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Abstract. We give a new approach to the study of conformal iterated func-
tion systems with arbitrary overlaps. We provide lower and upper estimates
for the Hausdorff dimension of the limit sets of such systems; these are ex-
pressed in terms of the topological pressure and the function d counting
overlaps. In the case when the function d is constant, we get an exact for-
mula for the Hausdorff dimension. We also prove that in certain cases this
formula holds if and only if the function d is constant.

1. Introduction

The geometry of limit sets of conformal iterated function systems satisfying
the open set condition, that is with no overlaps, is fairly well understood in
the case of finite alphabet as well as infinite one; see [6] and references therein.
In particular, the classical version of Bowen’s formula holds, identifying, in the
case of a finite alphabet, the Hausdorff dimension of the limit set as the unique
zero of the pressure function.

It is however a notoriously difficult task to find a formula, or at least to get
some good estimates for the Hausdorff dimension of the limit set of a conformal
iterated function system with overlaps. All attempts known to us aimed to
neutralize the effects of overlaps and to get the classical form of Bowen’s formula.
The most successful of them was the one based on the concept of transversality
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(see [3], [4]) when the results were only generic, holding for almost all members
of parametrized families of iterated function systems.

Our approach in this paper is drastically different. Firstly, we deal with one
fixed conformal iterated function system having arbitrary overlaps. Secondly,
we fully acknowledge the existence of overlaps and recognize their influence on
the value of the Hausdorff dimension of the limit set. We get two estimates,
lower and upper bounds in Theorem 3.1 and Theorem 4.1, both quantitatively
incorporating overlaps. In the case when the function d, counting overlaps, is
constant, we get an exact formula (Corollary 4.2) for the Hausdorff dimension.

Corollary 4.2 also says that this formula holds, if and only if the function
d is constant. We would like to add that in the case of a smooth dynamical
system f : M → M , where M is a smooth Riemannian manifold, we obtained
somewhat analogous estimates for the stable dimension on a hyperbolic basic
set Λ ⊂M ; see [1] and [2].

2. IFS Preliminaries

Fix an integer q ≥ 1 and a real number s ∈ (0, 1). Let X be a compact subset
of Rq such that X = IntX. Suppose that V is a bounded connected open subset
of Rq such that X ⊂ V .

Fix also an arbitrary finite set E called in the sequel an alphabet. A system
S = {φe : V → V }e∈E of C1+ε conformal injective maps from V to V is
called a conformal iterated function system if φe(X) ⊂ X for all e ∈ E and
||φ′e|| = sup{|φ′e(x)| : x ∈ V } ≤ s for all e ∈ E. Here, φ′e(x) : Rq → Rq is the
derivative of the map φe : V → V evaluated at the point x, it is a similarity
map, and |φ′e(x)| is its operator norm, or equivalently, its scaling factor.

Note that we do not assume any sort of the open set condition, i.e we allow
any overlaps of the sets φa(X) and φb(X), where a, b ∈ E with 6= b. Let

E∗ =
∞⋃
n=0

En and E∞ = {(ωn)∞n=1 : ∀n≥1 ωn ∈ E}.

If τ ∈ E∞ and n ≥ 0, we put τ |n = τ1 . . . τn. Now fix ω ∈ E∞ and no-
tice that

(
φω|n(X)

)∞
n=1

is a descending sequence of compact sets such that

diam
(
φω|n(X)

)
≤ Dsndiam(X), where the number D ≥ 1 is due to the fact

that we do not assume the set X to be convex. Therefore, the intersection⋂∞
n=1 φω|n(X) is a singleton, and we denote its only element by π(ω). So, we

have defined a map π : E∞ → X which is Lipschitz continuous if E∞ is endowed
with the metric ds(ω, τ) = s|ω∧τ |, where ω∧τ is the longest common initial block
of ω and τ ; we also set s∞ = 0.
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The limit set (or the attractor) J = JS of the system S is, by definition, equal
to π(E∞). Clearly, we have

JS =
∞⋂
n=1

⋃
|ω|=n

φω(X),

and JS is the unique compact set contained in X satisfying the following self-
conformality condition

JS =
⋃
e∈E

φe(JS),

and, by induction,

JS =
⋃
|ω|=n

φω(JS), n ≥ 1.

Let σ : E∞ → E∞ be the (one sided) shift map, i.e. σ
(
(ωn)∞n=1

)
=
(
(ωn+1)

∞
n=1

)
.

Let ψ : E∞ → R be the function defined by the following formula,

ψ(ω) = log |φ′ω1
(π(σ(ω)))|, ω ∈ E∞

As all the maps φe, e ∈ E, are C1+ε and ||φ′e|| ≤ s < 1 for all e ∈ E, and
since the alphabet E is finite, one can easily prove the following two lemmas.

Lemma 2.1. The function ψ : E∞ → R is Hölder continuous.

Lemma 2.2. If g : E∞ → R is a Hölder continuous, then there exists a constant
Cg > 0 such that ∣∣∣∣∣

n−1∑
j=0

g(σj(ω))−
n−1∑
j=0

g(σj(τ))

∣∣∣∣∣ ≤ Cg

for all n ≥ 1 and all ω, τ ∈ E∞ such that ω|n = τ |n.

Now, let us define a function d : J → N by the following formula,

d(x) = #{e ∈ E : x ∈ φe(J)}.

Immediately from this definition we get the following trivial, but very useful,
formula

(2.1)
∑

e∈E:x∈φe(J)

d−1(x) = 1

for all x ∈ J .
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Let now κ : E∞ → [1,+∞) to be a Hölder continuous function and, for an
arbitrary parameter t ∈ R, consider the potentials ψκ,t : E∞ → R defined as
follows:

ψκ,t(ω) = tψ(ω)− log κ(ω) = t log |φ′ω1
(π(σ(ω)))| − log κ(ω), ω ∈ E∞

One can check easily that ψκ,t is Hölder continuous, by using Lemma 2.1 and
the Hölder continuity of κ.

Let P(t) := P(ψκ,t) be the topological pressure of the potential ψκ,t with
respect to the dynamical system σ : E∞ → E∞. Since log |φ′ω1

(π(σ(ω)))| ≤
log s < 0, there exists a unique hκ ∈ R such that P(ψκ,hκ) = 0. Let µ̃t be
the unique shift-invariant Gibbs (equilibrium) state of the Hölder continuous
potential ψκ,t : E∞ → R, and let

µt = µ̃t ◦ π−1.

Clearly, µt(J) = 1. For every ω ∈ E∗, say ω ∈ En, let

[ω] = {τ ∈ E∞ : τ |n : ω}.
This set is called the (initial) cylinder generated by ω. The Gibbs property
means that

(2.2) µ̃t([ω|n]) � e−P(t)n||φ′ω|n||
t

n−1∏
j=0

κ−1(π(σj(ω))).

If A is an arbitrary Borel subset of J and F ⊂ E∗ is a family of mutually
incomparable words such that π−1(A) ⊂

⋃
ω∈F [ω], then

(2.3) µt(A) ≤
∑
ω∈F

µ̃t([ω]).

3. Lower Bound

We shall prove in this section the following.

Theorem 3.1. If S = {φe}e∈E is a conformal iterated function system and
κ̂ : J → [1,+∞) is a continuous function such that d(x) ≤ κ̂(x) for all x ∈ J ,
then HD(J) ≥ hκ, where κ = κ̂ ◦ π : E∞ → R.

Proof. Since every real-valued continuous function can be approximated uni-
formly from above by Hölder (even Lipschitz) continuous functions, and since
the pressure function is Lipschitz continuous with the Lipschitz constant 1, we
may assume without loss of generality that the function κ̂ : J → [1,+∞) is
Hölder continuous. Since HD(J) ≥ 0 we may also assume without loss of gen-
erality that hκ > 0. Then, fix an arbitrary t ∈ (0, hκ). So, P(t) > 0. Since the
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function κ̂−1 : J → (0, 1] is uniformly countinuous, there exists η > 0 so small
that

κ̂−1(y) ≤ eP(t)κ̂−1(x)

for all x, y ∈ J with ||y−x|| < η. Since the alphabet E is finite, for every z ∈ J
there exists R(z) ∈ (0, η) such that if B(z, R(z)) ∩ φe(J) 6= ∅, then z ∈ φe(J).
Consider the open cover {B(z,R(z)/2)}z∈J of the set J . Since J is compact,
there exists a finite set F ⊂ J such that

(3.1) J ⊂
⋃
z∈F

B(z,R(z)/2).

Now fix x ∈ J and

0 < r < R∗ :=
1

4
min{diam(J), R(·)}.

By (3.1) there exists zx ∈ F such that x ∈ B(zx, R(zx)/2).
We say in the sequel that two words from E∗ are mutually incomparable if

neither is an extension of the other.
Now given a set B ⊂ B(x, r), we say that a family F ⊂ E∗ consisting

of mutually incomparable words is properly placed with respect to the triple
(x,B, r), if for all ω ∈ F we have that:

(3.2) B ∩ φω(J) 6= ∅.

Immediately from this definition, the definition of R and the restriction on
r > 0, we get that

(3.3) zx ∈ φω1(J)

for all ω ∈ F .
Now fix an arbitrary τ ∈ E∞, and a family F ⊂ E∗ which is properly placed

with respect to (x,B, r) for some B ⊂ B(x, r). We then have
(3.4)

Σ(F) :=

=
∑
ω∈F

e−P(t)|ω|κ−1(ωτ)κ−1(σ(ωτ)) . . . κ−1(σ|ω|−1(ωτ))

≤
∑
ω∈F

e−P(t)|ω|eP(t)κ−1(zx)κ
−1(σ(ωτ)) . . . κ−1(σ|ω|−1(ωτ))

≤
∑
ω∈F

e−P(t)(|ω|−1d−1(zx)κ
−1(σ(ωτ)) . . . κ−1(σ|ω|−1(ωτ))

=
∑
e∈F1

d−1(zx) ·
∑

ω∈F(e)

e−P(t)|ω|κ−1(ωτ)κ−1(σ(ωτ)) . . . κ−1(σ|ω|−1(ωτ)),
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where,

F1 := {ω1 ∈ E : ω ∈ F} ⊂ {e ∈ E : zx ∈ φe(J)}

and then for all e ∈ F1,

F(e) := {ω ∈ E∗ : eω ∈ F}.

Notice that for each e ∈ F1, the family F(e) consists of mutually incomparable
words and φ−1

e (zx) ∈ J . If ω ∈ F(e), then we have

∅ 6= φ−1
e (φeω(J) ∩B) = φω(J) ∩ φ−1

e (B)

and

φ−1
e (B) ⊂ B(φ−1

e (xe), 2Kr||φ′e||−1),

where xe is an arbitrary point in φe(J) ∩ B, independent of ω. So, the family
F(e) is properly placed with respect to (φ−1

e (xe), φ
−1
e (B), 2Kr||φ′e||−1)) as long

as 2Kr||φ′e||−1 < R∗.
Proceeding now by induction, we see that given elements α, β ∈ E∗, with

l := |α| ≥ 2, such that αβ ∈ F and

(3.5) 2Kr||φ′α||−1 < R∗,

we can form similarly as above the family F(α1 . . . αl) := F(α1 . . . αl−1)(αl)
which is properly placed with respect to (φ−1

αl
(xα), φ−1

α (B), 2Kr||φ′α||−1), where
xα = φ−1

αl−1
(φ−1

αl−2
(. . . (φ−1

α1
(xα1)α2) . . .).

Now fix the largest integer l ≥ 1 so that (3.5) holds for all the words αβ ∈ F
starting with α, and such that |α| ≤ l. Then, continuing (3.4), we can estimate
as follows,

(3.6)

Σ(F) ≤
∑
e1∈F1

d−1(zx)
∑

e2∈F(e1)1

d−1(zxe1 )
∑

e3∈F(e1e2)1

d−1(zxe1e2 ) · . . . ·

·
∑

el+1∈F(e1...el)1

d−1(zxe1e2...el )e
−P(t)|ω| ·

·
∑

ω∈F(e1e2...elel+1)

κ−1(ωτ)κ−1(σ(ωτ)) . . . κ−1σ|ω|−1(ωτ)),

where we recall that F(e1e2 . . . elel+1) = {ω ∈ E∗ : e1e2 . . . elel+1ω ∈ F}, for
l ≥ 1.

Now we define a special family, which is properly placed with respect to the
triple (x,B(x, r), r), with r ∈ (0, R∗), namely:

F∗(x, r) := {ω ∈ E∗ : B(x, r)∩φω(J) 6= ∅, φω(J) ⊂ B(x, 2r), φω||ω|−1
(J) 6⊂ B(x, 2r)}.
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Recall also that ||φ′e|| ≤ s < 1,∀e ∈ E. Hence, if ω ∈ F∗(x, r), then

(3.7)
r ≤ diam

(
φω||ω|−1

(J)
)
≤ Ddiam(X)||φ′ω||ω|−1

|| ≤ Ddiam(X)γ−1||φ′ω||

≤ Ddiam(X)γ−1s|ω|−l||φ′ω|l ||,

where

γ = min
e∈E

inf{|φ′e(y)| : y ∈ J} ∈ (0, 1)

On the other hand, since l ≥ 1 was taken to satisfy a maximality con-
dition above, there exists ω ∈ F∗(x, r) such that r||φ′ω|l+1

||−1 ≥ (2K)−1R∗.

Hence ||φ′ω|l || ≤ 2K(γR∗)
−1r. Combining this with (3.7), we get that r ≤

2KDdiam(X)γ−2R−1
∗ s
|ω|−lr, or equivalently:

(1/s)|ω|−l ≤ A := 2KDdiam(X)(γ2R∗)
−1

Hence we obtain,

|ω| − l ≤ logA

log(1/s)
.

Since κ ≥ 1 and P(t) > 0, it follows from this (3.6) and (2.1) that

(3.8) Σ(F∗(x, r)) ≤ #E
logA

log(1/s) .

We have from the definition of F∗(x, r) also that

(3.9) 4r ≥ diam(φω(J)) ≥ D−1||φ′ω||.

Since F∗(x, r) consists of mutually incomparable words and π−1(B(x, r)) ⊂⋃
ω∈F∗(x,r)[ω], we get from (2.3), (2.2), (3.8) and (3.9), that

µt(B(x, r)) �
∑

ω∈F∗(x,r)

e−P(t)|ω|||φ′ω|n||
t

|ω|−1∏
j=0

κ−1(π(σj(ωτ)))

≤ (4D)trt
∑

ω∈F∗(x,r)

e−P(t)|ω|
|ω|−1∏
j=0

κ−1(π(σj(ωτ)))

= (4D)trtΣ(F∗(x, r))

≤ (4D)t#E
logA

log(1/s) rt.

It therefore follows from the Converse Frostmann Lemma (see Theorem 8.2(2).
in [5]) that Ht(J) > 0; consequently HD(J) ≥ t. Since t > 0 was an arbitrary
number smaller than hκ, we thus conclude that HD(J) ≥ hκ. The proof is
complete. �
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4. Upper Bound

As an upper bound, we shall prove the following.

Theorem 4.1. If S = {φe}e∈E is a conformal iterated function system and
κ ≥ 1 is an integer satisfying d(x) ≥ κ for all x ∈ J , then HD(J) ≤ hκ.

Proof. Fix t > hκ. Then P(t) < 0 and therefore

(4.1)
∑
|ω|=n

||φ′ω||te−κn ≤ e
1
2
P(t)n

for all n ≥ 1 large enough, say n ≥ n0. For every ω ∈ En consider the smallest
closed ball Bω containing φω(X). Then

(4.2) diam(Bω) ≤ 2diam(φω(X)) ≤ 2Ddiam(X)||φ′ω||.

Since {Bω}ω∈En is a cover of the limit set J by closed balls, in virtue of 4r-
Covering Theorem (see Theorem 8.1 in [5]) there exists a set I1 ⊂ En with the
following properties

(a) Bω ∩Bτ = ∅ for all ω, τ ∈ I1 with ω 6= τ .
(b)

⋃
ω∈I1 4Bω ⊃ J .

Suppose now by induction that the sets I1, I2, . . . , Il, 1 ≤ l < κn have been
defined with the following properties:

(c) Ii ∩ Ij = ∅ for all 1 ≤ i < j ≤ l.
(d) ∀(1 ≤ j ≤ l) ∀(ω, τ ∈ Ij) ω 6= τ ⇒ Bω ∩Bτ = ∅.
(e) ∀(1 ≤ j ≤ l)

⋃
ω∈Ij 4Bω ⊃ J .

Because of (c) and (d), each point of J belongs to at most l elements of the family
{Bω : ω ∈ I1∪. . .∪Il}. But, as d ≥ κ, each element of J belongs to at least κn > l
elements of the family {φω(J) : |ω| = n}, ad thus, to at least κn > l elements of
the family {φω(X) : |ω| = n}, and eventually to at least κn > l elements of the
family {Bω : |ω| = n}. Thus, the family {Bω : ω ∈ En \ (I1 ∪ . . . ∪ Il)} covers
J , and it therefore follows from the 4r-Covering Theorem (see Theorem 8.1 in
[5]) that one can find a set Il+1 ⊂ En \ (I1 ∪ . . . ∪ Il) such that

(f) If ω, τ ∈ Il+1 and ω 6= τ , then Bω ∩Bτ = ∅.
(g)

⋃
ω∈Il+1

4Bω ⊃ J .

So, we have constructed by induction a family of sets I1, I2, . . . , Iκn ⊂ En such
that the conditions (c), (d), and (e) hold with l = κn.
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Choose now 1 ≤ j ≤ κn so that the sum
∑

ω∈Ij diamt(Bω) is the smallest.

Then by (4.2), (4.1) and (c), (d), (e), we get that∑
ω∈Ij

diamt(4Bω) = 4t
∑
ω∈Ij

diamt(Bω) ≤ 4t

κn

κn∑
i=1

∑
ω∈Ii

diamt(Bω)

≤ 4tκ−n
∑
|ω|=n

diamt(Bω) ≤ (8diam(X))t
∑
|ω|=n

||φ′ω||te− log κn

≤ (8diam(X))te
1
2
P(t)n.

Because of (e) and since P(t) < 0, we thus conclude that Ht(J) = 0; so HD(J) ≤
t. By the arbitrariness of t > hκ, this yields HD(J) ≤ hκ. We are done.

�

As a consequence of Theorem 3.1 and Theorem 4.1, we get the following.

Corollary 4.2. Suppose that S = {φe}e∈E is a conformal iterated function
system and let D := max{d(x) : x ∈ JS}. Then HD(JS) = hD if and only if
d(x) = D for all x ∈ JS.

Proof. If d(x) = D for all x ∈ JS, then the equality HD(JS) = hD is a direct
consequence of Theorem 3.1 and Theorem 4.1.

In order to prove the converse, suppose that h := HD(JS) = hD. By way of
contradiction suppose that there exists z ∈ J such that d(z) ≤ D−1. Since the
alphabet E is finite, there thus exists an open neighborhood V of z such that
d(x) ≤ D− 1 for all x ∈ V . Fix a non-empty open set U ⊂ J such that U ⊂ V .
There then exists a Lipschitz function κ̂ : J → [1,+∞) such that κ̂(x) = D− 1
for all x ∈ U and κ̂(x) = D for all x ∈ J \ V . In particular, d(y) ≤ κ̂ for all
y ∈ J , and it therefore follows from Theorem 3.1 that hD = h ≥ hκ; recall that
κ = κ̂ ◦ π. But we also have

(4.3) κ ≤ D on E∞,

and thus hD ≤ hκ. Hence,

(4.4) hκ = hD.

Let µ̃D be the unique equilibrium (Gibbs) state on E∞ of the potential hdψ −
logD. Since P(hDψ − logD) = 0, we have

(4.5)

∫
E∞

(hDψ − logD)dµ̃D + hµ̃D(σ) = 0,

where hµ̃D(σ) is the Kolmogorov-Sinai metric entropy of the dynamical system
σ : E∞ → E∞ with respect to the σ-invariant measure µ̃D. In virtue of the
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Variational Principle, we also have,∫
E∞

(hDψ−log κ)dµ̃D+hµ̃D(σ) =

∫
E∞

(hκψ−logD)dµ̃D+hµ̃D(σ) ≤ P(hκψ−log κ) = 0.

this combined with (4.5), imply that

(4.6)

∫
E∞

(logD − log κ)dµ̃D ≤ 0.

Since the function logD− log κ is continuous and since the equilibrium state
µ̃D (as a Gibbs state of a Hölder continuous function) is positive on non-empty
open subsets of E∞, it follows from (4.6) and (4.3) that log κ = logD on E∞.
So, κ̂ = D on J and this contradiction finishes the proof.

�
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