of (5.3), and let m = dC2/he + 1. Then for any k ∈ N, we
have ∑

i∈I
i>mk

i−2h ≤ C(mk)−h < C−1k−h ≤
∑
i∈I
i>k

i−2h

which demonstrates that [k,mk] ∩ I 6= �. /

Proof of (c2)⇒(c1), (c3), (d), (e). Suppose that (c2) holds. We claim
that

(5.4) #(I ∩ [k, 3mk]) � kh

for all k ∈ N. Indeed, the upper bound can be achieved by covering
I ∩ [k, 3mk] by finitely many sets of the form B(y, y/2), where y ∈
I∩[k, 3mk], and applying (5.2). The lower bound follows from choosing
a point y ∈ I ∩ [2k, 2mk] and applying (5.2) to the set B(y, y/2).

From (5.4), we calculate that for any t ≥ 0 and k ∈ N we have∑
i∈I
i>k

i−2t �
∑
n∈N

∑
i∈I

(3m)nk<i≤(3m)n+1k

i−2t

�
∑
n∈N

[(3m)nk]h[(3m)nk]−2t

which diverges if t ≤ h/2 and is otherwise asymptotic to

kh−2t <∞.
Specializing to the case t = h yields (c3). Applying Proposition 3.9
yields (d). Finally, part Proposition 3.7 yields (e).

To demonstrate (c1), fix y ∈ I and r ≥ 1. If r ≤ y/2, then we have
(5.2) for free. Thus, suppose r > y/2. Let N = dlog3m(y + r)e. Then

B(y, r) ⊆
N⋃
n=0

[
(3m)n, (3m)n+1

]
.

On the other hand, for each n ≤ N we have from (5.4)

#
(
I ∩

[
(3m)n, (3m)n+1

])
� [(3m)n]h

and summing yields

#(B(y, r) ∩ I) . [(3m)N ]h � rh.

To get the lower bound, note that

#(B(y, r) ∩ I) ≥ #(B(y, y/2) ∩ I) � (y/2)h � yh.

This bound is good enough unless r ≥ y. In this case, let k = br/(3m)c,
and (5.4) yields the bound. /
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Proof of (c1)⇒(c2). Similar to the proof of (c3)⇒(c2). /

This completes the proof of the theorem in the case where SI is reg-
ular. Suppose on the other hand that SI is not regular. Then (b3) and
(b4) are clearly false. Applying parts (a) and (b) of Proposition 3.8
yields that (a), (b1), and (b2) are false. Applying part (a) of Proposi-
tion 3.11 yields that (d) is false. Since we have (c1)⇔(c2)⇔(c3)⇒(d),
and the proof of this did not depend on the regularity of SI , we have
that (c1)-(c3) are false. This yields the theorem. �

6. Proof of Theorem 6.1

In this section we will prove the following theorem:

Theorem 6.1. Fix an infinite set I ⊆ N, and let h be the Hausdorff
dimension of JI . Assume that the h-dimensional Hausdorff measure Hh

restricted to JI is Ahlfors h-regular. Then the converse to Theorem 1.4
holds for α = h, µ = Hh �JI

, and for any function ψ for which the
function q 7→ q2ψ(q) is nonincreasing.

Fix a function ψ : N → (0,∞), and suppose that the series (1.4)
diverges and that the function q 7→ q2ψ(q) is nonincreasing. By (a)
of Proposition 3.8, we have mI � Hh �JI

, so to prove the theorem it
suffices to show that mI-almost every number is ψ-approximable. In
fact, we will demonstrate the (slightly) stronger statement that mI-
almost every number is ψ-well approximable.

By (b1)⇒(e) of Theorem 5.5, the iterated function system SI =
{ga}a∈I is cofinitely regular. Thus the Lyapunov exponent of µI is finite
(Proposition 3.13 and part (a) of Proposition 3.11) and in particular
0 <

∫
ηdµI < ∞ (see (2.7)), where η is defined as in Definition 2.5.

Thus by the Birkhoff ergodic theorem, we have

1

n

n−1∑
j=0

η(Gj(x))−→
n
E :=

∫
ηdµI

for µI-almost every x ∈ [0, 1]. Combining the above equation with (2.6)
gives

(6.1)
E

2
≤ lim inf

n→∞

1

n
log(qn) ≤ lim sup

n→∞

1

n
log(qn) ≤ E.

Let x ∈ [0, 1] be a point such that (6.1) holds but which is not ψ-
well approximable. By Lemma 2.4 there exists K > 0 such that for all
n ∈ N, (2.1) fails to hold. Combining (6.1), the negation of (2.1), and
the fact that φ(q) = 1

q2ψ(q)
is nondecreasing yields

(6.2) ωn = ξ(Gn(x)) ≤ Kφ(γn)
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for all n sufficiently large, where γ = 1 + deEe. By increasing K, we
may ensure that (6.2) holds for all n ∈ N.

Thus, we are done if we show that the set of x for which there exists
K such that (6.2) holds for all n ∈ N is a null set. Given n ∈ N and
K > 0 let

Sψ,n,K = {x ∈ JI : (6.2) holds for n,K}
and

S+
ψ,n,K =

n−1⋂
j=0

Sψ,j,K .

To complete the proof of Theorem 6.1 we must therefore show that

(6.3) mI

(
S+
ψ,∞,K

)
= 0 ∀K > 0.

Fix K > 0.
For each n ∈ N, let kn = Kφ(γn). In the notation of Lemma 3.16,

we have

Sψ,n,K =
⋃
ω∈An

Sω

Sψ,n+1,K =
⋃
ω∈An

S+
ω,kn

,

where

An =
n−1∏
j=0

{1, . . . , kj}.

It therefore follows from (3.3) that

mI(S
+
ψ,n+1)

mI(S
+
ψ,n)

≤ 1− 1

4hI

∑
i∈I
i>kn

i−2hI .

On the other hand, by the implication (b1)⇒(c3) of Theorem 5.5 we
have

(6.4)
∑
i∈I
i>kn

i−2h � k−hn � φ(γn)−h.

Thus for some constant K2 > 0 depending on K, we have

mI(S
+
ψ,n+1,K)

mI(S
+
ψ,n,K)

≤ 1−K2φ(γn)−h.

Thus

mI(S
+
ψ,∞,K) ≤

∞∏
n=0

(
1−K2φ(γn)−h

)
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which is zero if the series

(6.5)
∞∑
n=0

φ(γn)−h

diverges. Now, by Cauchy’s condensation test, (6.5) diverges if and
only if (1.4) diverges. This demonstrates (6.3), completing the proof.

7. Proof of Theorem 7.1

In this section we will prove the following theorem:

Theorem 7.1. For every 0 < δ ≤ 1 there exists an infinite set I ⊆ N
such that HD(JI) = δ and such that Hδ �JI

is Ahlfors δ-regular.

Fix 0 < δ ≤ 1. If δ = 1, we let I = N; the conclusion of the
proposition is satisfied since then Hδ �JI

is simply Lebesgue measure.
Thus, we shall assume without loss of generality that δ < 1. We
observe that by the implication (c1)⇒(b1) of Theorem 5.5, to prove
Theorem 7.1 it suffices to find a set I satisfying

(7.1) HD(JI) = δ

and

(7.2) #(B(y, r) ∩ I) � rδ.

We will begin by finding a set I0 which satisfies (7.2) but not (7.1).
Then we will construct a set R which satisfies (7.1) but not (7.2).
Finally we will combine I0 and R into a single set Iδ which is satisfies
both (7.1) and (7.2).

7.1. Constructing I0.

Lemma 7.2. There exists a set I0 ⊆ N satisfying (7.2).

Proof. Indeed, let I0 be the set of all sums of the form

1 +
∑
n∈N

anb2n/δc,

where an = 0 or 1 for all n ∈ N, with only finitely many 1s. It is readily
verified that I0 satisfies (7.2). �
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7.2. Constructing R. We define a sequence of subsets RN ⊆ N by
induction:

1. Let R1 = {1}.
2. Suppose that RN−1 ⊆ {1, . . . , N −1} has been defined for some
N ≥ 2. If

λδ(RN−1 ∪ {N}) < 1,

then let RN = RN−1 ∪ {N}, otherwise let RN = RN−1.

Observation 7.3. For all N ∈ N

λδ(RN) < 1.

Proof. The base case follows either from direct computation or from
Bowen’s formula (Theorem 3.1); the inductive step follows from the
construction of RN . �

Claim 7.4. R :=
⋃
N RN is not cofinite.

Proof. By Theorem 3.2 and by the previous observation, we have λδ(R) ≤
1. Combining with Bowen’s formula, we see that HD(JR) ≤ δ < 1 =
HD(JN). In particular, R 6= N.

Thus if we suppose by contradiction that R is cofinite, then N\R has
a maximal element M ; moreover, we know that M ≥ 2 since 1 ∈ R.
But then by the construction of RM , we have

λδ(RM−1 ∪ {M}) ≥ 1

and so by Lemma 3.14 we have

(7.3) λδ(RM−1) ≥ 1−
(

2

2 +M

)2δ

.

On the other hand, by Observation 7.3 we have

λδ(RM−1 ∪ {M + 1, . . . , N}) = λδ(RN) < 1

for every N ∈ N. So, applying Lemma 3.14, we see that(
2

2 +M

)2δ

> λδ(RM−1 ∪ {M + 1, . . . , N})− λδ(RM−1)

≥
N∑

i=M+1

(
1

1 + i

)2δ

>

∫ N+1

x=M+1

(
1

1 + x

)2δ

dx.
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Since N was arbitrary, we can take the limit as N approaches infinity
and so we have ∫ ∞

x=M+1

(
1

1 + x

)2δ

dx <

(
2

2 +M

)2δ

.

If δ ≤ 1/2, then the left hand integral diverges, a contradiction. If
δ > 1/2, the left hand integral converges and we have

(M + 2)1−2δ

2δ − 1
<

(
2

2 +M

)2δ

.

Rearranging yields

M + 2 < 22δ(2δ − 1) ≤ 22(2− 1) = 4.

This contradicts M ≥ 2 and the proof is finished. �

Observation 7.5. It follows from (7.3), Observation 7.3, and Theo-
rem 3.2 that

HD(JR) = δ.

7.3. Combining I0 and R. Fix N1 ∈ N \ R large, to be determined
later.4 By the construction of RN1 we have (7.3) with M = N1, and so

1−
(

2

2 +N1

)2δ

≤ λδ(RN1−1) < 1.

Now let I0 be as in Lemma 7.2, and let

I+ := 2I0

I− := 2I0 − 1.

It is evident that any set Iδ ⊆ N satisfying

(7.4) I− ⊆∗ Iδ ⊆∗ I+ ∪ I−
satisfies (7.2), where A ⊆∗ B means #(A \ B) < ∞. We will con-
struct such a set recursively. Now by the implication (c1)⇒(c3) of
Theorem 5.55, we have∑

i∈I−

(
2

2 + i

)2δ

�
∑
i∈I−

i−2δ <∞;

thus we may choose N2 large enough so that

(7.5)
∑

i∈I−\{1,...,N2}

(
2

2 + i

)2δ

< 1− λδ(RN1−1).

4Specifically, we let N1 be large enough so that (7.7) cannot hold whenever
M ≥ N1.

5Note that the implication holds even when h 6= HD(JI).



28 LIOR FISHMAN, DAVID SIMMONS, AND MARIUSZ URBAŃSKI

We will now construct a sequence of sets (IN)N≥N1−1 recursively in the
following manner:

1. Let

IN1−1 = RN1−1 ∪ (I− \ {1, . . . , N2}).
2. Suppose that IN−1 has been defined for some N ≥ N1. If N /∈
I+ ∪ {N1}, then let IN = IN−1.

3. If N ∈ I+ ∪ {N1}, and if

λδ(IN−1 ∪ {N}) < 1,

then let IN = IN−1 ∪ {N}.
4. Otherwise, let IN = IN−1.

Observation 7.6. For all N ≥ N1 − 1

λδ(IN) < 1.

Proof. The base case of induction follows from Lemma 3.14 together
with (7.7). The induction step follows from the construction of IN . �

Claim 7.7. Case 4 occurs infinitely many times.

Proof. As N1 /∈ R, we know that Case 4 occurs at least once, namely
at N = N1. If we suppose by contradiction that it occurs only finitely
often, then there is some maximal value M at which it occurs. In
particular

λδ(IM−1 ∪ {M}) ≥ 1,

and applying Lemma 3.14 gives

(7.6) λδ(IM−1) ≥ 1−
(

2

2 +M

)2δ

.

On the other hand, by the above observation and by the maximality
of M we have

λδ(IM−1 ∪ (I+ ∩ {M + 1, . . . , N})) < 1

for all N ∈ N. Combining these last two formulas and then applying
Lemma 3.14, we see that(

2

2 +M

)2δ

> λδ(IM−1 ∪ (I+ ∩ {M + 1, . . . , N}))− λδ(IM−1)

≥
N∑

i=M+1
i∈I+

(
1

1 + i

)2δ

.
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Since N was arbitrary, we can take the limit as N approaches infinity
which yields

(7.7) M−2δ �
(

2

2 +M

)2δ

>

∞∑
i=M+1
i∈I+

(
1

1 + i

)2δ

�M−δ.

Since δ > 0, this is a contradiction if M is sufficiently large. Thus, if
we let N1 be large enough so that (7.7) cannot hold whenever M ≥ N1,
then this completes the proof of the claim. �

Now let
I = Iδ =

⋃
N≥N1−1

IN .

As mentioned earlier, it is clear that I satisfies (7.2) since it satisfies
(7.4). Thus to complete the proof of Theorem 7.1, it suffices to demon-
strate (7.1). To this end, let (Mk)k be an increasing sequence of points
at which Case 4 occurs. For each k ∈ N, we have (7.6) with M = Mk

i.e.

1−
(

2

2 +Mk

)2δ

≤ λδ(IMk−1) < 1.

Taking the limit as k approaches infinity, we see that λδ(I) = 1. Thus
by Bowen’s formula (Theorem 3.1), we have HD(JI) = δ. This com-
pletes the proof.
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