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Abstract. In this paper we deal with the following family of exponen-
tial maps (fλ : z 7→ λ(ez − 1))λ∈[1,+∞). Denoting d(λ) the hyperbolic

dimension of fλ. It is proved in [Ur,Zd1] that the function λ 7→ d(λ) is
real analytic in (1, +∞), and in [Ur,Zd2] that it is continuous in [1, +∞).
In this paper we prove that this map is C1 on [1, +∞), with d′(1+) = 0.
Moreover we prove that8>><>>:

d′(1 + ε) ∼ −ε2d(1)−2 if d(1) < 3
2
,

|d′(1 + ε)| . −ε log ε if d(1) = 3
2
,

|d′(1 + ε)| . ε if d(1) > 3
2
.

In particular, if d(1) < 3
2
, then there exists λ0 > 1 such that d(λ) < d(1)

for any λ ∈ (1, λ0).
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1. Introduction

1.1. An overview of the problem. In this paper we deal with maps of
the form fλ : z 7→ λ(ez−1), for λ ≥ 1. As long as λ is strictly greater than 1,
0 is a repelling fixed point and there exists an attracting fixed point qλ < 0.
Those two points collapse to 0 for λ = 1, and 0 becomes parabolic. We are
interested in Jλ, the set of points that do not escape to ∞ under iterations of
fλ. The Hausdorff dimension of this set, that we denote d(λ), is an element
of (1, 2), and is called the Hyperbolic Dimension of the map fλ. Variations of
λ 7→ d(λ) with respect to λ, is an interesting feature that reflects changes in
geometry after perturbation of a dynamical system. The philosophy is that
d behaves smoothly, and even real analytically, if we perturb a conformal
hyperbolic dynamical system, in a real analytic way.

This philosophy was proposed in 1981 Rio de Janeiro’s conference by Sul-
livan [Su]. The same year Ruelle [Ru] proved that it was true for a class of
Hyperbolic Conformal Repellers. His strategy, used since then in other con-
texts, see [Ur,Zd1] for the exponential family and [Ma,Ur] for meromoprhic
functions, was the following : prove a Bowen’s formula that identifies the
dimension as the zero of a pressure function, prove that this pressure is the
logarithm of a simple and isolated eigenvalue of a Perron-Frobenius(-Ruelle)
operator, then use some results about perturbation theory of operators.

When approaching the boundary of an Hyperbolic components one can
not expect any smoothness. Nevertheless there still exists some paths along
thus we still have continuity of the Hausdorff dimension. This was first
proved by Bodart and Zinsmeister in [Bo,Zi] for the quadratic family, z 7→
z2 + c, for c ∈ R approaching 1

4 from the left. Then it has been proved
for other quadratic parameters c, [Ri], or other rational maps, [McMu2],
[Bu,Le], or in other situations see [McMu1] for Kleinian Groups, [Ur,Zd2]
for the exponential family. The strategy for such results is to control confor-
mal measures, or Patterson-Sullivan measures, in order to prove that they
converge towards the ”good” conformal/Patterson-Sullivan-measure. This
usually boils down in proving that any limiting measure is non-atomic. Note
that this strategy may also be used to proved discontinuity of the Hausdorff
dimension, or more precisely to prove convergence towards something big-
ger than the Hausdorff dimension of the ”limit set”, [Do,Se,Zi], [Ur,Zi1] and
[Ur,Zi2].

The problem of the derivative of the Hausdorff dimension is, to our knowl-
edge, investigated in two other papers than the present one. In [Ha,Zi1]
for the quadratic family it is proved that d′(c), the derivative of d(c) :=
Hdim(Jc), diverges towards +∞ as c converges towards 1

4 from the left. In



3

[Ja1], still for the quadratic family, but this time for c converging from the
right towards −3

4 , and under the realistic hypothesis that d(−3
4) < 4

3 , it
is proved that d′(c) converges towards −∞. Note that in both cases the
parabolic parameter appears to be a local maximum for the Hausdorff di-
mension. Note also that this observation seems to be false while approaching
−3

4 from the right [Ja2]. In order to control the derivative the starting point
in all those papers is first to get an exact formula for the derivative. This
is done using thermodynamic formalism by differentiating the Bowen’s for-
mula. Then some uniform estimates of distorsion in a neighborhood of the
fixed point are used in order to control measures of fondamental annuli.
Conclusions then comes from a precise analysis of a certain integral. This
is that last point that explains why such a study has not been yet done in a
more general setting. In the present paper, as well as in [Ha,Zi1] and [Ja1],
some very particular properties of the case studied are used to conclude.

1.2. Main result. When one notes that if τλ denotes the translation by −λ,
then we have fλ ◦ τλ = τλ ◦ gλ, with gλ(z) = α(λ)ez and α(λ) = λe−λ, this
philosophy (real analyticity of d) is in [Ur,Zd1] proved to be the case. More
precisely, it is proved there that d : λ 7→ d(λ) is real-analytic on (1,+∞),
and in [Ur,Zd2], that it is continuous on [1,+∞). In this paper we study the
asymptotic behavior of the function λ 7→ d′(λ), and we prove the following.

Theorem 1.1. There exist λ0 > 1 and K > 1 such that ∀λ ∈ (1, λ0)
−1
K (λ− 1)2d(1)−2 ≤ d′(λ) ≤ −K(λ− 1)2d(1)−2 if d(1) < 3

2 ,
|d′(λ)| ≤ K(λ− 1) log 1

λ−1 if d(1) = 3
2 ,

|d′(λ)| ≤ K(λ− 1) if d(1) > 3
2 .

In particular the function λ 7→ d(λ) is C1 on [1,+∞), with d′(1) = 0.

Remark : Conjugating fλ by the translation τλ, this result takes on the
following form for the family ε 7→ (1− ε)e−1ez. Let D(ε) be the hyperbolic
dimension of z 7→ (1− ε)e−1ez, then D′(ε) ∼ εd(1)−

3
2 if D(0) < 3

2 ,
|D′(ε)| . log 1

ε if D(0) = 3
2 ,

|D′(ε)| . K if D(0) > 3
2 .

In particular, note that the result under condition D(0) < 3
2 , is exactly the

same as the one in [Ha,Zi1] for the family c 7→ z2 + c, with c < 1
4 . For this

last family we were able to prove that d(1
4) < 3

2 , see [Ha,Zi2]. Inequality
that we do not know for the exponential family.

Note also that if d(1) < 3
2 then we have a control on the sign of the

derivative in a right neighborhood of 1. It asserts that d(1+) is a local
maximum of the Hyperbolic Dimension.

The proof of the main result will follow exactly the same lines as the one of
[Ha,Zi2], but will make an extensive use of the Thermodynamic Formalism
for Meromorphic Functions, as developed by, Urbański, Urbański and Kotus,
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Urbański and Zdunik, and Urbański and Mayer. The reader will find in
[Ma,Ur] all proofs of results we need in this paper, as well as a complete
bibliography on the subject.

1.3. Organization of the paper. In the first part we use Chapter 8 of
[Ma,Ur] to get a formula for d′(λ), for any λ ∈ (1,+∞). This mainly consists
of conjugating the dynamics and differentiating the pressure.

In the second part we collect some estimates of the distortion around the
fixed point 0. They are crucial since the formula obtained in the first part of
this paper involves two integrals with respect to an invariant measure that
has unbounded Radon-Nikodym derivative with respect to the Hausdorff
measure, in any neighborhood of 0.

In the third part we use those estimates to control the integrals and to
prove the main result.

In the first appendix we prove the estimates used in the second part of
this paper in a more general setting than needed in this paper. Namely, we
allow the repelling fixed point to converge towards a parabolic fixed point
with several petals. The second appendix is devoted to the study of partial
sums of some sequences that will be needed several times in the paper.

2. A formula for the derivative of the function λ 7→ d(λ)

In this section we will prove the following formula

Proposition 2.1. For any λ ∈ (1,+∞) we have

(2.1) d′(λ) = −d(λ)
χµλ

(
1− 1

λ

)∫
Jλ

+∞∑
k=1

Re
(

1
(F kλ )′

)
dµλ·,

where µλ is the only equilibrium measure for the potential −d(λ) log |F ′λ|.

Before proving this Proposition we introduce some notation and prove
some results concerning the thermodynamical formalism for that family of
exponential maps.

2.1. Thermodynamic formalism. Let P be be the cylinder {z ∈ C | −π <
Im z < π}. As it is done in [Ur,Zd1] we associate to fλ the map Fλ : P → P
defined by

Fλ ◦ π = π ◦ fλ,
with π being the natural projection on the cylinder P = C/ ∼, with z1 ∼ z2
if and only if (z1 − z2) = 2ikπ, for some k ∈ Z. In particular for any
z ∈ P we have fλ(z) = Fλ(z), and Fλ(z) = Fλ(z′) if and only if there exists
k ∈ Z such that fλ(z) − fλ(z′) = 2ikπ. This tells us that for any z ∈ P ,
we have F−1

λ (z) = {zk ∈ P | fλ(zk) = z + 2ikπ, k ∈ Z}. We also see that
J(Fλ) = π(J(fλ)) = J(fλ) ∩ P .

Let us now introduce some notation and collect some results, where we
mainly refer to [Ma,Ur], see also [Ur,Zd1], [Ur,Zd2], [Ur].
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- For any λ ≥ 1 we define Lλ,t, the Perron-Frobenius operator associated
with the potential −t log |F ′λ|. It acts on Hλ

α, the set of bounded α-Hölder
functions defined on J(Fλ), in the following way, let g ∈ Hλ

α, and z ∈ J(Fλ)

Lλ,t(g)(z) =
∑

Fλ(y)=z

1
|(Fλ)′(y)|t

g(y)

=
∑
k∈Z

1
|z + λ+ 2ikπ|t

g(zk), with zk ∈ P such that fλ(zk) = z + 2ikπ·

- The only d(λ)-conformal measure supported on Jλ is denoted mλ
1.

- The only equilibrium measure for the potential −d(λ) log |F ′λ| and the
dynamical system (Jλ, Fλ) is denoted µλ.

-The pressure of the potential −t log |F ′λ| is denoted P (λ, t), and is defined
by

P (λ, t) = sup{hµ − tχµ},
where the supremum is taken over all invariant probability measures µ sup-
ported on J(Fλ), such that χµ < +∞, where hµ denotes the metric entropy
of the measure µ, and χµ =

∫
log |F ′λ|dµ is its Lyapunov exponent.

We will derive our formula for d′(λ) starting from Bowen’s formula that
asserts that for any λ > 1, d(λ) is the only real number so that P (λ, d(λ)) = 0
(see [Ur,Zd1]). We want to differentiate this formula with respect to λ, and
in order to do so we need to appropriately conjugate the dynamics of Fλ.

- Let λ0 > 1 be fixed. For any λ > 1, we denote hλ the conjugating map
from Jλ0 to Jλ such that Fλ ◦ hλ = hλ ◦ Fλ0 .

- We then set : ϕλ,t := −t log |F ′λ ◦ hλ|. It is a potential which is defined
on Jλ0 . We then use Corollary 8.10 in [Ma,Ur] that tells us that (λ, t) 7→
P0(ϕλ,t) is real analytic for λ close enough to λ0

2. Bowen’s formula then
implies that ∂

∂λ
P0(ϕλ,d(λ)) = 0. It is this calculation that leads to the desired

formula.

2.2. Proof of the formula. Let λ0 > 1 be fixed and let hλ denote the
conjugating map : Fλ ◦ hλ = hλ ◦ Fλ0 . Since µλ is the equilibrium measure
for the potential −d(λ) log |F ′λ|, we deduce that the potential ϕλ,d(λ) has
a unique equilibrium measure which is µ̃λ := hλ∗(µλ). We shall now use
Theorem 6.14 in [Ma,Ur] which asserts that given a tame function ϕ and a
weakly tame function ψ we have

∂

∂t
P0(ϕ+ tψ)| t=0 =

∫
ψ
dµϕ,(2.2)

1We refer to section 3 of this paper for a definition and more details about conformal
measures.

2We denote here P0 the pressure with respect to the dynamical system (Jλ0 , Fλ0).
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with µϕ the equilibrium measure for the potential ϕ. We refer to chapter 4
of [Ma,Ur] for definition of tame and loosely tame functions. By Lemma 8.9
in [Ma,Ur], we know that that for R > 0 small enough, there exists β > 0
such that ∀λ ∈ (λ0 −R, λ0 +R) ϕλ,t is β-tame. We then deduce from (2.2)
that

0 =
∂

∂λ
P0(ϕλ,d(λ)) =

∫
Jλ0

∂

∂λ

(
ϕλ,d(λ)

)
dµ̃λ.(2.3)

We thus have to compute ∂
∂λϕλ,d(λ). Note that

ϕλ,d(λ) = −d(λ) log |F ′λ ◦ hλ| = −d(λ)(log λ+Re hλ).
Differentiating with respect to λ we get

∂

∂λ
ϕλ,d(λ) = −d′(λ) log |F ′λ ◦ hλ| − d(λ)

(
1
λ

+Re ∂

∂λ
hλ

)
·(2.4)

Lemma 2.2. For any λ ∈ (1,+∞) and any z ∈ Jλ0 we have

(2.5)
∂

∂λ
hλ(z) =

(
1− 1

λ

) +∞∑
k=1

1
(F kλ )′(hλ(z))

− 1
λ
·

In order to prove this formula we use two results from [Ur], Lemma 13.2
and Proposition 13.4, that we give in the following Lemma

Lemma 2.3. For any λ0 ∈ (1,+∞) one can find R > 0, K > 0, and α > 0
such that

(2.6) ∀λ ∈ B(λ0, R) ∀n ∈ N ∀z ∈ Jλ |(Fnλ′)′(z)| ≥ K(1 + α)n·

(2.7) ∀λ ∈ B(λ0, R) ∀z ∈ Jλ
∣∣ ∂
∂λ
hλ(z)

∣∣ < K·

We can now prove Lemma 2.2.

Proof. In order to simplify notation, we write ḣλ instead of ∂
∂λhλ, and we

drop z. We start with the conjugating formula : hλ ◦ Fλ0 = Fλ ◦ hλ =
λ(ehλ − 1), that we differentiate with respect to λ. We thus get,

ḣλ ◦ Fλ0 = Ḟλ ◦ hλ + ḣλF
′
λ ◦ hλ.

So that we have

ḣλ =
ḣλ ◦ Fλ0

F ′λ ◦ hλ
− Ḟλ ◦ hλ
F ′λ ◦ hλ

·

Iterating this formula we end up for n ∈ N with

ḣλ(z) =
ḣλ ◦ Fnλ0

(Fnλ )′ ◦ hλ
−

n∑
k=1

Ḟλ ◦ F k−1
λ ◦ hλ

(F kλ )′ ◦ hλ
·

Using Lemma 2.3 we deduce that

ḣλ(Fnλ0
(z))

(Fnλ )′(hλ(z))
is converging towards 0·
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On the other hand, since Ḟλ(z) = ez − 1 = 1
λF

′
λ(z)− 1, for any k we have

Ḟλ ◦ F k−1
λ

(F kλ )′
=

1
λ

1
(F k−1

λ )′
− 1

(F kλ )′
·

This leads to
n∑
k=1

Ḟλ ◦ F k−1
λ

(F kλ )′
=

1
λ
− 1

(Fnλ )′
+
(

1
λ
− 1
) n−1∑
k=1

1
(F kλ )′

·

Using (2.6) in Lemma 2.3 we get that the series on the left above is converg-
ing towards

+∞∑
k=1

1
(F kλ )′

,

which finishes the proof.
Using (2.4) and Lemma 2.2 in (2.3) we get

−d′(λ)
∫
Jλ0

log |F ′λ|dµ̃λ − d(λ)
(

1− 1
λ

)∫
Jλ0

Re
∑
k≥1

1
(F kλ )′ ◦ hλ

= 0·(2.8)

for any function g continuous on Jλ we have µ̃λ(g ◦ hλ) = µλ(g), We deduce
from (2.8) that Proposition 2.1 is true.

3. Local dynamic and uniform estimates

In this section we introduce some notations and collect estimates proved in
the appendix in a more general setting3. We then use these estimates in order
to control uniformly conformal measures (mλ) and equilibrium measures
(µλ).

3.1. Notation. We know that Jλ ∩ P ⊂ {z ∈ C | − π
2 < Im z < π

2 }.

Given 0 < θ < π
2 we denote Sθ the sector {reiα | r > 0, −θ < α < θ }.

For r0 << 1 we fix 0 < θ < π
2 to be such that J1 ∩ B(0, r) ⊂ Sθ. Then we

choose ε0 > 0 small enough so that for any 0 ≤ λ = 1 + ε ≤ λ0 = 1 + ε0
we have f−1

λ (Sθ) ⊂ Sθ and Jλ ∩ B(0, r) ⊂ Sθ. We then set γ0 = {r0eit | t ∈
]−θ, θ[}, γ1(λ) = f−1

λ (γ0). Joining r0eiθ with f−1
λ (r0eiθ) by a line, and doing

the same with r0e−iθ and its image by f−1
λ , we get a cell C0(λ). It is a simply

connected domain. A compactness argument tells us that if 1 ≤ λ ≤ λ0,
then there exists a simply connected domain V ⊂ Sθ such that the closure of
∪λC0(λ) is a subset of V . In particular, Kœbe distorsion Theorem gives us
a constant K > 1 only depending on r0 and λ0 such that for any univalent
function h on V and any point x and y in ∪λC0(λ) we have 1

K ≤ |h′(x)|
|h′(y)| ≤ K.

We will use later on this fact with inverse branches of fnλ . They are well

3We deal in the appendix with a family of germ of holomorphic in a neighborhood of
a repelling fixed point which degenerates into a parabolic fixed point with p petals.



8 GUILLAUME HAVARD, MARIUSZ URBAŃSKI, MICHEL ZINSMEISTER

defined on V since the post-singular set of the fλ’s, i.e. the orbit −λ under
fλ, is a subset of (−∞, 0).

We then define for each integer n the set Cn(λ) := f−nλ (C0(λ)), with
f−nλ being the inverse branch of fnλ defined on B(0, r0) that fixes 0. In the
following we are working with respect to measures concentrated on Jλ of
dimension strictly greater to 1. One checks easily in that context that with
respect to such measure (Cn(λ))n∈N∪{0} is a partition of B(0, r0). Moreover
the set C0(λ) is mapped univalently by f−nλ to Cn(λ).

Let Nε be an integer4 and defined the sequence (an,ε)n∈N as an,ε = 1
n , if

n ≤ Nε, and an,ε = ε(1 + ε)−n, if n ≥ Nε. Note that an,ε → 0. In
order to simplify notations, we let an := an,ε. We consider now the one
parameter familly of sequences, (an(α))n∈N, defined for n ∈ N by an(α) :=
aαn. We are also interested in partial sums of

∑
an(α). For k ≤ n we let

Sk,n(α) :=
∑n

l=k al(α). The sequence (an(α)) will describe, for different
values of α, the distorsion around 0, the conformal measure of partition
sets of a neighborhood of 0, and the partial sums Sk,n(α) will play a role
in controlling the invariant measure of the same partition sets, as well as
evaluating the integral which is crucial in order to get our main result. Those
estimates are easy and we use them in this section but we postponed their
proofs to the appendix.

3.2. Uniform estimates of the distorsion. In this section we give uni-
form estimates depending on λ for the local dynamics next to the repelling-
parabolic fixed point 0. We recall that the family we are studying is given
for λ := 1 + ε ≥ 1 by fλ(z) = λ(ez − 1). In particular, in a neighborhood of
0, the local dynamic is given by the following Taylor expansion

Fλ(z) = fλ(z) = λz + z2 + z3gλ(z)·
With gλ(z) uniformly bounded, independently of λ, as soon as a neighbor-
hood of zero has been fixed. Note in particular that for ε = 0 , the point 0
is a parabolic fixed point with one petal.

We apply the general results of the first appendix of this paper to this special
family fλ. In the remaining of the paper we set λ = 1+ ε and we denote the
relevant quantities by indexing them equally well either by ε or λ. Moreover,
in the remainder of this section F−nλ will be the inverse branch of F−nλ that
fixes 0. From Proposition 5.7 we deduce that

Proposition 3.1. Let 0 < r0, 1 < λ0 being fixed. Then there exists K > 1
such that ∀λ ∈ (1, λ0), ∀z ∈ C0(λ), and ∀n ∈ N

1
K
an(2) ≤ |(F−nλ )′(z)| ≤ Kan(2)·

The following result is technical but will be crucial in order to control the
sign of the derivative d′(λ).

4In our study we have Nε ∼ 1
ε

= 1
λ−1

·
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Lemma 3.2. Let 0 < r0, 1 < λ0 being fixed. There exists an integer N such
that ∀n > N , ∀k ∈ N ∩ [1, n−N ], ∀λ ∈ (1, λ0) and ∀z ∈ Cn(λ)

√
3

2
|(F kλ )′(z)| ≤ Re (F kλ )′(z)·

Proof. Let z ∈ Cn and θk(z) = arg(F kλ )′(z). The Lemma boils down to
proving that |θk(z)| ≤ π

6 .
One computes that (F kλ )′(z) =

∏k−1
j=0 F

′
λ(F

j
λ(z)) = λk exp(

∑k−1
j=0 F

j
λ(z)). So

that we have θk(z) =
∑n−1

j=0 Im (F jλ(z)). Since F jλ(z) belongs to Cn−j we
may use Corollary 5.8 which asserts that |Im (Z)| . 1

(n−j)2 for any Z ∈
Cn−j . We thus have

|θk(z)| .
n−k∑
j=1

1
(n− j)2

≤
+∞∑
j=N

1
j2
.

This is less than π
6 if N is big enough and we are done.

We end this section with two more estimates of the distorsion. The first
one needs the following observation on the localization of J(fλ).

Lemma 3.3. For every R > 0 there exists ∆ > 0 such that for all λ > 1,

J(fλ) \
+∞⋃

n=−∞
B(2πni,R) ⊂ {z ∈ C : Re z ≥ ∆}.

Proof. First notice that

fλ({z ∈ C : Re z < 0}) = B(−λ, 1) ⊂ {z ∈ C : Re z < 1−λ} ⊂ {z ∈ C : Re z < 0}.
Thus

(3.1) {z ∈ C : Re z < 0} ⊂ F(fλ) := Fatou set of fλ.

Now write z = x+ iy. Then

Re (fλ(z)) = Re (λ(ex cos y + ie6x sin y − 1)) = λ(ex cos y − 1).

Note that there exists ∆1 > 0 so small that if 0 < x < ∆1 and x + iy /∈⋃+∞
n=−∞B(2πni,R), then dist(y, {2πni : n ∈ Z}) > R/2, and consequently,

cos y < cos(R/2). Hence, Re (fλ(z)) < λ(e∆1 cos(R/2) − 1). Take now
0 < ∆ ≤ ∆1 so small that e∆ cos(R/2) < 1. So Re (fλ(z)) < 0 and, by
(3.1), fλ(z) ∈ F(fλ). Therefore we have proved that

{z ∈ C \
+∞⋃

n=−∞
B(2πni,R) : Re z < ∆} ⊂ F(fλ).

We are done.
Now notice that if Re z ≥ ∆, then

|f ′λ(z)| = λeRe z ≥ λe∆ > 1.

Combining this and Lemma 3.3, we obtain the following.
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Lemma 3.4. For every R > 0 there exists γ > 1 such that for every z ∈
J(Fλ) \B(0, R),

|F ′λ(z)| ≥ γ.

Using Proposition 5.7, Lemma 3.4 and the same reasoning as for the proof
of Lemma 3.6 in [Ha,Zi1] we prove the following result

Lemma 3.5. There exist 0 < r0, 1 < λ0 and 1 < K such that ∀λ ∈ (1, λ0)
and ∀z ∈ Jλ,

Fnλ (z) /∈ B(0, r0) ⇒ Kn2 ≤ |(Fnλ )′(z)|.

3.3. Conformal measures. Let us recall that a probability measure mλ is
called conformal if its strong Jacobian is equal to |F ′λ|d(λ). This means that
for any measurable set A on which fλ is 1-1 we have

(3.2) mλ(Fλ(A)) =
∫
A
|F ′λ|d(λ)dmλ·

Those measures are usually a powerful tool to study Hausdorff dimension of
Julia sets. In fact their definition is dynamical but they very often carry a
geometrically significant information about the Julia set. In many of cases
they coincide (up to a multiplicative constant) with Hausdorff or packing
measures on the Julia set.

Using Proposition 5.7 and the notation introduced below we get the fol-
lowing.

Proposition 3.6. Let 0 < r0, 1 < λ0 being fixed. Then there exists K > 1
such that ∀λ ∈ (1, λ0), and ∀n ∈ N

1
K
an(2d(λ)) ≤ mλ(Cn(λ)) ≤ Kan(2d(λ))

Proof. This is not difficult when one observes that for each λ the function
Fnλ is univalent on Cn(λ). In particular using the definition of a conformal
measure we deduce that :

(3.3) mλ(C0(λ)) = mλ(Fnλ (Cn(λ))) =
∫
Cn(λ)

|(Fnλ )′|d(λ)dmλ.

We then use estimates of Proposition 3.1, since |(Fnλ )′| on Cn(λ) is com-
parable with |(F−nλ )′|−1 on C0(λ). We deduce that there exists a constant
K > 0 such that for any z ∈ C0(λ)

(3.4)
1
K
|(Fnλ )′(z)|−d(λ) ≤ mλ(Cn(λ)) ≤ K|(Fnλ )′(z)|−d(λ)·

We can now conclude the proof by using again Proposition 5.7.

Remark : Let m∞ be any accumulation point of the family of probability
measures (mλ)λ>1. Let (λn) be a sequence of real numbers converging from
above towards 1 such that the sequence (mλn) converges weakly to m∞, and
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(d(λn)) converges to some d ≥ 0. For any r > 0 one may find N(r) such
that

∀n ≥ N(r) B(0, r) ∩ Jλn ⊂ {0}
⋃
∪k≤N(r)Ck(λn)

And in particular we conclude if r > 0 is such that m∞({|z| = r}) = 0, that
we have

m∞(B(0, r)) = lim
n→∞

mλn(B(0, r)) ≤ lim
n→∞

∑
k>N(r)

mλn(Ck(λn)) ≤
K

N(r)2d(λn)−1
·

So that we conclude that that m∞ has no atom at 0. And it is one of the
main point in order to conclude that d(λ) → d(1) when λ→ 1, see [Ur,Zd2].

We end this section about conformal measures with a technical Lemma.
It will be used in the next section concerning invariant measures.

Before stating and proving this result we recall that P = {z ∈ C | −
iπ < Im z ≤ iπ}. And for any M > 0 and any r > 0 we introduce the
following notation : PM := {z ∈ P |Re z ≤ M}, Br := P \ B(0, r) and
Br,M := PM ∩ Br.

Lemma 3.7. There exists 0 < α < β such that ∀M ≥ 2, ∀λ ∈ [1, λ0], with
λ0 <

π
3 , ∀r ∈]0, π3 − λ0] and ∀A ⊂ B(0, r) measurable, we have

(3.5) αmλ(A) ≤ mλ(F−1
λ (A) ∩ Br) ≤ βmλ(A).

and

(3.6) mλ(F−1
λ (A) ∩ Br,M ) ≤ mλ(F−1

λ (A) ∩ Br) ≤ 54βmλ(F−1
λ (A) ∩ Br,M ).

Proof. LetBk be the connected component of F−1
λ (B(0, r)) such that fλ(Bk) =

B(2ikπ, r). For any z ∈ Bk we have :

(3.7) |F ′λ(z)| = |f ′λ(z)| = |fλ(z) + λ| = |λ+ 2ikπ + aeiθ|,

with a < r and 0 ≤ θ < 2π. With our assumptions this leads, for |k| ≥ 1, to

(3.8) 2|k|π − π

3
≤ |F ′λ(z)| = |f ′λ(z)| ≤ 2|k|π +

π

3
·

Since |f ′λ(z)| = λ exp(Re z), we also get, for any |k| ≥ 1, that

∀z ∈ Bk log 5 ≤ Re z·

As a consequence we see that F−1
λ (B(0, r)) ∩ Br = ∪|k|≥1Bk.

The measure mλ being conformal we have

mλ(A) = mλ(Fλ(Ak)) =
∫
Ak

|F ′λ|d(λ)dmλ,

And from (3.8) we deduce that

(3.9)
mλ(A)

(2|k|π + π
3 )d(λ)

≤ mλ(Ak) ≤
mλ(A)

(2|k|π − π
3 )d(λ)

,
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so that
(3.10)

2mλ(A)
∑
k≥1

1
(2kπ + π

3 )d(λ)
≤ mλ(F−1

λ (A)∩Br) ≤ 2mλ(A)
∑
k≥1

1
(2kπ − π

3 )d(λ)
·

The function λ 7→ d(λ) being continuous on [1, λ0] one may consider its
minimum δ which is strictly greater than 1. With α = 2

∑
k≥1

1
(2kπ+π

3
)2

and

β = 2
∑

k≥1
1

(2kπ−π
3
)δ we have :

αmλ(A) ≤ mλ(F−1
λ (A) ∩ Br) ≤ βmλ(A).

This is (3.5).
Note that (3.8) tells us that for any z ∈ B1 we have Re z ≤ log(2π+ π

3 ) <
2 ≤M . This implies that B1 ⊂ Br,M . In particular we have

mλ(A1) ≤ mλ(F−1
λ (A) ∩ Br,M )·

We then deduce from (3.9) that
mλ(A)

(2π + π
3 )2

≤ mλ(F−1
λ (A) ∩ Br,M )·

Together with (3.5) we conclude that

mλ(F−1
λ (A) ∩ Br) ≤ (2π +

π

3
)2βmλ(F−1

λ (A) ∩ Br,M )·

Since (2π+ π
3 )2 ≤ 54 we conclude that the left hand side inequality of (3.6)

holds. The right hand side being obvious the proof is finished.

3.4. Invariant measures. Let us first recall that µλ = ρλmλ is the unique
Fλ-invariant probability measure equivalent with mλ. This measure is also
the unique equilibrium state for the potential −d(λ) log |F ′λ| i.e.

hµλ
− d(λ)

∫
log |F ′λ|dµλ = sup{hµ − d(λ)

∫
log |F ′λ|dµ},

where supremum is taken over all Fλ-invariant ergodic probability measures
such that)

∫
log |F ′λ|dµ < +∞. The function ρλ is obtained in [Ma,Ur] as

the limit of the sequence Lnλ(1). The main results of this section is

Proposition 3.8. Let 0 < r0, 1 < λ0 being fixed. Then there exists K > 1
such that ∀λ ∈ (1, λ0), and ∀n ∈ N

i- 1
K an(2d(λ)− 1) ≤ µλ(Cn(λ)) ≤ Kan(2d(λ)− 1) if n ≤ Nε.

ii- 1
K
an(2d(λ))

ε ≤ µλ(Cn(λ)) ≤ K an(2d(λ))
ε if n ≥ Nε.

Proof. Let Br := P \ B(0, r). We know that µλ(Br) > 0 so that the first
return time Nλ,r(z) := inf{n ≥ 1 |Fnλ (z) ∈ Br} is finite µλ-almost-surely.
Let Bλ,n := {Nλ,r = n}. We recall that the sets (Cn) are introduced at
the beginning of this section. Note that for r small enough we have Bλ,n ∩
B(0, r) = Cn(λ). Since µλ is Fλ-invariant its restriction to Br is invariant
for the first return map in Br, that we denote Tλ. Moreover, µλ can be built
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from this Tλ-invariant measure and this leads, for any measurable set A, to
the formula

µλ(A) =
∑
n≥1

n−1∑
k=0

µλ(F−kλ (A) ∩ Bn ∩ Br).

We are interested in the sets Cl for which we get

µλ(Cl) =
∑
n≥1

n−1∑
k=0

µλ(F−kλ (Cl) ∩ Bn ∩ Br).

Note now that the set F−kλ (Cl)∩Bn∩Br is empty unless n > l and k = n− l.
In this case we have F−(n−l)

λ (Cl) ∩ Bn ∩ Br = F−1
λ (Cn−1) ∩ Br. We thus

conclude that
µλ(Cl) =

∑
n≥l

µλ(F−1
λ (Cn) ∩ Br)·

In Corollary 3.10, that we admit for the moment, we show that there exists
K1 > 0, independent of λ, such that for any A ⊂ B(0, r) we have

1
K1

mλ(A) ≤ µλ(F−1
λ (A) ∩ Br) ≤ K1mλ(A)·

So,
1
K1

∑
n≥l

mλ(Cn) ≤ µλ(Cl) ≤ K1

∑
n≥l

mλ(Cn).

From Proposition 3.6 we deduce that there exists K2 > 0 such that

1
K2

∑
n≥l

∑
n≥l

an(2d(λ)) ≤ µλ(Cl) ≤ K2

∑
n≥l

an(2d(λ)).

With the notations used in the appendix this is exactly

1
K2

Sl,+∞(2d(λ)) ≤ µλ(Cl) ≤ K2Sl,+∞(2d(λ))·

We the use Corollary 5.10 to finish the proof.

Lemma 3.9. There exists K > 0 such that for all ε > o, r > 0 small
enough, and for all M > 0 big enough we have,

1
K
≤ ρλ ≤ K on Br,M , and ρλ ≤ K on Br·

From this Lemma and Lemma 3.7 we easily conclude this.

Corollary 3.10. There exists K > 0 such that for all positive r and ε small
enough, and for any measurable set A ⊂ B(0, r) we have

1
K
mλ(A) ≤ µλ(F−1

λ (A) ∩ Br) ≤ Kmλ(A)·



14 GUILLAUME HAVARD, MARIUSZ URBAŃSKI, MICHEL ZINSMEISTER

Proof. Let r > 0 and ε > 0 be small enough so that the assertions of
Lemmas 3.7 and 3.9 hold. Let K > 0 coming from Lemma 3.9 be larger
than max{β, α−1}, both α and β coming from Lemma 3.7. By Lemma 3.7
we know that for any A ⊂ B(0, r) we have

1
K
mλ(F−1

λ (A) ∩ Br) ≤ mλ(A) ≤ Kmλ(F−1
λ (A) ∩ Br)·

From the right hand side inequality in Lemma 3.9 we know that

µλ(F−1
λ (A) ∩ Br) ≤ Kmλ(F−1

λ (A) ∩ Br)·
These two inequalities give us

µλ(F−1
λ (A) ∩ Br) ≤ K2mλ(A)·

For the other inequality we first note that Lemma 3.7 also asserts that
1
K
mλ(F−1

λ (A) ∩ Br,M ) ≤ mλ(F−1
λ (A) ∩ Br) ≤ Kmλ(F−1

λ (A) ∩ Br,M )·

Since Lemma 3.9 implies that
1
K
mλ(F−1

λ (A) ∩ Br,M ) ≤ µλ(F−1
λ (A) ∩ Br,M ) ≤ Kmλ(F−1

λ (A) ∩ Br,M ),

we conclude that

mλ(A) ≤ Kmλ(F−1
λ (A)∩Br) ≤ K2mλ(F−1

λ (A)∩Br,M ) ≤ K3µλ(F−1
λ (A)∩Br,M )·

We easily deduce that

mλ(A) ≤ K3µλ(F−1
λ (A) ∩ Br)·

This is the left hand side inequality of the Corollary and its proof is finished.

Proof. Before starting the proof of Lemma 3.9 we sketch the strategy. We
first use a result of Urbański and Zdunik, Lemma 3.4 in [Ur,Zd1], that asserts
that as long as we stay far away from the post-singular set, iterates of Lλ
are uniformly bounded from above by a constant that does not depend on
λ. This gives us that ρλ is bounded from above in some Br. And this allows
us to prove that for r and ε small enough, and for M big enough we have

1
2
≤ µλ(Br,M ) ≤ 1.

In order to control ρλ on Br,M we use Kœbe’s distortion Theorem on Br,M
and prove that the measures mλ have the bounded distortion property on
Br,M , with a constant which only depends on r andm. This implies, see [Ma]
(compare [Ha] Propositions 1.2.7 and 1.2.8), that there exists an Fλ-invariant
measure νλ which gives mass 1 to Br,M and which is equivalent with mλ. Its
Radon-Nikodym derivative is such that 1

K ≤ dνλ
dmλ

≤ K on Br,M , with some
K > 0 independent of λ. Since mλ is ergodic and conservative, there is, up
to a multiplicative constant, only one possible invariant measure equivalent
to it. This means that µλ = αλνλ. Integrating on Br,M we conclude that
αλ = µλ(Br,M ). This leads to 1

2K ≤ ρλ ≤ K.
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We now go into further details. Note that the singular set of Fλ is the
one point −λ which sequence of iterates converges towards 0 from the left.
In particular Br,M is a simply connected domain on which inverse branches
of Fλ are well defined. Since Jλ is a subset of {−π

2 ≤ Im z ≤ π
2 } one may

find an open simply connected domain Ur,M such that : ¯Ur,M ⊂ B r
2
,2M and

Jλ ∩ Br,M ⊂ Ur,M . We have thus an annulus B r
2
,2M \ Ur,M and an associate

Kœbe constant
√
Kr,M . We conclude that for any λ and any n ∈ N we have

(3.11) ∀x ∈ Ur,M ∀y ∈ Ur,M
1

Kr,M
≤
Lnλ(1)(x)
Lnλ(1)(y)

≤ Kr,M ·

Since for a measurable set A we have mλ(F−nλ (A)) =
∫
Lnλ(1)dmλ, we con-

clude, if A ⊂ Ur,M , that

1
Kr,M

mλ(A)
mλ(Ur,M )

≤
mλ(F−nλ (A))

mλ(F−nλ (Ur,M ))
≤ Kr,M

mλ(A)
mλ(Ur,M )

·

This is precisely the bounded distortion property for mλ on Ur,M as it is
used in [Ha]. Since (Jλ, Fλ,mλ) is ergodic and conservative there is, up to a
multiplicative constant, only one invariant measure equivalent with mλ. Let
νλ be the one that gives mass 1 to Br,M . It follows from Propositions 1.2.7
and 1.2.8 in [Ha] that

mλ-almost surely on Br,M
1

Kr,M
≤ dνλ
dmλ

≤ Kr,M ·

The measures µλ and νλ only differ by a multiplicative constant which can
be computed by integrating the function 1 over Br,M . We deduce that
µλ = µλ(Br,M )νλ and we conclude that

(3.12) mλ-almost surely on Br,M
µλ(Br,M )
Kr,M

≤ ρλ ≤ Kr,Mµλ(Br,M ).

Using inequalities (3.11) one may now adapt the reasoning of Lemma 3.4
in [Ur,Zd1] to our situation. Let M be large enough and r small enough so
that : logM−1

2 ≥ r and for all λ ∈ [1, λ0] if Re z > M then Lλ(1)(z) ≤ 1.
The purpose of the first requirement is the following

(3.13) ∀z ∈ P (Re z > M and Fλ(y) = z) ⇒ |y| > r (i.e. y ∈ Br)·
We prove by induction that Hn is true for all n with

Hn ⇔ ||Lnλ(1)χBr ||∞ ≤
Kr,M

mλ(Br,M )
·

Notice that H0 is obvious and assume that Hn is true. Since Lλ(1)(z) ≤∑
k≥Re z

2
kd(λ)

, and since d(λ) is converging towards d(λ0), one deduces that
Lλ(1)(z) is, uniformly in λ, converging towards 0 as Re z →∞. We deduce
that ||Lλ(1)χBr ||∞ is achieved for some z1 ∈ Br. An easy induction leads,
for all integers n ≥ 0, to the existence of some zn ∈ Br such that

||Lnλ(1)χBr ||∞ = Lnλ(1)(zn)·
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Consider zn+1 and assume that it lies in Br,M . Then we have

1 =
∫
Ln+1
λ (1)dmλ ≥

∫
Ln+1
λ (1)χBr,M

dmλ ≥
Ln+1
λ (1)(zn+1)
Kr,M

mλ(Br,M )·

The last inequality is an application of (3.11) and we conclude that Hn+1 is
true. But zn+1 might be with a real part greater than M . In this case we
have

Ln+1
λ (1)(zn+1) = Lλ(Lnλ(1))(zn+1) ≤ Lnλ(1)(zn)Lλ(1)(zn+1) ≤ Lnλ(zn)·

Those inequalities are implied by our assumptions onM and r that ensure us
first, that any pre-image of zn+1 is in Br, and second, that Lλ(1)(zn+1) ≤ 1.
We may now apply our inductive assumption to conclude that Hn+1 is true
so that this hypothesis is true for any integer n. Let αr,M,λ0 be defined as
the infimum of the set (mλ(Br,M )) where λ ∈ [1, λ0]. Since λ 7→ mλ(Br,M )
is continuous on [1, λ0], this infimum is achieved and is strictly greater than
0. Fix r small and chose M(r) such that all assumptions are fulfilled and
set Cr,λ0 = Kr,M(r)

αr,M(r),λ0
. We deduce from our analysis that limn→∞ Lnλ(1) =

ρλ ≤ Cr,λ0 on Br. We have thus proved the left hand side inequality of
Lemma 3.9. In order to finish the proof of this Lemma we need to prove
that 1

K ≤ ρλ ≤ K on Br,M . By (3.12) this will be done if one can prove that
µλ(Br,M ) ≥ 1

2 for suitable r and M .
Since we know that ρλ ≤ Cr,λ0 on Br, we may already use the left-hand

side inequalities of Proposition 3.8. In particular for any n we have

µλ(Cn) ≤
Cr,λ0

n2δ−1
with 1 < δ = inf{d(λ)}, well defined by continuity.

Let now N be big enough so that∑
n≥N

1
n2δ−1

≤ 1
4Cr,λ0

·

Chose r′ small enough so that for any λ ∈ [1, λ0] we have

B(0, r′) ⊂ ∪n≥NCn(λ)·

Such a choice is possible because of Proposition 5.7. We then easily conclude
that µλ(B(0, r′)) ≤ 1

4 . As a consequence, one may assume, without loss of
generality, that we have started our analysis with r > 0 small enough so
that µλ(B(0, r)) ≤ 1

4 .
By Lemma 4.1 in [Ur,Zd2], we know that the sequence of measures (mλ)

is tight. In particular, if M is chosen large enough, then for any λ ∈ [1, λ0]
we have mλ(P cM ) ≤ 1

4Cr,λ0
. From where we deduce that µλ(P cM ) ≤ 1

4 .

Note now that µλ(Br,M ) = 1 − µλ(B(0, r)) − µλ(P cM ) ≥ 1
2 . As already

mentioned this inequality finishes the proof of the Lemma.
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4. Controlling the integrals

In this section we mainly reproduce the reasoning of [Ha,Zi1]. Never-
theless there are some differences we would like to emphasize : the main
being that we do not know whether the dimension of J(F1) is less than 3

2

or not. Note also that the Markov partition used in [Ha,Zi1] is replaced in
the present article by the backward images of the fundamental domain C0.
Finally, note that we work directly on Jλ without conjugating the dynamics.

Before we start the proofs and in order to simplify some expressions and
calculations, we introduce the following notation. Let

Ψn =
n∑
k=1

1
(F kλ )′

,

Φn =
n∑
k=1

1
|(F kλ )′|

,

Ψ =
∞∑
k=1

1
(F kλ )′

,

and

Φ =
+∞∑
k=1

1
|(F kλ )′|

so that formula (2.1) may be written

d′(λ) = −d(λ)
χµλ

(
1− 1

λ

)∫
Jλ

Re (Ψ) dµλ·

We will need the following equation which is an easy computation

(4.1) Ψ =
1

(Fnλ )′
Ψ ◦ Fnλ + Ψn, Φ =

1
|(Fnλ )′|

Φ ◦ Fnλ + Φn·

4.1. Lyapunov exponents. In this paragraph we prove that the Lyapunov
exponents do not play any role in our estimates of the derivative. In order
to do this we only need to check that they are uniformly bounded above and
separated away from zero. More precisely we prove the following.

Proposition 4.1. There exist r0 > 0, λ0 > 1 and K > 1 such that ∀λ ∈
(λ, λ0) we have

1
K
≤ χµλ

:=
∫
Jλ

log |F ′λ|dµλ ≤ K·

Proof. First note that ∀λ ≥ 1 and ∀z ∈ Jλ we have |F ′λ(z)| ≥ 1. In particular
we have ∫

C0

log |F ′λ|dµλ ≤ χµλ
·
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There is K1 > 0 such that Re z ≥ K1 for any z ∈ C0(λ) and any λ ∈
(1, λ0), and by Proposition 5.5 there is K2 such that µλ(C0) ≥ K2. Since
log |F ′λ(z)| = log λ+Re z we deduce that

0 < K1K2 ≤
∫
C0

log |F ′λ|dµλ ≤ χµλ
·

This is the first part of the proof.

For the other part note first that continuity of λ 7→ d(λ) and the fact that
d(1) > 1 imply that there exist α > 1 and β > 0 such that α+ β ≤ d(λ) for
any λ ∈ (1, λ0). This implies in particular that ∀λ ∈ (1, λ0) and ∀z ∈ Jλ

1
|(Fλ)′(z)|d(λ)

≤ 1
|(Fλ)′(z)|α+β

·

Consider now the following partition of the strip P : (An)n∈N, with An :=
{z ∈ P |n− 1 < Re z ≤ n}. We have

χµλ
=

+∞∑
n=1

∫
An

log |F ′λ|dµλ ≤ log λ0 +
+∞∑
n=1

∫
An

Re zdµλ(z)

≤ log λ0 +
+∞∑
n=1

nµλ(An)·

Lemma 3.9 implies that there exists K3 > 0 such that µλ(An) ≤ K3mλ(An)
for n ≥ 2. Note now that

mλ(An) =
∫
Jλ

χAndmλ =
∫
Jλ

Lλ(χAn)dmλ·

For any z ∈ Jλ and any k ∈ Z we let zk be the preimage of z for Fλ such
that fλ(zk) = z + 2ikπ. We thus have

Lλ(χAn)(z) =
∑
k∈Z

1
|F ′λ(zk)|d(λ)

χAn(zk)·

With α and β defined above, this gives that

Lλ(χAn)(z) ≤
∑
k∈Z

1
|F ′λ(zk)|α+β

χAn(zk)·

Since |F ′λ(zk)| = λeRe zk = |z + λ+ 2ikπ|, we have
1

|F ′λ(zk)|α+β
χAn(zk) ≤

1
|z + λ+ 2ikπ|α

λ−βe−βn,

so that
Lλ(χAn)(z) ≤ λ−βe−βn

∑
k∈Z

1
|z + λ+ 2ikπ|α

·

As we have α > 1, there is K4 > 0, independent of λ and z, such that∑
k∈Z

1
|z + λ+ 2ikπ|α

< K4λ
β·
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This tells us that
Lλ(χAn)(z) ≤ K4e

−βn·
Integrating with respect to mλ, and summing over n ≥ 1, we get

χµλ
≤ log λ0 +K3mλ(A1) +K3K4

∑
n≥2

e−βn ≤ K5,

With K5 := log λ0 +K3 +K3K4
e−2β

1−e−β . This is clearly independent of λ and
we are done

Note that with some more work one can indeed prove that χµλ
converges

towards χµ1 as λ converges towards 1 from above.

4.2. Controlling the integral away from 0. Let N be an integer5 and
set MN =

⋃
n≥N+1Cn and BN = Jλ \MN . Note that both set MN and BN

depends on λ.

Proposition 4.2. There exists k(N) > 0 such that ∀λ ∈ [1, λ0] we have∫
BN

Φdµλ ≤ k(N).

Proof. Let D0 = BN and for any n ∈ N let Dn = CN+n. Following [Ha,Zi1]
let Un be the set of points which arrive or come back to BN after exactly
n iterates, which means that Un = F−1

λ (Dn). Note that Un ∩Mn = Dn.
Given N0 ∈ N we set An = F−N0

λ (Un)∩BN . Since (Un) is a partition of Jλ,
(An) is a partition of BN and we have∫
BN

Φdµλ =
+∞∑
k=1

∫
Ak

Φdµλ.

Using relation 4.1 with n = N0 + k we get∫
Ak

Φdµλ =
∫
Ak

(
1

|(FN0+k
λ )′|

Φ ◦ FN0+k
λ + ΦN0+k

)
dµλ·

Using the fact that FN0+k
λ (Ak) ⊂ BN , Lemma 3.5 and Lemma 3.4 we deduce

that∫
Ak

Φdµλ ≤
κ(N)

(N0 + k)2

∫
Ak

Φ ◦ FN0+k
λ dµλ + (N0 + k)µλ(Ak)

The fact that FN0+k
λ (Ak) ⊂ BN also implies that χAk

≤ χBN
◦FN0+k

λ , from
the invariance of µλ we thus get∫
Ak

Φ ◦ FN0+k
λ dµλ ≤

∫
χBN

◦ FN0+k
λ Φ ◦ FN0+k

λ dµλ ≤
∫
BN

Φdµλ.

The integer N being fixed, one may choose N0 big enough so that κ(N)
N2

0
≤ 1

2

we deduce that∫
Ak

Φdµλ ≤ 2(N0 + k)µλ(Ak) ≤ 4(k +N)N0µλ(Ak).

5This integer will be chosen later big enough to ensure that for any zn ∈ Cn we haveP
n≥N arg(zn) ≤ π

6
.
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In order to estimate µλ(Ak), we first use Lemma 3.9 to conclude that
µλ(Ak) ≤ Kmλ(Ak) ≤ Kmλ(F−N0

λ (Uk)), for some constant K independent
of k, N0 and λ. Since Uk = F−1

λ (Dk), we get µλ(Ak) ≤ Kmλ(F
−(N0+1)
λ (Dk)).

But
mλ(F

−(N0+1)
λ (Dk)) =

∫
χDk

◦ FN0+1
λ dmλ =

∫
Dk

LN0+1
λ (1)dmλ.

Since there exists K1(N0) independent of λ and k such that LN0+1
λ (1) ≤

K1(N0), using Lemma 3.6 and the fact that Dk = CN+k, we get

mλ(F
−(N0+1)
λ Dk) ≤ K1(N0)mλ(CN+k) ≤

K2

(N + k)2d(λ)
·

We thus conclude that∫
Ak

Φdµλ ≤ 4N0K2
1

(N + k)2d(λ)−1
.

Summing over k we end up with∫
BN

Φdµλ ≤ 4N0K2

+∞∑
k=1

1
(N + k)2d(λ)−1

= 4N0K2

+∞∑
k=N+1

1
k2d(λ)−1

·

Since d(λ) > 1, and since N0 only depends on N , we conclude that∫
BN

Φdµλ ≤
4N0K2

2(d(λ)− 1)
1

(N − 1)2(d(λ)−1)
≤ K3(N0)
N2(d(λ)−1)

= k(N)·

4.3. Controlling the integral in a neighborhood of 0. In this para-
graph we deal with the remaining part of

∫
Re (Ψ)dµλ. If we note MN =

Jλ \BN we prove

Proposition 4.3. There exists K > 0 and N ∈ N such that for ∀λ ∈ (1, λ0)

1
K

(λ− 1)2d(λ)−3 ≤
∫
MN

Re (Ψ)dµλ ≤ K(λ− 1)2d(λ)−3, if d(λ) < 3
2 ,

− 1
K

log(λ− 1) ≤
∫
MN

Re (Ψ)dµλ ≤ −K log(λ− 1), if d(λ) = 3
2 ,∣∣∣∣∫

MN

Re (Ψ)dµλ

∣∣∣∣ ≤ K, if d(λ) > 3
2 .

Proof. We split this integral into several pieces. First we note using 4.1 that∫
MN

Re (Ψ)dµλ =
+∞∑

n=N+1

[∫
Cn

Re

(
1

(Fn−Nλ )′
Ψ ◦ Fn−Nλ

)
dµλ +

∫
Cn

Re (Ψn−N ) dµλ

]
.

We first deal with the left hand side of the sum that we bound integrating
the modulus of the function.∣∣∣∣∣

∫
Cn

Re

(
1

(Fn−Nλ )′
Ψ ◦ Fn−Nλ

)
dµλ

∣∣∣∣∣ ≤
∫
Cn

1
|(Fn−Nλ )′|

Φ ◦ Fn−Nλ dµλ·
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We use Lemma 3.5 and the fact that for z ∈ Cn, we have Fn−Nλ (z) ∈ CN ⊂
Bn to conclude that∣∣∣∣∣

∫
Cn

Re

(
1

(Fn−Nλ )′
Ψ ◦ Fn−Nλ

)
dµλ

∣∣∣∣∣ ≤ K

(n−N)2

∫
BN

Φdµλ·

Summing over n ≥ N we get∣∣∣∣∣
+∞∑

n=N+1

[∫
Cn

Re

(
1

(Fn−Nλ )′
Ψ ◦ Fn−Nλ

)
dµλ

]∣∣∣∣∣ ≤ K

∫
BN

Φdµλ
+∞∑
n=1

1
n2
·

By Proposition 4.2 we conclude that there exists K(N) > 0 such that∣∣∣∣∣
+∞∑
n=N

[∫
Cn

Re

(
1

(Fn−Nλ )′
Ψ ◦ Fn−Nλ

)
dµλ

]∣∣∣∣∣ ≤ K(N)·(4.2)

We now deal with the right hand side. We have∫
Cn

Re (ψn−N )dµλ =
n−N∑
k=1

∫
Cn

Re
(

1
(F kλ )′

)
dµλ·

ChooseN big enough so that conclusions of Lemma 3.2 hold. For any z ∈ Cn
and any k ≤ n−N we have

√
3

2
|F kλ (z)| ≤ Re (F kλ )′(z),

so that ∫
Cn

Re (ψn−N )dµλ ∼
n−N∑
k=1

∫
Cn

Re
(

1
|F kλ |′

)
dµλ·

Note now that for any z ∈ Cn, we have by the Chain Rule that

(F kλ )′(z) =
(Fnλ )′(z)

(Fn−kλ )′(F kλ (z))
,

with F kλ (z) ∈ Cn−k. We deduce, using Proposition 3.1, that

1
|(F kλ )′(z|

∼ an(2)
an−k(2)

·

Estimates of µλ(Cn) are given by Proposition 3.8 and we conclude that∫
Cn

Re (ψn−N )dµλ ∼

{
an(2d(λ)− 1)an(2)

∑n−N
k=1 an−k(−2) if n ≤ Nε,

1
εan(2d(λ))an(2)

∑n−N
k=1 an−k(−2) if n ≥ Nε.

Since an(α)an(β) = an(α + β), and with Sk,n(α) =
∑n

k aj(α), this can also
be written∫

Cn

Re (ψn−N )dµλ ∼

{
an(2d(λ) + 1)SN,n−1(−2) if n ≤ Nε,
1
εan(2d(λ) + 2)SN,n−1(−2) if n ≥ Nε.
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Use now Corollary 5.11 we have SN,n−1(−2) ∼ (an(−3)−aN (−3)) if n ≤ Nε

and SN,n−1(−2) ∼ an(−2)
ε if n ≥ Nε and we get∫

Cn

Re (ψn−N )dµλ ∼

{
an(2d(λ) + 1)(an(−3)− aN (−3)) if n ≤ Nε,

1
ε2
an(2d(λ) + 2)an(−2) if n ≥ Nε.

Since an(α)an(β) = an(α+ β) we get∫
Cn

Re (ψn−N )dµλ ∼

{
an(2d(λ)− 2)− aN (−3)an(2d(λ) + 1) if n ≤ Nε,

1
ε2
an(2d(λ)) if n ≥ Nε.

Summing over n ≥ N this gives us
∑

n≥N
∫
Cn
Re (ψn−N )dµλ is comparable

with

max
(

(SN,Nε(2d(λ)− 2)− aN (−3)SN,Nε(2d(λ) + 1)),
1
ε2
SNε,+∞(2d(λ))

)
We then deduce from Corollary 5.10 and Corollary 5.11 that SN,Nε(2d(λ) +
1) ∼ aN (2d(λ)) ∼ 1, and also that SNε,+∞(2d(λ)) ∼ aNε(2d(λ))

ε ∼ ε2d(λ)−1.
Estimates of SN,Nε(2d(λ) − 2) depend on the comparison of d(λ) with 3

2 .
More precisely, if d(λ) > 3

2 then Corollary 5.11 tells us that SN,Nε(2d(λ) −
2) ∼ 1, if d(λ) = 3

2 then it tells us that SN,Nε(2d(λ) − 2) ∼ logNε, and if
d(λ) < 3

2 then SN,Nε(2d(λ)−2) ∼ ε2d(λ)−3. Summarizing all those estimates
we get ∑

n≥N

∫
Cn

Re (ψn−N )dµλ ∼


1 if d(λ) > 3

2
logNε if d(λ) = 3

2

ε2d(λ)−3 if d(λ) > 3
2

4.4. Proof of the main result. We are now in position to prove the main
result of this paper that we recall here.

Theorem 4.4. There exists λ0 > 1, and K > 1 such that
−1
K (λ− 1)2d(1)−2 ≤ d′(λ) ≤ −K(λ− 1)2d(1)−2 if d(1) < 3

2 ,
|d′(λ)| ≤ K(λ− 1) log 1

λ−1 if d(1) = 3
2 ,

|d′(λ)| ≤ K(λ− 1) if d(1) > 3
2 .

In particular the function λ 7→ d(λ) is C1 on [1,+∞), with d′(1) = 0.

Proof. Let us recall that we have

d′(λ) = −d(λ)
χµλ

(
1− 1

λ

)∫
Jλ

Re Ψλdµλ·

We first use [Ur,Zd2], where it is proved that λ 7→ d(λ) is continuous
on [1,+∞) , and Proposition 4.1 to conclude that there exists λ1 > 1 and
K1 > 1 such that ∀λ ∈ (1, λ1) we have

1
K1

(λ− 1) ≤ d(λ)
χµλ

(
1− 1

λ

)
≤ K1(λ− 1)·



23

Note that given any integer N we have∫
Jλ

Re Ψλdµλ =
∫
BN

Ψλdµλ +
∫
MN

Ψλdµλ,

so that

|d′(λ)| ≤ 2K1 max
(∣∣∣∣∫

BN

Ψλdµλ

∣∣∣∣ , ∣∣∣∣∫
MN

Ψλdµλ

∣∣∣∣) ·
We may thus use Proposition 4.2 and Proposition 4.3 to conclude that d′(λ)
is converging towards 0 when λ is converging towards 0 from above. In
particular there is λ2 > 1 such that ∀λ ∈ [1, λ2),

−1
2
≤ d′(λ) ≤ 1

2
·

We deduce that

−1
2
(λ− 1) ≤ d(λ)− d(1) ≤ 1

2
(λ− 1),

so that

(λ− 1)λ−1(λ− 1)2d(1)−3 ≤ (λ− 1)2d(λ)−3 = (λ− 1)2d(1)−3(λ− 1)2(d(λ)−d(1))

≤ (λ− 1)−(λ−1)(λ− 1)2d(1)−3

Since λ 7→ (λ− 1)λ−1 is continuous on [1, λ2] there exists K3 > 1 such that
1
K3

(λ− 1)2d(1)−3 ≤ (λ− 1)2d(λ)−3 ≤ K3(λ− 1)2d(1)−3·

Using again Proposition 4.2 and Proposition 4.3, and the fact we just proved
that allows us to replace d(λ) with d(1), we conclude the proof of the main
result in case d(1) ≥ 3

2 .

Assume now that d(1) < 3
2 . Choose λ4 > 1 such that ∀λ ∈ (1, λ4) we

have

2K(N) ≤ 1
K

∫
MN

Ψλdµλ,

with K(N) given by Proposition 4.2 and K by Proposition 4.3. We then
conclude that ∫

Jλ

Ψλdµλ ∼
∫
MN

Ψλdµλ·

And we can conclude using Proposition 4.3, and the fact that d(λ) may be
replaced by d(1).

5. Appendices

5.1. Estimates close to a repelling/parabolic fixed point. In this ap-
pendix we show how to get estimates in case of a degeneracy towards a
multi-petal parabolic fixed point. It is a two steps proof : first we deal
with the real axis then we extend estimates obtained in the real line to the
complex plane using Kœbe’s distortion Theorem.
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Consider the following family of germs of holomorphic functions defined
in a neighborhood of 0 that we denote by U :

fε(z) = (1 + ε)z + zp+1 + zp+2gε(z)·
Assume that there is an inverse branch f−1

ε well defined on U that leaves
a sector Sθ := {reiα | θ ≤ α ≤ θ} invariant, for some 0 < θ < π

2 . Let
Uθ := U∩Sθ. Assume also that ∀z ∈ U we have |zgε(z)| < 1

2 . Let I = U∩R+

and assume that f−1
ε (I) ⊂ I and that fε is not decreasing on I.

This appendix is organized as follow : in the first two paragraphs we study
those germs giving in the second paragraph uniform estimates for |(f−nε )′|.

5.1.1. The mean value Theorem and its consequences. We start with the
following easy fact.

Lemma 5.1. Let f : R → R+ be a decreasing map with antiderivative F on
R and let (un)n∈N be a decreasing sequence of real numbers. Suppose that
there exist n > 1 such that for all k ≤ n we have

i- K1 ≤ (uk − uk+1)f(uk), then K1k ≤ F (u0)− F (uk)·
ii- (uk − uk+1)f(uk+1) ≤ K2, then F (u0)− F (uk) ≤ K2k·

Proof. One only needs to check that our assumptions imply

(uk − uk+1)f(uk) ≤
∫ uk

uk+1

f(t)dt ≤ (uk − uk+1)f(uk+1)·

In particular we point out the following two particular cases :

Corollary 5.2. Let (xn) be a decreasing sequence of positive real numbers.
Assume that there exist 0 < K1 < K2 and n ∈ N such that ∀k ≤ n,

K1x
p+1
n ≤ (xn − xn+1) ≤ K2x

p+1
n+1.

Then there exist K̃1 and K̃2
6 such that for ∀k ≤ n

K̃1 ≤ k
1
pxk ≤ K̃2·

Corollary 5.3. Let (un) be a decreasing sequence of real numbers. Assume
that there are α > 0, β > 0, p > 0 and n ∈ N such that ∀k ≤ n

(uk − uk+1) ≤ α+ βepuk+1 ·
Then ∀k ≤ n we have

α
1
p

(α+ βepu0)
1
p

e−αk ≤ euk−u0 ·

Let us provide a short argument of how these corollaries can be deduced
from the Lemma 5.1.

6One can take for instance K̃2 = (pK1)
− 1

p and K̃1 = (pK2 + 1
x

p
0
)
− 1

p .
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Proof. For Corollary 5.2 we use the Lemma with the function f : x 7→
x−(p+1) so that one may take F : x 7→ −1

px
−p. We deduce that we have :

K1n ≤
1
p

(
1
xpn

− 1
xp0

)
≤ K2n·

Elementary computations then lead to the desired inequalities.

For Corollary 5.3 we now consider the function f : x 7→ (1 + β
αe

px)−1.
One first checks that F : x 7→ x − 1

p log f(x) is an antiderivative of f . Our
assumptions on (un) may now be written as

(uk − uk+1)f(uk) ≤ α·
Using the Lemma l5.1 we deduce that F (u0) − F (uk) ≤ αk. This can be
written in the form

u0 − uk +
1
p

log
(
α+ βepuk

α+ βepu0

)
≤ αk·

Applying exponents to both sides of this last inequality, we deduce that(
α+ βepuk

α+ βepu0

) 1
p

e−αk ≤ euk−u0 ·

From this we get our estimates.

5.1.2. Uniform estimates along the real axis. We now come back to our
dynamical setting. Let x0 ∈ I be a fixed element. Assume for convenience
that x0 < 1. Define for any n ≥ 0, fε(xn+1(ε)) = xn(ε), where x0(ε) = x0.
For each ε > 0 sufficiently small, we define Nε as Nε = sup{n ∈ N |xpn ≥ ε},
and for ε = 0 as N0 = +∞. Note that for any ε > 0 small enough,
the sequence (xn(ε)) is strictly decreasing towards 0. So that Nε is a well
defined integer. Our main results in this paragraph is the following.

Proposition 5.4. There exists K > 1 such that for all ε > 0 small enough,

(5.1) K−1 ≤ εNε ≤ K, ε > 0,

(5.2) K−1 ≤ xnn
− 1

p ≤ K, ∀n < Nε,

(5.3) K−1 ≤ xnε
− 1

p (1 + ε)n ≤ K, ∀n ≥ Nε.

This result may be interpreted in the following way : Nε is a ”parabolic
time”. During that time, the fixed point 0 acts on the orbit of x0, (xn), as
if it was a parabolic fixed point with p petals. For n greater than Nε the
orbit of x0 is close enough to 0 and realize that it is indeed an attracting
fixed point for f−1

ε .
In the following Lemma we obtain estimates which are true for all n ∈ N

Lemma 5.5. There exists K > 1 such that for all ε > 0 small enough,

(5.4) K−1ε
1
p (1 + ε)−n ≤ xn ≤ K

1

n
1
p

, ∀n ∈ N·
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Proof. All our estimates will result from the following very definition of (xn).

(5.5) xn = (1 + ε)xn+1 + xp+1
n+1(1 + xn+1gε(xn+1)).

Assuming that ε < 1, we easily deduce from this equality that for any n we
have

(5.6) 1 ≤ xn
xn+1

≤ (2 + 2xp0) ≤ 4

From 5.5 we deduce that

(5.7)
xn − xn+1

xp+1
n

=
ε

xpn
+
(
xn+1

xn

)p+1

gε(xn+1).

We get from (5.6) and (5.7) that ∀n

K1 :=
1

4p+1
≤ xn − xn+1

xp+1
n

.

Using now Corollary 5.2 we conclude that ∀n, xnn
1
p ≤

(
2
p

) 1
p ≤ 2. This is

precisely the left hand side of 5.4 in Proposition 5.4.
The right hand side of 5.4 is obtained when one notes that (5.5) also

implies that

log xn − log xn+1 = log(1 + ε+ xpn+1 + xp+1
n+1gε(xn+1)) ≤ log(1 + ε) + 2xpn+1.

We may thus apply Corollary 5.3 with the sequence un := log xn, α =
log(1 + ε), and β = 2, and deduce that

log(1 + ε)
1
p

(log(1 + ε) + 2epu0)1
p

≤ eun−u0 ·

Assuming that log(1 + ε) ≤ epu0 we get

3−
1
p ε

1
p (1 + ε)−n ≤ eun = xn.

In order to get estimate (5.2), we check that the assumptions on gε, the
definition of Nε and relation (5.7) leads for all n < Nε to

xn − xn+1

xp+1
n+1

≤ 3
2
·

Corollary 5.2 then tells us that ∀n < Nε we have

K̃1 ≤ xnn
1
p ,

with, for instance, K̃1 = (3p
2 + 1

xp
0
)−

1
p .

We are now in position to give estimates for Nε. They easily come out
from the following inequalities we have already proved:
(5.8)
K̃1

K2p
0

1

N
1
p
ε

≤ K̃1

K2p
0

1

(Nε − 1)
1
p

≤ xNε−1

K2p
0

≤ xNε

K0
≤ xNε+1 ≤ ε

1
p ≤ xNε ≤

2
Nε
·
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From there we deduce that

(5.9) K̃3 ≤ ε
1
pNε ≤ 2,

with K̃3 = K̃1

K2p
0

.

Now we only need to take care of (5.3). We start by noticing that for all n
we have (1+ε)xn+1 ≤ xn. For any n ≥ Nε we thus have (1+ε)n−Nεxn ≤ xNε .
This leads to

(5.10) xn ≤ (1 + ε)−nxNε(1 + ε)Nε .

By definition of Nε and relation (5.6) we have

xNεK0xNε+1 ≤ K0ε
1
p ·

By relation (5.9) we also have

(1 + ε)Nε ≤ (1 +
2p

Nε
)Nε ≤ e2

p ·

From this and (5.10) we deduce that

xn ≤ K0e
2p
ε

1
p (1 + ε)−n·(5.11)

Taking K = K2p
0 e2

p
finishes the proof of the Proposition.

Let now α(p) := p+1
p . The following corollary is useful

Corollary 5.6. There exists K > 1 such that for all ε > 0 small enough we
have

(i) K−1 ≤ (xn − xn+1)nα(p) ≤ K ∀n ≤ Nε

(ii) K−1 ≤ (xn − xn+1)ε−α(p)(1 + ε)(p+1)n ≤ K ∀n ≤ Nε

Proof. From relation (5.5) we deduce that ∀n ∈ N,

εxn+1 ≤ xn − xn+1 ≤ 2xp+1
n+1·

Using Lemma 5.5, we deduce that the right-hand side inequality of i-, as
well as the left hand side inequality of (ii) are true.

Let n < Nε. Then, from (5.2) and (5.6), we deduce that

1

2KKp+1
0

1
nα(p)

≤ xp+1
n

Kp+1
0

≤ xp+1
n+1 ≤ (xn − xn+1)·

This is the left-hand side inequality of (i).

In order to finish fix n ≥ Nε. Then, by relation (5.5) and Proposition 5.4,
we get that

xn − xn+1 ≤ 3xp+1
n+1 ≤ 3Kp+1εα(p)(1 + ε)−(p+1)n·

The proof of the Corollary is now complete.
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5.1.3. Extension to the complex plane. As already mentioned, this extension
is done via Kœbe’s distortion Theorem. It asserts that given two simply
connected domains in C, V ⊂ V ′, such that the boundary of V is at a
positive distance from the boundary of V ′, there exists a constant K > 0,
which depends only on the modulus of the annulus V ′ \ V , and such that
for any univalent function f defined in V ′ we have for all x, y ∈ V we have,

1
K
≤ |f ′(x)|
|f ′(y)|

≤ K·

Proposition 5.7. Let V be a simply connected domain such that V̄ ⊂ Uθ.
Then there exists K > 0 such that ∀ε small enough, ∀n ∈ N and ∀z ∈ V we
have

(i) 1
K ≤ nα(p)|(f−nε )′(z)| ≤ K if n < Nε.

(ii) 1
K (1 + ε)−(p+1)n ≤ |(f−nε )′(z)| ≤ Kεα(p)(1 + ε)−(p+1)n if n ≥ Nε.

Proof. Enlarging V if necessary one may assume that there is x0 ∈ V ∩R+∩
Uθ such that for all ε small enough x1(ε) := f−1

ε (x0) is also in V . Kœbe’s
distortion Theorem implies that for all n, all ε and all z ∈ V we have

1
K

(xn(ε)− xn+1(ε))
x0 − x1(ε)

≤ |(f−nε )′(z)| ≤ K
(xn(ε)− xn+1(ε))

x0 − x1(ε)
·

Applying Corollary 5.6, and noticing that x0−x1(ε) > a > 0 with some real
a independent of ε, lead to the desired inequalities.

The following result gives uniform estimates on how closely the orbits are
tangent to the real axis.

Corollary 5.8. There exists K > 0 such that ∀ε small enough, ∀n ∈ N and
∀z0 ∈ V , we have

|Im (f−nε (z0))| ≤ K
1

nα(p)
·

In particular, the series
∑∞

n=0 Im (f−nε (z0)) converges.

Proof. Note that |Im (zn)| = |Im (zn−xn)| ≤ |zn−xn|. Kœbe’s distortion
theorem leads to |zn−xn| ≤ K 1

|(fn
ε )′(zn)| and Proposition 5.7 gives the result.

5.2. Estimates of some partial sums. In this appendix we single out
the behaviour of the partial sums we need to evaluate at several steps in the
proof of our main result. It seemed to us that postponing those estimates
to an appendix will clarify the exposition. We are thus in this paragraph
dealing with a sequence of real numbers defined by : an = 1/n for n ≤ Nε

and an = ε(1 + ε)−n for n > Nε, where Nε is comparable with 1/ε. We are
indeed interested in the sequences (an(α))n∈N, with α ∈ R and an(α) = aαn,
and partial sums Sk,n(α) =

∑n
j=k an(α).

The first Lemma, whose proof is straightforward and left to the reader
asserts, the following.
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Lemma 5.9. For any k < n in N we have

Sk,n(α) ∼
{

1
1−α(n1−α − k1−α) if n ≤ Nε and α 6= 1

log n
k if n ≤ Nε and α = 1

Sk,n(α) ∼ α

ε
(ak(α)− an(α)), if k > Nε and α 6= 0.

As its consequence, we get the following.

Corollary 5.10. If α > 0 then

(i) Sn,+∞(α) ∼ an(α)
ε if n > Nε,

(ii) Sn,+∞(α) ∼ an(α− 1) if n ≤ Nε and α > 1,
(iii) Sn,+∞(α) ∼ log Nε

n +K if n ≤ Nε, α = 1, for some K > 0.
(iv) Sn,+∞(α) ∼ N1−α

ε if n ≤ Nε and α < 1,

Proof. Since α > 0, we see that the sequence (1 + ε)−αn converges to 0, and
Lemma 5.9 implies that (i) is true. Note that we have

max(Sn,Nε(α), SNε,+∞(α)) ≤ Sn,Nε ≤ 2 max(Sn,Nε(α), SNε,+∞(α)).

Using (i) that we have just proved, the fact that we have aNε ∼ aNε+1, and
the fact that Nε ∼ ε−1, we conclude that

SNε,+∞ ∼ aNε

ε
∼ εα−1 ∼ N1−α

ε ·

Let us now estimate Sn,Nε by considering three cases. We start with the
case when α = 1. Indeed, Lemma 5.9 implies that Sn,Nε ∼ log(Nε

n ). This
gives us (iii).

Assume now that α > 1. Then SNε,+∞ ∼ N1−α
ε ≤ n1−α = an(α − 1).

Moreover, in virtue of Lemma 5.9, we have Sn,Nε ∼ n1−α −N1−α
ε . Thus

Sn,Nε ∼ an(α− 1)(1− n

Nε
)α−1·

In particular Sn,Nε . anα− 1. So, we can conclude that Sn,+∞(α) . an(α−
1). If n

Nε
≤ 1

2 , we have (1 − n
Nε

)α−1 ≥ (1 − 1
2)α−1. And we also have

Sn,+∞(α) & an(α− 1); so, we are done. On the other hand, if n
Nε
≥ 1

2 , then

Sn,+∞(α) ≥ SNε,+∞(α) ∼ N1−α
ε ∼ n1−α = an(α− 1)·

This ends the proof of (ii).
Assume finally that 0 < α < 1. Then Lemma 5.9 tells us that

Sn,Nε(α) ∼ (N1−α
ε − nε−1) ≤ N1−α

ε ∼ SNε,∞.

We thus conclude that max(Sn,Nε(α), SNε,+∞(α)) ∼ SNε,+∞. This proves
(iv) and ends the proof of the Corollary.

We can also prove the following result with the same kind of arguments.
So we omit them.
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Corollary 5.11. Let N be a fixed integer such that 2N < Nε ∼ 1
ε . Then

we have the following estimates of SN,n(α) for N ≤ n:

SN,n(α) ∼



aN (α− 1)− an(α− 1) for 1 < α
log n

N for α = 1
an(α− 1)− aN (α− 1) for α < 1

 for n ≤ Nε

1 for 1 < α
logNε for 1 = α
N1−α
ε for 0 ≤ α < 1

an(α)
ε for α < 0

 for n ≥ Nε
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ensembles de Julia des polynômes quadratiques. Fund. Math. 151 (1996), no. 2, 121–
137.

[Bu,Le] X. Buff, L. Tan Dynamical convergence and polynomial vector fields. J. Differential
Geom. 77 (2007), no. 1, 1–41.

[Do,Se,Zi] A. Douady, P. Sentenac, M. Zinsmeister, Implosion parabolique et dimension
de Hausdorff, C. R. Acad. Sci. Paris Sr. I Math. 325 (1997), no. 7, 765–772.

[Ha] G. Havard, Applications du formalisme thermodynamique à l’étude de certains en-
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[Ha,Zi1] G. Havard, M. Zinsmeister, Thermodynamic formalism and variations of the
Hausdorff dimension of quadratic Julia sets. Comm. Math. Phys. 210 (2000), no. 1,
225–247.

[Ha,Zi2] G. Havard, M. Zinsmeister, Le chou-fleur a une dimension de Hausdorff in-
ferieure ‘a 1,295. Preprint, (2000).
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