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ABSTRACT. We introduce and explore random conformal graph directed Markov systems gov-
erned by measure-preserving ergodic dynamical systems. We first develop the symbolic ther-
modynamic formalism for random finitely primitive subshifts of finite type with a countable
alphabet (by establishing tightness in a narrow topology). We then construct fibrewise confor-
mal and invariant measures along with fibrewise topological pressure. This enables us to de-
fine the expected topological pressure £P(t) and to prove a variant of Bowen’s formula which
identifies the Hausdorff dimension of almost every limit set fiber with inf{t : EP(¢) < 0}, and
is the unique zero of the expected pressure if the alphabet is finite or the system is regular. We
introduce the class of essentially random systems and we show that in the realm of systems
with finite alphabet their limit set fibers are never homeomorphic in a bi-Lipschitz fashion to
the limit sets of deterministic systems; they thus make up a drastically new world. We also
provide a large variety of examples, with exact computations of Hausdorff dimensions, and
we study in detail the small random perturbations of an arbitrary elliptic function.

1. INTRODUCTION

In this paper we introduce and systematically develop the theory of random conformal
graph directed Markov systems satisfying the open set condition, which comprise the random
conformal iterated function systems satisfying the open set condition. Our main emphasis
is on infinite systems, i.e. systems that have a countably infinite alphabet. Our approach
builds on the following three main sources of motivation: random distance expanding dynam-
ical systems (cf. [8]), random measures (cf. [2]), and deterministic conformal graph directed
Markov systems (cf. [6]).

In section 2 we first deal with purely symbolic systems, namely random shifts of finite
type. We prove that, under a Holder continuous potential, these systems admit fibrewise
“conformal” measures, fibrewise “invariant” measures and fibrewise topological pressure. In
the case of finite systems, i.e. systems whose alphabet is finite, this directly follows from [1]
and [8]. The infinite case is tackled by exhausting the alphabet with its finite subalphabets,
and by proving tightness in the narrow topology of random measures (cf. [2]). In particular,
this requires showing that the limit objects resulting from compactness (tightness) satisfy the
requirements of conformality and invariantness.
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In section 3 we define random conformal graph directed Markov systems (abbr. RCGDMSs)
and, as an application of our symbolic dynamics results, we demonstrate that RCGDMSs ad-
mit fibrewise conformal measures and topological pressure (see Theorem 3.7). Particularly in-
volved is the argument establishing measurewise disjointness of the first-level sets (see (3.14)).
We are then in a position to define the expected pressure EP(t) (see Proposition 3.12), and
its related features, among others the finiteness set Fin and the left endpoint 6 of this lat-
ter, also known as finiteness parameter of the system. Motivated by the deterministic case
(see [5], [6]) we classify RCGDMSs in regular and irregular ones, and further divide regular
systems into critically regular, strongly regular and cofinitely regular, all of this in terms of
the shape of the expected pressure function £P(t). Our main geometric result is a variant
of Bowen’s formula (see Theorem 3.18 and its extension, Theorem 3.26). It affirms that the
Hausdorff dimension of almost every limit set fiber of the system is inf{t > 0 : EP(t) < 0},
which coincides with the only zero of the expected pressure function when the system is reg-
ular. Inspired by definitions from [8] we coin the concept of essentially random systems (see
Definition 3.27) and we prove that these systems have limit set fibers with almost surely zero
Hausdorff measure but infinite packing measure (see Theorem 3.28). This result has much
more striking consequences in the case of a finite alphabet than in the infinite one. Indeed, the
limit sets of deterministic systems with infinite alphabets may have zero Hausdorff measure
and/or infinite packing measure (see [5], [6] for appropriate examples), whereas the limit sets
of finite deterministic systems have Hausdorff and packing measures which are both finite and
positive. Our result implies that almost no limit set fiber of a finite RCGDMS is bi-Lipschitz
homeomorphic to the limit set of a finite deterministic CGDMS. Hence, random CGDMSs
form a new realm, drastically different from the deterministic one.

The last two sections of our paper are devoted to examples. In section 4 we provide general
methods of how to naturally construct random systems out of deterministic ones. We also
provide examples of random systems built from scratch. In most examples, we further give
an exact formula for the almost sure Hausdorff dimension of the limit set fibers. In the fifth
and last section we deal with small random perturbations of an arbitrary non-constant elliptic
function. Motivated by the construction from [4] we associate to such a random dynamical
system of elliptic functions a random conformal iterated function system. We then estimate
from below the Hausdorff dimension of the limit set fibers of the corresponding random IFSs
by showing that they are evenly varying and by computing their § number.

There are several ways to generate and study random fractal sets. However, in the attempts
made so far, the proposed constructions either dealt with similarity maps only or demanded
identically distributed randomly independent choices of maps. We, on the other hand, assume
only that the generators are conformal, and that the random choice of generators is governed
by a measure-preserving ergodic dynamical system. Furthermore, even if this dynamical
system is a Bernoulli shift preserving a Bernoulli measure (in other words, this means that
our random process is identically distributed and independent), our limit sets are different
than those generated via (in some sense) parallel constructions in [7], the reason for this being
that the Hausdorff dimensions of corresponding limit sets are different.
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Finally, we would like to mention that the paper [3] also deals with the thermodynamic
formalism for random shifts with a countably infinite alphabet, and produces objects like
fibrewise pressure, and fibrewise conformal and invariant measures. The primary hypothesis
in [3] is that the potential is positive recurrent, a concept involving the asymptotic behavior
of partition functions. In our paper, we prefer simply assuming the Holder continuity of the
potential and we take a direct path to develop the thermodynamic formalism. However, there
is also a second reason, albeit a less important one, why we avoided making use of [3]. Namely,
in the proof of Proposition 6.3, just after formula (6.5), the authors conclude the existence of
fibrewise weak limits on the ground of tightness in the random narrow topology. In general,
this is not true, as shows a counterexample in [2].

2. RANDOM SHIFTS OVER A COUNTABLE ALPHABET

Let E be a countable (finite or infinite) alphabet. Without loss of generality, we may
assume that £ C IN. Let A: E x E — {0,1} be a matrix whose entries are indexed by the
elements of E. This matrix determines the set of all one-sided infinite A-admissible words

EY ={we E®: Ay, =1,Yk € N}.
Equip this set with the topology generated by the one-cylinders [e]; := {w € EY : wy = €},
e € E, k € IN. This topology coincides with the topology induced on E% by Tychonov’s
product topology on E* when E is endowed with the discrete topology. The space EY is
a closed subspace of E*°. The space EY is sometimes called coding space. When endowed
with the Borel o-algebra B, the coding space £} becomes a measurable space.

The set of all subwords of length k € IN of words in E¥ will be denoted by E%, whereas
the set of all finite subwords of words in EF will be denoted by F% = UpenE%. For every
w € E% UEY, the length of w, i.e. the unique k¥ € IN U {oo} such that w € E%, shall be
denoted by |w|. If w € E{ U EY and k € IN does not exceed the length of w, we shall denote
the initial subword wjws . ..wy by w|x. Moreover, for every w € E% we shall denote the open
set of all infinite A-admissible words beginning with w by [w] := {7 € E¥ : 7|\, = w}. Note
that [e] = [e]; for all e € E. Furthermore, for every w,7 € EY, let w A7 € E4{ U EY the
longest prefix of w and 7 such that w|y = 7|;. From a dynamical point of view, we will be
interested in the (left) shift map o : E*° — E° which drops the first letter of each word. The
shift map is obviously continuous, and thereby measurable.

Let FF C E. We now briefly describe some spaces of functions on F'3°. Denote by C(F°)
the space of all continuous real-valued functions on F'3® and by C®(F$°) the subspace of all
bounded continuous functions on F'°, i.e. those g € C(F3°) such that ||g|le := sup{|g(w)| :
w € F3°} < oo. This subspace is a Banach space. Let 0 < s < 1. For every g € C(FY°), set

Vs k(9g) == ég%“g(u;) —g(1)| £ Cs* - w, 7 € FY such that |w A 7| > k}

and
vs(g) = sup{vs,k(g) ke ]N}
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A function g € C(F7°) is called Hélder continuous with exponent s if vs(g) < oco. The
constant vs(g) is the smallest Holder constant such a g admits. We shall denote by H (F3°)
the vector space of all Holder continuous functions with exponent s. We shall further denote
by HY(F$) the vector subspace of all Holder continuous functions with exponent s which are
bounded, i.e. HY(FS) := H(F) N CY(FY). Endowed with the norm

glls == llgllee + vs(g),

the space H2(FS°) becomes a Banach space.

The randomness of the graph directed Markov systems we shall study later will be based on
a probability space (A, F,r) and an invertible ergodic map 7" : A — A preserving a complete
measure v. The Cartesian product FY x A becomes a measurable space when equipped
with the product o-algebra B ® F, i.e. the o-algebra generated by the countable unions of
Cartesian products of the form B x F' with B € B and F' € F. Let ppe : EF X A — E7° and
pa : B XA — A be the canonical projections onto E7” and A, respectively, i.e. ppe (W, \) =w
and pjp(w,\) = A. Both projections are trivially measurable. In fact, B ® F is the smallest
o-algebra with respect to which both projections are measurable.

The product map o x T': E¥ x A — EP x A, defined as

(0 x T)(w,A) = (o(w), T(N),

is obviously measurable. Indeed, (¢ x T)"Y(B x F) = o~ 1(B) x T"}(F) for all B € B and all
FeF.

We now turn our attention to spaces of random functions. Again, let F' C E.
Definition 2.1. A function f: F° x A — IR is said to be a random continuous function on
Ff
o for allw € FY the w-section A — f,(\) := f(w, A) is measurable; and
o for all X € A the -section w — fr(w) := f(w, A) is continuous on F3°.

We shall denote the vector space of all random continuous functions on F'3° by Cy(F9).
Note that by Lemma 1.1 in [2], any random continuous function f is jointly measurable.
It is then natural to make the following definitions.

Definition 2.2. A random continuous function f € Cy(F3°) is said to be bounded if

| falloo < 00, YA €A and | flloo := ess sup{|| il : A € A} < 0.

Bounded random continuous functions, as defined above, are random continuous in the
sense of Crauel [2] (cf. Definition 3.9). The space of all bounded random continuous functions
on F3° shall be denoted by C}(F5). When equipped with the norm | f]|«, this space is
Banach.

Definition 2.3. A random continuous function f € Cp(F3°) is said to be Hélder with expo-
nent s if

vs(fa) < oo, VA €A and vs(f) :=ess sup{vs(fy) : A € A} < 0.
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We shall denote by H o(F5°) the vector space of all random Holder continuous functions
with exponent s and by Hé’ A(F3°) the subspace of all bounded random Hélder continuous
functions with exponent s. Endowed with the norm

[flls = [[flloe +vs(f),

the space H? ,(F5°) becomes a Banach space.
We now introduce the concept of summability for random continuous functions.

Definition 2.4. A random continuous function f € Cy(F3°) is called summable if

Mp:=>" exp(ess sup{sup(fil) : A € A}) < 00. (2.1)

ecF

Note that no bounded random continuous function on F'3° is summable whenever F' is
infinite. Henceforth, we shall denote by a superscript > spaces of summable functions. For
instance, the vector space of all summable random Holder continuous functions with exponent
s will be denoted by HZ) (F7).

Now, we shall describe properties of random measures which will play a crucial role later.
Denote by Py (v) the space of all probability measures m on (EY x A, B® F) whose marginal
is v, i.e. all probability measures 7 such that /m o p,' = v. By Propositions 3.3(ii) and 3.6
in [2], this space is isomorphic to the space of random probabiblity measures m on EY, i.e.
the space of all functions (B, A) — m(B) € [0, 1] such that

e for every B € B, the function A — my(B) is measurable; and
e for v-a.e. A € A, the function B — m(B) is a Borel probability measure.

We then write m = m) ® v. Endow P, (v) with the narrow topology. Recall that a sequence
(M), of measures in Py (v) converges to a measure m € P, (v) in the narrow topology if

lim 77, (f) = 712(f)

n—oo

for all f € C4(EY), where
)= [ f@Ndiw ) = [ [ @) i) dv).

for any fi = iy ® v € Py(v). Prohorov’s Theorem for random measures (see Theorem 4.4
in [2]) states that a subset I' C P, (v) is relatively compact if and only if I is tight, and that
such a set I' is relatively sequentially compact.

Finally, we introduce Perron-Frobenius operators. Let f € H;,(EY) and F C E. For
v-a.e. A € A the Perron-Frobenius operator L gy : C°(EY) — C*(EF) defined by

Lipagw)= > exp(flew,N))glew)

eGF:Aewlzl
is well defined. For every k& > 2, we may thereafter define for v-a.e. A € A the operators

Ek,F,)\g = Ef,F,kal(A) © £f,F,T’€*2()\) ©0---0 ﬁf,F,Ag-
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It is easy to show that for v-a.e. A € A, we have

Lhpag@) = X exp(Spf(rw,\) glrw), (2:2)
TGF}X:A.,-kwlzl
where
Skf(p, A Z flloexTy Z f(o?p, TN). (2.3)

It is also easy to check that all £fF/\, k € IN, preserve the Banach spaces C*(EY), C*(FY),
H!(EY) and HY(FY) for v-a.e. A € A. Let L5, be the operator dual to £ 1, which acts on
either (C*(EY))* or (C*(F3°))*, depending on whether the operator L% 5, is seen acting on
CP’(EF) or C*(F$). From this point on, we shall omit the subscript /' when F' = E and write
£'}7 ) for E’}y g Also, when no confusion may arise, we shall frequently drop the subscript f.

When F' C FE is a finite set, our setting reduces to the random distance expanding

maps studied in [8] and in which the following theorem has been proved (see Theorem 3.1,
Lemma 4.5 and Lemma 4.3 in [8]).

Theorem 2.5. Let F' C E be a finite subalphabet such that A|pxp is irreducible. If f €
HY \(F5Y), then for v-a.e. X € A there exist a unique Ppx(f) € IR and a unique Borel

probability measure ﬁz{’F on F'° with supp me = F'Y° such that

* ~ f.F ~ f,F

f,F,Amé;(A) = @PF’A(f)m{

and such that the function X\ — Pp(f) is v-integrable while the function X — mi"(B) is
measurable for every B € BN F3°.

In particular, this result shows that m/* (B, \) := m{"(B), ie. m{" @ v, is a random
probability measure on F'3° and so is its extension to EY. This extension shall be denoted
by the same notation as the original random measure. Moreover, for v-a.e. A € A we deduce
by recurrence that

Ly F)\méifz)\) = el !, (2.4)
where
P}I«i,\(f) = Z Praioy(f)- (2.5)

The main technical fact proved in this section is the following. It concerns sequences of
random probability measures which arise from ascending sequences of finite subalphabets
(F,)>2, that cover the entire alphabet E. In order to allege notation, for all A € A for which
they are defined, we shall henceforth denote Pf, ,(f) by PF(A) and m{ ™ by mpy. Moreover,
note that the following result does not require that the random Holder continuous function
f € HsA(EY) be bounded, as this is a property that the natural potentials ¢¢ for random
graph directed Markov systems do not fulfill (cf. section 3). Instead, we demand that f be
summable and bounded over finite subalphabets. We thus make the following definition.
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Definition 2.6. A random continuous function f € Cx(EY) is said to be bounded over finite
subalphabets if f|rsoxa € CY(FS) for every finite set F C E.

Now, the result. Recall that a matrix A is finitely irreducible if there exists a finite set
(2 C E7 such that for all e, f € E there is a word w € 2 for which ewf € E7.

Lemma 2.7. Let E be a countably infinite alphabet and A a finitely irreducible matriz. Let
f € HX\(EY) be bounded over finite subalphabets. If (Fy,);>, is an ascending sequence of finite
subalphabets whose union is E, then the sequence of random probability measures (Mm% @ v)22
is tight in Py(v).

n=1

Proof. Since A is finitely irreducible, there exists a finite set F' C E that witnesses the
finite irreducibility of A, that is, such that for any pair of letters e, ¢ € E there is 7 € F* such
that eré € E%. Without loss of generality, we may assume that F' C Fy. Thus, A|g, «F, is
irreducible for all n € IN. In virtue of Theorem 2.5, we have for v-a.e. A € A and all n € IN
that

eV =i (Lr o (Lipyz)) = Moy (Lrea(lee)) > Qf >0, (2.6)

where Qf := ess inf{L;pA(lrz)(w) : A € A, w € Fi°}. Note that Qy > 0 since f|rexa €
CY(FS) and A|pxr is irreducible. By Theorem 2.5 and relations (2.1) to (2.6), we get for
v-a.e. A € A every n € IN, every k € IN and every e € F, that

my(lelr) = > e = X exp(=Bi(N))LEr, amiey (W)

WE(Fn)k wp=e WE(Fn)k wp=e

= (PN X[ () dith ()

we Fn wr=e

= ep(—PFY) Y / e (Skf(wr, X)) dinfe s (7)

w (FnAw;c e

Q" Y exp(sup Sif(p. )

wG(Fn)]j‘:wk:e pEW]

Q7" > exp(sup Sk-1f(p, A) + sup( freer(x)|e)))

WE(Fn)IZ_13Awk,1e=1 pE[w]

Q7" GXP(SUP Sk—lf(ﬁv)‘» eXp<SUP(ka—1(A)|[e}))

Q7 M}~ exp(sup(fri-1onle)).

IN

IN

VAN

IN

Therefore, for v-a.e. A € A, every n € IN, every k € IN and every e € F, we have

my (UUk) < Q7 My 5 exp (sup(fri-1ng)) ) (2.7)

j>e j=e+1
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Now, fix ¢ > 0. It follows from (2.1) and (2.7) that for all k& € IN there exists e, € E such
that for v-a.e. A € A and all n € IV, we have

J>er
Consequently,
(oo T =\ €
mi(EY 0 141, ... ek})>1—z (U )21_2?:1_5
k=1 j>ex k=1

for v-a.e. A € A and all n € IN. Thus,
/ iy (Ex 0 [I{L .. en}) dv() > 1—¢
A k=1

foralln € IN. Since EXNIT72 {1, ... ,ex} is a compact subset of E, the sequence (mi®v)>
is tight according to Proposition 4.3 in [2]. O

Using (2.1), (2.6) and Theorem 2.5, we also observe that
Qs < e < M; (2.8)

for v-a.e. A € A and all n € IN. Therefore, the following is an immediate consequence of
Lemma 2.7.

Corollary 2.8. Under the assumptions of Lemma 2.7, the sequence ((e/*Mm?) @ v)> | is

tight in Py(v).

We shall now prove that there is a relationship between the accumulation point(s) of the
sequences (M4} ® )22, and ((eMm}) @ v)> .

Lemma 2.9. Let (n;)22, be a sequence of natural numbers. If the sequences (1m;)32, :
(my ® V)22, and ([L]);’Ol = ("Ml @ V)22, converge in the narrow topology of P(v)
tom =m\®v and fi = iy ® v, respectively, then for v-a.e. X € A there exists v\ € [Qr, My]

such that jiy = y\my and the functzon A = vy 18 measurable.

Proof. Fix a non-negative g € C{(EY). Thanks to (2. 8) we have

dii = li dii; = i // 5 N7 (w) di(A
Jopodi=tm [ gdis = Jim [ [ o W) (@) dv()
= lim [ ¢ W(/ d )d A
lim | ng()mx() v(A)
< ijlgrgo// gr(w) dmy’ (w) dv(N)
= M; lim gdm;
Jj—00 EPxA

EP XA
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Similarly, we have

/ gdﬂfo/ gdm
EPxA EPxA

Therefore, fi is equivalent to m and the Radon-Nikodym derivative satisfies Qy < dji/dm <
M;. Hence, for v-a.e. A € A the measure fi) is equivalent to 7, and the Radon-Nikodym
derivative vy = djiy/dmy : EY — [0,00) is bounded below by Q; and above by M. We
shall now prove that each function 7, is constant. Indeed, suppose that g, ¢ € C%(EF)
are two m-integrable functions such that
g/(\l) dm)\ = / g§\2) d’ﬁl)\
EY ET

for v-a.e. A € A. Then, by an argument similar to the one above, we have

/ gMdi = lim eP”J'(’\)/ g/(\l) dmy’ dv(\) = lim ep”j()‘)/ gE\Q) dmy’ dv(\)
B xA j—o0 JA BY j—o0 JA BY
_ / g dji
EPxA

Now, let gg\l) = 1/v, and gg\z) = Jpee (1/7)dimy = m(1/72). 1t is clear that [po gg\l) dmy =

Jps gf\2) dimy, and thus [pec, g dji = JEsexa g® dfi. Tt follows that
/Aﬁh(l/%)mx(%) dv(X) = /Amx(l/%) /EOO (W) dim(w) dv(A)
A
= [ (/) [ dinw) dv)
A EY

_ //m ! (w) driny(w) dv(N)

Ya(w
- / dﬁm(w) dv())
AJES
= 1.
By Cauchy-Schwartz inequality, we also have that

(L)) = (Aa(y/1/3 1)) = (1) = 1.
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Therefore my(1/y\)ma(7x) = 1 for v-a.e. X € A. Hence my(1/7\) = 1/mx(7,) for v-a.e.
A € A. By Jensen’s inequality, we deduce that v, = djfi\/dm, is constant for v-a.e. A € A. O

Now, we can prove the first main result of this section. It is a generalization of Theorem 2.5.

Theorem 2.10. Let E be a countably infinite alphabet and A a finitely irreducible matriz.
Let f € HEA(EEO) be bounded over finite subalphabets. For every such potential f there exists
a unique random probability measure m € Pp(v) and a unique bounded measurable function

A= P\(f) € R such that

ﬁ})\mT()\) = €P’\(f)77~?,,\ (29)
for v-a.e. X\ € A. Moreover, for v-a.e. A € A,
supp 1y = BY,  Qp <ePV <My and  Py(f) = dim P (A). (2.10)

Proof. Take an arbitrary ascending sequence (F,)>; of finite subalphabets such that
U F, = E. By Lemma 2.7, Corollary 2.8 and Prohorov’s Theorem for random measures
(see Theorem 4.4 in [2]), there exists an unbounded increasing sequence (n;)?2, such that

both sequences (my’ @ v)%2; and (PN @ V)32, converge in the narrow topology of
Py (v) to, say, my ® v and fiy ® v, respectively. By Lemma 2.9, there exists a measurable
function A — v\ € [Qf, M| such that iy = ymy for v-a.e. X € A. Set L;, = /nypnj,,\
and Ly := Ly . Since f € HEA(E‘;,O), the operators £; y converge to £ as j — oo, and this

uniformly in \. Pick any g € C{(EY). Then
|| o dcimm)@ ) = [ [ Lagyw) divroy(w) dv()
AJEY AJER

= lim [ /E . Laga(w) diity (w) dv(\)

Jj—00
~ lim /A [E Liann (@) A (w) dv ()
= i [ [ o) L)) ) dv ()
— 3 P’ﬂj(A)'“nj
= i [ o) dem i) dv(y

- |/ ) din () dv ()
= /A/?g)\(w)d(’wm)\)(w)d”()‘)v

where the third inequality sign follows from the fact that £;gx converges to £yg, uniformly
with respect to A € A, while the fifth inequality is an application of Theorem 2.5. Therefore,
Lymry = 1amy for v-a.e. A € A and we are done with the existence part if we set P\(f) :=

log va.
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We shall now prove that equation (2.9), which holds for v-a.e. A € A, determines the
measures m, and the numbers Py(f) uniquely for v-a.e. A € A. To ease notation, we write
P, instead of Py(f). Take an element w € E%*, n € IN. If the family {m,},ca satisfies (2.9),
then

ma([w]) = ma(L) = e Nivgay (L3 (L)) = e /J » (Y gy (rp)e™ P Y diivrn ) ()

TEE"
_ G—P;L/[n ]esnf(wo'"p,A)men()\)(p>' (2.11)

Now, fix A € A and suppose that two sequences of Borel probability measures (m(Tl,Z(A));O:_OO

and (mg?i ( /\));'LO:_OO on K% are given along with two corresponding sequences of real numbers

(Pranoy)n oo and (P rn(n))oe_ . such that

Lot oy = €747 Vg

holds for all # = 1,2 and all n € Z. By the bounded variation of the ergodic sums S, f, we
have for all w € £ that
. f[an (@lan)] eSnf(@l2no™p.A) g, T"()\) <p)

" lon (wlan)] eSnf(wlonamp) me”(A) (p)

=1

for v-a.e. A € A. Since the sequence (e F2x/e™12)> is independent of w, we conclude
from (2.11) that the sequence (Py, — P['y)p2; must converge and its limit must equal 0.

(2) (1)

This simultaneously shows that the measures m,’ and m,’ are equivalent and the Radon-

Nikodym derivative dri|’ 3 / dm)\ is identically equal to 1. But this means that mf\ V= (1) and
in particular the uniqueness of the fiber measures {m,}.ca is established. Since, by (2 9)
have Py = log(L3 (M) (1)), we deduce that P,y = P» and, in particular, the uniqueness
of the pressure parameters Py, A € A, follows from the uniqueness of the fiber measures.
Finally, we shall prove that Py\(f) = lim, o P,(\) for v-a.e. A € A. Because of the
uniqueness part it suffices to show that if A\ € A is such that for all n» > 1 and all £ € Z there

are measures m(") satisfyin
Tk(k) y g

* ~ n n k ~
EfnTk )\)m5’16)+1()\) = €P () gwk)(/\) (212)

and if (n]) is an arbitrary increasing sequence of positive integers for which the sequences
(P, (T"“()\)))]:1 converge for all k € Z (denote their limits by R(T*()\))), then for every k € Z
there exists a Borel probability measure myxy) on E3° such that

€R(Tk(/\))mTk(>\) (213)

holds for all k € Z. But passing to a subsequence of (n;)22, and using the standard diagonal

LG prymrs ) =

procedure, we may assume without loss of generality that all the sequences (m(Tk( A)) 2 keZ,

converge weakly to some Borel probability measures on E9; denote them respectively by
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mrrny, b € Z. Now, fix g € Cy(EY). Since all involved Perron-Frobenius operators are
continuous and since for each k € Z, we have that Ly, 7x(y)g converges uniformly to L rx(x)g
as n — oo, we infer from (2.12) that

}?Tk(,\)fnTkH(A)(g) = mTk+1 (,Cka g)

= hm mrg—vk+1 (‘Cf’nJ Tk()\)g)

j*)
= lim ﬁ*’nka )mgfijzl(/\)(g)

_]*)OO
~(n)
= Jime™ S (9)
k ~
= T o\))mTk()\)<g)'

R(T*(N))

Hence, E} Tk(/\)mTkH()\) =e myk(y and we are done. O

The next result follows from the proof of Theorem 2.10.

Lemma 2.11. Let E be a countably infinite alphabet and A a finitely irreducible matriz. Let
f € HE(EY) be bounded over finite subalphabets. If (F,)%, is an ascending sequence of
finite subalphabets of E such that U2 F,, = E, then

Pi(f) = lim Py(f|(p)xa)
forv-a.e. A € A.

We shall now prove the second main result of this section. This result concerns invariant
measures. Recall that a matrix A is finitely primitive if there exists p € IN and a finite set
Q2 C EY such that for all e, f € E there is a word w € ) for which ewf € E%.

Theorem 2.12. Let E be a countably infinite alphabet and A a finitely primitive matriz. Let
f e HX\(EY) be bounded over finite subalphabets, and let 1 € Py(v) and X — Px(f) € IR be
the unique random probability measure and bounded measurable function such that
L vy = iy

for v-a.e. X € A. Then there exists a non-negative q¢ € C5(EF) with the following properties:

(a) e o(w)dmy(w) =1 for v-a.e. A € A;

(b) 0 < C7' <inf{gr(w) : w € EX, A € A} <sup{g(w) :w € EF, X € A} < C < 0 for

some constant C> 1

(c) (@my) oo™ = qropymry for v-a.e. X € A;
(d) ((gxma) ® v) o (0 x T) = (gxmy) @ v, that is, the measure (qymy) @ v is (o X T)-
movariant.

Proof. Since the matrix A is finitely primitive, there is an ascending sequence (F},)° of

ﬁmte subalphabets such that U° , F,, = F and such that for each n € IN the matrix A|p, «xr,
is (finitely) primitive with the same finite set of finite words yielding (finite) primitivity.
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Inspecting the proof of Proposition 3.7 in [8] (which consists of Lemma 3.8 followed by a
short argument) and using Lemma 3.9, we see that there exists a constant C' > 1 such that
for every n € IN there is a non-negative ¢ € C4(EY) with the following properties:

(an) Ji q/\ dmkzlforl/ae AeEN;

() c < mf{q<“>( )iw e (F)%, A€ A} < sup{g”(w) : w e (F,)F, A€ A} < C:

(cn) (qA mn = iy Ty

(dy) (g m/\)®y) (o0 xT)"' = (¢\"m?) @ v, that is, the measure (¢\"m}) @ v is (o x T)-
invariant.

Note that property (c,) is equivalent to property (d,) and we will thus only need (d,) in
the forthcoming proof. For every n € IN let i} := qf\")fnf(. Let also m" = m} ® v and
A" = % ® v. Note that each " € Py(v) by (a,). By (b,) and in virtue of Lemma 2.7, the
sequence (f1")9°, is tight. By passing to a subsequence if necessary, we may thus assume that
this sequence converges in the narrow topology of Py(v) to a random measure, say ji. Fix a

non-negative g € C4(EY). Using (b,), we obtain

di = i di" = li // dfil(w) dv(X
fooyoti = Jim [ gdi = Jim [ [ o) di(e) v
= Jim [ o)) dis ) v
< CJi_}rgo/A/iog,\w dmj(w) dv(A) = C lim E?XAgdrh":C E?XAgdm.

This implies that fi < m and dfi/dm < C. Similarly,
/ gdii>C™! gdm.
EPxA EPxA

This yields dp/dm > C~'. Hence, fiy < my for v-a.e. X € A and djiy/dm, € [C™!,C]. With
q(w, A) == q\(w) := dfin/dm,, statement (b) is proved. Moreover, statement (a) holds since
q» is a Radon-Nikodym derivative.

Now, fix an arbitrary g € C}(EY). Using (d,), we get

_ T o -
/Ejfogd(Mo(UXT) ) = /E?XAgo(axT)du—T}Lralo E?XAgo(JxT)d,u
= lim gd(fi" o (o x T)™") = lim gdi”

n—o0 EZOXA n—o0 E?XA

= / gdj.
EPxA
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This shows that 1o (o x T)™1 = [i, that is, ji is (0 x T)-invariant. As i = jiy®@v = (qxmy) @,
statement (d) is proved. Furthermore, as v is T-invariant, we have

/A/Ezogx(w)dm(w)dy()\): 90 = /Ewgo(axT)d,;
=, J 9700 0 0 din(0) v
_ /A/Zog/\oa(w)d[@1()\)(w)du(x\)

=, o ¥ sy 0 07 @) (),

L= i) for v-a.e. A € A. Since jiy = g\, statement (c)

We deduce from this that fiz-1(yy00™
is proved. O

3. RANDOM GRAPH DIRECTED MARKOV SYSTEMS

Like deterministic graph directed Markov systems, random graph directed Markov systems
are based on a directed multigraph (V, E, i, t) and an edge incidence matrix A : ExE — {0, 1},
together with a set of non-empty compact subsets { X, },ey of a common Euclidean space IR?.
From this point on, we shall assume that A is finitely primitive.

In contradistinction with a deterministic GDMS, a random GDMS (RGDMS) ¢ = (T :
A — AN = p)ecp) is generated by an invertible ergodic measure-preserving map T :
(A, F,v) = (A, F,v) of a complete probability space (A, F,r) and one-to-one contractions
@ Xi(ey = Xi(e) with Lipschitz constant at most a common number 0 < s < 1. Thereafter,
the maps = +— ¢2(x) are continuous for each A € A. We further assume that the maps
A () are measurable for every z € X;(). According to Lemma 1.1 in [2], this implies
that the map (z,\) — ©.(z,\) := p}(z) is jointly measurable. As in the deterministic case,
a RGDMS is a random iterated function system (RIFS) if V' is a singleton and the matrix
A:Ex E — {0,1} takes on the value 1 only.

For every w € E7, set

w|—1

NeAm gl =gl oglMo. ogh”
Observe that for each w € E% the map (z,)) € Xyw) X A = @ (x,A) = ¢(z) € X
is jointly measurable. Indeed, for each w € E} the map = — ¢,(x,\) is continuous for
each A € A. Moreover, the map A — ¢, (z,\) is measurable for each z € X. For instance,
for the word w = wiws € E% the map A — ¢, (z,\) is measurable for each z € X since
Cu(T,A) = ©u, (Puy (2, T(N)), A) and thus the map A — ¢, (x, ) is the composition of the
measurable map A — T'(\), followed by the measurable map A — ¢, (x, \), followed by the
measurable map y — (y, A), followed by the measurable map A — ¢, (z, A).

The main object of interest in a RGDMS @ is its associated ‘random limit set” J. However,
in contradistinction with the deterministic case, this ‘set’ is in fact a set function: to each
A € A is associated the image of the symbolic space Y under a coding map my. Indeed,
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given any A € A and any w € EY, the sets gp(’:‘n(Xt(wn)), n € IN, form a decreasing sequence
of non-empty compact sets whose diameters do not exceed s™ and hence converge to zero.
Therefore their intersection i,
ﬂ Qoi\dn (Xt(wn))
n=1
is a singleton. Denote its element by my(w). For every A € A, this defines the coding map
T EY — X, where X := @,y X, is the disjoint union of the compact sets X,,. It is easy to
see that each , is a Holder continuous map with respect to the metric d(w, 7) = s on E¥
which induces Tychonov’s topology. In particular, this implies that the map w — 7(w, A) :=
mx(w) is continuous for each A € A. The map A — m(w, A) is measurable for each w € EY
since the map (z,\) = @un(x, A) is jointly measurable for every n € IN, and thus for any
sequence (z, € Xy,))pe; we deduce that A — m(w, A) = lim, o Py, (Tn, A) is measurable
for each w € E. Thus, by Lemma 1.1 in [2], the map (w, A) — 7(w, A) is jointly measurable.
Now, for every A € A set
J N =T A(EZO)
The set J), is called the limit set corresponding to the parameter \ while the function
ANeA—= J CX

is called the random limit set of the RGDMS ®. In this paper, we will mainly be interested
in the geometric properties of the limit sets Jy, primarily in their Hausdorff dimensions. Note
that each J, is compact when F is finite, but this property usually fails to hold when E is
infinite. Furthermore, notice that ¢} (Jywi(y)) = Jx for every XA € A and every w € E%.

A RGDMS @ is called conformal (and thereafter a RCGDMS) if the following conditions
are satisfied.

(i) For every v € V| the set X, is a compact connected subset of IR? which is the closure
of its interior (i.e., X, = Int ga(X,));
(77) (Open set condition (OSC)) For v-a.e. A€ Aand all e, f € E, e # f,

0o (Int(Xy(e))) N} (Int(Xy(p))) = 0;

(7ii) For every vertex v € V, there exists a bounded open connected set W, such that
X, C W, C IR?* and such that for every e € E with t(e) = v and v-a.e. X\ € A, the
map gpg\ extends to a C! conformal diffeomorphism of W, into Wi(e). Moreover, for
every e € E the map A € A — ¢ (z) is measurable for every x € W,;

(iv) (Cone property) There exist v, > 0 such that for every v € V and every « € X, there
is an open cone Con(x,~,l) C Int(X,) with vertex x, central angle 7, and altitude [;

(v) There are two constants L > 1 and « > 0 such that

1@ @) = 12 @)l < L)) I,

for v-a.e. A € A, every e € E and every pair of points x,y € Wy, where |¢'(z)|
denotes the norm of the derivative of ¢ at x and ||(¢’)~}|lw is the supremum norm
taken over W.

y — x|
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Remark. According to Proposition 4.2.1 in [6], condition (v) is automatically satisfied with
a = 1 when d > 2. This condition is also fulfilled if d = 1, the alphabet F is finite and all
the ©}’s are of class C1*¢ for some & > 0.

The following useful fact has essentially been proved in Lemma 4.2.2 of [6].

Lemma. Forv-a.e. A€ A, allw € B} and all x,y € Wy, we have

[log (12 (9)] = log |(3) (@) < L(1 = )|y —

An immediate consequence of this lemma is the famous bounded distortion property.

(v") (Bounded distortion property (BDP)) There exists a constant K > 1 such that

(22)' ()| < K|(¢3) ()]

for v-a.e. A € A, every w € £y and every z,y € Wy,,.

Let us now collect some geometric consequences of (BDP). For v-a.e. A € A, all words
w € E and all convex subsets C' of Wy, we have

diam(¢,(C)) < K||()'l|diam(C) (3.1)

and
diam (3 (Wiw))) < KD|[(¢3)'| (3.2)

for some constant D > 1 which depends only on the X, and W,. Moreover,

diam (¢} (Xiw)) = (KD) 1 (@3)1l; (3.3)
wu(B(x,1)) € B¢} (), K[l(¢3)'|Ir), (3.4)

and
v (B(x,)) D By (), KH|(w3)']Ir) (3.5)

for v-a.e. A € A, every x € Xy, every 0 < r < dist(Xyw), 0Viw)), and every word w € EY.

Finally, we define special classes of systems.

Definition 3.1. We say that a RCGDMS ® satisfies the Strong Open Set Condition (SOSC)
of
v({A e AT NInt(X) £ 0}) > 0.
Definition 3.2. We say that a RCGDMS ® satisfies the Strong Separation Condition if
dist(IR™\ X, Upen Ueer @2 (X)) > 0.
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3.1. Pseudo-codes. We now derive a property of pseudo-codes. Pseudo-codes have been
introduced in [9]. We extend their definition to our setting to take into account the dependence
on A € A

Definition 3.3. A finite word wr € E* is called a pseudo-code of an element (x,\) € X x A
if the following three conditions are satisfied.
(1) w, T € EY;
(i) TN (Xyr)) € Xiw); and
(iid) = € (T M (Xyr))-

Note that the word wr need not belong to E%. Whenever we do not need to specify the
element (x, \), we simply say that w7 is a pseudo-code. As for finite admissible words, two
pseudo-codes are called comparable if one of them is an extension of the other. Also, two
pseudo-codes w7 and wp are said to form an essential pair of pseudo-codes if 7 # p and
|7| = |p|. Finally, the essential length of an essential pair of pseudo-codes wr and wp is
defined to be |w|.

Lemma 3.4. No element of X x A admits essential pairs of pseudo-codes of arbitrary long
essential lengths.

Proof. On the contrary, suppose that there exists a point (z,\) € X x A so that for each
k € IN, there are words w® 78 p*) ¢ % such that 7®) £ p®) |70 = |p*)|)
lim |w®] = oo, (3.6)

k—o0

T‘“’(k)‘ A\ T‘“’(k)l A
@) ( )(Xt(T(k>)) C Xywy and P k) ( )(Xt(p(k))) C Xy

and
Tl“’(k)‘ A T“*’<k)| A
LS SOf,Uc) 2 ( )(Xt(T(k))ﬂ ﬂ[@fm © P ( )(Xt(p(k))) .

We shall construct inductively for each n € IN a finite set C,, which contains at least n 4+ 1
mutually incomparable pseudo-codes of (z,A). The existence of such a set for large n’s will
contradict Corollary 4.6 in [9], and this will finish the proof. Define C; := {w®7M MM}
and suppose that the finite set (), has been constructed with at least n + 1 mutually incom-
parable pseudo-codes of (x,\). In view of (3.6), there exists k,, € IN such that

lw®)| > max{|¢| : € € C,.}. (3.7)

If wn)plkn) does not extend any word from C,,, it follows from (3.7) that w®)p*=) is not
comparable with any element of C),. The set C,, 1 can then be constructed by simply adding
the word w(k”)p(k") to C,. Similarly, if w*»)7(*) does not extend any word from C,,, form Chi1
by adding w)r*n) to C,. However, if w®*) pkn) extends an element o € C,, and wkn)7(kn)
extends an element g € C,,, then o = w(k")|‘a| and [ = w(k")hm. Since C), consists of mutually
incomparable words, this implies that & = 8. In this case, form C,;; by removing a(= f)
from C,, while adding both w*»)pn) and wk=)r*)  Note that no element v € C, \ {a}
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is comparable with w®n)pkEn) or kel r(kn): otherwise, v = w(k")hﬂ and thus v would be
comparable with o. Since w*»)pF») and w*») (k=) are not comparable, the set C,,; consists
also in this case of at least n+2 mutually incomparable pseudo-codes of (x, A). This completes
our inductive construction, and hence finishes the proof. O

3.2. Gibbs states for the potentials (. Define the potential ¢ : E} x A — IR as follows:
C(w, A) = log| (2, ) (77 (0w))|.

The map w — ((w, A) is continuous for each A\ € A, while the map A — ((w, A) is measurable
for each w € EY°. Thus, the map (¢ is jointly measurable.

Definition 3.5. For a given RCGDMS ®, we say that t € Fin if
My =Y ess sup{[[(2) I : A € A} < oc.
eclk

Note that the potential #¢ is summable if and only if t € Fin. In fact, t¢ € HZ\(EY)
and t( is bounded over finite subalphabets for every ¢t € Fin. Therefore, the thermodynamic
formalism for random dynamical systems (see [1] and [8] if E is finite; see Theorem 2.12 with
f = t¢ when E is infinite) gives the following: If ¢ € Fin, then for v-a.e. A € A there are a
unique bounded measurable function A — Py(t) := P,(¢¢) and a unique random probability
measure m' € Py(v) such that

ﬁ:,/\mtT(,\) = MO} (3.8)

for v-a.e. A € A, i.e. A+ Py(t) and m' are uniquely determined by the condition that for all
e € F and w € E7 such that ew € E% we have

i (fewd) = e [ (2 (rrn ()

for v-a.e. A € A. Furthermore, there exists a unique non-negative ¢ € C{(EY) with the
following properties:
(@) [pe di(w) di)(w) =1 for v-ae. A € A;
(b) 0 < C(t)™' <inf{g{(w):w e EF, A€ A} <sup{qg(w):w € EF, A€ A} < C(t) < o0
for some constant C(t) > 1;
(c) (gim}) oo™t = g iy, for v-ae. A € A;
(d) (¢mh) @v)o (o xT)™! = (¢{mh) ® v, that is, the measure (¢km}) @ v is (o x T)-
invariant.

‘ t

Aty (7). (3.9)

Letting i} = ¢4mf, we can rewrite (¢) and (d) in the more compact form
fyoo t = fipy), v-ae A€EA (3.10)
and
(i @v)o(oxT) ™ = @ (3.11)

Let f' := [i} ® v be the integration of the measures {{i} }ep with respect to the measure v.
Property (3.11) then says the following.



RANDOM GRAPH DIRECTED MARKOV SYSTEMS 19

Proposition 3.6. /i’ o (o x T)* at, i.e. the random probability measure it is (o x T)-
invariant. Moreover, it opr = v, where py : EY x A — A is the canonical projection onto
A. That is, it € Py(v).

Set also pf 1= jif oy ! for all A € A and pf = i} @ v.
Finally, note that by a straightforward induction, relation (3.9) gives the following: for all
w,T € 7 such that wr € E%, we have

- _plel
(o)) = 5 LY iy ()] did () (3.12)
for v-a.e. A € A, where P{(t) = X020 Prigy ().
The next result asserts that the push-down of the measures {mf} ea from EY to X, ie.
the measures {m} := M} o 7'} ea, are t-conformal measures.

Theorem 3.7. Lett € Fin. Set mb := mb ony' for all A\ € A. Then for v-a.e. A € A, every
w € E% and every Borel set B C Xt( we have

mi(@3(B)) = N [ 1(e2) (@)1 diy(2). (3.13)

Moreover, for v-a.e. A € A we have

m (@2(Xt(p)) M @i(Xt(T))) =0 (3.14)
whenever p, T € E% are incomparable. Furthermore, mi(Jy) =1 for v-a.e. X € A.

Proof. First, note that m4(.Jy) = m} o7y (Jy) = mi(EY) =1 for v-a.e. A € A.
In order to show that {mf},ca satisfies (3.14), assume for a contradiction that (3.14) fails,
i.e. that there are two incomparable words p, 7 € £ such that

m'(Z) = (mi ®v)(Z) >0, (3.15)
where
Z = {J Vax{A} and Vi = ¢,(Xi(p) N 07 (Xin)-
AEA
Without loss of generality, we may assume that |p| = |7|. For every n > 0, set
Zo = U((U &) < rm) = U U el ") x {17700}
AEA N weEn AEA wEER
= U U @ "Y(ep(Xuw) N @2 (Xum)) x AT (N}
AEA wEER

Since each element of Z,, admits at least one essential pair of pseudo-codes of essential length
n, we conclude from Lemma 3.4 that

AUz =0 (3.16)

J=0n=j
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On the other hand, we have
Zn D . ((0 x T) " (x1(2)))

for each n > 0, where 7, : EY x A — X x A is given by the formula (w, \) — (m\(w),\) =
(m(w, ), A). This implies

. (Z,) D (o x T) ™=, 1(2)). (3.17)
Since it = ff @ v is (o0 x T)-invariant, we get from (3.17) that

i (Za) 2 i (0 x T (371(2))) = i 71(2) = (e v)(a(2) = (1 ev)(2)
= 1(Z)
for every n > 0. As fi* is equivalent to m!' according to Theorem 2.12, we deduce by means

of (3.15) that
i (ml(ﬂ U Zn)) > ul(Z) < m'(Z) > 0.
j=0n=j
Hence M52, U2 ; Z,, # (). This contradicts (3.16). Thus, there exists a measurable set A, C A
such that v(A,) =1 and

mh () (X)) N @2 (Xir))) =0

for all A € A, and all incomparable words p, 7 € EY.
In order to prove (3.13), fix w € E%, say w € E%, and for any set F' C EY let

w] :={wr € EY : 7 € F}.

Fix an arbitrary Borel set B C Xy,y. In view of the just proven property (3.14), we have

i ({re By it Ao mm ed®)) = mi( U Fnml@m)

TEER\{w}

IN

mg( U ml(wi(Xar))mOi(B)))

TEER \{w}

= o U @(Xim)ned(®))

TEEZ\{UJ}

= (U e ned®)

TEEZ\{W}

> mh (@2 (Xun) Nd(B))

TeE\{w}

> mi(9)(Xum) N9l (Xiw))
TEEZ\{UJ}
=0

IA

IN
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for v-a.e. A € A. Using this and a generalization of (3.12), we conclude that
mi(p3(B) = mhom (¢l(B) =mi({r e EY : m(7) € ¢}(B)})
= mi({r € BY : 7ln # w, m(r) € 93(B) }U{wp € EXY : mi(wp) € 91(B)})
= i ({re By 7l A w, m(r) € RAB)})
+ i} ({w € BF - m(wp) € ¢4(B)})
+mh ({wp € EY soi(ﬂm \(p) € ©5(B)})
( wp € B mrany(p })
= m(waEA p€7TTn })

zzmw<m

I
o

t
= m,
t
A

lentun Wastun

n ¢ .
— o (t)/i1 WT”(A)(ﬂ))‘ dmtT”(A)(p)
mrm oy (B
= e_PAn(t)/ [(02)' (@)[" (1m0 Tn3)) ()
_ ‘Pn(t)/ |(23) ()] drifpn ) ()

for v-a.e. A € A. We are done. O

Before presenting our next result, we will address the measurability of the sets Z, and Z
that were defined in the proof of the previous theorem. This is a question we deliberately
avoided in order to not digress from the crux of the proof. To establish the measurability of
the sets Z and Z,, we make a brief incursion in the theory of random sets. For the basic
notions in this theory, see [2].

In the following, the set of all subsets of a set X shall be denoted by 2%.

Definition 3.8. Let X be a Polish space and let Cy, : A — 2%, a € A, be closed random sets,
where A is any index set. We define the set-valued map NacaCy : A — 2% by the formula

(N Ca)N) =N Caly)
acA acA
We call it the intersection of the closed random sets C,, a € A.
Similarly, we define the set-valued map UaeaCl @ A — 2% by the formula
(U ) = U Caly)
acA acA
We call it the union of the closed random sets C,, o € A.
We shall prove the following simple but useful lemma. Note that this is the only place

where we use the standing assumption that the o-algebra F is complete with respect to the
measure v.
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Lemma 3.9. A countable intersection of closed random sets is a closed random set. A finite
union of closed random sets is a closed random set.

Proof. Let C,, : A — 2%, o € A, be a countable family of closed random sets. Then for every
A € A, the sets Cy(N) are all closed and therefore so is the set (NaeaCa)(A) = NaecaCa(N).
Moreover, it follows from Proposition 2.4 in [2] that the graphs graph(C\,) = UxeaCa () X {\},
a € A, are all measurable in X x A. Hence

graph(“aeAOa) = U)\eA(ﬂaeACa)()‘) X {)‘} = U/\eA(maeACa()\)) X {)\} = ﬂaeAUAeACaO\) X {>\}

is a measurable set as it is a countable intersection of measurable sets. It then follows from
Proposition 2.4 in [2] that NaeaCl is a closed random set.

Similarly, if Cy, : A — 2%, a € A, is a finite family of closed random sets, then for every
A € A, the sets C,(A) are all closed and therefore so is the set (UneaCq)(A) = UaeaCa(N).
Moreover, it follows from Proposition 2.4 in [2] that the graphs graph(C,), o € A, are all
measurable in X x A. Hence

graph<ucx€AOa) = UAGA(UaeACa)()‘> X {)‘} = U)\GA(UaeACa(/\)) X {/\} = UaeAUAeAOaO‘) X {)‘}

is a measurable set as a finite union of measurable sets. It then follows from Proposition 2.4
in [2] that UyeaC, is a closed random set. O

We deduce from this the following result about each level set of a RCGDMS.

Lemma 3.10. For every p € EY and any k € Z, the map \ € A — @fk(*)(Xt(p)) €2¥ isa
closed random set.

Proof. Let p € E and k € IN. Obviously, all the sets "™ (X,,)), A € A, are closed. Let
{xn}22, be a countable dense subset of Xy(,). Since each map A € A — cpgkm(mn), n € N,

is measurable and since gp;{k(’\) (X)) = {gpgk(’\)(xn) :n € IN}, we conclude from Theorem 2.6
in [2] that the map A € A — gofkm (Xi(p)) is a closed random set. O

The measurability of the sets Z and Z,, in the proof of Theorem 3.7 follows directly from
Lemma 3.10, Lemma 3.9, and Proposition 2.4 in [2].

We can now turn our attention to the pressure function.

Definition 3.11. Let Q C E% be a finite set of finite words that witnesses the finite primitivity
of the matriz A. Let F be the set of all letters appearing in words in Q. For everyt € Fin, let
(Lt 2 )aen be the Perron-Frobenius operators associated to the function t(p : F3° x A — IR.
Thereafter, let

Qt = ess inf{£t7p7,\(ﬂpz<>)(w) A€ A, w e Fﬁo}

Note that @; > 0 for every t € Fin since t(p € C{(FS) and A|pyp is irreducible.

Proposition 3.12. For every ascending sequence (F,)2, of finite subalphabets of E such
that U | F,, = E and for all t € Fin, we have
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(a) Poa(t) € [log Qy,log M) for v-a.e. A€ A and alln € IN;
(b) P\(t) = lim,, 00 P x(t) € [log Qt,log My for v-a.e. X € A;
(c) the function A € A — Py(t) is v-integrable and

EP(t) = lim EF,(t) € [log Qy, log My],
where
EP(1) = /A Pt dv(\)  and  EP(t) = /A Poa(t) dv(N).
The number EP(t) is called the expected pressure of the system at the parameter t.

Proof. Let (F,)>2, be an ascending sequence of finite subsets of E such that U | F,, = E.
Fix t € Fin. According to Lemma 2.11, we know that P\(t) = lim, o P, x(t) for v-a.e.
A € A. Without loss of generality, we may assume that F' C Fj, where F arises from
Definition 3.11. Thus, A|g,«r, is irreducible for all n € IN. For every n € IN, let (L;n)xen
be the Perron-Frobenius operators associated to the function t(, : (F,)% x A — IR. In virtue
of Theorem 2.5, we have for v-a.e. A € A and all n € IN that

e = it (Loma(Wmg)) = 100 (Lopa(Leg)) > Qs

On the other hand, we obtain from the last part of Theorem 2.10 that for r-a.e. A € A and
alln € IN

el < 3 exp(ess sup{sup(tQ|f) : A € A}) <D ess sup{||(<p’e\)’||t TN E A} = M.

ecE eck

Hence P, ,\(t) € [log Q;,log M;] for v-a.e. A € A and alln € IN. This establishes statement (a).
Statement (b) then follows from Lemma 2.11. Moreover, statement (c¢) follows from the above
and Lebesgue’s Dominated Convergence Theorem. O

We shall now establish some basic properties of the expected pressure. Let
0 = inf(Fin).
The number 6 > 0 is called finiteness parameter of the system .

Proposition 3.13. The function EP : Fin — IR has the following properties:

(a) it is convex and continuous;
(b) it is strictly decreasing;
(¢) limy_,oo EP(t) = —00.

Proof. Let (F,)22; be an ascending sequence of finite subsets of E such that UX | F,, = F.
Let t € Fin. Lemma 10.5 in [8] gives convexity of all the functions ¢t € IR — EP,(t) € IR,
n € IN. Hence, by Proposition 3.12(c), the function t € Fin — EP(t) € IR is convex as
a pointwise limit of convex functions. To get statement (a), it only remains to show the
right-continuity at § when 6 € Fin. This is postponed to the end of the proof.
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As derived in the proof of Proposition 3.12,
exp(Py(t)) < D ess sup{||(#2)/[|' : A € A} = M; < o0

eckE
for v-a.e. A € A and for every t € Fin. Since M, tends to 0 as t — oo and since it does so
uniformly over a subset of A of full measure, we conclude that (¢) holds.

Moreover, in view of Lemma 10.6 in [8], all the functions t € IR — EP,(t) € IR are strictly
decreasing, and therefore the function ¢ € Fin — EP(t) € IR is (weakly) decreasing by
Proposition 3.12. If this function were not strictly decreasing, say £P(ty) = EP(t1) for some
t1 < ty, it would be constant on the interval [t;,00) because of its convexity. This would
however contradict the just proven statement (c). This proves statement (b).

We are only left to show the right-continuity at the point # when 6 € Fin. Since the
function £P : Fin — IR is decreasing, it is enough to show that

limsup EP(t) > EP(H).
t—0t+
Since each function EP, : IR — IR is continuous, for each n € IN there exists t,, € (0,0 +1/n)
such that ) .
n n
By Proposition 3.12(c), we obtain
1
EP(0) = lim EP,(0) < liminf(£P(t,) + ) = liminf EP(t,) < limsup EP(t).

n—00 n—00 n n—00 O+

We are done. O
This result suggests the following classification of RCGDMS. It is inspired from the well-
known classification of deterministic CGDMS.

Definition 3.14. A RCGDMS is called regular if there exists t > 0 such that EP(t) = 0. A
RCGDMS which is not reqular is called irregular.

Regular RCGDMS can be further divided into subclasses.

Definition 3.15. A reqular RCGDMS is called critically reqular if EP(0) = 0. A regular
RCGDMS is called strongly regular if 0 < EP(t) < oo for some t > 0. A strongly regular
RCGDMS is called cofinitely regular if lim, 9+ EP(t) = 0o.

We now want to investigate what happens at the finiteness parameter of the system # when
0 ¢ Fin. We then set EP(0) = 0.

Definition 3.16. A RCGDMS ® is said to be evenly varying if

ess sup{ [ (22)']| : A € A}
A= .
ceb ess mf{]|(22)| A e A}

We shall prove the following.
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Lemma 3.17. Let (F,)5°, be an ascending sequence of finite subsets of E such that U | F,, =
E. If a RCGDMS ® is evenly varying, then

EP(0) = lim EP,(0).

n—oo

Hence, evenly varying RCGDMS have an expected pressure function which is right-continuous
at their finiteness parameter 0, and thus continuous on [0, 00) by Proposition 3.13.

Proof. If 6 € Fin, then the results follows from the proof of Proposition 3.13. So, suppose
that 6 ¢ Fin. Then, by definition, £P(f) = oo and we have to prove that

lim £P,(0) = co.

n—oo

Let © C E" be a finite set of finite words that witnesses the finite primitivity of the matrix
A. Let F be the set of all letters appearing in words in 2. Let Mr = min{M, : e € F'}, where
M, = ess inf{||(¢2)']| : A € A}. Let also M,, = min{M, : e € F,}. Without loss of generality,
we may assume that each F), contains F. Let k > 2. For every w € E* there exists elements
a1, Qo, ... a1 € ) such that

_ «
W= Wi Wy . . . Wi—a0_ oWk 101wk € E).

Note that the map w € EF — @ € E(pﬂ)k P"is injective, and therefore for all & > 1, all
T € EY, and v-a.e. A € A, we have using (3.21),

1k
LET M e (1) = 3 (93 (Tpn—siay (7))

BeEPTVFP. grepee

> Yoo 1) (mrwsneesy (7))

WEFE : Ayy =1

_ _ (p+1) (k1)
B D S 1o U 1l P - A O K

WEFTILCZAwlezl

- Opk +1 (p+1)(k— 2)
> KO EEORNGEEME S (@) 1Nl Y el Y|
weF,]f_l
k—1
> KRR AL ess inf{]l () A € A})
ecFy,

0 k—1

> KO®-r DR 00k )10 A0 (Z ess sup{[|(2}) % : A € A})
ecky,

— (K( (p+1)k MPkM Al- k) Men :
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where My, := 3 .cp, ess sup{||(¢2)||? : A € A}. Therefore, using Lemma 4.6 in [8],

i 1 (p+1)k—
R A
1
= [9 — (p+1)k)log K + pklog Mp + (1 — k) log A
- kggo(p+1)k_p ((p (p+ 1)k)log pklog Mr + ( ) log )

+0log M,, + (k — 1) log M@,n]

1
= 0(~log K + ——log My —
p

p+1 +1
The result follows since lim,, o My,, = My = co. O

log A) + !
p

log My,
11 o8

Let
h =inf{t > 0: EP(t) < 0}.
Our next goal is to prove a variant of Bowen’s formula for RCGDMS.
Theorem 3.18. (Bowen’s formula) For v-a.e. X € A,
HD(Jy\)=h>6 >0,

where HD(Jy) is the Hausdorff dimension of Jy. Moreover, h > 0 if the system ® is strongly
reqular.

The proof will be given in several steps. We start with the following.

Lemma 3.19. If EP(t) <0, then

logm}(B(z,r)) _,

lim inf
r—0 log r

forv-a.e. X € A and all x € J,.

Proof. Suppose that t € Fin is so that EP(t) < 0. From (3.2), there is a set A; C A such
that (A1) = 1 and such that for all A € Ay, all x € J,, all w € E such that 7)(w) = z, and
all n € IN, we have

Pt (Xiwa)) C Bla, KD (25,)'l).
From (BDP) and (3.13), there is a set Ay C Ay such that v(A2) = 1 and such that for all
A€ Ay, all x € Jy, all w € E such that my(w) = z, and all n € IV, we have

mi (B(x, KDIl(3,)')) = mh (), (X)) = e FORT 3, ) I mdpe ) (X))
= K~ e O3, )"
w|n
= KD UKD (),) )

and hence

lim flog mh(B(z,r)) IOg(K_QtD_te_PAn(t)(KDH(902\;|n)/H)t)
im in <
r—0 log r n—00 log(KDH(SOf,\n)'H)
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—Pl(t
= lim sup #f)/
n—oo log (3, )|l

for all A € As, all z € Jy, and all w € EY such that m,(w) = x.

Now, if EP(t) < 0 then by Birkhoff’s Ergodic Theorem there is A3 C A such that v(A3) =1
and such that for each A € Aj there is N(\) > 1 for which —P{(¢) > 0 for all n > N(\).
Then

+t. (3.18)

R
lim sup ———2+72— < 0 (3.19)
n—oo” log [l(¢3 )l

for all A € A3 and all w € EY. Combining (3.18) with (3.19), we conclude that
log m} (B(x, 1))

lim inf <t
r—0 log r
for all A € A3 and all x € J,.
On the other hand, if £P(t) = 0 we obtain
—P(t Pi(t PP (t
lim sup IA/\U/ < lim sup |’\(/\)| < lim sup | ’\1( ) =0, (3.20)
n—oo log || (¢, )| n—00 ‘IOg”(S%M)/H n—oo  —nlogs

where the last equality follows from Birkhoff’s Ergodic Theorem for all A in a set Ay C Ay
such that v(A3) =1 and for all w € EY. Combining (3.18) with (3.20), we conclude that

t
r—0 log r

for all A € A3 and all = € .J,. We are done. O

<t

As an immediate consequence of this lemma, we get the following.
Corollary 3.20. HD(J,) < h for v-a.e. X € A.

Remark 3.21. Note that the OSC has not been used in establishing Lemma 3.19 and Corol-
lary 3.20. Indeed, relation (3.13) holds even in the absence of the OSC.

Henceforth we shall assume that the following condition is fulfilled by the RCGDMS under
scrutiny. This condition seems indispensable and in the case of random self-similar IF'Ss in
the sense of Mauldin and Williams [7] this condition is always assumed. Moreover, it has the
same form no matter whether F is finite or infinite.

For all e € E there exists M, € (0, s] such that

(22| > M., v-a.e. A€ A. (3.21)

In order to demonstrate that HD(J)) > h under this condition, we shall first prove the
following.



28 MARIO ROY AND MARIUSZ URBANSKI
Lemma 3.22. If the alphabet E is finite, then

h
r—0 log r

>h

forv-a.e. X € A and all x € J,.

Proof. Fix A € A in a set of full measure v which will be specified later. Fix also = € J,.
Set
M := min{M,.|e € E} > 0.

For every r € (0, M), set

Golr) == {w € By = 9 (Xu) N Blasr) £, (@AY < 7 and (63, YIl > 7).
Obviously, G,(r) is an anti-chain (i.e. its elements are pairwise incomparable) and
U w2 (B(x,r).
weG(T)

By (3.12), there is Ay C A with v(A;) = 1 such that

mi(B(x,r)) = s (3 (Bx,r)) < wh( U [w])

_ plwl s
= > h (h)/m\(wﬁ)'(ww\(x)“))‘ Ao (7)
wech(T) EA

_ plwl
< Y e
weG(r)

<rh Y e (3.22)

B w€e€G(r)
for each A € A; and each z € J,. Moreover, if w € G,(r) then M“l < r < 5= which
means that
1 1
og(sr) > | > ogr
log s log M
By Birkhoft’s Ergodic Theorem, there exists Ag C A; such that v(Ay) =1 and

(3.23)

lim ~Pr(h) = EP(h) = 0

n—oo n,

for all A € Ay. Fix ¢ > 0. Fix also an arbitrary A € Ag and = € J,. There thus exists ng € IV
such that

|PY(h)] <en
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for all n > ng. Assume r > 0 to be so small that logr/log M > ny. If w € G,(r) we obtain
from (3.23) that

exp(| Py (h)]) < exp(elw]) < eXp(gloig)) e

Hence, we can deduce from (3.22) that
mh(B(x,1)) < #Gy(r)s 1o8sphte/loss,

It remains to estimate #G,(r) from above. To do this, note that all the sets ¢ (Int(Xy(,)),
w € G,(r), are mutually disjoint, contained in the ball B(z, K Dr), and each of them contains
a ball of radius at least D"'K~2Mr. A straightforward volume argument shows that #G ()
is bounded above by a constant C' depending only on D, K and M. Therefore,

mh(B(x,r)) < C's¥/ 1083 ph+e/ogs,

Consequently, we conclude that

h
lim inf log mA(B(z, 7)) >h 4+ —,
70 logr log s
and letting ¢ — 0, the result follows for each A € Ay and each x € J,. O

As an immediate consequence of this lemma, we have the following.
Corollary 3.23. If the alphabet E is finite, then HD(J)) > h for v-a.e. X\ € A.

Combining together Corollaries 3.20 and 3.23, as well as the fact that finite systems have
finite expected pressures, i.e. —oo < EP(t) < oo for all t € IR, we get the following.

Corollary 3.24. If ® is a RCGDMS with finite alphabet E, then HD(J\) = h for v-a.e.
A € A, where h = inf{t > 0 : EP(t) < 0}. In fact, h is the unique number such that
EP(h) =0.

For the first part of this result to carry over to an infinite alphabet E, we will need the
following.

Theorem 3.25. If ® is a RCGDMS, then for allt >0
EP(t) =sup{EPp(t) : F € Fin(E)},
where Fin(FE) is the family of all finite subsets of E.

Proof. By Lemma 4.6 in [8], we have EP4(t) < £Pg(t) whenever A C B C E. Our theorem
therefore follows from Proposition 3.12(c). O

Now, we can prove the following.
Theorem 3.26. If ® is a RCGDMS, then for v-a.e. A € A,
HD(J)) = sup{HD(Jp,) : F € Fin(E)} = h=1inf{t > 0: EP(t) <0} > 6 > 0.

Moreover, h > 6 when the system ® s strongly reqular.
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Proof. 1t is obvious that 7 := sup{HD(Jp,) : F' € Fin(E)} < HD(J,) for every A € A and,
by Corollary 3.20, HD(Jy) < h =inf{t > 0: EP(t) < 0} for v-a.e. A € A. It therefore suffices
to show that h <. But, by Theorem 3.25 and Proposition 3.13, £P(n) = sup{EPr(n) : F €
Fin(E)} < sup{EPr(hr): F € Fin(E)} = 0. Hence n > h and we are done. O

Definition 3.27. A regular RCGDMS ® is called essentially random if

liminf P{(h) = —c0 and limsup Py (h) = oo
n—00 n—00

for v-a.e. X € A, where
n—1
PY(h) =) Pripy(h).
j=0

Note that if the sequence of random variables (Ppn () (h))se (with respect to the probability
measure v) satisfies the Law of Iterated Logarithms, then the system @ is essentially random.
Theorem 3.28. The following statements hold.

(a) If ® is an essentially random RCGDMS or an irregular RCGDMS, then H"(J\) = 0
forv-a.e. X € A.

(b) If ® is essentially random and satisfies the strong separation condition, then P"(Jy) =
o forv-a.e. X € A.

Proof. (a) Suppose that ® is an essentially random RCGDMS or an irregular RCGDMS.
It follows from formula (3.13) of Theorem 3.7 that

mA(9%(Jren)) = e W) 1 11 ) (Jeniny) = € F O ()"

for v-a.e. A € A, for all n > 0 and all w € E’;. Thus,

S (diam(@d(Trn))" = 3 @I = X0 Y mi (A (o))

weET wEEn weEn
=M (U eb(Umn)) = XPmi(1) =0 (3.24)
weEY

where we used formula (3.14) of Theorem 3.7 to establish the first equality sign. Now, in
either case (essentially random or irregular alike),
lim inf e A" =0 (3.25)

n—oo

for v-a.e. A € A. Indeed, in the essentially random case, this is an immediate consequence of
its definition, and in the irregular case, this follows directly from Birkhoft’s Ergodic Theorem.
It follows from (3.24) and (3.25) that H"(Jy) = 0.

Now, suppose ® is essentially random and that the strong separation condition holds. Let
R = dist(X¢, Uxen Ueer 92(X)) > 0. Fix A € A and w € EY. Then for every k > 0 we have
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B(mpa(y(0™(w)), R) € X. Therefore @) (B(rrnx)(0™(w)), R)) D B(ma(w), K~I(#3,)'1)
and hence

miy(B(ma(w), KM, )' 1)) < e X (), ) 1" mbn oy (B(mpe(ay (0" (w)), R))
< K RO (K03, )1)"

Since ¢ is essentially random, we deduce for v-a.e. A € A and all w € EY that

(B ) B ), K, )
B [ )G

< K"liminf e~ %" = 0.
Thus, P"(Jy) = oo for v-a.e. A € A and the proof is complete. O

Corollary 3.29. Almost no limit set fiber Jy of an essentially random system is bi-Lipschitz
homeomorphic to the limit set of any deterministic system with a finite alphabet.

Proof. This directly follows from Theorem 3.28 and the fact that the limit sets of finite
deterministic systems have Hausdorff and packing measures which are positive and finite. O

This corollary asserts that in the realm of systems with finite alphabet, essentially random
systems and deterministic systems form drastically different, non-overlapping subworlds.

As another immediate consequence of Theorem 3.28, we get the following remarkable geo-
metric statements.

Corollary 3.30. If ® s either essentially random or irreqular and Jy is not totally discon-
nected (i.e. contains a non-trivial connected component) for a set of positive measure v of
parameters A\ € A (equivalently, for v-a.e. X € A), then HD(Jy) > 1 for v-a.e. A € A.

Proof. This is an immediate consequence of Theorem 3.28 and the fact that H'(Y) > 0
whenever Y contains a non-degenerate connected component. O
Finally, Theorem 3.28 also has the following repercussion.

Corollary 3.31. If ® is an essentially random CGDMS acting on a phase space X C IR?,
then HD(J)) = h < d for v-a.e. X\ € A.

Proof. This is immediate from Theorem 3.28(b) since P%(J,) < P¥(X) < co. (Recall that
P4 is a multiple of Lebesgue measure on IR?.) O

4. EXAMPLES oF RaNDoM CGDMS

In this section, we give some examples of RCGDMS. In the following, a SIFS is a CIFS
whose generators are all similarities.
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Example 4.1. Let S = {@pc}ecr be a deterministic CGDMS. For every A € A and every
veV, let gy : W, — W, be conformal injections such that |[(g}) ||x, < 1 for all X € A, such
that the map A — g¢3(z) is measurable for every x € W,. When S is a one-dimensional system,
we further require that the family {p} := g/\ )o e} satisfy condition (v) of the definition of a
RCGDMS. Let T A — A be an invertible ergodic map preserving a measure v. The family

P = {p) = g/\ )o e} is then a random CGDMS.

More specifically, one might have:

(1a) S is a deterministic SIFS in which X is a closed ball, and g : W — W is a Euclidean
isometry for each \;

(1ab) S is a deterministic SIFS in which X = ID := {z € C': |z| < 1}, and gx(z) = >z
for every A € A := (0, 1];

(1b) S is a deterministic SIF'S in which X = ID, and g\(z) = Az for every A € A := ID\{0};

(1c) S is a deterministic SIFS in which X is a star-shaped set centered at 0. Let 0 < a <
b<1,A=(a,b]%, T : AN — A be the shift transformation, i.e. T((A\)2_ ) = Mns1)> .,
vy be the normahzed Lebesgue measure on (a,b], and v =vZ. Let g\(z) = Noz.

Let us determine the Hausdorff dimension for example (1a). First, note that since the
system is an IFS; we have ES = E*. Moreover, since the generators ) are all similarities,
their derivatives are independent of the point taken. Therefore, for every w € EY we have

Lizlpe(w) = > exp(tC(ew, )\)) I g (ew)

e€E:Acw, =1

= 2 1(@d) (mron @)

ecE

= 2 @)

eck
Since the g, are isometries, we obtain
Lilgs(w) =Y |( o)l =D 1Ll = Zus(t),
eclk eeE

where Z; (t) is the level 1 partition function of the pressure of the deterministic system S.

Similarly,
Lidpzw) =D l(e2)'= > ¢l = Zus(t),

reEn reEn

where Z, ¢(t) is the nth-level partition function of the pressure of the deterministic system
S. Since L'y ge does not depend on w, we obtain from (2.9) that

By Birkhoft’s Ergodic Theorem, we conclude that

n—1

1 1
/PA dv(A) = lim =" Progy(t) = lim ~P(t) = lim ~ log Z, s(t) = Ps(t)

n—oo n, n—oo n,
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for v-a.e. A € A, where Ps(t) is the pressure of the deterministic system S. Thus,

HD(J,) = HD(Js)

for v-a.e. A € A by Theorem 3.18, where HD(Jg) is the Hausdorff dimension of the limit set
Jg of the deterministic system S.
We now turn our attention to (1b). As in (1la), observe that

LZ}\]IEEO (CU)

> el

TeEE™
n—1
O (AR R [N UL (N

TEEM
> N en TP e, |- 1T I, If

TebEn

> T
TebEn

n—1 )

TPV Y2 eyl
7=0 Tebn

(TT o) .50

T [l |- 1, I

for every w € EY. By Birkhoft’s Ergodic Theorem, we deduce that

EP(l) = / Py(t)dv(\

= lim —

n—oo n,

n—1

1
= lim — ZPTJ(A t) = lim —Py(t)

n—oo n n—oo n,

1% 1
log L ge =t lim — Z log [T7(\)] + lim —log Zns(t)
n—oo n

—)Oon

- t/Alog|)\\dy(>\)—|—PS(t).

Hence the Hausdorff dimension of the random system @ is

h=int{t >0 t/Alog Aldv(X) + Ps(t) < 0}

Finally, in (1c), we obtain

ﬁt /\]1E°°

= > Al AL I

TeE™ jZO

n—1

Afz—1‘90lrn|t = <H

Aj)tzn,s(t).
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for every w € EY. By Birkhoft’s Ergodic Theorem, we deduce that

n—1 1
EP(t) = /PA £)dv (A JL%O;ZPTJ(A) ) = Jim (1)
1 "= 1
= ngglonlogﬁt/\llEoo =t lim —Zlog)\ + lim — lomeS(t)

- t/ log A dvo(\) + Ps(t).

Hence the Hausdorff dimension of the random system ® is
b
h=inf{t>0: t/ log A dio(A) + Ps(t) < 0}.

Example 4.2. Let S = {@pc}ecr be a deterministic CGDMS. For every A € A and every
veV, let f : W, — W, be conformal injections such that ||(f{)|lx, < 1 for all X € A, such
that the map A — f{(x) is measurable for every x € W,. When S is a one-dimensional system,

we further require that the family {p} := g/\ )o e} satisfy condition (v) of the definition of a
RCGDMS. LetT : A — A be an invertible ergodic map preserving a measure v. The family
O = {p) = .0 ff\(e)} is then a random CGDMS.

More specifically, one might have:

(2a) S is a deterministic SIFS in which X is a closed ball, and fy : W — W is a Euclidean
isometry for each \;

(2ab) S is a deterministic SIFS in which X = ID := {z € € |z| < 1}, and f\(z) = ¥z
for every X\ € A := (0,1];

(2b) S is a deterministic SIFS in which X = ID, and f\(z) = Az for every A € A := ID\{0};

(2¢c) S is a deterministic SIFS in which X is a star-shaped set centered at 0. Let 0 < a <
b<1, A= (a,b]%, T: A — A be the shift transformation, i.e. T((A\.)2_ o) = Any1)°%_ o,
vy be the normahzed Lebesgue measure on (a,b], and v = vZ. Let f\(2) = Noz.

The results derived in Example 4.1 hold for Example 4.2.

Example 4.3. Let S = {@e}ecr be a deterministic CGDMS. For every A € A and every
veV,let fY, g% : W, = W, be conformal injections such that max{||(f})|lx,,1(¢3)|x,} <1
for all X € A, such that the maps A — f{(x) and X\ — g}(z) are measurable for every x € W,.
When S is a one-dimensional system, we further require that the family {¢) = gf\(e) 0 e}
satisfy condition (v) of the definition of @ RCGDMS. Let T : A — A be an invertible ergodic
map preserving a measure v. The family ® = {p} = gi(e) 0 Qe O fi(e)} 15 then a random
CGDMS.

More specifically, one might have:

(8a) S is a deterministic SIFS in which X is a closed ball, and fr,gn : W — W are
Fuclidean isometries for each \;

(3ab) S is a deterministic SIFS in which X = ID .= {z € C: |z| < 1}, and fi(z) = gx(2) =
e*™z for every A € A = (0,1];
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(3b) S is a deterministic SIFS in which X = ID, and f\(z) = gx(z) = Az for every
A € A := D\{0},

(3¢) S is a deterministic SIFS in which X is a star-shaped set centered at 0. Let 0 <
a<b<1,0<c<d<1, A= ((a,b] x (c,;d)%, T : A — A be the shift transformation,
ie. T(A)2 o) = (Mns1)S o, where X = (AD A2 "y be the normalized Lebesgue

measure on (a,b] X (c,d], and v =vZ. Let f\(2) = Az and an(z) = APz,

The results derived in Example 4.1(a),(ab) hold for Example 4.3(a),(ab), respectively. In-
spiring ourselves from (1b), we obtain for (3b) that

EP(t) = 2 / log [\ dv()\) + Ps(t).
A
Hence the Hausdorff dimension of the random system & is
h=inf{t>0: Qt/Alog IAldv(\) + Ps(t) < 0}.

Note the presence of an additional factor 2.
Finally, in (3c),

L () = (H A (TLA2) 2500

Jj=0

for every w € EY. Therefore

b d
EP(t) :t/ 1og7’dr+t/ logrdr + Ps(t).

Hence the Hausdorff dimension of the random system @ is

b d
h:inf{tZO:tl/ logrdr—l—/ logrdr]—l—Ps(t)SO}.

Example 4.4. Let 0 < a < b < 1. Let A = (a,b|%?, and vy a Borel probability measure
on (a,b]. Let v =vZ, and T : A — A be the shift transformation, i.e. T((\,)_ ) =
(A1) . We now define a one-dimensional random SIFS by first picking a strictly in-
creasing sequence (,)5%, such that o = 0 and lim, o z, = 1. Moreover, we let X = [0,1]

and E=1{0,1,2,3,...}. For everyn € E, let

on() = 20 + Ao(Tng1 — Tn)

The family {2 : [0,1] — [0,1]} constitutes a one-dimensional random SIFS.
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We will now find a formula for HD(J)). Let E, = {0,1,... ,¢ — 1}. Observe that
Lo lpe(w) = > (@)

TGE;’
n—1
= > U@L IR [ (B Ny
TGE"
= Z >‘ m71+1 xn) (T(/\))f](‘rm-i-l _"Em) : (Tn 1()‘)) (xTn"‘l $Tn)t
GE"
= Z >‘ (Tr41 — xn) Al 1(Trps1 — xm)t T )‘fz—l(xm—f—l - mm)t
TGE"
= /\6/\?; T /\;—1 Z (T7y 41 — 77y )t(xm—f—l - xm)t o (Tryg1 — xm)t
TEE{;
= (TN (Xt — 20
j=0 =0

for all w € E. Using Proposition 3.12(c) and Birkhoft’s Ergodic Theorem, we obtain
1
EP(t) = llm EP,(t) = hm / = lim lim —P7(t)

g5conyoo g DA

1
= lim lim —log L} \lpe =t lim — Zlog)\ + hm logz Top1 — Te)!

q—00 N—00 N, n—oo n 0
e=

= t/ log A dvg(\) —|—10gz (Tep1 — xe)"

e=0
By Theorem 3.18, the Hausdorff dimension of the system & is

h = 1nf{t>0 t/ log A dvg(\) +10gz Ter1 — x)tSO}.

e=0
If Zeyg — 2o = 1/2°7 for all e € E, then

b
h/ log A dvp(A) — hlog2 — log(1 — 271 = 0,
If, moreover, vy is the Lebesgue measure on (a, b], then
h{(blogb —aloga) — (b — a)} — hlog2 —log(l —27") =0.

Example 4.5. Let 0 < a < b < 1. Let A = (a,b%, and vy a Borel probability measure
n (a,b]. Let v = vZ, and T : N — A be the shift transformation, i.e. T((M\,)3_ ) =

n=-—o00
(Ant1)5e . We now define a one-dimensional random SIFS by first picking a strictly in-
creasing sequence (x,)> such that xo = 0 and lim, o x, = 1. Moreover, we let X = [0, 1]

and E ={0,1,2,3,...}. For everyn € E, let
ONE) = T + Aa(Tng1 — Tn).
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The family {2} : [0,1] — [0,1]} constitutes a one-dimensional random SIFS.

Example 4.6. Let 0 < a < b<1. Let Ayp = {(s,t) € R*:a < s <t < b}, and vy a Borel
probability measure on A,p. Let A = Aab, v=uvZ, T:\N— A be the shift transformation,
e, T(A)Se_o) = (Ans1)22 . We now define a one-dimensional random SIFS by setting

X =[0,1], E= (0,1}, A= A0 AD) . and
o) =Ne i) =1- (=371 - a).
The family ® = {¢) : [0,1] — [0, 1]} constitutes a one-dimensional random SIFS.

We now obtain a formula for the Hausdorff dimension of this system. First, note that

Lolpr@) = 3 1@ = 2 @I Oy
TEE™ TEE™
= (S I ) (1Y) - (Sl o)
ecl eckE eck
n—1 )
= TI(ZIeroyr)
7=0 “e€FE

for every w € EY. Letting g;(\) = log X e |(¢2)]!, we deduce that

1 1 1
EP(t) = /A Pa(t)dv(\) = lim 5ZPTJ(A) {) = lim ~P{(t) = lim —log £} Ly

n—oo n,

= hm—ZlogZ! hm—thTJ /gt ) dv (A

n—oo n ocE n—oo n

Since
gr(N) = log(|(23)'[ + [(#1)'[') = log[(A)! + (1 = AP,
we infer that
£P() = [, Tog[ (A7) + (1 =2 o (o).

If vy is the Lebesgue measure on A, then

//logac + ( )]dydx

Hence the Hausdorff dimension of the random system & is the unique number h such that
EP(h) =0, i.e. such that

b b
//log[mh+(1—y)h}dydx20.

Note the difference with Example 4.2 in [7].
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Example 4.7. Let 0 < a < b<1. Let Ay = {(s,t) € R*:a < s <t < b}, and vy a Borel
probability measure on A,p. Let A = Af,b: v=uvZ T :\N— A be the shift transformation,
ie. T(A\)Se o) = Ag1)2 . We now define a one-dimensional random SIFS by first
picking a strictly increasing sequence (x,)32, such that o = 0 and lim,,_,o z, = 1. Moreover,
we let X =[0,1] and E ={0,1,2,3,...} x {0,1}. For alln >0, let

SD?L,O(‘%) =Tnt )\%1)(3:7”1 - Tn)T and @2,1('@ =Tpp1 — (1= )‘7(12))(9@&1 — )T

The family {2 : [0,1] — [0,1]} forms a one-dimensional random SIFS.

Calculations similar to the ones performed in Example 4.6 lead to
eP) = [l1o8 2 (1hol T+ (k1 )i
= 108 3 (4 s = 22"+ (1= M) (s = ) o)
= [ 1083 [(rner =2 () + (1= A2))] ().
n=0
Hence the Hausdorff dimension of the random system ® is
h = inf {t >0 /Alog i [(:cn+1 — xn)t((Ag}))t +(1— Aff))t)] dv()\) < o} :
n=0

5. RANDOM ELLIPTIC FUNCTIONS

In this section, we provide an application of our results to the theory of random elliptic
functions. In [4], the Hausdorff dimension of the Julia set J(f) of a non-constant elliptic
(meromorphic) function f : € — @ and the Hausdorff dimension of I.(f), the set of points
escaping to infinity under iteration of f, were estimated as follows:

2q 2q

HD(J(f)) > | whereas HD(I.(f)) < T

where ¢ > 2 is the maximal order of all poles of f. The idea to establish the former of
these two inequalities was to associate to the function f : € — € an (deterministic) infinite
CIFS whose finiteness parameter 6 is equal to 2¢/(q + 1). Now, we consider the situation
where we randomly choose elliptic functions from a sufficiently small neighbourhood of f, and
we thereafter generate the corresponding random Julia sets. We are going to estimate the
Hausdorff dimensions of these random Julia sets by the same number 2¢/(¢+1). Random Julia
sets can be defined in a more general context of arbitrary meromorphic functions.Indeed, let
T : A — A be an invertible ergodic measurable transformation preserving a Borel probability
measure v, and to each A\ € A ascribe a meromorphic function fy : € — € such that the map
A€ A— fi(2) € C'is measurable for all z € €. For every n > 1, let

I = fra-ipy 0 fra2py oo fr: @ —
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where we adopt the convention that fy(oco) = oo for every A € A. The Julia set J, is said to
consist of all points z € € such that the family {f¥ : U — €},>; is not normal on any open
neighbourhood U of z. Clearly, J, C €'is a closed set and f\(Jx) = Jr(y)-

We will restrict our attention to the more specific situation where f : @ — € is a non-
constant elliptic function, ¢ = ¢ is the maximal order of all poles of f, and fy = Af for all
A € € in a sufficiently small neighbourhood A of 1. Note that all poles of f) coincide with
those of f. For every \ € A, let

I(o0) = {z € €: Tim f1(2) = o0},
We shall prove the following.

Theorem 5.1. Let f : @' — @ be a non-constant elliptic function. If A C @' is a sufficiently
small neighbourhood of 1 and T : A — A is an arbitrary map (not necessarily measurable, not
necessarily measure-preserving), then

2q
HD(I)(00)) <
(h(ee)) < =5
forall A € A.

Proof. Let Br = {z € @' : |z] > R}. For every pole b of f, we denote by By(b, R) the
connected component of fy'(Bg) containing b. We also set By(R) := By(b, R). Taking a
neighbourhood A of 1 sufficiently small, we have that By(b,2R) C B,(R) for all A\ € A. There
exists Ry > 1 such that for all A € A the set By, contains no critical values of f\, such that
for all R > Ry and all A € A the sets {Bx(b, R) }scf-1(x) are simply connected and mutually
disjoint and, for z € By(Ry) and X € A,

f)\(Z) = (Z_b)qb7

where g, is the order of pole b and Gy, : By(Ry) — €'is a bounded holomorphic function such
that Gy(b) # 0. If U C Bpg,\{oo} is an open simply connected set, then all the holomorphic

AGh(2) (5.1)

inverse branches f, bl,U,lv N ;7U7Qb of f\ are well defined on U for all A € A, and for every
1<j<q,all z€ U and all A € A we have
| (2) = b = |27/ (5.2)
and
|(Frpg) (2)] < ||t/ (5.3)

This means that
| frowi(2) — 0]

|Z|_1/Qb

{ by (2) — bl
sup

|Z|_1/Qb

0O<m := inf{ :bef_l(oo),lSqub,zeU,)\GA}

IA

:bEf_l(oo),lSqub,ZGU,)\EA}—:M<oo
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and

o {|<f;,;,U,j>'<z>|

e ’Z|7(q5+1)/f1b :bef_1<oo)>1§jSCI%ZGU,)\GA}

< Sup{w

EECEYM b€ fHo0),1<j<q,z€UNE A} = M < .
Let Ry > Ry be such that

max{M, M}R; /" < Ry (5.4)
Given by, by € Bog, N f71(00), we denote by

Frboiny : Blb1, Ro) = @

all the holomorphic inverse branches f) ;27 BouRe) L < J < oy 1t follows from (5.2) and (5.4)
that

f)\_vl}%blyj(B(bl’ RO)) - f/\_,I}Q,B(bl,Rl),j(B(bbRl)) - B(b2>MRfl/q) C B(b%Ro)-

(5.5)
for all by, by € Bag, N f~1(c0) and all A € A. Since the series
> b
bef~1(o0)\{0}
converges for all s > 2, given any ¢ > 2¢/(q + 1) there exists Ry > R; such that
gt 3" |p|Tetat <, (5.6)

beBr,Nf~1(c0)
Set
IL(R) ={z€T:|f{(2)] > R,Yn>0}.

Let R3 > 2Ry be so that for every z € I,(R3) and every n > 0 there exists a unique
2z, € f7(o0) such that f(z) € B(z,, Ro) N fT_nl(/\) (B(zpt1, Ro)). Of course, |z,| > Rs
by definition. Now, set

y2n2n+1

IR = f_l(OO) N BR.

Let R > 2Rj3. It follows from (5.5), (5.2) and (5.4) that for every [ > 1, the family W, defined
as

1 1
{fA,bl,blfl,jz O FT(N) b1 bzt ©

O L i (3 ar s © F71 0y ey (B(b0, Ro))  bi € T, 1< ji < gyyi = 0,1, ,z}
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is well defined and covers I(R). Using (5.3), (5.4) and (5.6), we obtain

an, v,

= Z Z Z Z Z diam’ (fgéhbl_l,jl © fT_(IA),bl_l,bl_z,jl_l ©

bel 51=1 biel j1=1bgel
—1 -1
Ole*l(A),bg,bl,jz © le(A),bl,bo,jl(B(bO’ Ro>>)

qbl qb1
-1 -1

< DD (fx,bl,bl_l,jl O ST b bi—sir ©

el ji=1 bl ji=1byel

t
—1 —1 ! : t
olefl()\),bQ,bth © le()\),b1,bo,j1> B(b0,Ro) || oo diam (B(bo, RO))
v, 0,

< Z Z Z Z Z M(H‘l)t’blil‘*t(%l+1)/%l ) ’b172‘7t(qbl—1+1)/qbl—1

el ji=1 bl ji=1bocl

.|b0‘*t(%1+1)/%1<2R0)t
an, @,
< ( JWiGR Z Z Z Z Z |bl —((g+1)/q)t |b | ((g+1)/q)t
bel ji=1 biel j1=1boel
~ 1+1
< (2R ) Ml+1t l+1(z,b‘ (¢+1)/q) )
bel
I+1
< (2Ry) ( o]~ ((g+1 /q))
bEBRSQf (OO)

< (2Rp)".

Since the diameters of the sets of the covers W, converge uniformly to 0 when [ 7 oo, we
infer that H'(I\(R)) < (2Ro)" < oo for all A € A. Consequently, HD(I\(R)) < t for all A € A.
If we put
Lua(f) = {z € @: liminf | £7(2)| > R} € [ £ (Trery(R)),
k>1
then HD([)\<OO)> < HD([)\yR(f)) < maxgen HD(ITk(/\)<R)) < t for all A € A. Lettlng t \
2q/(q + 1) finishes the proof. O

Applying the results proved in the previous sections, particularly Bowen’s formula, we shall
now demonstrate the following.

Theorem 5.2. Let f : @ — @ be a non-constant elliptic function. If A is a sufficiently small
neighbourhood of 1 endowed with a Borel probability measure v and T : A — A is an invertible
ergodic map preserving the measure v, whose second iterate T? : A — A is ergodic. Then

2q
HD(Jy) > —2—
(73) g+ 1

forv-a.e. A € A.
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Proof. Choose constants Ry, 71 and R; as in the proof of Theorem 5.1. Fix a pole a € Bsp,
with ¢, = g. For every pole b € f~!(c0) N Byg, with g, = ¢, consider for each A\ € A the
inverse branches of fy

fgéa,l : B(a,Ry) — T and f/\_ibl : B(b, Ry) — .

In view of (5.5), we have

Frbar(Bla, Ro)) € B(b, Ry) and Frana(B(b, Ro)) C Bla, Ry)

for all A\ € A. Since, in addition, one can prove these last two inclusions in exactly the same
way with Ry replaced by R; > Ry, the family

® = {f3401 0 Fiypan : Bla, Ro) = Bla, Ry)}

be f~1(c0)NBar,, AEA

forms an infinite random CIFS if we set ¢ = f3. i,b,l o ﬁ_;(ll\)’b’a’1 and we consider the map
T?: A — A rather than 7. In view of (5.3), we can write

M, = Z |a|—((Q+1)/Q)t|b|—((Q+1)/‘Z)t - Z |b|—((q+1)/Q)t_

befl(OO)ﬂBQRQ befﬁl(OO)OBQRQ

But the series >pe p-1(00)nBap, |b|~(@+D/Dt converges if and only if t > 2¢/(g+1), and therefore
0o =2q/(qg+1) and EP(Ay) = oco. Hence HD((Jg)r) = h > 0 = 2q/(q+ 1) for v-a.e. A € A
because of Theorem 3.18. Since (Jg)x C J(fr), we conclude that HD(J(fy)) > HD((Js)x) >
2q/(q+1) for v-a.e. A€ A. O
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