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Abstract. We introduce and explore random conformal graph directed Markov systems gov-
erned by measure-preserving ergodic dynamical systems. We first develop the symbolic ther-
modynamic formalism for random finitely primitive subshifts of finite type with a countable
alphabet (by establishing tightness in a narrow topology). We then construct fibrewise confor-
mal and invariant measures along with fibrewise topological pressure. This enables us to de-
fine the expected topological pressure EP (t) and to prove a variant of Bowen’s formula which
identifies the Hausdorff dimension of almost every limit set fiber with inf{t : EP (t) ≤ 0}, and
is the unique zero of the expected pressure if the alphabet is finite or the system is regular. We
introduce the class of essentially random systems and we show that in the realm of systems
with finite alphabet their limit set fibers are never homeomorphic in a bi-Lipschitz fashion to
the limit sets of deterministic systems; they thus make up a drastically new world. We also
provide a large variety of examples, with exact computations of Hausdorff dimensions, and
we study in detail the small random perturbations of an arbitrary elliptic function.

1. Introduction

In this paper we introduce and systematically develop the theory of random conformal
graph directed Markov systems satisfying the open set condition, which comprise the random
conformal iterated function systems satisfying the open set condition. Our main emphasis
is on infinite systems, i.e. systems that have a countably infinite alphabet. Our approach
builds on the following three main sources of motivation: random distance expanding dynam-
ical systems (cf. [8]), random measures (cf. [2]), and deterministic conformal graph directed
Markov systems (cf. [6]).

In section 2 we first deal with purely symbolic systems, namely random shifts of finite
type. We prove that, under a Hölder continuous potential, these systems admit fibrewise
“conformal” measures, fibrewise “invariant” measures and fibrewise topological pressure. In
the case of finite systems, i.e. systems whose alphabet is finite, this directly follows from [1]
and [8]. The infinite case is tackled by exhausting the alphabet with its finite subalphabets,
and by proving tightness in the narrow topology of random measures (cf. [2]). In particular,
this requires showing that the limit objects resulting from compactness (tightness) satisfy the
requirements of conformality and invariantness.
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In section 3 we define random conformal graph directed Markov systems (abbr. RCGDMSs)
and, as an application of our symbolic dynamics results, we demonstrate that RCGDMSs ad-
mit fibrewise conformal measures and topological pressure (see Theorem 3.7). Particularly in-
volved is the argument establishing measurewise disjointness of the first-level sets (see (3.14)).
We are then in a position to define the expected pressure EP (t) (see Proposition 3.12), and
its related features, among others the finiteness set Fin and the left endpoint θ of this lat-
ter, also known as finiteness parameter of the system. Motivated by the deterministic case
(see [5], [6]) we classify RCGDMSs in regular and irregular ones, and further divide regular
systems into critically regular, strongly regular and cofinitely regular, all of this in terms of
the shape of the expected pressure function EP (t). Our main geometric result is a variant
of Bowen’s formula (see Theorem 3.18 and its extension, Theorem 3.26). It affirms that the
Hausdorff dimension of almost every limit set fiber of the system is inf{t ≥ 0 : EP (t) ≤ 0},
which coincides with the only zero of the expected pressure function when the system is reg-
ular. Inspired by definitions from [8] we coin the concept of essentially random systems (see
Definition 3.27) and we prove that these systems have limit set fibers with almost surely zero
Hausdorff measure but infinite packing measure (see Theorem 3.28). This result has much
more striking consequences in the case of a finite alphabet than in the infinite one. Indeed, the
limit sets of deterministic systems with infinite alphabets may have zero Hausdorff measure
and/or infinite packing measure (see [5], [6] for appropriate examples), whereas the limit sets
of finite deterministic systems have Hausdorff and packing measures which are both finite and
positive. Our result implies that almost no limit set fiber of a finite RCGDMS is bi-Lipschitz
homeomorphic to the limit set of a finite deterministic CGDMS. Hence, random CGDMSs
form a new realm, drastically different from the deterministic one.

The last two sections of our paper are devoted to examples. In section 4 we provide general
methods of how to naturally construct random systems out of deterministic ones. We also
provide examples of random systems built from scratch. In most examples, we further give
an exact formula for the almost sure Hausdorff dimension of the limit set fibers. In the fifth
and last section we deal with small random perturbations of an arbitrary non-constant elliptic
function. Motivated by the construction from [4] we associate to such a random dynamical
system of elliptic functions a random conformal iterated function system. We then estimate
from below the Hausdorff dimension of the limit set fibers of the corresponding random IFSs
by showing that they are evenly varying and by computing their θ number.

There are several ways to generate and study random fractal sets. However, in the attempts
made so far, the proposed constructions either dealt with similarity maps only or demanded
identically distributed randomly independent choices of maps. We, on the other hand, assume
only that the generators are conformal, and that the random choice of generators is governed
by a measure-preserving ergodic dynamical system. Furthermore, even if this dynamical
system is a Bernoulli shift preserving a Bernoulli measure (in other words, this means that
our random process is identically distributed and independent), our limit sets are different
than those generated via (in some sense) parallel constructions in [7], the reason for this being
that the Hausdorff dimensions of corresponding limit sets are different.



RANDOM GRAPH DIRECTED MARKOV SYSTEMS 3

Finally, we would like to mention that the paper [3] also deals with the thermodynamic
formalism for random shifts with a countably infinite alphabet, and produces objects like
fibrewise pressure, and fibrewise conformal and invariant measures. The primary hypothesis
in [3] is that the potential is positive recurrent, a concept involving the asymptotic behavior
of partition functions. In our paper, we prefer simply assuming the Hölder continuity of the
potential and we take a direct path to develop the thermodynamic formalism. However, there
is also a second reason, albeit a less important one, why we avoided making use of [3]. Namely,
in the proof of Proposition 6.3, just after formula (6.5), the authors conclude the existence of
fibrewise weak limits on the ground of tightness in the random narrow topology. In general,
this is not true, as shows a counterexample in [2].

2. Random Shifts over a Countable Alphabet

Let E be a countable (finite or infinite) alphabet. Without loss of generality, we may
assume that E ⊂ IN . Let A : E × E → {0, 1} be a matrix whose entries are indexed by the
elements of E. This matrix determines the set of all one-sided infinite A-admissible words

E∞A :=
{
ω ∈ E∞ : Aωkωk+1

= 1,∀ k ∈ IN
}
.

Equip this set with the topology generated by the one-cylinders [e]k := {ω ∈ E∞A : ωk = e},
e ∈ E, k ∈ IN . This topology coincides with the topology induced on E∞A by Tychonov’s
product topology on E∞ when E is endowed with the discrete topology. The space E∞A is
a closed subspace of E∞. The space E∞A is sometimes called coding space. When endowed
with the Borel σ-algebra B, the coding space E∞A becomes a measurable space.

The set of all subwords of length k ∈ IN of words in E∞A will be denoted by Ek
A, whereas

the set of all finite subwords of words in E∞A will be denoted by E∗A = ∪k∈INEk
A. For every

ω ∈ E∗A ∪ E∞A , the length of ω, i.e. the unique k ∈ IN ∪ {∞} such that ω ∈ Ek
A, shall be

denoted by |ω|. If ω ∈ E∗A ∪E∞A and k ∈ IN does not exceed the length of ω, we shall denote
the initial subword ω1ω2 . . . ωk by ω|k. Moreover, for every ω ∈ E∗A we shall denote the open
set of all infinite A-admissible words beginning with ω by [ω] := {τ ∈ E∞A : τ ||ω| = ω}. Note
that [e] = [e]1 for all e ∈ E. Furthermore, for every ω, τ ∈ E∞A , let ω ∧ τ ∈ E∗A ∪ E∞A the
longest prefix of ω and τ such that ω|k = τ |k. From a dynamical point of view, we will be
interested in the (left) shift map σ : E∞ → E∞ which drops the first letter of each word. The
shift map is obviously continuous, and thereby measurable.

Let F ⊂ E. We now briefly describe some spaces of functions on F∞A . Denote by C(F∞A )
the space of all continuous real-valued functions on F∞A and by Cb(F∞A ) the subspace of all
bounded continuous functions on F∞A , i.e. those g ∈ C(F∞A ) such that ‖g‖∞ := sup{|g(ω)| :
ω ∈ F∞A } <∞. This subspace is a Banach space. Let 0 < s < 1. For every g ∈ C(F∞A ), set

vs,k(g) := inf
C≥0

{
|g(ω)− g(τ)| ≤ Csk : ω, τ ∈ F∞A such that |ω ∧ τ | ≥ k}

and

vs(g) := sup
{
vs,k(g) : k ∈ IN

}
.
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A function g ∈ C(F∞A ) is called Hölder continuous with exponent s if vs(g) < ∞. The
constant vs(g) is the smallest Hölder constant such a g admits. We shall denote by Hs(F

∞
A )

the vector space of all Hölder continuous functions with exponent s. We shall further denote
by Hb

s(F
∞
A ) the vector subspace of all Hölder continuous functions with exponent s which are

bounded, i.e. Hb
s(F

∞
A ) := Hs(F

∞
A ) ∩ Cb(F∞A ). Endowed with the norm

‖g‖s := ‖g‖∞ + vs(g),

the space Hb
s(F

∞
A ) becomes a Banach space.

The randomness of the graph directed Markov systems we shall study later will be based on
a probability space (Λ,F , ν) and an invertible ergodic map T : Λ→ Λ preserving a complete
measure ν. The Cartesian product E∞A × Λ becomes a measurable space when equipped
with the product σ-algebra B ⊗ F , i.e. the σ-algebra generated by the countable unions of
Cartesian products of the form B×F with B ∈ B and F ∈ F . Let pE∞A : E∞A ×Λ→ E∞A and
pΛ : E∞A ×Λ→ Λ be the canonical projections onto E∞A and Λ, respectively, i.e. pE∞A (ω, λ) = ω
and pΛ(ω, λ) = λ. Both projections are trivially measurable. In fact, B ⊗ F is the smallest
σ-algebra with respect to which both projections are measurable.

The product map σ × T : E∞A × Λ→ E∞A × Λ, defined as

(σ × T )(ω, λ) :=
(
σ(ω), T (λ)

)
,

is obviously measurable. Indeed, (σ× T )−1(B×F ) = σ−1(B)× T−1(F ) for all B ∈ B and all
F ∈ F .

We now turn our attention to spaces of random functions. Again, let F ⊂ E.

Definition 2.1. A function f : F∞A × Λ→ IR is said to be a random continuous function on
F∞A if

• for all ω ∈ F∞A the ω-section λ 7→ fω(λ) := f(ω, λ) is measurable; and
• for all λ ∈ Λ the λ-section ω 7→ fλ(ω) := f(ω, λ) is continuous on F∞A .

We shall denote the vector space of all random continuous functions on F∞A by CΛ(F∞A ).
Note that by Lemma 1.1 in [2], any random continuous function f is jointly measurable.

It is then natural to make the following definitions.

Definition 2.2. A random continuous function f ∈ CΛ(F∞A ) is said to be bounded if

‖fλ‖∞ <∞, ∀λ ∈ Λ and ‖f‖∞ := ess sup{‖fλ‖∞ : λ ∈ Λ} <∞.

Bounded random continuous functions, as defined above, are random continuous in the
sense of Crauel [2] (cf. Definition 3.9). The space of all bounded random continuous functions
on F∞A shall be denoted by Cb

Λ(F∞A ). When equipped with the norm ‖f‖∞, this space is
Banach.

Definition 2.3. A random continuous function f ∈ CΛ(F∞A ) is said to be Hölder with expo-
nent s if

vs(fλ) <∞, ∀λ ∈ Λ and vs(f) := ess sup{vs(fλ) : λ ∈ Λ} <∞.
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We shall denote by Hs,Λ(F∞A ) the vector space of all random Hölder continuous functions
with exponent s and by Hb

s,Λ(F∞A ) the subspace of all bounded random Hölder continuous
functions with exponent s. Endowed with the norm

‖f‖s := ‖f‖∞ + vs(f),

the space Hb
s,Λ(F∞A ) becomes a Banach space.

We now introduce the concept of summability for random continuous functions.

Definition 2.4. A random continuous function f ∈ CΛ(F∞A ) is called summable if

Mf :=
∑
e∈F

exp
(
ess sup{sup(fλ|[e]) : λ ∈ Λ}

)
<∞. (2.1)

Note that no bounded random continuous function on F∞A is summable whenever F is
infinite. Henceforth, we shall denote by a superscript Σ spaces of summable functions. For
instance, the vector space of all summable random Hölder continuous functions with exponent
s will be denoted by HΣ

s,Λ(F∞A ).
Now, we shall describe properties of random measures which will play a crucial role later.

Denote by PΛ(ν) the space of all probability measures m̃ on (E∞A ×Λ,B⊗F) whose marginal
is ν, i.e. all probability measures m̃ such that m̃ ◦ p−1

Λ = ν. By Propositions 3.3(ii) and 3.6
in [2], this space is isomorphic to the space of random probabiblity measures m̃ on E∞A , i.e.
the space of all functions (B, λ) 7→ m̃λ(B) ∈ [0, 1] such that

• for every B ∈ B, the function λ 7→ m̃λ(B) is measurable; and
• for ν-a.e. λ ∈ Λ, the function B 7→ m̃λ(B) is a Borel probability measure.

We then write m̃ = m̃λ ⊗ ν. Endow PΛ(ν) with the narrow topology. Recall that a sequence
(m̃n)∞n=1 of measures in PΛ(ν) converges to a measure m̃ ∈ PΛ(ν) in the narrow topology if

lim
n→∞

m̃n(f) = m̃(f)

for all f ∈ Cb
Λ(E∞A ), where

µ̃(f) :=
∫
E∞A ×Λ

f(ω, λ) dµ̃(ω, λ) =
∫

Λ

∫
E∞A

fλ(ω) dµ̃λ(ω) dν(λ).

for any µ̃ = µ̃λ ⊗ ν ∈ PΛ(ν). Prohorov’s Theorem for random measures (see Theorem 4.4
in [2]) states that a subset Γ ⊂ PΛ(ν) is relatively compact if and only if Γ is tight, and that
such a set Γ is relatively sequentially compact.

Finally, we introduce Perron-Frobenius operators. Let f ∈ HΣ
s,Λ(E∞A ) and F ⊂ E. For

ν-a.e. λ ∈ Λ the Perron-Frobenius operator Lf,F,λ : Cb(E∞A )→ Cb(E∞A ) defined by

Lf,F,λg(ω) =
∑

e∈F :Aeω1=1

exp
(
f(eω, λ)

)
g(eω)

is well defined. For every k ≥ 2, we may thereafter define for ν-a.e. λ ∈ Λ the operators

Lkf,F,λg := Lf,F,Tk−1(λ) ◦ Lf,F,Tk−2(λ) ◦ · · · ◦ Lf,F,λg.
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It is easy to show that for ν-a.e. λ ∈ Λ, we have

Lkf,F,λg(ω) =
∑

τ∈FkA:Aτkω1=1

exp
(
Skf(τω, λ)

)
g(τω), (2.2)

where

Skf(ρ, λ) =
k−1∑
j=0

f((σ × T )j(ρ, λ)) =
k−1∑
j=0

f(σjρ, T jλ). (2.3)

It is also easy to check that all Lkf,F,λ, k ∈ IN , preserve the Banach spaces Cb(E∞A ), Cb(F∞A ),

Hb
s(E

∞
A ) and Hb

s(F
∞
A ) for ν-a.e. λ ∈ Λ. Let Lk∗f,F,λ be the operator dual to Lkf,F,λ which acts on

either (Cb(E∞A ))∗ or (Cb(F∞A ))∗, depending on whether the operator Lkf,F,λ is seen acting on

Cb(E∞A ) or Cb(F∞A ). From this point on, we shall omit the subscript F when F = E and write
Lkf,λ for Lkf,E,λ. Also, when no confusion may arise, we shall frequently drop the subscript f .

When F ⊂ E is a finite set, our setting reduces to the random distance expanding
maps studied in [8] and in which the following theorem has been proved (see Theorem 3.1,
Lemma 4.5 and Lemma 4.3 in [8]).

Theorem 2.5. Let F ⊂ E be a finite subalphabet such that A|F×F is irreducible. If f ∈
Hb
s,Λ(F∞A ), then for ν-a.e. λ ∈ Λ there exist a unique PF,λ(f) ∈ IR and a unique Borel

probability measure m̃f,F
λ on F∞A with supp m̃f,F

λ = F∞A such that

L∗f,F,λm̃
f,F
T (λ) = ePF,λ(f)m̃f,F

λ

and such that the function λ 7→ PF,λ(f) is ν-integrable while the function λ 7→ m̃f,F
λ (B) is

measurable for every B ∈ B ∩ F∞A .

In particular, this result shows that m̃f,F (B, λ) := m̃f,F
λ (B), i.e. m̃f,F

λ ⊗ ν, is a random
probability measure on F∞A and so is its extension to E∞A . This extension shall be denoted
by the same notation as the original random measure. Moreover, for ν-a.e. λ ∈ Λ we deduce
by recurrence that

Lk∗f,F,λm̃
f,F
Tk(λ) = eP

k
F,λ(f)m̃f,F

λ , (2.4)

where

P k
F,λ(f) :=

k−1∑
j=0

PF,T j(λ)(f). (2.5)

The main technical fact proved in this section is the following. It concerns sequences of
random probability measures which arise from ascending sequences of finite subalphabets
(Fn)∞n=1 that cover the entire alphabet E. In order to allege notation, for all λ ∈ Λ for which

they are defined, we shall henceforth denote P k
Fn,λ(f) by P k

n (λ) and m̃f,Fn
λ by m̃n

λ. Moreover,
note that the following result does not require that the random Hölder continuous function
f ∈ Hs,Λ(E∞A ) be bounded, as this is a property that the natural potentials tζ for random
graph directed Markov systems do not fulfill (cf. section 3). Instead, we demand that f be
summable and bounded over finite subalphabets. We thus make the following definition.
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Definition 2.6. A random continuous function f ∈ CΛ(E∞A ) is said to be bounded over finite
subalphabets if f |F∞A ×Λ ∈ Cb

Λ(F∞A ) for every finite set F ⊂ E.

Now, the result. Recall that a matrix A is finitely irreducible if there exists a finite set
Ω ⊂ E∗A such that for all e, f ∈ E there is a word ω ∈ Ω for which eωf ∈ E∗A.

Lemma 2.7. Let E be a countably infinite alphabet and A a finitely irreducible matrix. Let
f ∈ HΣ

s,Λ(E∞A ) be bounded over finite subalphabets. If (Fn)∞n=1 is an ascending sequence of finite
subalphabets whose union is E, then the sequence of random probability measures (m̃n

λ⊗ν)∞n=1

is tight in PΛ(ν).

Proof. Since A is finitely irreducible, there exists a finite set F ⊂ E that witnesses the
finite irreducibility of A, that is, such that for any pair of letters e, ẽ ∈ E there is τ ∈ F ∗ such
that eτ ẽ ∈ E∗A. Without loss of generality, we may assume that F ⊂ F1. Thus, A|Fn×Fn is
irreducible for all n ∈ IN . In virtue of Theorem 2.5, we have for ν-a.e. λ ∈ Λ and all n ∈ IN
that

ePn(λ) = m̃n
T (λ)(Lf,Fn,λ(11(Fn)∞A

)) ≥ m̃n
T (λ)(Lf,F,λ(11F∞A )) ≥ Qf > 0, (2.6)

where Qf := ess inf{Lf,F,λ(11F∞A )(ω) : λ ∈ Λ, ω ∈ F∞A }. Note that Qf > 0 since f |F∞A ×Λ ∈
Cb

Λ(F∞A ) and A|F×F is irreducible. By Theorem 2.5 and relations (2.1) to (2.6), we get for
ν-a.e. λ ∈ Λ, every n ∈ IN , every k ∈ IN and every e ∈ E, that

m̃n
λ([e]k) =

∑
ω∈(Fn)kA:ωk=e

m̃n
λ([ω]) =

∑
ω∈(Fn)kA:ωk=e

exp(−P k
n (λ))Lk∗f,Fn,λm̃

n
Tk(λ)([ω])

= exp(−P k
n (λ))

∑
ω∈(Fn)kA:ωk=e

∫
(Fn)∞A

Lkf,Fn,λ11[ω](τ) dm̃n
Tk(λ)(τ)

= exp(−P k
n (λ))

∑
ω∈(Fn)kA:ωk=e

∫
(Fn)∞A

exp
(
Skf(ωτ, λ)

)
dm̃n

Tk(λ)(τ)

≤ Q−kf
∑

ω∈(Fn)kA:ωk=e

exp
(

sup
ρ∈[ω]

Skf(ρ, λ)
)

≤ Q−kf
∑

ω∈(Fn)k−1
A :Aωk−1e

=1

exp
(

sup
ρ∈[ω]

Sk−1f(ρ, λ) + sup(fTk−1(λ)|[e])
)

≤ Q−kf
∑

ω∈(Fn)k−1
A

exp
(

sup
ρ∈[ω]

Sk−1f(ρ, λ)
)

exp
(
sup(fTk−1(λ)|[e])

)
≤ Q−kf Mk−1

f exp
(
sup(fTk−1(λ)|[e])

)
.

Therefore, for ν-a.e. λ ∈ Λ, every n ∈ IN , every k ∈ IN and every e ∈ E, we have

m̃n
λ

(⋃
j>e

[j]k
)
≤ Q−kf Mk−1

f

∞∑
j=e+1

exp
(
sup(fTk−1(λ)|[j])

)
. (2.7)
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Now, fix ε > 0. It follows from (2.1) and (2.7) that for all k ∈ IN there exists ek ∈ E such
that for ν-a.e. λ ∈ Λ and all n ∈ IN , we have

m̃n
λ

( ⋃
j>ek

[j]k
)
≤ ε

2k
.

Consequently,

m̃n
λ

(
E∞A ∩

∞∏
k=1

{1, . . . , ek}
)
≥ 1−

∞∑
k=1

m̃n
λ

( ⋃
j>ek

[j]k
)
≥ 1−

∞∑
k=1

ε

2k
= 1− ε

for ν-a.e. λ ∈ Λ and all n ∈ IN . Thus,∫
Λ
m̃n
λ

(
E∞A ∩

∞∏
k=1

{1, . . . , ek}
)
dν(λ) ≥ 1− ε

for all n ∈ IN . Since E∞A ∩
∏∞
k=1{1, . . . , ek} is a compact subset of E∞A , the sequence (m̃n

λ⊗ν)∞n=1

is tight according to Proposition 4.3 in [2]. 2

Using (2.1), (2.6) and Theorem 2.5, we also observe that

Qf ≤ ePn(λ) ≤Mf (2.8)

for ν-a.e. λ ∈ Λ and all n ∈ IN . Therefore, the following is an immediate consequence of
Lemma 2.7.

Corollary 2.8. Under the assumptions of Lemma 2.7, the sequence ((ePn(λ)m̃n
λ) ⊗ ν)∞n=1 is

tight in PΛ(ν).

We shall now prove that there is a relationship between the accumulation point(s) of the
sequences (m̃n

λ ⊗ ν)∞n=1 and ((ePn(λ)m̃n
λ)⊗ ν)∞n=1.

Lemma 2.9. Let (nj)
∞
j=1 be a sequence of natural numbers. If the sequences (m̃j)

∞
j=1 :=

(m̃
nj
λ ⊗ ν)∞j=1 and (µ̃j)

∞
j=1 := ((ePnj (λ)m̃

nj
λ ) ⊗ ν)∞j=1 converge in the narrow topology of PΛ(ν)

to m̃ = m̃λ ⊗ ν and µ̃ = µ̃λ ⊗ ν, respectively, then for ν-a.e. λ ∈ Λ there exists γλ ∈ [Qf ,Mf ]
such that µ̃λ = γλm̃λ and the function λ 7→ γλ is measurable.

Proof. Fix a non-negative g ∈ Cb
Λ(E∞A ). Thanks to (2.8), we have∫

E∞A ×Λ
g dµ̃ = lim

j→∞

∫
E∞A ×Λ

g dµ̃j = lim
j→∞

∫
Λ

∫
E∞A

gλ(ω) d(ePnj (λ)m̃
nj
λ )(ω) dν(λ)

= lim
j→∞

∫
Λ
ePnj (λ)

(∫
E∞A

gλ(ω) dm̃
nj
λ (ω)

)
dν(λ)

≤ Mf lim
j→∞

∫
Λ

∫
E∞A

gλ(ω) dm̃
nj
λ (ω) dν(λ)

= Mf lim
j→∞

∫
E∞A ×Λ

g dm̃j

= Mf

∫
E∞A ×Λ

g dm̃.
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Similarly, we have ∫
E∞A ×Λ

g dµ̃ ≥ Qf

∫
E∞A ×Λ

g dm̃.

Therefore, µ̃ is equivalent to m̃ and the Radon-Nikodym derivative satisfies Qf ≤ dµ̃/dm̃ ≤
Mf . Hence, for ν-a.e. λ ∈ Λ the measure µ̃λ is equivalent to m̃λ and the Radon-Nikodym
derivative γλ := dµ̃λ/dm̃λ : E∞A → [0,∞) is bounded below by Qf and above by Mf . We
shall now prove that each function γλ is constant. Indeed, suppose that g(1), g(2) ∈ Cb

Λ(E∞A )
are two m̃-integrable functions such that∫

E∞A

g
(1)
λ dm̃λ =

∫
E∞A

g
(2)
λ dm̃λ

for ν-a.e. λ ∈ Λ. Then, by an argument similar to the one above, we have∫
E∞A ×Λ

g(1) dµ̃ = lim
j→∞

∫
Λ
ePnj (λ)

∫
E∞A

g
(1)
λ dm̃

nj
λ dν(λ) = lim

j→∞

∫
Λ
ePnj (λ)

∫
E∞A

g
(2)
λ dm̃

nj
λ dν(λ)

=
∫
E∞A ×Λ

g(2) dµ̃.

Now, let g
(1)
λ = 1/γλ and g

(2)
λ =

∫
E∞A

(1/γλ)dm̃λ = m̃λ(1/γλ). It is clear that
∫
E∞A

g
(1)
λ dm̃λ =∫

E∞A
g

(2)
λ dm̃λ, and thus

∫
E∞A ×Λ g

(1) dµ̃ =
∫
E∞A ×Λ g

(2) dµ̃. It follows that∫
Λ
m̃λ(1/γλ)m̃λ(γλ) dν(λ) =

∫
Λ
m̃λ(1/γλ)

∫
E∞A

γλ(ω) dm̃λ(ω) dν(λ)

=
∫

Λ
m̃λ(1/γλ)

∫
E∞A

dµ̃λ(ω) dν(λ)

=
∫

Λ

∫
E∞A

m̃λ(1/γλ) dµ̃λ(ω) dν(λ)

=
∫
E∞A ×Λ

g(2) dµ̃

=
∫
E∞A ×Λ

g(1) dµ̃

=
∫

Λ

∫
E∞A

1

γλ(ω)
dµ̃λ(ω) dν(λ)

=
∫

Λ

∫
E∞A

1

γλ(ω)
· γλ(ω) dm̃λ(ω) dν(λ)

=
∫

Λ

∫
E∞A

dm̃λ(ω) dν(λ)

= 1.

By Cauchy-Schwartz inequality, we also have that

m̃λ(1/γλ)m̃λ(γλ) ≥
(
m̃λ(

√
1/γλ · γλ)

)2
= (m̃λ(1))2 = 1.
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Therefore m̃λ(1/γλ)m̃λ(γλ) = 1 for ν-a.e. λ ∈ Λ. Hence m̃λ(1/γλ) = 1/m̃λ(γλ) for ν-a.e.
λ ∈ Λ. By Jensen’s inequality, we deduce that γλ = dµ̃λ/dm̃λ is constant for ν-a.e. λ ∈ Λ. 2

Now, we can prove the first main result of this section. It is a generalization of Theorem 2.5.

Theorem 2.10. Let E be a countably infinite alphabet and A a finitely irreducible matrix.
Let f ∈ HΣ

s,Λ(E∞A ) be bounded over finite subalphabets. For every such potential f there exists
a unique random probability measure m̃ ∈ PΛ(ν) and a unique bounded measurable function
λ 7→ Pλ(f) ∈ IR such that

L∗f,λm̃T (λ) = ePλ(f)m̃λ (2.9)

for ν-a.e. λ ∈ Λ. Moreover, for ν-a.e. λ ∈ Λ,

supp m̃λ = E∞A , Qf ≤ ePλ(f) ≤Mf and Pλ(f) = lim
n→∞

Pn(λ). (2.10)

Proof. Take an arbitrary ascending sequence (Fn)∞n=1 of finite subalphabets such that
∪∞n=1Fn = E. By Lemma 2.7, Corollary 2.8 and Prohorov’s Theorem for random measures
(see Theorem 4.4 in [2]), there exists an unbounded increasing sequence (nj)

∞
j=1 such that

both sequences (m̃
nj
λ ⊗ ν)∞j=1 and ((ePnj (λ)m̃

nj
λ ) ⊗ ν)∞j=1 converge in the narrow topology of

PΛ(ν) to, say, m̃λ ⊗ ν and µ̃λ ⊗ ν, respectively. By Lemma 2.9, there exists a measurable
function λ 7→ γλ ∈ [Qf ,Mf ] such that µ̃λ = γλm̃λ for ν-a.e. λ ∈ Λ. Set Lj,λ := Lf,Fnj ,λ
and Lλ := Lf,λ. Since f ∈ HΣ

s,Λ(E∞A ), the operators Lj,λ converge to Lλ as j → ∞, and this

uniformly in λ. Pick any g ∈ Cb
Λ(E∞A ). Then∫

Λ

∫
E∞A

gλ(ω) d(L∗λm̃T (λ))(ω) dν(λ) =
∫

Λ

∫
E∞A

Lλgλ(ω) dm̃T (λ)(ω) dν(λ)

= lim
j→∞

∫
Λ

∫
E∞A

Lλgλ(ω) dm̃
nj
T (λ)(ω) dν(λ)

= lim
j→∞

∫
Λ

∫
E∞A

Lj,λgλ(ω) dm̃
nj
T (λ)(ω) dν(λ)

= lim
j→∞

∫
Λ

∫
E∞A

gλ(ω) d(L∗j,λm̃
nj
T (λ))(ω) dν(λ)

= lim
j→∞

∫
Λ

∫
E∞A

gλ(ω) d(ePnj (λ)m̃
nj
λ )(ω) dν(λ)

=
∫

Λ

∫
E∞A

gλ(ω) dµ̃λ(ω) dν(λ)

=
∫

Λ

∫
E∞A

gλ(ω) d(γλm̃λ)(ω) dν(λ),

where the third inequality sign follows from the fact that Lj,λgλ converges to Lλgλ uniformly
with respect to λ ∈ Λ, while the fifth inequality is an application of Theorem 2.5. Therefore,
L∗λm̃T (λ) = γλm̃λ for ν-a.e. λ ∈ Λ and we are done with the existence part if we set Pλ(f) :=
log γλ.
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We shall now prove that equation (2.9), which holds for ν-a.e. λ ∈ Λ, determines the
measures m̃λ and the numbers Pλ(f) uniquely for ν-a.e. λ ∈ Λ. To ease notation, we write
Pλ instead of Pλ(f). Take an element ω ∈ E2n

A , n ∈ IN . If the family {m̃λ}λ∈Λ satisfies (2.9),
then

m̃λ([ω]) = m̃λ(11[ω]) = e−P
n
λ m̃Tn(λ)(Lnλ(11[ω])) = e−P

n
λ

∫
[σnω]

( ∑
τ∈EnA

11[ω](τρ)eSnf(τρ,λ)
)
dm̃Tn(λ)(ρ)

= e−P
n
λ

∫
[σnω]

eSnf(ωσnρ,λ)dm̃Tn(λ)(ρ). (2.11)

Now, fix λ ∈ Λ and suppose that two sequences of Borel probability measures (m̃
(1)
Tn(λ))

∞
n=−∞

and (m̃
(2)
Tn(λ))

∞
n=−∞ on E∞A are given along with two corresponding sequences of real numbers

(P1,Tn(λ))
∞
n=−∞ and (P2,Tn(λ))

∞
n=−∞ such that

L∗f,Tn(λ)m̃
(i)
Tn+1(λ) = ePi,Tn(λ)m̃

(i)
Tn(λ)

holds for all i = 1, 2 and all n ∈ ZZ. By the bounded variation of the ergodic sums Snf , we
have for all ω ∈ E∞A that

lim
n→∞

∫
[σn(ω|2n)] e

Snf(ω|2nσnρ,λ)dm̃
(2)
Tn(λ)(ρ)∫

[σn(ω|2n)] e
Snf(ω|2nσnρ,λ)dm̃

(1)
Tn(λ)(ρ)

= 1

for ν-a.e. λ ∈ Λ. Since the sequence (e−P
n
2,λ/e−P

n
1,λ)∞n=1 is independent of ω, we conclude

from (2.11) that the sequence (P n
2,λ − P n

1,λ)
∞
n=1 must converge and its limit must equal 0.

This simultaneously shows that the measures m̃
(2)
λ and m̃

(1)
λ are equivalent and the Radon-

Nikodym derivative dm̃
(2)
λ /dm̃

(1)
λ is identically equal to 1. But this means that m̃

(2)
λ = m̃

(1)
λ and

in particular the uniqueness of the fiber measures {m̃λ}λ∈Λ is established. Since, by (2.9), we
have Pλ = log(L∗λ(m̃T (λ))(11)), we deduce that P1,λ = P2,λ and, in particular, the uniqueness
of the pressure parameters Pλ, λ ∈ Λ, follows from the uniqueness of the fiber measures.

Finally, we shall prove that Pλ(f) = limn→∞ Pn(λ) for ν-a.e. λ ∈ Λ. Because of the
uniqueness part it suffices to show that if λ ∈ Λ is such that for all n ≥ 1 and all k ∈ ZZ there

are measures m̃
(n)

Tk(λ) satisfying

L∗f,n,Tk(λ)m̃
(n)

Tk+1(λ) = ePn(Tk(λ))m̃
(n)

Tk(λ), (2.12)

and if (nj)
∞
j=1 is an arbitrary increasing sequence of positive integers for which the sequences

(Pnj(T
k(λ)))∞j=1 converge for all k ∈ ZZ (denote their limits by R(T k(λ))), then for every k ∈ ZZ

there exists a Borel probability measure m̃Tk(λ) on E∞A such that

L∗f,Tk(λ)m̃Tk+1(λ) = eR(Tk(λ))m̃Tk(λ) (2.13)

holds for all k ∈ ZZ. But passing to a subsequence of (nj)
∞
j=1 and using the standard diagonal

procedure, we may assume without loss of generality that all the sequences (m̃
(nj)

Tk(λ))
∞
j=1, k ∈ ZZ,

converge weakly to some Borel probability measures on E∞A ; denote them respectively by
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m̃Tk(λ), k ∈ ZZ. Now, fix g ∈ Cb(E
∞
A ). Since all involved Perron-Frobenius operators are

continuous and since for each k ∈ ZZ, we have that Lf,n,Tk(λ)g converges uniformly to Lf,Tk(λ)g
as n→∞, we infer from (2.12) that

L∗f,Tk(λ)m̃Tk+1(λ)(g) = m̃Tk+1(λ)(Lf,Tk(λ)g)

= lim
j→∞

m̃
(nj)

Tk+1(λ)(Lf,nj ,Tk(λ)g)

= lim
j→∞
L∗f,nj ,Tk(λ)m̃

(nj)

Tk+1(λ)(g)

= lim
j→∞

ePnj (Tk(λ))m̃
(nj)

Tk(λ)(g)

= eR(Tk(λ))m̃Tk(λ)(g).

Hence, L∗f,Tk(λ)m̃Tk+1(λ) = eR(Tk(λ))m̃Tk(λ) and we are done. 2

The next result follows from the proof of Theorem 2.10.

Lemma 2.11. Let E be a countably infinite alphabet and A a finitely irreducible matrix. Let
f ∈ HΣ

s,Λ(E∞A ) be bounded over finite subalphabets. If (Fn)∞n=1 is an ascending sequence of
finite subalphabets of E such that ∪∞n=1Fn = E, then

Pλ(f) = lim
n→∞

Pλ(f |(Fn)∞A ×Λ)

for ν-a.e. λ ∈ Λ.

We shall now prove the second main result of this section. This result concerns invariant
measures. Recall that a matrix A is finitely primitive if there exists p ∈ IN and a finite set
Ω ⊂ Ep

A such that for all e, f ∈ E there is a word ω ∈ Ω for which eωf ∈ E∗A.

Theorem 2.12. Let E be a countably infinite alphabet and A a finitely primitive matrix. Let
f ∈ HΣ

s,Λ(E∞A ) be bounded over finite subalphabets, and let m̃ ∈ PΛ(ν) and λ 7→ Pλ(f) ∈ IR be
the unique random probability measure and bounded measurable function such that

L∗f,λm̃T (λ) = ePλ(f)m̃λ

for ν-a.e. λ ∈ Λ. Then there exists a non-negative q ∈ Cb
Λ(E∞A ) with the following properties:

(a)
∫
E∞A

qλ(ω) dm̃λ(ω) = 1 for ν-a.e. λ ∈ Λ;

(b) 0 < C−1 ≤ inf{qλ(ω) : ω ∈ E∞A , λ ∈ Λ} ≤ sup{qλ(ω) : ω ∈ E∞A , λ ∈ Λ} ≤ C < ∞ for
some constant C ≥ 1;

(c) (qλm̃λ) ◦ σ−1 = qT (λ)m̃T (λ) for ν-a.e. λ ∈ Λ;
(d) ((qλm̃λ) ⊗ ν) ◦ (σ × T )−1 = (qλm̃λ) ⊗ ν, that is, the measure (qλm̃λ) ⊗ ν is (σ × T )-

invariant.

Proof. Since the matrix A is finitely primitive, there is an ascending sequence (Fn)∞n=1 of
finite subalphabets such that ∪∞n=1Fn = E and such that for each n ∈ IN the matrix A|Fn×Fn
is (finitely) primitive with the same finite set of finite words yielding (finite) primitivity.
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Inspecting the proof of Proposition 3.7 in [8] (which consists of Lemma 3.8 followed by a
short argument) and using Lemma 3.9, we see that there exists a constant C ≥ 1 such that
for every n ∈ IN there is a non-negative q(n) ∈ Cb

Λ(E∞A ) with the following properties:

(an)
∫

(Fn)∞A
q

(n)
λ dm̃n

λ = 1 for ν-a.e. λ ∈ Λ;

(bn) C−1 ≤ inf{q(n)
λ (ω) : ω ∈ (Fn)∞A , λ ∈ Λ} ≤ sup{q(n)

λ (ω) : ω ∈ (Fn)∞A , λ ∈ Λ} ≤ C;

(cn) (q
(n)
λ m̃n

λ) ◦ σ−1 = q
(n)
T (λ)m̃

n
T (λ);

(dn) ((q
(n)
λ m̃n

λ)⊗ν)◦ (σ×T )−1 = (q
(n)
λ m̃n

λ)⊗ν, that is, the measure (q
(n)
λ m̃n

λ)⊗ν is (σ×T )-
invariant.

Note that property (cn) is equivalent to property (dn) and we will thus only need (dn) in

the forthcoming proof. For every n ∈ IN let µ̃nλ := q
(n)
λ m̃n

λ. Let also m̃n := m̃n
λ ⊗ ν and

µ̃n := µ̃nλ ⊗ ν. Note that each µ̃n ∈ PΛ(ν) by (an). By (bn) and in virtue of Lemma 2.7, the
sequence (µ̃n)∞n=1 is tight. By passing to a subsequence if necessary, we may thus assume that
this sequence converges in the narrow topology of PΛ(ν) to a random measure, say µ̃. Fix a
non-negative g ∈ Cb

Λ(E∞A ). Using (bn), we obtain

∫
E∞A ×Λ

g dµ̃ = lim
n→∞

∫
E∞A ×Λ

g dµ̃n = lim
n→∞

∫
Λ

∫
E∞A

gλ(ω) dµ̃nλ(ω) dν(λ)

= lim
n→∞

∫
Λ

∫
E∞A

gλ(ω) q
(n)
λ (ω) dm̃n

λ(ω) dν(λ)

≤ C lim
n→∞

∫
Λ

∫
E∞A

gλ(ω) dm̃n
λ(ω) dν(λ) = C lim

n→∞

∫
E∞A ×Λ

g dm̃n = C
∫
E∞A ×Λ

g dm̃.

This implies that µ̃� m̃ and dµ̃/dm̃ ≤ C. Similarly,

∫
E∞A ×Λ

g dµ̃ ≥ C−1
∫
E∞A ×Λ

g dm̃.

This yields dµ̃/dm̃ ≥ C−1. Hence, µ̃λ � m̃λ for ν-a.e. λ ∈ Λ and dµ̃λ/dm̃λ ∈ [C−1, C]. With
q(ω, λ) := qλ(ω) := dµ̃λ/dm̃λ, statement (b) is proved. Moreover, statement (a) holds since
qλ is a Radon-Nikodym derivative.

Now, fix an arbitrary g ∈ Cb
Λ(E∞A ). Using (dn), we get

∫
E∞A ×Λ

g d(µ̃ ◦ (σ × T )−1) =
∫
E∞A ×Λ

g ◦ (σ × T ) dµ̃ = lim
n→∞

∫
E∞A ×Λ

g ◦ (σ × T ) dµ̃n

= lim
n→∞

∫
E∞A ×Λ

g d(µ̃n ◦ (σ × T )−1) = lim
n→∞

∫
E∞A ×Λ

g dµ̃n

=
∫
E∞A ×Λ

g dµ̃.
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This shows that µ̃◦(σ×T )−1 = µ̃, that is, µ̃ is (σ×T )-invariant. As µ̃ = µ̃λ⊗ν = (qλm̃λ)⊗ν,
statement (d) is proved. Furthermore, as ν is T -invariant, we have∫

Λ

∫
E∞A

gλ(ω) dµ̃λ(ω) dν(λ) =
∫
E∞A ×Λ

g dµ̃ =
∫
E∞A ×Λ

g ◦ (σ × T ) dµ̃

=
∫

Λ

∫
E∞A

gT (λ) ◦ σ(ω) dµ̃λ(ω) dν(λ)

=
∫

Λ

∫
E∞A

gλ ◦ σ(ω) dµ̃T−1(λ)(ω) dν(λ)

=
∫

Λ

∫
E∞A

gλ(ω) d(µ̃T−1(λ) ◦ σ−1)(ω) dν(λ).

We deduce from this that µ̃T−1(λ) ◦σ−1 = µ̃λ for ν-a.e. λ ∈ Λ. Since µ̃λ = qλm̃λ, statement (c)
is proved. 2

3. Random Graph Directed Markov Systems

Like deterministic graph directed Markov systems, random graph directed Markov systems
are based on a directed multigraph (V,E, i, t) and an edge incidence matrixA : E×E → {0, 1},
together with a set of non-empty compact subsets {Xv}v∈V of a common Euclidean space IRd.
From this point on, we shall assume that A is finitely primitive.

In contradistinction with a deterministic GDMS, a random GDMS (RGDMS) Φ = (T :
Λ → Λ, {λ 7→ ϕλe}e∈E) is generated by an invertible ergodic measure-preserving map T :
(Λ,F , ν) → (Λ,F , ν) of a complete probability space (Λ,F , ν) and one-to-one contractions
ϕλe : Xt(e) → Xi(e) with Lipschitz constant at most a common number 0 < s < 1. Thereafter,
the maps x 7→ ϕλe (x) are continuous for each λ ∈ Λ. We further assume that the maps
λ 7→ ϕλe (x) are measurable for every x ∈ Xt(e). According to Lemma 1.1 in [2], this implies
that the map (x, λ) 7→ ϕe(x, λ) := ϕλe (x) is jointly measurable. As in the deterministic case,
a RGDMS is a random iterated function system (RIFS) if V is a singleton and the matrix
A : E × E → {0, 1} takes on the value 1 only.

For every ω ∈ E∗A, set

λ ∈ Λ 7→ ϕλω := ϕλω1
◦ ϕT (λ)

ω2
◦ . . . ◦ ϕT |ω|−1(λ)

ω|ω|
.

Observe that for each ω ∈ E∗A the map (x, λ) ∈ Xt(ω) × Λ 7→ ϕω(x, λ) := ϕλω(x) ∈ Xi(ω)

is jointly measurable. Indeed, for each ω ∈ E∗A the map x 7→ ϕω(x, λ) is continuous for
each λ ∈ Λ. Moreover, the map λ 7→ ϕω(x, λ) is measurable for each x ∈ X. For instance,
for the word ω = ω1ω2 ∈ E∗A the map λ 7→ ϕω(x, λ) is measurable for each x ∈ X since
ϕω(x, λ) = ϕω1(ϕω2(x, T (λ)), λ) and thus the map λ 7→ ϕω(x, λ) is the composition of the
measurable map λ 7→ T (λ), followed by the measurable map λ 7→ ϕω2(x, λ), followed by the
measurable map y 7→ (y, λ), followed by the measurable map λ 7→ ϕω1(x, λ).

The main object of interest in a RGDMS Φ is its associated ‘random limit set’ J . However,
in contradistinction with the deterministic case, this ‘set’ is in fact a set function: to each
λ ∈ Λ is associated the image of the symbolic space E∞A under a coding map πλ. Indeed,
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given any λ ∈ Λ and any ω ∈ E∞A , the sets ϕλω|n(Xt(ωn)), n ∈ IN , form a decreasing sequence
of non-empty compact sets whose diameters do not exceed sn and hence converge to zero.
Therefore their intersection

∞⋂
n=1

ϕλω|n(Xt(ωn))

is a singleton. Denote its element by πλ(ω). For every λ ∈ Λ, this defines the coding map
πλ : E∞A → X, where X :=

⊕
v∈V Xv is the disjoint union of the compact sets Xv. It is easy to

see that each πλ is a Hölder continuous map with respect to the metric d(ω, τ) = s|ω∧τ | on E∞A
which induces Tychonov’s topology. In particular, this implies that the map ω 7→ π(ω, λ) :=
πλ(ω) is continuous for each λ ∈ Λ. The map λ 7→ π(ω, λ) is measurable for each ω ∈ E∞A
since the map (x, λ) 7→ ϕω|n(x, λ) is jointly measurable for every n ∈ IN , and thus for any
sequence (xn ∈ Xt(ωn))

∞
n=1 we deduce that λ 7→ π(ω, λ) = limn→∞ ϕω|n(xn, λ) is measurable

for each ω ∈ E∞A . Thus, by Lemma 1.1 in [2], the map (ω, λ) 7→ π(ω, λ) is jointly measurable.
Now, for every λ ∈ Λ set

Jλ := πλ(E
∞
A ).

The set Jλ is called the limit set corresponding to the parameter λ while the function

λ ∈ Λ 7→ Jλ ⊂ X

is called the random limit set of the RGDMS Φ. In this paper, we will mainly be interested
in the geometric properties of the limit sets Jλ, primarily in their Hausdorff dimensions. Note
that each Jλ is compact when E is finite, but this property usually fails to hold when E is
infinite. Furthermore, notice that ϕλω(JT |ω|(λ)) = Jλ for every λ ∈ Λ and every ω ∈ E∗A.

A RGDMS Φ is called conformal (and thereafter a RCGDMS) if the following conditions
are satisfied.

(i) For every v ∈ V , the set Xv is a compact connected subset of IRd which is the closure
of its interior (i.e., Xv = IntIRd(Xv));

(ii) (Open set condition (OSC)) For ν-a.e. λ ∈ Λ and all e, f ∈ E, e 6= f ,

ϕλe (Int(Xt(e))) ∩ ϕλf (Int(Xt(f))) = ∅;
(iii) For every vertex v ∈ V , there exists a bounded open connected set Wv such that

Xv ⊂ Wv ⊂ IRd and such that for every e ∈ E with t(e) = v and ν-a.e. λ ∈ Λ, the
map ϕλe extends to a C1 conformal diffeomorphism of Wv into Wi(e). Moreover, for
every e ∈ E the map λ ∈ Λ 7→ ϕλe (x) is measurable for every x ∈ Wv;

(iv) (Cone property) There exist γ, l > 0 such that for every v ∈ V and every x ∈ Xv there
is an open cone Con(x, γ, l) ⊂ Int(Xv) with vertex x, central angle γ, and altitude l;

(v) There are two constants L ≥ 1 and α > 0 such that∣∣∣|(ϕλe )′(y)| − |(ϕλe )′(x)|
∣∣∣ ≤ L‖((ϕλe )′)−1‖−1

Wi(e)
‖y − x‖α

for ν-a.e. λ ∈ Λ, every e ∈ E and every pair of points x, y ∈ Wt(e), where |ϕ′(x)|
denotes the norm of the derivative of ϕ at x and ‖(ϕ′)−1‖W is the supremum norm
taken over W .
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Remark. According to Proposition 4.2.1 in [6], condition (v) is automatically satisfied with
α = 1 when d ≥ 2. This condition is also fulfilled if d = 1, the alphabet E is finite and all
the ϕλe ’s are of class C1+ε for some ε > 0.

The following useful fact has essentially been proved in Lemma 4.2.2 of [6].

Lemma. For ν-a.e. λ ∈ Λ, all ω ∈ E∗A and all x, y ∈ Wt(ω), we have∣∣∣log |(ϕλω)′(y)| − log |(ϕλω)′(x)|
∣∣∣ ≤ L(1− s)−1‖y − x‖α.

An immediate consequence of this lemma is the famous bounded distortion property.

(v′) (Bounded distortion property (BDP)) There exists a constant K ≥ 1 such that

|(ϕλω)′(y)| ≤ K|(ϕλω)′(x)|
for ν-a.e. λ ∈ Λ, every ω ∈ E∗A and every x, y ∈ Wt(ω).

Let us now collect some geometric consequences of (BDP). For ν-a.e. λ ∈ Λ, all words
ω ∈ E∗A and all convex subsets C of Wt(ω), we have

diam(ϕλω(C)) ≤ K‖(ϕλω)′‖diam(C) (3.1)

and

diam(ϕλω(Wt(ω))) ≤ KD‖(ϕλω)′‖ (3.2)

for some constant D ≥ 1 which depends only on the Xv and Wv. Moreover,

diam(ϕλω(Xt(ω))) ≥ (KD)−1‖(ϕλω)′‖, (3.3)

ϕλω(B(x, r)) ⊂ B(ϕλω(x), K‖(ϕλω)′‖r), (3.4)

and

ϕλω(B(x, r)) ⊃ B(ϕλω(x), K−1‖(ϕλω)′‖r) (3.5)

for ν-a.e. λ ∈ Λ, every x ∈ Xt(ω), every 0 < r ≤ dist(Xt(ω), ∂Vt(ω)), and every word ω ∈ E∗A.

Finally, we define special classes of systems.

Definition 3.1. We say that a RCGDMS Φ satisfies the Strong Open Set Condition (SOSC)
if

ν
(
{λ ∈ Λ : Jλ ∩ Int(X) 6= ∅}

)
> 0.

Definition 3.2. We say that a RCGDMS Φ satisfies the Strong Separation Condition if

dist(IRd\X,∪λ∈Λ ∪e∈E ϕλe (X)) > 0.
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3.1. Pseudo-codes. We now derive a property of pseudo-codes. Pseudo-codes have been
introduced in [9]. We extend their definition to our setting to take into account the dependence
on λ ∈ Λ.

Definition 3.3. A finite word ωτ ∈ E∗ is called a pseudo-code of an element (x, λ) ∈ X ×Λ
if the following three conditions are satisfied.

(i) ω, τ ∈ E∗A;

(ii) ϕT
|ω|(λ)

τ (Xt(τ)) ⊂ Xt(ω); and

(iii) x ∈ ϕλω(ϕT
|ω|(λ)

τ (Xt(τ))).

Note that the word ωτ need not belong to E∗A. Whenever we do not need to specify the
element (x, λ), we simply say that ωτ is a pseudo-code. As for finite admissible words, two
pseudo-codes are called comparable if one of them is an extension of the other. Also, two
pseudo-codes ωτ and ωρ are said to form an essential pair of pseudo-codes if τ 6= ρ and
|τ | = |ρ|. Finally, the essential length of an essential pair of pseudo-codes ωτ and ωρ is
defined to be |ω|.

Lemma 3.4. No element of X × Λ admits essential pairs of pseudo-codes of arbitrary long
essential lengths.

Proof. On the contrary, suppose that there exists a point (x, λ) ∈ X × Λ so that for each
k ∈ IN , there are words ω(k), τ (k), ρ(k) ∈ E∗A such that τ (k) 6= ρ(k), |τ (k)| = |ρ(k)|,

lim
k→∞
|ω(k)| =∞, (3.6)

ϕ
T |ω

(k)|(λ)

τ (k)
(Xt(τ (k))) ⊂ Xt(ω(k)) and ϕ

T |ω
(k)|(λ)

ρ(k)
(Xt(ρ(k))) ⊂ Xt(ω(k)),

and

x ∈
[
ϕλω(k) ◦ ϕT

|ω(k)|(λ)

τ (k)
(Xt(τ (k)))

]⋂[
ϕλω(k) ◦ ϕT

|ω(k)|(λ)

ρ(k)
(Xt(ρ(k)))

]
.

We shall construct inductively for each n ∈ IN a finite set Cn which contains at least n + 1
mutually incomparable pseudo-codes of (x, λ). The existence of such a set for large n’s will
contradict Corollary 4.6 in [9], and this will finish the proof. Define C1 := {ω(1)τ (1), ω(1)ρ(1)},
and suppose that the finite set Cn has been constructed with at least n+ 1 mutually incom-
parable pseudo-codes of (x, λ). In view of (3.6), there exists kn ∈ IN such that

|ω(kn)| > max{|ξ| : ξ ∈ Cn}. (3.7)

If ω(kn)ρ(kn) does not extend any word from Cn, it follows from (3.7) that ω(kn)ρ(kn) is not
comparable with any element of Cn. The set Cn+1 can then be constructed by simply adding
the word ω(kn)ρ(kn) to Cn. Similarly, if ω(kn)τ (kn) does not extend any word from Cn, form Cn+1

by adding ω(kn)τ (kn) to Cn. However, if ω(kn)ρ(kn) extends an element α ∈ Cn and ω(kn)τ (kn)

extends an element β ∈ Cn, then α = ω(kn)||α| and β = ω(kn)||β|. Since Cn consists of mutually
incomparable words, this implies that α = β. In this case, form Cn+1 by removing α(= β)
from Cn while adding both ω(kn)ρ(kn) and ω(kn)τ (kn). Note that no element γ ∈ Cn \ {α}
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is comparable with ω(kn)ρ(kn) or ω(kn)τ (kn); otherwise, γ = ω(kn)||γ| and thus γ would be

comparable with α. Since ω(kn)ρ(kn) and ω(kn)τ (kn) are not comparable, the set Cn+1 consists
also in this case of at least n+2 mutually incomparable pseudo-codes of (x, λ). This completes
our inductive construction, and hence finishes the proof. 2

3.2. Gibbs states for the potentials tζ. Define the potential ζ : E∞A ×Λ→ IR as follows:

ζ(ω, λ) = log
∣∣∣(ϕλω1

)′(πT (λ)(σω))
∣∣∣.

The map ω 7→ ζ(ω, λ) is continuous for each λ ∈ Λ, while the map λ 7→ ζ(ω, λ) is measurable
for each ω ∈ E∞A . Thus, the map ζ is jointly measurable.

Definition 3.5. For a given RCGDMS Φ, we say that t ∈ Fin if

Mt :=
∑
e∈E

ess sup{‖(ϕλe )′‖t : λ ∈ Λ} <∞.

Note that the potential tζ is summable if and only if t ∈ Fin. In fact, tζ ∈ HΣ
s,Λ(E∞A )

and tζ is bounded over finite subalphabets for every t ∈ Fin. Therefore, the thermodynamic
formalism for random dynamical systems (see [1] and [8] if E is finite; see Theorem 2.12 with
f = tζ when E is infinite) gives the following: If t ∈ Fin, then for ν-a.e. λ ∈ Λ there are a
unique bounded measurable function λ 7→ Pλ(t) := Pλ(tζ) and a unique random probability
measure m̃t ∈ PΛ(ν) such that

L∗t,λm̃t
T (λ) = ePλ(t)m̃t

λ (3.8)

for ν-a.e. λ ∈ Λ, i.e. λ 7→ Pλ(t) and m̃t are uniquely determined by the condition that for all
e ∈ E and ω ∈ E∗A such that eω ∈ E∗A we have

m̃t
λ([eω]) = e−Pλ(t)

∫
[ω]

∣∣∣(ϕλe )′(πT (λ)(τ))
∣∣∣t dm̃t

T (λ)(τ). (3.9)

for ν-a.e. λ ∈ Λ. Furthermore, there exists a unique non-negative qt ∈ Cb
Λ(E∞A ) with the

following properties:

(a)
∫
E∞A

qtλ(ω) dm̃t
λ(ω) = 1 for ν-a.e. λ ∈ Λ;

(b) 0 < C(t)−1 ≤ inf{qtλ(ω) : ω ∈ E∞A , λ ∈ Λ} ≤ sup{qtλ(ω) : ω ∈ E∞A , λ ∈ Λ} ≤ C(t) <∞
for some constant C(t) ≥ 1;

(c) (qtλm̃
t
λ) ◦ σ−1 = qtT (λ)m̃

t
T (λ) for ν-a.e. λ ∈ Λ;

(d) ((qtλm̃
t
λ) ⊗ ν) ◦ (σ × T )−1 = (qtλm̃

t
λ) ⊗ ν, that is, the measure (qtλm̃

t
λ) ⊗ ν is (σ × T )-

invariant.

Letting µ̃tλ = qtλm̃
t
λ, we can rewrite (c) and (d) in the more compact form

µ̃tλ ◦ σ−1 = µ̃tT (λ), ν-a.e. λ ∈ Λ (3.10)

and

(µ̃tλ ⊗ ν) ◦ (σ × T )−1 = µ̃tλ ⊗ ν. (3.11)

Let µ̃t := µ̃tλ ⊗ ν be the integration of the measures {µ̃tλ}λ∈Λ with respect to the measure ν.
Property (3.11) then says the following.
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Proposition 3.6. µ̃t ◦ (σ × T )−1 = µ̃t, i.e. the random probability measure µ̃t is (σ × T )-
invariant. Moreover, µ̃t ◦ p−1

Λ = ν, where pΛ : E∞A × Λ → Λ is the canonical projection onto
Λ. That is, µ̃t ∈ PΛ(ν).

Set also µtλ := µ̃tλ ◦ π−1
λ for all λ ∈ Λ and µt := µtλ ⊗ ν.

Finally, note that by a straightforward induction, relation (3.9) gives the following: for all
ω, τ ∈ E∗A such that ωτ ∈ E∗A, we have

m̃t
λ([ωτ ]) = e−P

|ω|
λ

(t)
∫

[τ ]

∣∣∣(ϕλω)′(πT |ω|(λ)(η))
∣∣∣t dm̃t

T |ω|(λ)(η) (3.12)

for ν-a.e. λ ∈ Λ, where P n
λ (t) =

∑n−1
j=0 PT j(λ)(t).

The next result asserts that the push-down of the measures {m̃t
λ}λ∈Λ from E∞A to X, i.e.

the measures {mt
λ := m̃t

λ ◦ π−1
λ }λ∈Λ, are t-conformal measures.

Theorem 3.7. Let t ∈ Fin. Set mt
λ := m̃t

λ ◦ π−1
λ for all λ ∈ Λ. Then for ν-a.e. λ ∈ Λ, every

ω ∈ E∗A and every Borel set B ⊂ Xt(ω) we have

mt
λ(ϕ

λ
ω(B)) = e−P

|ω|
λ

(t)
∫
B
|(ϕλω)′(x)|t dmt

T |ω|(λ)(x). (3.13)

Moreover, for ν-a.e. λ ∈ Λ we have

mt
λ

(
ϕλρ(Xt(ρ)) ∩ ϕλτ (Xt(τ))

)
= 0 (3.14)

whenever ρ, τ ∈ E∗A are incomparable. Furthermore, mt
λ(Jλ) = 1 for ν-a.e. λ ∈ Λ.

Proof. First, note that mt
λ(Jλ) = m̃t

λ ◦ π−1
λ (Jλ) = m̃t

λ(E
∞
A ) = 1 for ν-a.e. λ ∈ Λ.

In order to show that {mt
λ}λ∈Λ satisfies (3.14), assume for a contradiction that (3.14) fails,

i.e. that there are two incomparable words ρ, τ ∈ E∞A such that

mt(Z) := (mt
λ ⊗ ν)(Z) > 0, (3.15)

where
Z =

⋃
λ∈Λ

Vλ × {λ} and Vλ = ϕλρ(Xt(ρ)) ∩ ϕλτ (Xt(τ)).

Without loss of generality, we may assume that |ρ| = |τ |. For every n ≥ 0, set

Zn :=
⋃
λ∈Λ

(( ⋃
ω∈EnA

ϕT
−n(λ)

ω (Vλ)
)
× {T−n(λ)}

)
=
⋃
λ∈Λ

⋃
ω∈EnA

ϕT
−n(λ)

ω (Vλ)× {T−n(λ)}

=
⋃
λ∈Λ

⋃
ω∈EnA

ϕT
−n(λ)

ω

(
ϕλρ(Xt(ρ)) ∩ ϕλτ (Xt(τ))

)
× {T−n(λ)}.

Since each element of Zn admits at least one essential pair of pseudo-codes of essential length
n, we conclude from Lemma 3.4 that

∞⋂
j=0

∞⋃
n=j

Zn = ∅. (3.16)
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On the other hand, we have

Zn ⊃ π∗
(
(σ × T )−n(π−1

∗ (Z))
)

for each n ≥ 0, where π∗ : E∞A × Λ → X × Λ is given by the formula (ω, λ) 7→ (πλ(ω), λ) =
(π(ω, λ), λ). This implies

π−1
∗ (Zn) ⊃ (σ × T )−n(π−1

∗ (Z)). (3.17)

Since µ̃t = µ̃tλ ⊗ ν is (σ × T )-invariant, we get from (3.17) that

µ̃t(π−1
∗ (Zn)) ≥ µ̃t

(
(σ × T )−n(π−1

∗ (Z))
)

= µ̃t(π−1
∗ (Z)) = (µ̃tλ ⊗ ν)(π−1

∗ (Z)) = (µtλ ⊗ ν)(Z)

= µt(Z)

for every n ≥ 0. As µ̃t is equivalent to m̃t according to Theorem 2.12, we deduce by means
of (3.15) that

µ̃t
(
π−1
∗

( ∞⋂
j=0

∞⋃
n=j

Zn
))
≥ µt(Z) � mt(Z) > 0.

Hence ∩∞j=0 ∪∞n=j Zn 6= ∅. This contradicts (3.16). Thus, there exists a measurable set Λ∗ ⊂ Λ
such that ν(Λ∗) = 1 and

mt
λ

(
ϕλρ(Xt(ρ)) ∩ ϕλτ (Xt(τ))

)
= 0

for all λ ∈ Λ∗ and all incomparable words ρ, τ ∈ E∗A.
In order to prove (3.13), fix ω ∈ E∗A, say ω ∈ En

A, and for any set F ⊂ E∞A let

[ω] := {ωτ ∈ E∞A : τ ∈ F}.

Fix an arbitrary Borel set B ⊂ Xt(ω). In view of the just proven property (3.14), we have

m̃t
λ

({
τ ∈ E∞A : τ |n 6= ω, πλ(τ) ∈ ϕλω(B)

})
= m̃t

λ

( ⋃
τ∈EnA\{ω}

[τ ] ∩ π−1
λ (ϕλω(B))

)

≤ m̃t
λ

( ⋃
τ∈EnA\{ω}

π−1
λ

(
ϕλτ (Xt(τ)) ∩ ϕλω(B)

))

= m̃t
λ ◦ π−1

λ

( ⋃
τ∈EnA\{ω}

ϕλτ (Xt(τ)) ∩ ϕλω(B)
)

= mt
λ

( ⋃
τ∈EnA\{ω}

ϕλτ (Xt(τ)) ∩ ϕλω(B)
)

≤
∑

τ∈EnA\{ω}
mt
λ

(
ϕλτ (Xt(τ)) ∩ ϕλω(B)

)
≤

∑
τ∈EnA\{ω}

mt
λ

(
ϕλτ (Xt(τ)) ∩ ϕλω(Xt(ω))

)
= 0
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for ν-a.e. λ ∈ Λ. Using this and a generalization of (3.12), we conclude that

mt
λ(ϕ

λ
ω(B)) = m̃t

λ ◦ π−1
λ (ϕλω(B)) = m̃t

λ

({
τ ∈ E∞A : πλ(τ) ∈ ϕλω(B)

})
= m̃t

λ

({
τ ∈ E∞A : τ |n 6= ω, πλ(τ) ∈ ϕλω(B)

}
∪̇
{
ωρ ∈ E∞A : πλ(ωρ) ∈ ϕλω(B)

})
= m̃t

λ

({
τ ∈ E∞A : τ |n 6= ω, πλ(τ) ∈ ϕλω(B)

})
+ m̃t

λ

({
ωρ ∈ E∞A : πλ(ωρ) ∈ ϕλω(B)

})
= 0 + m̃t

λ

({
ωρ ∈ E∞A : ϕλω(πTn(λ)(ρ)) ∈ ϕλω(B)

})
= m̃t

λ

({
ωρ ∈ E∞A : πTn(λ)(ρ) ∈ B

})
= m̃t

λ

({
ωρ ∈ E∞A : ρ ∈ π−1

Tn(λ)(B)
})

= m̃t
λ

(
[ωπ−1

Tn(λ)(B)]
)

= e−P
n
λ (t)

∫
π−1
Tn(λ)

(B)

∣∣∣(ϕλω)′(πTn(λ)(ρ))
∣∣∣t dm̃t

Tn(λ)(ρ)

= e−P
n
λ (t)

∫
B
|(ϕλω)′(x)|t d(m̃t

Tn(λ) ◦ π−1
Tn(λ))(x)

= e−P
n
λ (t)

∫
B
|(ϕλω)′(x)|t dmt

Tn(λ)(x)

for ν-a.e. λ ∈ Λ. We are done. 2

Before presenting our next result, we will address the measurability of the sets Zn and Z
that were defined in the proof of the previous theorem. This is a question we deliberately
avoided in order to not digress from the crux of the proof. To establish the measurability of
the sets Z and Zn, we make a brief incursion in the theory of random sets. For the basic
notions in this theory, see [2].

In the following, the set of all subsets of a set X shall be denoted by 2X .

Definition 3.8. Let X be a Polish space and let Cα : Λ→ 2X , α ∈ A, be closed random sets,
where A is any index set. We define the set-valued map ∩α∈ACα : Λ→ 2X by the formula( ⋂

α∈A
Cα
)
(λ) :=

⋂
α∈A

Cα(λ).

We call it the intersection of the closed random sets Cα, α ∈ A.
Similarly, we define the set-valued map ∪α∈ACα : Λ→ 2X by the formula( ⋃

α∈A
Cα
)
(λ) :=

⋃
α∈A

Cα(λ).

We call it the union of the closed random sets Cα, α ∈ A.

We shall prove the following simple but useful lemma. Note that this is the only place
where we use the standing assumption that the σ-algebra F is complete with respect to the
measure ν.
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Lemma 3.9. A countable intersection of closed random sets is a closed random set. A finite
union of closed random sets is a closed random set.

Proof. Let Cα : Λ→ 2X , α ∈ A, be a countable family of closed random sets. Then for every
λ ∈ Λ, the sets Cα(λ) are all closed and therefore so is the set (∩α∈ACα)(λ) = ∩α∈ACα(λ).
Moreover, it follows from Proposition 2.4 in [2] that the graphs graph(Cα) = ∪λ∈ΛCα(λ)×{λ},
α ∈ A, are all measurable in X × Λ. Hence

graph(∩α∈ACα) = ∪λ∈Λ(∩α∈ACα)(λ)×{λ} = ∪λ∈Λ(∩α∈ACα(λ))×{λ} = ∩α∈A∪λ∈ΛCα(λ)×{λ}
is a measurable set as it is a countable intersection of measurable sets. It then follows from
Proposition 2.4 in [2] that ∩α∈ACα is a closed random set.

Similarly, if Cα : Λ → 2X , α ∈ A, is a finite family of closed random sets, then for every
λ ∈ Λ, the sets Cα(λ) are all closed and therefore so is the set (∪α∈ACα)(λ) = ∪α∈ACα(λ).
Moreover, it follows from Proposition 2.4 in [2] that the graphs graph(Cα), α ∈ A, are all
measurable in X × Λ. Hence

graph(∪α∈ACα) = ∪λ∈Λ(∪α∈ACα)(λ)×{λ} = ∪λ∈Λ(∪α∈ACα(λ))×{λ} = ∪α∈A∪λ∈ΛCα(λ)×{λ}
is a measurable set as a finite union of measurable sets. It then follows from Proposition 2.4
in [2] that ∪α∈ACα is a closed random set. 2

We deduce from this the following result about each level set of a RCGDMS.

Lemma 3.10. For every ρ ∈ E∗A and any k ∈ ZZ, the map λ ∈ Λ 7→ ϕT
k(λ)

ρ (Xt(ρ)) ∈ 2X is a
closed random set.

Proof. Let ρ ∈ E∗A and k ∈ IN . Obviously, all the sets ϕT
k(λ)

ρ (Xt(ρ)), λ ∈ Λ, are closed. Let

{xn}∞n=1 be a countable dense subset of Xt(ρ). Since each map λ ∈ Λ 7→ ϕT
k(λ)

ρ (xn), n ∈ IN ,

is measurable and since ϕT
k(λ)

ρ (Xt(ρ)) = {ϕT
k(λ)

ρ (xn) : n ∈ IN}, we conclude from Theorem 2.6

in [2] that the map λ ∈ Λ 7→ ϕT
k(λ)

ρ (Xt(ρ)) is a closed random set. 2

The measurability of the sets Z and Zn in the proof of Theorem 3.7 follows directly from
Lemma 3.10, Lemma 3.9, and Proposition 2.4 in [2].

We can now turn our attention to the pressure function.

Definition 3.11. Let Ω ⊂ Ep
A be a finite set of finite words that witnesses the finite primitivity

of the matrix A. Let F be the set of all letters appearing in words in Ω. For every t ∈ Fin, let
(Lt,F,λ)λ∈Λ be the Perron-Frobenius operators associated to the function tζF : F∞A × Λ → IR.
Thereafter, let

Qt := ess inf{Lt,F,λ(11F∞A )(ω) : λ ∈ Λ, ω ∈ F∞A }.

Note that Qt > 0 for every t ∈ Fin since tζF ∈ Cb
Λ(F∞A ) and A|F×F is irreducible.

Proposition 3.12. For every ascending sequence (Fn)∞n=1 of finite subalphabets of E such
that ∪∞n=1Fn = E and for all t ∈ Fin, we have
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(a) Pn,λ(t) ∈ [logQt, logMt] for ν-a.e. λ ∈ Λ and all n ∈ IN ;
(b) Pλ(t) = limn→∞ Pn,λ(t) ∈ [logQt, logMt] for ν-a.e. λ ∈ Λ;
(c) the function λ ∈ Λ 7→ Pλ(t) is ν-integrable and

EP (t) = lim
n→∞

EPn(t) ∈ [logQt, logMt],

where

EP (t) =
∫

Λ
Pλ(t) dν(λ) and EPn(t) =

∫
Λ
Pn,λ(t) dν(λ).

The number EP (t) is called the expected pressure of the system at the parameter t.

Proof. Let (Fn)∞n=1 be an ascending sequence of finite subsets of E such that ∪∞n=1Fn = E.
Fix t ∈ Fin. According to Lemma 2.11, we know that Pλ(t) = limn→∞ Pn,λ(t) for ν-a.e.
λ ∈ Λ. Without loss of generality, we may assume that F ⊂ F1, where F arises from
Definition 3.11. Thus, A|Fn×Fn is irreducible for all n ∈ IN . For every n ∈ IN , let (Lt,n,λ)λ∈Λ

be the Perron-Frobenius operators associated to the function tζn : (Fn)∞A ×Λ→ IR. In virtue
of Theorem 2.5, we have for ν-a.e. λ ∈ Λ and all n ∈ IN that

ePn,λ(t) = m̃t,n
T (λ)(Lt,n,λ(11(Fn)∞A

)) ≥ m̃t,n
T (λ)(Lt,F,λ(11F∞A )) ≥ Qt.

On the other hand, we obtain from the last part of Theorem 2.10 that for ν-a.e. λ ∈ Λ and
all n ∈ IN

ePn,λ(t) ≤
∑
e∈E

exp
(
ess sup{sup(tζλ|[e]) : λ ∈ Λ}

)
≤
∑
e∈E

ess sup
{
‖(ϕλe )′‖t : λ ∈ Λ

}
= Mt.

Hence Pn,λ(t) ∈ [logQt, logMt] for ν-a.e. λ ∈ Λ and all n ∈ IN . This establishes statement (a).
Statement (b) then follows from Lemma 2.11. Moreover, statement (c) follows from the above
and Lebesgue’s Dominated Convergence Theorem. 2

We shall now establish some basic properties of the expected pressure. Let

θ = inf(Fin).

The number θ ≥ 0 is called finiteness parameter of the system Φ.

Proposition 3.13. The function EP : Fin→ IR has the following properties:

(a) it is convex and continuous;
(b) it is strictly decreasing;
(c) limt→∞ EP (t) = −∞.

Proof. Let (Fn)∞n=1 be an ascending sequence of finite subsets of E such that ∪∞n=1Fn = E.
Let t ∈ Fin. Lemma 10.5 in [8] gives convexity of all the functions t ∈ IR 7→ EPn(t) ∈ IR,
n ∈ IN . Hence, by Proposition 3.12(c), the function t ∈ Fin 7→ EP (t) ∈ IR is convex as
a pointwise limit of convex functions. To get statement (a), it only remains to show the
right-continuity at θ when θ ∈ Fin. This is postponed to the end of the proof.
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As derived in the proof of Proposition 3.12,

exp(Pλ(t)) ≤
∑
e∈E

ess sup
{
‖(ϕλe )′‖t : λ ∈ Λ

}
= Mt <∞

for ν-a.e. λ ∈ Λ and for every t ∈ Fin. Since Mt tends to 0 as t → ∞ and since it does so
uniformly over a subset of Λ of full measure, we conclude that (c) holds.

Moreover, in view of Lemma 10.6 in [8], all the functions t ∈ IR 7→ EPn(t) ∈ IR are strictly
decreasing, and therefore the function t ∈ Fin 7→ EP (t) ∈ IR is (weakly) decreasing by
Proposition 3.12. If this function were not strictly decreasing, say EP (t2) = EP (t1) for some
t1 < t2, it would be constant on the interval [t1,∞) because of its convexity. This would
however contradict the just proven statement (c). This proves statement (b).

We are only left to show the right-continuity at the point θ when θ ∈ Fin. Since the
function EP : Fin→ IR is decreasing, it is enough to show that

lim sup
t→θ+

EP (t) ≥ EP (θ).

Since each function EPn : IR→ IR is continuous, for each n ∈ IN there exists tn ∈ (θ, θ+ 1/n)
such that

EPn(θ) ≤ EPn(tn) +
1

n
≤ EP (tn) +

1

n
.

By Proposition 3.12(c), we obtain

EP (θ) = lim
n→∞

EPn(θ) ≤ lim inf
n→∞

(
EP (tn) +

1

n

)
= lim inf

n→∞
EP (tn) ≤ lim sup

t→θ+
EP (t).

We are done. 2

This result suggests the following classification of RCGDMS. It is inspired from the well-
known classification of deterministic CGDMS.

Definition 3.14. A RCGDMS is called regular if there exists t ≥ 0 such that EP (t) = 0. A
RCGDMS which is not regular is called irregular.

Regular RCGDMS can be further divided into subclasses.

Definition 3.15. A regular RCGDMS is called critically regular if EP (θ) = 0. A regular
RCGDMS is called strongly regular if 0 < EP (t) < ∞ for some t ≥ 0. A strongly regular
RCGDMS is called cofinitely regular if limt→θ+ EP (t) =∞.

We now want to investigate what happens at the finiteness parameter of the system θ when
θ /∈ Fin. We then set EP (θ) =∞.

Definition 3.16. A RCGDMS Φ is said to be evenly varying if

∆ := sup
e∈E

ess sup{‖(ϕλe )′‖ : λ ∈ Λ}
ess inf{‖(ϕλe )′‖ : λ ∈ Λ}

<∞.

We shall prove the following.
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Lemma 3.17. Let (Fn)∞n=1 be an ascending sequence of finite subsets of E such that ∪∞n=1Fn =
E. If a RCGDMS Φ is evenly varying, then

EP (θ) = lim
n→∞

EPn(θ).

Hence, evenly varying RCGDMS have an expected pressure function which is right-continuous
at their finiteness parameter θ, and thus continuous on [θ,∞) by Proposition 3.13.

Proof. If θ ∈ Fin, then the results follows from the proof of Proposition 3.13. So, suppose
that θ /∈ Fin. Then, by definition, EP (θ) =∞ and we have to prove that

lim
n→∞

EPn(θ) =∞.

Let Ω ⊂ Ep
A be a finite set of finite words that witnesses the finite primitivity of the matrix

A. Let F be the set of all letters appearing in words in Ω. Let MF = min{Me : e ∈ F}, where
Me := ess inf{‖(ϕλe )′‖ : λ ∈ Λ}. Let also Mn = min{Me : e ∈ Fn}. Without loss of generality,
we may assume that each Fn contains F . Let k ≥ 2. For every ω ∈ Ek there exists elements
α1, α2, . . . , αk−1 ∈ Ω such that

ω := ω1α1ω2α2 . . . ωk−2αk−2ωk−1αk−1ωk ∈ E∗A.

Note that the map ω ∈ Ek 7→ ω ∈ E
(p+1)k−p
A is injective, and therefore for all k ≥ 1, all

τ ∈ E∞A , and ν-a.e. λ ∈ Λ, we have, using (3.21),

L(p+1)k−p
θ,n,λ 11E∞A (τ) =

∑
β∈E(p+1)k−p

A :βτ∈E∞A

|(ϕλβ)′(πT (p+1)k−p(λ)(τ))|θ

≥
∑

ω∈Fkn :Aωkτ1=1

|(ϕλω)′(πT (p+1)k−p(λ)(τ))|θ

≥K−θ((p+1)k−p)M θpk
F

∑
ω∈Fkn :Aωkτ1=1

‖(ϕλω1
)′‖θ‖(ϕT p+1(λ)

ω2
)′‖θ · . . . · ‖(ϕT (p+1)(k−1)(λ)

ωk
)′‖θ

≥Kθ(p−(p+1)k)M θpk
F M θ

n

∑
ω∈Fk−1

n

‖(ϕλω1
)′‖θ‖(ϕT p+1(λ)

ω2
)′‖θ · . . . · ‖(ϕT (p+1)(k−2)(λ)

ωk−1
)′‖θ

≥Kθ(p−(p+1)k)M θpk
F M θ

n

(∑
e∈Fn

ess inf{‖(ϕλe )′‖θ : λ ∈ Λ}
)k−1

≥Kθ(p−(p+1)k)M θpk
F M θ

n∆−θ(k−1)
(∑
e∈Fn

ess sup{‖(ϕλe )′‖θ : λ ∈ Λ}
)k−1

=
(
K(p−(p+1)k)Mpk

F Mn∆1−k
)θ
Mk−1

θ,n ,
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where Mθ,n :=
∑
e∈Fn ess sup{‖(ϕλe )′‖θ : λ ∈ Λ}. Therefore, using Lemma 4.6 in [8],

EPn(θ) = lim
k→∞

1

(p+ 1)k − p
logL(p+1)k−p

θ,n,λ 11E∞A (τ)

≥ lim
k→∞

1

(p+ 1)k − p

[
θ
(
(p− (p+ 1)k) logK + pk logMF + (1− k) log ∆

)
+θ logMn + (k − 1) logMθ,n

]
= θ

(
− logK +

p

p+ 1
logMF −

1

p+ 1
log ∆

)
+

1

p+ 1
logMθ,n.

The result follows since limn→∞Mθ,n = Mθ =∞. 2

Let
h = inf{t ≥ 0 : EP (t) ≤ 0}.

Our next goal is to prove a variant of Bowen’s formula for RCGDMS.

Theorem 3.18. (Bowen’s formula) For ν-a.e. λ ∈ Λ,

HD(Jλ) = h ≥ θ ≥ 0,

where HD(Jλ) is the Hausdorff dimension of Jλ. Moreover, h > θ if the system Φ is strongly
regular.

The proof will be given in several steps. We start with the following.

Lemma 3.19. If EP (t) ≤ 0, then

lim inf
r→0

logmt
λ(B(x, r))

log r
≤ t

for ν-a.e. λ ∈ Λ and all x ∈ Jλ.

Proof. Suppose that t ∈ Fin is so that EP (t) ≤ 0. From (3.2), there is a set Λ1 ⊂ Λ such
that ν(Λ1) = 1 and such that for all λ ∈ Λ1, all x ∈ Jλ, all ω ∈ E∞A such that πλ(ω) = x, and
all n ∈ IN , we have

ϕλω|n(Xt(ωn)) ⊂ B(x,KD‖(ϕλω|n)′‖).
From (BDP) and (3.13), there is a set Λ2 ⊂ Λ1 such that ν(Λ2) = 1 and such that for all
λ ∈ Λ2, all x ∈ Jλ, all ω ∈ E∞A such that πλ(ω) = x, and all n ∈ IN , we have

mt
λ

(
B(x,KD‖(ϕλω|n)′‖)

)
≥ mt

λ

(
ϕλω|n(Xt(ωn))

)
≥ e−P

n
λ (t)K−t‖(ϕλω|n)′‖tmt

Tn(λ)(Xt(ωn))

= K−te−P
n
λ (t)‖(ϕλω|n)′‖t

= K−2tD−te−P
n
λ (t)(KD‖(ϕλω|n)′‖)t,

and hence

lim inf
r→0

logmt
λ(B(x, r))

log r
≤ lim sup

n→∞

log
(
K−2tD−te−P

n
λ (t)(KD‖(ϕλω|n)′‖)t

)
log(KD‖(ϕλω|n)′‖)
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= lim sup
n→∞

−P n
λ (t)

log ‖(ϕλω|n)′‖
+ t. (3.18)

for all λ ∈ Λ2, all x ∈ Jλ, and all ω ∈ E∞A such that πλ(ω) = x.
Now, if EP (t) < 0 then by Birkhoff’s Ergodic Theorem there is Λ3 ⊂ Λ2 such that ν(Λ3) = 1

and such that for each λ ∈ Λ3 there is N(λ) ≥ 1 for which −P n
λ (t) > 0 for all n ≥ N(λ).

Then

lim sup
n→∞

−P n
λ (t)

log ‖(ϕλω|n)′‖
≤ 0 (3.19)

for all λ ∈ Λ3 and all ω ∈ E∞A . Combining (3.18) with (3.19), we conclude that

lim inf
r→0

logmt
λ(B(x, r))

log r
≤ t

for all λ ∈ Λ3 and all x ∈ Jλ.
On the other hand, if EP (t) = 0 we obtain

lim sup
n→∞

−P n
λ (t)

log ‖(ϕλω|n)′‖
≤ lim sup

n→∞

|P n
λ (t)|∣∣∣log ‖(ϕλω|n)′‖

∣∣∣ ≤ lim sup
n→∞

|P n
λ (t)|

−n log s
= 0, (3.20)

where the last equality follows from Birkhoff’s Ergodic Theorem for all λ in a set Λ̃3 ⊂ Λ2

such that ν(Λ̃3) = 1 and for all ω ∈ E∞A . Combining (3.18) with (3.20), we conclude that

lim inf
r→0

logmt
λ(B(x, r))

log r
≤ t

for all λ ∈ Λ̃3 and all x ∈ Jλ. We are done. 2

As an immediate consequence of this lemma, we get the following.

Corollary 3.20. HD(Jλ) ≤ h for ν-a.e. λ ∈ Λ.

Remark 3.21. Note that the OSC has not been used in establishing Lemma 3.19 and Corol-
lary 3.20. Indeed, relation (3.13) holds even in the absence of the OSC.

Henceforth we shall assume that the following condition is fulfilled by the RCGDMS under
scrutiny. This condition seems indispensable and in the case of random self-similar IFSs in
the sense of Mauldin and Williams [7] this condition is always assumed. Moreover, it has the
same form no matter whether E is finite or infinite.

For all e ∈ E there exists Me ∈ (0, s] such that

‖(ϕλe )′‖ ≥Me, ν-a.e. λ ∈ Λ. (3.21)

In order to demonstrate that HD(Jλ) ≥ h under this condition, we shall first prove the
following.
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Lemma 3.22. If the alphabet E is finite, then

lim inf
r→0

logmh
λ(B(x, r))

log r
≥ h

for ν-a.e. λ ∈ Λ and all x ∈ Jλ.

Proof. Fix λ ∈ Λ in a set of full measure ν which will be specified later. Fix also x ∈ Jλ.
Set

M := min{Me | e ∈ E} > 0.

For every r ∈ (0,M), set

Gx(r) :=
{
ω ∈ E∗A : ϕλω(Xt(ω)) ∩B(x, r) 6= ∅, ‖(ϕλω)′‖ ≤ r and ‖(ϕλω||ω|−1

)′‖ > r
}
.

Obviously, Gx(r) is an anti-chain (i.e. its elements are pairwise incomparable) and⋃
ω∈Gx(r)

[ω] ⊃ π−1
λ (B(x, r)).

By (3.12), there is Λ1 ⊂ Λ with ν(Λ1) = 1 such that

mh
λ(B(x, r)) = m̃h

λ

(
π−1
λ (B(x, r))

)
≤ m̃h

λ

( ⋃
ω∈Gx(r)

[ω]
)

=
∑

ω∈Gx(r)

m̃h
λ([ω])

=
∑

ω∈Gx(r)

e−P
|ω|
λ

(h)
∫
E∞A

∣∣∣(ϕλω)′(πT |ω|(λ)(τ))
∣∣∣h dm̃h

T |ω|(λ)(τ)

≤
∑

ω∈Gx(r)

e−P
|ω|
λ

(h)‖(ϕλω)′‖h

≤ rh
∑

ω∈Gx(r)

e|P
|ω|
λ

(h)| (3.22)

for each λ ∈ Λ1 and each x ∈ Jλ. Moreover, if ω ∈ Gx(r) then M |ω| ≤ r < s|ω|−1, which
means that

log(sr)

log s
> |ω| ≥ log r

logM
. (3.23)

By Birkhoff’s Ergodic Theorem, there exists Λ0 ⊂ Λ1 such that ν(Λ0) = 1 and

lim
n→∞

1

n
P n
λ (h) = EP (h) = 0

for all λ ∈ Λ0. Fix ε > 0. Fix also an arbitrary λ ∈ Λ0 and x ∈ Jλ. There thus exists n0 ∈ IN
such that

|P n
λ (h)| ≤ εn
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for all n ≥ n0. Assume r > 0 to be so small that log r/ logM ≥ n0. If ω ∈ Gx(r) we obtain
from (3.23) that

exp
(
|P |ω|λ (h)|

)
≤ exp(ε|ω|) ≤ exp

(
ε

log(sr)

log s

)
= (sr)ε/ log s.

Hence, we can deduce from (3.22) that

mh
λ(B(x, r)) ≤ #Gx(r)s

ε/ log srh+ε/ log s.

It remains to estimate #Gx(r) from above. To do this, note that all the sets ϕλω(Int(Xt(ω))),
ω ∈ Gx(r), are mutually disjoint, contained in the ball B(x,KDr), and each of them contains
a ball of radius at least D−1K−2Mr. A straightforward volume argument shows that #Gx(r)
is bounded above by a constant C depending only on D, K and M . Therefore,

mh
λ(B(x, r)) ≤ Csε/ log srh+ε/ log s.

Consequently, we conclude that

lim inf
r→0

logmh
λ(B(x, r))

log r
≥ h+

ε

log s
,

and letting ε→ 0, the result follows for each λ ∈ Λ0 and each x ∈ Jλ. 2

As an immediate consequence of this lemma, we have the following.

Corollary 3.23. If the alphabet E is finite, then HD(Jλ) ≥ h for ν-a.e. λ ∈ Λ.

Combining together Corollaries 3.20 and 3.23, as well as the fact that finite systems have
finite expected pressures, i.e. −∞ < EP (t) <∞ for all t ∈ IR, we get the following.

Corollary 3.24. If Φ is a RCGDMS with finite alphabet E, then HD(Jλ) = h for ν-a.e.
λ ∈ Λ, where h = inf{t ≥ 0 : EP (t) ≤ 0}. In fact, h is the unique number such that
EP (h) = 0.

For the first part of this result to carry over to an infinite alphabet E, we will need the
following.

Theorem 3.25. If Φ is a RCGDMS, then for all t ≥ 0

EP (t) = sup{EPF (t) : F ∈ Fin(E)},
where Fin(E) is the family of all finite subsets of E.

Proof. By Lemma 4.6 in [8], we have EPA(t) ≤ EPB(t) whenever A ⊂ B ⊂ E. Our theorem
therefore follows from Proposition 3.12(c). 2

Now, we can prove the following.

Theorem 3.26. If Φ is a RCGDMS, then for ν-a.e. λ ∈ Λ,

HD(Jλ) = sup{HD(JF,λ) : F ∈ Fin(E)} = h = inf{t ≥ 0 : EP (t) ≤ 0} ≥ θ ≥ 0.

Moreover, h > θ when the system Φ is strongly regular.
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Proof. It is obvious that η := sup{HD(JF,λ) : F ∈ Fin(E)} ≤ HD(Jλ) for every λ ∈ Λ and,
by Corollary 3.20, HD(Jλ) ≤ h = inf{t ≥ 0 : EP (t) ≤ 0} for ν-a.e. λ ∈ Λ. It therefore suffices
to show that h ≤ η. But, by Theorem 3.25 and Proposition 3.13, EP (η) = sup{EPF (η) : F ∈
Fin(E)} ≤ sup{EPF (hF ) : F ∈ Fin(E)} = 0. Hence η ≥ h and we are done. 2

Definition 3.27. A regular RCGDMS Φ is called essentially random if

lim inf
n→∞

P n
λ (h) = −∞ and lim sup

n→∞
P n
λ (h) =∞

for ν-a.e. λ ∈ Λ, where

P n
λ (h) =

n−1∑
j=0

PT j(λ)(h).

Note that if the sequence of random variables (PTn(λ)(h))∞n=0 (with respect to the probability
measure ν) satisfies the Law of Iterated Logarithms, then the system Φ is essentially random.

Theorem 3.28. The following statements hold.

(a) If Φ is an essentially random RCGDMS or an irregular RCGDMS, then Hh(Jλ) = 0
for ν-a.e. λ ∈ Λ.

(b) If Φ is essentially random and satisfies the strong separation condition, then Ph(Jλ) =
∞ for ν-a.e. λ ∈ Λ.

Proof. (a) Suppose that Φ is an essentially random RCGDMS or an irregular RCGDMS.
It follows from formula (3.13) of Theorem 3.7 that

mh
λ(ϕ

λ
ω(JTn(λ))) � e−P

n
λ (h)‖(ϕλω)′‖hmh

Tn(λ)(JTn(λ)) = e−P
n
λ (h)‖(ϕλω)′‖h

for ν-a.e. λ ∈ Λ, for all n ≥ 0 and all ω ∈ En
A. Thus,∑

ω∈EnA

(
diam(ϕλω(JTn(λ)))

)h
�

∑
ω∈EnA

‖(ϕλω)′‖h � eP
n
λ (h)

∑
ω∈EnA

mh
λ(ϕ

λ
ω(JTn(λ)))

= eP
n
λ (h)mh

λ

( ⋃
ω∈EnA

ϕλω(JTn(λ))
)

= eP
n
λ (h)mh

λ(Jλ) = eP
n
λ (h), (3.24)

where we used formula (3.14) of Theorem 3.7 to establish the first equality sign. Now, in
either case (essentially random or irregular alike),

lim inf
n→∞

eP
n
λ (h) = 0 (3.25)

for ν-a.e. λ ∈ Λ. Indeed, in the essentially random case, this is an immediate consequence of
its definition, and in the irregular case, this follows directly from Birkhoff’s Ergodic Theorem.
It follows from (3.24) and (3.25) that Hh(Jλ) = 0.

Now, suppose Φ is essentially random and that the strong separation condition holds. Let
R = dist(Xc,∪λ∈Λ ∪e∈E ϕλe (X)) > 0. Fix λ ∈ Λ and ω ∈ E∞A . Then for every k ≥ 0 we have
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B(πTn(λ)(σ
n(ω)), R) ⊂ X. Therefore ϕλω|n(B(πTn(λ)(σ

n(ω)), R)) ⊃ B(πλ(ω), K−1‖(ϕλω|n)′‖)
and hence

mh
λ(B(πλ(ω), K−1‖(ϕλω|n)′‖)) ≤ e−P

n
λ (h)‖(ϕλω|n)′‖hmh

Tn(λ)(B(πTn(λ)(σ
n(ω)), R))

≤ Khe−P
n
λ (h)

(
K−1‖(ϕλω|n)′‖

)h
.

Since Φ is essentially random, we deduce for ν-a.e. λ ∈ Λ and all ω ∈ E∞A that

lim inf
r→0

mh
λ(B(πλ(ω), r))

rh
≤ lim inf

n→∞

mh
λ(B(πλ(ω), K−1‖(ϕλω|n)′‖))

(K−1‖(ϕλω|n)′‖)h
≤ Kh lim inf

n→∞
e−P

n
λ (h) = 0.

Thus, Ph(Jλ) =∞ for ν-a.e. λ ∈ Λ and the proof is complete. 2

Corollary 3.29. Almost no limit set fiber Jλ of an essentially random system is bi-Lipschitz
homeomorphic to the limit set of any deterministic system with a finite alphabet.

Proof. This directly follows from Theorem 3.28 and the fact that the limit sets of finite
deterministic systems have Hausdorff and packing measures which are positive and finite. 2

This corollary asserts that in the realm of systems with finite alphabet, essentially random
systems and deterministic systems form drastically different, non-overlapping subworlds.

As another immediate consequence of Theorem 3.28, we get the following remarkable geo-
metric statements.

Corollary 3.30. If Φ is either essentially random or irregular and Jλ is not totally discon-
nected (i.e. contains a non-trivial connected component) for a set of positive measure ν of
parameters λ ∈ Λ (equivalently, for ν-a.e. λ ∈ Λ), then HD(Jλ) > 1 for ν-a.e. λ ∈ Λ.

Proof. This is an immediate consequence of Theorem 3.28 and the fact that H1(Y ) > 0
whenever Y contains a non-degenerate connected component. 2

Finally, Theorem 3.28 also has the following repercussion.

Corollary 3.31. If Φ is an essentially random CGDMS acting on a phase space X ⊂ IRd,
then HD(Jλ) = h < d for ν-a.e. λ ∈ Λ.

Proof. This is immediate from Theorem 3.28(b) since Pd(Jλ) ≤ Pd(X) <∞. (Recall that
Pd is a multiple of Lebesgue measure on IRd.) 2

4. Examples of Random CGDMS

In this section, we give some examples of RCGDMS. In the following, a SIFS is a CIFS
whose generators are all similarities.
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Example 4.1. Let S = {ϕe}e∈E be a deterministic CGDMS. For every λ ∈ Λ and every
v ∈ V , let gvλ : Wv → Wv be conformal injections such that ‖(gvλ)′‖Xv ≤ 1 for all λ ∈ Λ, such
that the map λ 7→ gvλ(x) is measurable for every x ∈ Wv. When S is a one-dimensional system,

we further require that the family {ϕλe := g
i(e)
λ ◦ϕe} satisfy condition (v) of the definition of a

RCGDMS. Let T : Λ → Λ be an invertible ergodic map preserving a measure ν. The family

Φ = {ϕλe := g
i(e)
λ ◦ ϕe} is then a random CGDMS.

More specifically, one might have:
(1a) S is a deterministic SIFS in which X is a closed ball, and gλ : W → W is a Euclidean

isometry for each λ;
(1ab) S is a deterministic SIFS in which X = ID := {z ∈ CI : |z| ≤ 1}, and gλ(z) = e2πiλz

for every λ ∈ Λ := (0, 1];
(1b) S is a deterministic SIFS in which X = ID, and gλ(z) = λz for every λ ∈ Λ := ID\{0};
(1c) S is a deterministic SIFS in which X is a star-shaped set centered at 0. Let 0 ≤ a <

b ≤ 1, Λ = (a, b]ZZ, T : Λ → Λ be the shift transformation, i.e. T ((λn)∞n=−∞) = (λn+1)∞n=−∞,
ν0 be the normalized Lebesgue measure on (a, b], and ν = νZZ0 . Let gλ(z) = λ0z.

Let us determine the Hausdorff dimension for example (1a). First, note that since the
system is an IFS, we have E∞A = E∞. Moreover, since the generators ϕλe are all similarities,
their derivatives are independent of the point taken. Therefore, for every ω ∈ E∞A we have

Lt,λ11E∞A (ω) =
∑

e∈E:Aeω1=1

exp
(
tζ(eω, λ)

)
11E∞A (eω)

=
∑
e∈E
|(ϕλe )′(πT (λ)(ω))|t

=
∑
e∈E
|(ϕλe )′|t.

Since the gλ are isometries, we obtain

Lt,λ11E∞A (ω) =
∑
e∈E
|(ϕλe )′|t =

∑
e∈E
|ϕ′e|t = Z1,S(t),

where Z1,S(t) is the level 1 partition function of the pressure of the deterministic system S.
Similarly,

Lnt,λ11E∞A (ω) =
∑
τ∈En

|(ϕλτ )′|t =
∑
τ∈En

|ϕ′τ |t = Zn,S(t),

where Zn,S(t) is the nth-level partition function of the pressure of the deterministic system
S. Since Lnt,λ11E∞A does not depend on ω, we obtain from (2.9) that

P n
λ (t) = log m̃t

Tn(λ)(Lnt,λ11E∞A ) = logLnt,λ11E∞A = logZn,S(t).

By Birkhoff’s Ergodic Theorem, we conclude that

EP (t) =
∫

Λ
Pλ(t)dν(λ) = lim

n→∞

1

n

n−1∑
j=0

PT j(λ)(t) = lim
n→∞

1

n
P n
λ (t) = lim

n→∞

1

n
logZn,S(t) = PS(t)
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for ν-a.e. λ ∈ Λ, where PS(t) is the pressure of the deterministic system S. Thus,

HD(Jλ) = HD(JS)

for ν-a.e. λ ∈ Λ by Theorem 3.18, where HD(JS) is the Hausdorff dimension of the limit set
JS of the deterministic system S.

We now turn our attention to (1b). As in (1a), observe that

Lnt,λ11E∞A (ω) =
∑
τ∈En

|(ϕλτ )′|t

=
∑
τ∈En

|(ϕλτ1)
′|t|(ϕT (λ)

τ2
)′|t · · · |(ϕTn−1(λ)

τn )′|t

=
∑
τ∈En

|λ|t|ϕ′τ1|
t|T (λ)|t|ϕ′τ2|

t · · · |T n−1(λ)|t|ϕ′τn|
t

=
∑
τ∈En

|λ|t|T (λ)|t · · · |T n−1(λ)|t|ϕ′τ1|
t|ϕ′τ2 |

t · · · |ϕ′τn|
t

=
n−1∏
j=0

|T j(λ)|t
∑
τ∈En

|ϕ′τ |t

=
(n−1∏
j=0

|T j(λ)|
)t
Zn,S(t).

for every ω ∈ E∞A . By Birkhoff’s Ergodic Theorem, we deduce that

EP (t) =
∫

Λ
Pλ(t)dν(λ) = lim

n→∞

1

n

n−1∑
j=0

PT j(λ)(t) = lim
n→∞

1

n
P n
λ (t)

= lim
n→∞

1

n
logLnt,λ11E∞A = t lim

n→∞

1

n

n−1∑
j=0

log |T j(λ)|+ lim
n→∞

1

n
logZn,S(t)

= t
∫

Λ
log |λ|dν(λ) + PS(t).

Hence the Hausdorff dimension of the random system Φ is

h = inf
{
t ≥ 0 : t

∫
Λ

log |λ|dν(λ) + PS(t) ≤ 0
}
.

Finally, in (1c), we obtain

Lnt,λ11E∞A (ω) =
∑
τ∈En

λt0|ϕ′τ1 |
tλt1|ϕ′τ2|

t · · ·λtn−1|ϕ′τn|
t =

(n−1∏
j=0

λj

)t
Zn,S(t).
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for every ω ∈ E∞A . By Birkhoff’s Ergodic Theorem, we deduce that

EP (t) =
∫

Λ
Pλ(t)dν(λ) = lim

n→∞

1

n

n−1∑
j=0

PT j(λ)(t) = lim
n→∞

1

n
P n
λ (t)

= lim
n→∞

1

n
logLnt,λ11E∞A = t lim

n→∞

1

n

n−1∑
j=0

log λj + lim
n→∞

1

n
logZn,S(t)

= t
∫ b

a
log λ dν0(λ) + PS(t).

Hence the Hausdorff dimension of the random system Φ is

h = inf
{
t ≥ 0 : t

∫ b

a
log λ dν0(λ) + PS(t) ≤ 0

}
.

Example 4.2. Let S = {ϕe}e∈E be a deterministic CGDMS. For every λ ∈ Λ and every
v ∈ V , let f vλ : Wv → Wv be conformal injections such that ‖(f vλ)′‖Xv ≤ 1 for all λ ∈ Λ, such
that the map λ 7→ f vλ(x) is measurable for every x ∈ Wv. When S is a one-dimensional system,

we further require that the family {ϕλe := g
i(e)
λ ◦ϕe} satisfy condition (v) of the definition of a

RCGDMS. Let T : Λ → Λ be an invertible ergodic map preserving a measure ν. The family

Φ = {ϕλe := ϕe ◦ f t(e)λ } is then a random CGDMS.
More specifically, one might have:
(2a) S is a deterministic SIFS in which X is a closed ball, and fλ : W → W is a Euclidean

isometry for each λ;
(2ab) S is a deterministic SIFS in which X = ID := {z ∈ CI : |z| ≤ 1}, and fλ(z) = e2πiλz

for every λ ∈ Λ := (0, 1];
(2b) S is a deterministic SIFS in which X = ID, and fλ(z) = λz for every λ ∈ Λ := ID\{0};
(2c) S is a deterministic SIFS in which X is a star-shaped set centered at 0. Let 0 ≤ a <

b ≤ 1, Λ = (a, b]ZZ, T : Λ → Λ be the shift transformation, i.e. T ((λn)∞n=−∞) = (λn+1)∞n=−∞,
ν0 be the normalized Lebesgue measure on (a, b], and ν = νZZ0 . Let fλ(z) = λ0z.

The results derived in Example 4.1 hold for Example 4.2.

Example 4.3. Let S = {ϕe}e∈E be a deterministic CGDMS. For every λ ∈ Λ and every
v ∈ V , let f vλ , g

v
λ : Wv → Wv be conformal injections such that max{‖(f vλ)′‖Xv , ‖(gvλ)′‖Xv} ≤ 1

for all λ ∈ Λ, such that the maps λ 7→ f vλ(x) and λ 7→ gvλ(x) are measurable for every x ∈ Wv.

When S is a one-dimensional system, we further require that the family {ϕλe := g
i(e)
λ ◦ ϕe}

satisfy condition (v) of the definition of a RCGDMS. Let T : Λ→ Λ be an invertible ergodic

map preserving a measure ν. The family Φ = {ϕλe := g
i(e)
λ ◦ ϕe ◦ f t(e)λ } is then a random

CGDMS.
More specifically, one might have:
(3a) S is a deterministic SIFS in which X is a closed ball, and fλ, gλ : W → W are

Euclidean isometries for each λ;
(3ab) S is a deterministic SIFS in which X = ID := {z ∈ CI : |z| ≤ 1}, and fλ(z) = gλ(z) =

e2πiλz for every λ ∈ Λ := (0, 1];
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(3b) S is a deterministic SIFS in which X = ID, and fλ(z) = gλ(z) = λz for every
λ ∈ Λ := ID\{0};

(3c) S is a deterministic SIFS in which X is a star-shaped set centered at 0. Let 0 ≤
a < b ≤ 1, 0 ≤ c < d ≤ 1, Λ = ((a, b] × (c, d])ZZ, T : Λ → Λ be the shift transformation,
i.e. T ((λn)∞n=−∞) = (λn+1)∞n=−∞, where λ = (λ(1)

n , λ(2)
n )∞n=−∞, ν0 be the normalized Lebesgue

measure on (a, b]× (c, d], and ν = νZZ0 . Let fλ(z) = λ
(1)
0 z and gλ(z) = λ

(2)
0 z.

The results derived in Example 4.1(a),(ab) hold for Example 4.3(a),(ab), respectively. In-
spiring ourselves from (1b), we obtain for (3b) that

EP (t) = 2t
∫

Λ
log |λ|dν(λ) + PS(t).

Hence the Hausdorff dimension of the random system Φ is

h = inf
{
t ≥ 0 : 2t

∫
Λ

log |λ|dν(λ) + PS(t) ≤ 0
}
.

Note the presence of an additional factor 2.
Finally, in (3c),

Lnt,λ11E∞A (ω) =
(n−1∏
j=0

λ
(1)
j

)t(n−1∏
j=0

λ
(2)
j

)t
Zn,S(t)

for every ω ∈ E∞A . Therefore

EP (t) = t
∫ b

a
log r dr + t

∫ d

c
log r dr + PS(t).

Hence the Hausdorff dimension of the random system Φ is

h = inf

{
t ≥ 0 : t

[∫ b

a
log r dr +

∫ d

c
log r dr

]
+ PS(t) ≤ 0

}
.

Example 4.4. Let 0 ≤ a < b ≤ 1. Let Λ = (a, b]ZZ, and ν0 a Borel probability measure
on (a, b]. Let ν = νZZ0 , and T : Λ → Λ be the shift transformation, i.e. T ((λn)∞n=−∞) =
(λn+1)∞n=−∞. We now define a one-dimensional random SIFS by first picking a strictly in-
creasing sequence (xn)∞n=0 such that x0 = 0 and limn→∞ xn = 1. Moreover, we let X = [0, 1]
and E = {0, 1, 2, 3, . . . }. For every n ∈ E, let

ϕλn(x) = xn + λ0(xn+1 − xn)x.

The family {ϕλe : [0, 1]→ [0, 1]} constitutes a one-dimensional random SIFS.
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We will now find a formula for HD(Jλ). Let Eq = {0, 1, . . . , q − 1}. Observe that

Lnt,q,λ11E∞A (ω) =
∑
τ∈Enq

|(ϕλτ )′|t

=
∑
τ∈Enq

|(ϕλτ1)
′|t|(ϕT (λ)

τ2
)′|t · · · |(ϕTn−1(λ)

τn )′|t

=
∑
τ∈Enq

λt0(xτ1+1 − xτ1)t(T (λ))t0(xτ2+1 − xτ2)t · · · (T n−1(λ))t0(xτn+1 − xτn)t

=
∑
τ∈Enq

λt0(xτ1+1 − xτ1)tλt1(xτ2+1 − xτ2)t · · ·λtn−1(xτn+1 − xτn)t

= λt0λ
t
1 · · ·λtn−1

∑
τ∈Enq

(xτ1+1 − xτ1)t(xτ2+1 − xτ2)t · · · (xτn+1 − xτn)t

=
(n−1∏
j=0

λj
)t(q−1∑

e=0

(xe+1 − xe)t
)n

for all ω ∈ E∞A . Using Proposition 3.12(c) and Birkhoff’s Ergodic Theorem, we obtain

EP (t) = lim
q→∞
EPq(t) = lim

q→∞

∫
Λ
Pq,λ(t)dν(λ) = lim

q→∞
lim
n→∞

1

n
P n
q,λ(t)

= lim
q→∞

lim
n→∞

1

n
logLnt,q,λ11E∞A = t lim

n→∞

1

n

n−1∑
j=0

log λj + lim
q→∞

log
q−1∑
e=0

(xe+1 − xe)t

= t
∫ b

a
log λ dν0(λ) + log

∞∑
e=0

(xe+1 − xe)t.

By Theorem 3.18, the Hausdorff dimension of the system Φ is

h = inf

{
t ≥ 0 : t

∫ b

a
log λ dν0(λ) + log

∞∑
e=0

(xe+1 − xe)t ≤ 0

}
.

If xe+1 − xe = 1/2e+1 for all e ∈ E, then

h
∫ b

a
log λ dν0(λ)− h log 2− log(1− 2−h) = 0.

If, moreover, ν0 is the Lebesgue measure on (a, b], then

h
[
(b log b− a log a)− (b− a)

]
− h log 2− log(1− 2−h) = 0.

Example 4.5. Let 0 ≤ a < b ≤ 1. Let Λ = (a, b]ZZ, and ν0 a Borel probability measure
on (a, b]. Let ν = νZZ0 , and T : Λ → Λ be the shift transformation, i.e. T ((λn)∞n=−∞) =
(λn+1)∞n=−∞. We now define a one-dimensional random SIFS by first picking a strictly in-
creasing sequence (xn)∞n=0 such that x0 = 0 and limn→∞ xn = 1. Moreover, we let X = [0, 1]
and E = {0, 1, 2, 3, . . . }. For every n ∈ E, let

ϕλn(x) = xn + λn(xn+1 − xn)x.
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The family {ϕλe : [0, 1]→ [0, 1]} constitutes a one-dimensional random SIFS.

Example 4.6. Let 0 ≤ a < b ≤ 1. Let ∆a,b = {(s, t) ∈ IR2 : a < s ≤ t < b}, and ν0 a Borel
probability measure on ∆a,b. Let Λ = ∆ZZ

a,b, ν = νZZ0 , T : Λ → Λ be the shift transformation,
i.e. T ((λn)∞n=−∞) = (λn+1)∞n=−∞. We now define a one-dimensional random SIFS by setting

X = [0, 1], E = {0, 1}, λ = (λ(1)
n , λ(2)

n )∞n=−∞, and

ϕλ0(x) = λ
(1)
0 x, ϕλ1(x) = 1− (1− λ(2)

0 )(1− x).

The family Φ = {ϕλe : [0, 1]→ [0, 1]} constitutes a one-dimensional random SIFS.

We now obtain a formula for the Hausdorff dimension of this system. First, note that

Lnt,λ11E∞A (ω) =
∑
τ∈En

|(ϕλτ )′|t =
∑
τ∈En

|(ϕλτ1)
′|t|(ϕT (λ)

τ2
)′|t · · · |(ϕTn−1(λ)

τn )′|t

=
(∑
e∈E
|(ϕλe )′|t

)(∑
e∈E
|(ϕT (λ)

e )′|t
)
· · ·

(∑
e∈E
|(ϕTn−1(λ)

e )′|t
)

=
n−1∏
j=0

(∑
e∈E
|(ϕT j(λ)

e )′|t
)

for every ω ∈ E∞A . Letting gt(λ) = log
∑
e∈E |(ϕλe )′|t, we deduce that

EP (t) =
∫

Λ
Pλ(t)dν(λ) = lim

n→∞

1

n

n−1∑
j=0

PT j(λ)(t) = lim
n→∞

1

n
P n
λ (t) = lim

n→∞

1

n
logLnt,λ11E∞A

= lim
n→∞

1

n

n−1∑
j=0

log
∑
e∈E
|(ϕT j(λ)

e )′|t = lim
n→∞

1

n

n−1∑
j=0

gt(T
j(λ)) =

∫
Λ
gt(λ) dν(λ).

Since

gt(λ) = log
(
|(ϕλ0)′|t + |(ϕλ1)′|t

)
= log

[
(λ

(1)
0 )t + (1− λ(2)

0 )t
]
,

we infer that

EP (t) =
∫

∆a,b

log
[
(λ

(1)
0 )t + (1− λ(2)

0 )t
]
dν0(λ0).

If ν0 is the Lebesgue measure on ∆a,b, then

EP (t) =
∫ b

a

∫ b

x
log
[
xt + (1− y)t

]
dy dx.

Hence the Hausdorff dimension of the random system Φ is the unique number h such that
EP (h) = 0, i.e. such that ∫ b

a

∫ b

x
log
[
xh + (1− y)h

]
dy dx = 0.

Note the difference with Example 4.2 in [7].
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Example 4.7. Let 0 ≤ a < b ≤ 1. Let ∆a,b = {(s, t) ∈ IR2 : a < s ≤ t < b}, and ν0 a Borel
probability measure on ∆a,b. Let Λ = ∆ZZ

a,b, ν = νZZ0 , T : Λ → Λ be the shift transformation,
i.e. T ((λn)∞n=−∞) = (λn+1)∞n=−∞. We now define a one-dimensional random SIFS by first
picking a strictly increasing sequence (xn)∞n=0 such that x0 = 0 and limn→∞ xn = 1. Moreover,
we let X = [0, 1] and E = {0, 1, 2, 3, . . . } × {0, 1}. For all n ≥ 0, let

ϕλn,0(x) = xn + λ(1)
n (xn+1 − xn)x and ϕλn,1(x) = xn+1 − (1− λ(2)

n )(xn+1 − xn)x.

The family {ϕλe : [0, 1]→ [0, 1]} forms a one-dimensional random SIFS.

Calculations similar to the ones performed in Example 4.6 lead to

EP (t) =
∫

Λ
log

∞∑
n=0

(
|(ϕλn,0)′|t + |(ϕλn,1)′|t

)
dν(λ)

=
∫

Λ
log

∞∑
n=0

(
(λ(1)

n )t(xn+1 − xn)t + (1− λ(2)
n )t(xn+1 − xn)t

)
dν(λ)

=
∫

Λ
log

∞∑
n=0

[
(xn+1 − xn)t

(
(λ(1)

n )t + (1− λ(2)
n )t

)]
dν(λ).

Hence the Hausdorff dimension of the random system Φ is

h = inf

{
t ≥ 0 :

∫
Λ

log
∞∑
n=0

[
(xn+1 − xn)t

(
(λ(1)

n )t + (1− λ(2)
n )t

)]
dν(λ) ≤ 0

}
.

5. Random elliptic functions

In this section, we provide an application of our results to the theory of random elliptic
functions. In [4], the Hausdorff dimension of the Julia set J(f) of a non-constant elliptic
(meromorphic) function f : CI → CI and the Hausdorff dimension of I∞(f), the set of points
escaping to infinity under iteration of f , were estimated as follows:

HD(J(f)) >
2q

q + 1
whereas HD(I∞(f)) ≤ 2q

q + 1
,

where q ≥ 2 is the maximal order of all poles of f . The idea to establish the former of
these two inequalities was to associate to the function f : CI → CI an (deterministic) infinite
CIFS whose finiteness parameter θ is equal to 2q/(q + 1). Now, we consider the situation
where we randomly choose elliptic functions from a sufficiently small neighbourhood of f , and
we thereafter generate the corresponding random Julia sets. We are going to estimate the
Hausdorff dimensions of these random Julia sets by the same number 2q/(q+1). Random Julia
sets can be defined in a more general context of arbitrary meromorphic functions.Indeed, let
T : Λ→ Λ be an invertible ergodic measurable transformation preserving a Borel probability
measure ν, and to each λ ∈ Λ ascribe a meromorphic function fλ : CI → CI such that the map
λ ∈ Λ 7→ fλ(z) ∈ CI is measurable for all z ∈ CI. For every n ≥ 1, let

fnλ := fTn−1(λ) ◦ fTn−2(λ) ◦ · · · ◦ fλ : CI → CI,



RANDOM GRAPH DIRECTED MARKOV SYSTEMS 39

where we adopt the convention that fλ(∞) =∞ for every λ ∈ Λ. The Julia set Jλ is said to
consist of all points z ∈ CI such that the family {fnλ : U → CI}n≥1 is not normal on any open
neighbourhood U of z. Clearly, Jλ ⊂ CI is a closed set and fλ(Jλ) = JT (λ).

We will restrict our attention to the more specific situation where f : CI → CI is a non-
constant elliptic function, q = qf is the maximal order of all poles of f , and fλ = λf for all
λ ∈ CI in a sufficiently small neighbourhood Λ of 1. Note that all poles of fλ coincide with
those of f . For every λ ∈ Λ, let

Iλ(∞) = {z ∈ CI : lim
n→∞

fnλ (z) =∞}.

We shall prove the following.

Theorem 5.1. Let f : CI → CI be a non-constant elliptic function. If Λ ⊂ CI is a sufficiently
small neighbourhood of 1 and T : Λ→ Λ is an arbitrary map (not necessarily measurable, not
necessarily measure-preserving), then

HD(Iλ(∞)) ≤ 2q

q + 1

for all λ ∈ Λ.

Proof. Let BR = {z ∈ CI : |z| > R}. For every pole b of f , we denote by Bλ(b, R) the
connected component of f−1

λ (BR) containing b. We also set Bb(R) := B1(b, R). Taking a
neighbourhood Λ of 1 sufficiently small, we have that Bλ(b, 2R) ⊂ Bb(R) for all λ ∈ Λ. There
exists R0 > 1 such that for all λ ∈ Λ the set BR0 contains no critical values of fλ, such that
for all R ≥ R0 and all λ ∈ Λ the sets {Bλ(b, R)}b∈f−1(∞) are simply connected and mutually
disjoint and, for z ∈ Bb(R0) and λ ∈ Λ,

fλ(z) =
λGb(z)

(z − b)qb
, (5.1)

where qb is the order of pole b and Gb : Bb(R0)→ CI is a bounded holomorphic function such
that Gb(b) 6= 0. If U ⊂ BR0\{∞} is an open simply connected set, then all the holomorphic
inverse branches f−1

λ,b,U,1, . . . , f
−1
λ,b,U,qb

of fλ are well defined on U for all λ ∈ Λ, and for every
1 ≤ j ≤ qb, all z ∈ U and all λ ∈ Λ we have∣∣∣f−1

λ,b,U,j(z)− b
∣∣∣ � |z|−1/qb (5.2)

and ∣∣∣(f−1
λ,b,U,j)

′(z)
∣∣∣ � |z|−(qb+1)/qb . (5.3)

This means that

0 < m := inf

{
|f−1
λ,b,U,j(z)− b|
|z|−1/qb

: b ∈ f−1(∞), 1 ≤ j ≤ qb, z ∈ U, λ ∈ Λ

}

≤ sup

{
|f−1
λ,b,U,j(z)− b|
|z|−1/qb

: b ∈ f−1(∞), 1 ≤ j ≤ qb, z ∈ U, λ ∈ Λ

}
=: M <∞
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and

0 < m̃ := inf

{
|(f−1

λ,b,U,j)
′(z)|

|z|−(qb+1)/qb
: b ∈ f−1(∞), 1 ≤ j ≤ qb, z ∈ U, λ ∈ Λ

}

≤ sup

{
|(f−1

λ,b,U,j)
′(z)|

|z|−(qb+1)/qb
: b ∈ f−1(∞), 1 ≤ j ≤ qb, z ∈ U, λ ∈ Λ

}
=: M̃ <∞.

Let R1 > R0 be such that

max{M, M̃}R−1/q
1 < R0. (5.4)

Given b1, b2 ∈ B2R1 ∩ f−1(∞), we denote by

f−1
λ,b2,b1,j

: B(b1, R0)→ CI

all the holomorphic inverse branches f−1
λ,b2,B(b1,R0),j, 1 ≤ j ≤ qb2 . It follows from (5.2) and (5.4)

that

f−1
λ,b2,b1,j

(B(b1, R0)) ⊂ f−1
λ,b2,B(b1,R1),j(B(b1, R1)) ⊂ B(b2,MR

−1/q
1 ) ⊂ B(b2, R0).

(5.5)

for all b1, b2 ∈ B2R1 ∩ f−1(∞) and all λ ∈ Λ. Since the series∑
b∈f−1(∞)\{0}

|b|−s

converges for all s > 2, given any t > 2q/(q + 1) there exists R2 > R1 such that

qM̃ t
∑

b∈BR2
∩f−1(∞)

|b|−((q+1)/q)t ≤ 1. (5.6)

Set

Iλ(R) := {z ∈ CI : |fnλ (z)| > R,∀n ≥ 0}.

Let R3 > 2R2 be so that for every z ∈ Iλ(R3) and every n ≥ 0 there exists a unique
zn ∈ f−1(∞) such that fnλ (z) ∈ B(zn, R0) ∩ f−1

Tn(λ),zn,zn+1
(B(zn+1, R0)). Of course, |zn| > R2

by definition. Now, set

IR = f−1(∞) ∩BR.

Let R > 2R3. It follows from (5.5), (5.2) and (5.4) that for every l ≥ 1, the family Wl defined
as{
f−1
λ,bl,bl−1,jl

◦ f−1
T (λ),bl−1,bl−2,jl−1

◦ · · ·

◦f−1
T l−1(λ),b2,b1,j2

◦ f−1
T l(λ),b1,b0,j1

(B(b0, R0)) : bi ∈ IR, 1 ≤ ji ≤ qbi , i = 0, 1, . . . , l
}
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is well defined and covers Iλ(R). Using (5.3), (5.4) and (5.6), we obtain

∑λ
l :=

∑
bl∈I

qbl∑
jl=1

· · ·
∑
b1∈I

qb1∑
j1=1

∑
b0∈I

diamt
(
f−1
λ,bl,bl−1,jl

◦ f−1
T (λ),bl−1,bl−2,jl−1

◦ · · ·

◦f−1
T l−1(λ),b2,b1,j2

◦ f−1
T l(λ),b1,b0,j1

(B(b0, R0))
)

≤
∑
bl∈I

qbl∑
jl=1

· · ·
∑
b1∈I

qb1∑
j1=1

∑
b0∈I

∥∥∥∥(f−1
λ,bl,bl−1,jl

◦ f−1
T (λ),bl−1,bl−2,jl−1

◦ · · ·

◦f−1
T l−1(λ),b2,b1,j2

◦ f−1
T l(λ),b1,b0,j1

)′∣∣∣
B(b0,R0)

∥∥∥∥t
∞

diamt(B(b0, R0))

≤
∑
bl∈I

qbl∑
jl=1

· · ·
∑
b1∈I

qb1∑
j1=1

∑
b0∈I

M̃ (l+1)t|bl−1|−t(qbl+1)/qbl · |bl−2|−t(qbl−1
+1)/qbl−1 · · ·

·|b0|−t(qb1+1)/qb1 (2R0)t

≤ (2R0)tM̃ (l+1)t
∑
bl∈I

qbl∑
jl=1

· · ·
∑
b1∈I

qb1∑
j1=1

∑
b0∈I
|bl−1|−((q+1)/q)t · · · |b0|−((q+1)/q)t

≤ (2R0)tM̃ (l+1)tql+1
(∑
b∈I
|b|−((q+1)/q)t

)l+1

≤ (2R0)t
(
qM̃ t

∑
b∈BR3

∩f−1(∞)

|b|−((q+1)/q)t
)l+1

≤ (2R0)t.

Since the diameters of the sets of the covers Wl converge uniformly to 0 when l ↗ ∞, we
infer that Ht(Iλ(R)) ≤ (2R0)t <∞ for all λ ∈ Λ. Consequently, HD(Iλ(R)) ≤ t for all λ ∈ Λ.
If we put

Iλ,R(f) :=
{
z ∈ CI : lim inf

n→∞
|fnλ (z)| > R

}
⊂
⋃
k≥1

f−kλ (ITk(λ)(R)),

then HD(Iλ(∞)) ≤ HD(Iλ,R(f)) ≤ maxk∈IN HD(ITk(λ)(R)) ≤ t for all λ ∈ Λ. Letting t ↘
2q/(q + 1) finishes the proof. 2

Applying the results proved in the previous sections, particularly Bowen’s formula, we shall
now demonstrate the following.

Theorem 5.2. Let f : CI → CI be a non-constant elliptic function. If Λ is a sufficiently small
neighbourhood of 1 endowed with a Borel probability measure ν and T : Λ→ Λ is an invertible
ergodic map preserving the measure ν, whose second iterate T 2 : Λ→ Λ is ergodic. Then

HD(Jλ) >
2q

q + 1

for ν-a.e. λ ∈ Λ.
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Proof. Choose constants R0, R1 and R2 as in the proof of Theorem 5.1. Fix a pole a ∈ B2R2

with qa = q. For every pole b ∈ f−1(∞) ∩ B2R2 with qb = q, consider for each λ ∈ Λ the
inverse branches of fλ

f−1
λ,b,a,1 : B(a,R0)→ CI and f−1

λ,a,b,1 : B(b, R0)→ CI.

In view of (5.5), we have

f−1
λ,b,a,1(B(a,R0)) ⊂ B(b, R0) and f−1

λ,a,b,1(B(b, R0)) ⊂ B(a,R0)

for all λ ∈ Λ. Since, in addition, one can prove these last two inclusions in exactly the same
way with R0 replaced by R1 > R0, the family

Φ =
{
f−1
λ,a,b,1 ◦ f−1

T (λ),b,a,1 : B(a,R0)→ B(a,R0)
}
b∈f−1(∞)∩B2R2

, λ∈Λ

forms an infinite random CIFS if we set ϕλb = f−1
λ,a,b,1 ◦ f−1

T (λ),b,a,1 and we consider the map

T 2 : Λ→ Λ rather than T . In view of (5.3), we can write

Mt �
∑

b∈f−1(∞)∩B2R2

|a|−((q+1)/q)t|b|−((q+1)/q)t �
∑

b∈f−1(∞)∩B2R2

|b|−((q+1)/q)t.

But the series
∑
b∈f−1(∞)∩B2R2

|b|−((q+1)/q)t converges if and only if t > 2q/(q+1), and therefore

θΦ = 2q/(q + 1) and EP (θΦ) =∞. Hence HD((JΦ)λ) = h > θΦ = 2q/(q + 1) for ν-a.e. λ ∈ Λ
because of Theorem 3.18. Since (JΦ)λ ⊂ J(fλ), we conclude that HD(J(fλ)) ≥ HD((JΦ)λ) >
2q/(q + 1) for ν-a.e. λ ∈ Λ. 2
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