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ABSTRACT. In this paper we deal with the following family of exponen-
tial maps (fx : 2z — A(e® — 1))ae[1,+00). Denoting d(A) the hyperbolic
dimension of fy. It is proved in [Ur,Zd'] that the function A +— d(}) is
real analytic in (1, 400), and in [Ur,Zd?] that it is continuous in [1, +00).
In this paper we prove that this map is C' on [1, +00), with d’(17) = 0.
Moreover we prove that

d(1+e) ~ -2 ifq(1) < 2,
d(1+¢) < —cloge if d(1) = 2,

2
[d(1+¢e)] < € if d(1) > 3.

In particular, if d(1) < 2, then there exists Ao > 1 such that d(X) < d(1)
for any A € (1, Xo).
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1. INTRODUCTION

1.1. An overview of the problem. In this paper we deal with maps of
the form fy : z +— A(e*—1), for A > 1. As long as A is strictly greater than 1,
0 is a repelling fixed point and there exists an attracting fixed point ¢\ < 0.
Those two points collapse to 0 for A = 1, and 0 becomes parabolic. We are
interested in Jy, the set of points that do not escape to oo under iterations of
fr. The Hausdorff dimension of this set, that we denote d()\), is an element
of (1,2), and is called the Hyperbolic Dimension of the map f. Variations of
A — d(\) with respect to A, is an interesting feature that reflects changes in
geometry after perturbation of a dynamical system. The philosophy is that
d behaves smoothly, and even real analytically, if we perturb a conformal
hyperbolic dynamical system, in a real analytic way.

This philosophy was proposed in 1981 Rio de Janeiro’s conference by Sul-
livan [Su]. The same year Ruelle [Ru] proved that it was true for a class of
Hyperbolic Conformal Repellers. His strategy, used since then in other con-
texts, see [Ur,Zd!] for the exponential family and [Ma,Ur| for meromoprhic
functions, was the following : prove a Bowen’s formula that identifies the
dimension as the zero of a pressure function, prove that this pressure is the
logarithm of a simple and isolated eigenvalue of a Perron-Frobenius(-Ruelle)
operator, then use some results about perturbation theory of operators.

When approaching the boundary of an Hyperbolic components one can
not expect any smoothness. Nevertheless there still exists some paths along
thus we still have continuity of the Hausdorff dimension. This was first
proved by Bodart and Zinsmeister in [Bo,Zi] for the quadratic family, z —
22 + ¢, for ¢ € R approaching % from the left. Then it has been proved
for other quadratic parameters c, [Ri], or other rational maps, [McMu?],
[Bu,Le], or in other situations see [McMu'] for Kleinian Groups, [Ur,Zd?]
for the exponential family. The strategy for such results is to control confor-
mal measures, or Patterson-Sullivan measures, in order to prove that they
converge towards the ”good” conformal/Patterson-Sullivan-measure. This
usually boils down in proving that any limiting measure is non-atomic. Note
that this strategy may also be used to proved discontinuity of the Hausdorff
dimension, or more precisely to prove convergence towards something big-
ger than the Hausdorff dimension of the "limit set”, [Do,Se,Zi], [Ur,Zi!] and
[Ur,Zi?].

The problem of the derivative of the Hausdorff dimension is, to our knowl-
edge, investigated in two other papers than the present one. In [Ha,Zi!]
for the quadratic family it is proved that d'(c), the derivative of d(c) :=
Hdim(J.), diverges towards +oo as ¢ converges towards § from the left. In
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[Jal], still for the quadratic family, but this time for ¢ converging from the
right towards —7, and under the realistic hypothesis that d(—%) < %, it
is proved that d’ (c) converges towards —oo. Note that in both cases the
parabolic parameter appears to be a local maximum for the Hausdorff di-
mension. Note also that this observation seems to be false while approaching
—% from the right [Ja?]. In order to control the derivative the starting point
in all those papers is first to get an exact formula for the derivative. This
is done using thermodynamic formalism by differentiating the Bowen’s for-
mula. Then some uniform estimates of distorsion in a neighborhood of the
fixed point are used in order to control measures of fondamental annuli.
Conclusions then comes from a precise analysis of a certain integral. This
is that last point that explains why such a study has not been yet done in a
more general setting. In the present paper, as well as in [Ha,Zi!] and [Jal],
some very particular properties of the case studied are used to conclude.

1.2. Main result. When one notes that if 7) denotes the translation by — A,
then we have fy o 7y = Ty 0 gy, with gx(2) = a(\)e? and a(\) = Ae™?, this
philosophy (real analyticity of d) is in [Ur,Zd!] proved to be the case. More
precisely, it is proved there that d : A — d()) is real-analytic on (1,+00),
and in [Ur,Zd?], that it is continuous on [1, +00). In this paper we study the
asymptotic behavior of the function A — d’(\), and we prove the following.

Theorem 1.1. There exist \g > 1 and K > 1 such that YA € (1, \o)
ZA-DHO=2 < d(N) < —KA-1)%D=2 4r4(1) <

@) < KA —1)logsl; i d(1)
(N < K(A-1) if d(1) >

In particular the function X — d()\) is C* on [1,400), with d'(1) = 0.

3
’

3

2

Remark : Conjugating fy by the translation 7y, this result takes on the
following form for the famﬂy e (1 —¢)e te. Let D(e) be the hyperbolic
dimension of z — (1 —¢)e™"e?, then

D'(e) ~
[D'(e)|l <
D)l =
In particular, note that the result under condition D(0) < 3, is exactly the
same as the one in [Ha,Zi'] for the family ¢ — 2? + ¢, with ¢ < ;. For this
last family we were able to prove that d(3) < 3, see [Ha,Zi?]. Inequality
that we do not know for the exponential family.

Note also that if d(1) < 2 then we have a control on the sign of the
derivative in a right neighborhood of 1. Tt asserts that d(17) is a local
maximum of the Hyperbolic Dimension.

The proof of the main result will follow exactly the same lines as the one of
[Ha,Zi?], but will make an extensive use of the Thermodynamic Formalism
for Meromorphic Functions, as developed by, Urbanski, Urbanski and Kotus,
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Urbanski and Zdunik, and Urbanski and Mayer. The reader will find in
[Ma,Ur]| all proofs of results we need in this paper, as well as a complete
bibliography on the subject.

1.3. Organization of the paper. In the first part we use Chapter 8 of
[Ma,Ur] to get a formula for d’'()), for any A € (1,+00). This mainly consists
of conjugating the dynamics and differentiating the pressure.

In the second part we collect some estimates of the distortion around the
fixed point 0. They are crucial since the formula obtained in the first part of
this paper involves two integrals with respect to an invariant measure that
has unbounded Radon-Nikodym derivative with respect to the Hausdorff
measure, in any neighborhood of 0.

In the third part we use those estimates to control the integrals and to
prove the main result.

In the first appendix we prove the estimates used in the second part of
this paper in a more general setting than needed in this paper. Namely, we
allow the repelling fixed point to converge towards a parabolic fixed point
with several petals. The second appendix is devoted to the study of partial
sums of some sequences that will be needed several times in the paper.

2. A FORMULA FOR THE DERIVATIVE OF THE FUNCTION A — d(\)
In this section we will prove the following formula

Proposition 2.1. For any A € (1,400) we have

(2.1) d(\) = —i(li) ( — i) /JA +fSRe <(Fl§),> dpx,

k=1

where iy is the only equilibrium measure for the potential —d(\) log |F|.

Before proving this Proposition we introduce some notation and prove
some results concerning the thermodynamical formalism for that family of
exponential maps.

2.1. Thermodynamic formalism. Let P be be the cylinder {z € C| —7 <
Im z < w}. As it is done in [Ur,Zd'] we associate to f\ the map Fy : P — P
defined by

Fyom=mo fj,

with 7 being the natural projection on the cylinder P = C/ ~, with z1 ~ 2y
if and only if (27 — 2z2) = 2ikm, for some k € Z. In particular for any
z € P we have f)\(z) = Fx(z), and F)(z) = F)\(2') if and only if there exists
k € Z such that f\(z) — fa(2') = 2ikw. This tells us that for any z € P,
we have Fy !(z) = {2, € P| filzk) = 2 + 2ikm, k € Z}. We also see that
J(Fy) =7(J(fr) = J(fr) N P.

Let us now introduce some notation and collect some results, where we
mainly refer to [Ma,Ur], see also [Ur,Zd!], [Ur,Zd?], [Ur].
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- For any A > 1 we define L), the Perron-Frobenius operator associated
with the potential —tlog |F}|. It acts on HJ, the set of bounded a-Holder
functions defined on J(F)), in the following way, let g € HJ, and z € J(F))

Lulg)z) = 3 Wg@)

F\(y)==

Z mg('zk)v with 2k S P such that f)\(zk) =z + 2 k-
kEZ

- The only d(\)-conformal measure supported on Jy is denoted my®.

- The only equilibrium measure for the potential —d(\)log|F}| and the
dynamical system (Jy, Fy) is denoted py.

-The pressure of the potential —tlog|Fy| is denoted P(A,t), and is defined
by

P(A\t) = sup{h, —txu},
where the supremum is taken over all invariant probability measures u sup-

ported on J(F)y), such that x, < 400, where h, denotes the metric entropy
of the measure p, and x, = [log|F}|du is its Lyapunov exponent.

We will derive our formula for d'(\) starting from Bowen’s formula that
asserts that for any A\ > 1, d()) is the only real number so that P(\,d(\)) =0
(see [Ur,Zd']). We want to differentiate this formula with respect to A, and
in order to do so we need to appropriately conjugate the dynamics of F}.

- Let A\g > 1 be fixed. For any A > 1, we denote h) the conjugating map
from Jy, to Jy such that F\ o hy = hy o F),.

- We then set : ¢y, := —tlog|F} o hy|. It is a potential which is defined
on Jy,. We then use Corollary 8.10 in [Ma,Ur| that tells us that (A, t) —
Py(pxry) is real analytic for A close enough to o2, Bowen’s formula then
implies that a%Po(ap Ad(n)) = 0. It is this calculation that leads to the desired
formula.

2.2. Proof of the formula. Let Ay > 1 be fixed and let h) denote the
conjugating map : F)\ o hy = hy o F,. Since u is the equilibrium measure
for the potential —d())log|F}|, we deduce that the potential ¢ 405 has
a unique equilibrium measure which is g\ := hy,(uy). We shall now use
Theorem 6.14 in [Ma,Ur| which asserts that given a tame function ¢ and a
weakly tame function ) we have

0
(2.2) aPO(SD + )| 1=0 = /wd,uw

LWe refer to section 3 of this paper for a definition and more details about conformal
measures.
2We denote here Py the pressure with respect to the dynamical system (Jx,, Fi,)-
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with p, the equilibrium measure for the potential ¢. We refer to chapter 4
of [Ma,Ur| for definition of tame and loosely tame functions. By Lemma 8.9
in [Ma,Ur], we know that that for R > 0 small enough, there exists 3 > 0
such that YA € (A\g — R, Ao + R) ¢+ is f-tame. We then deduce from (2.2)
that

0

(2.3) 0= —~Polerdn) = /
N N o

0 -
Y (exdn)) diin.

We thus have to compute %go)\’d(k). Note that
90)\,d(>\) = —d()\) log |F)/\ 9] h)\| = —d()\)(log A + Re h)\).
Differentiating with respect to A we get

0 1 0
24) grenany = ~d () log|[Ffo ol = d() (5 + Re i )

A [3))

Lemma 2.2. For any A € (1,400) and any z € J), we have
0 1) & 1 1
(2.5) —ha(z) = <1 - > —_—— — .
oA 3) 2 G

In order to prove this formula we use two results from [Ur], Lemma 13.2
and Proposition 13.4, that we give in the following Lemma

Lemma 2.3. For any \p € (1,400) one can find R >0, K >0, and a > 0
such that

(2.6) VA€ B(\,R) VneN VzelJy (FL) (2)] > K (1 + o)™

0
(2.7) VA€ B(Ao,R) Vze Jy ‘ﬁh,\(z)‘ < K-
We can now prove Lemma 2.2.

Proof. In order to simplify notation, we write hy instead of 8%h,\, and we
drop z. We start with the conjugating formula : hy o F), = F\ohy =
A(e" — 1), that we differentiate with respect to A\. We thus get,

HAOF)\O :F)\Oh)\—Fﬁ)\F)I\Oh)\.

So that we have ) ]
_haoFy, Frohy
N F{ohy  Fjohy
Iterating this formula we end up for n € N with

h

hyo F} z": FyoFFloh,

h)\(Z) = (F}\l)' o hy o (F)lf)’ o hy

k=1
Using Lemma 2.3 we deduce that
ha(F§, (2)

(F{) (ha(2)) is converging towards 0-



On the other hand, since F)(z) = e* —1 = $F{(2) — 1, for any k we have
FyoF{™' 1 1

1
(FH  X(FFYy (Y

This leads to
EoFFh 11 +<1 1>"§‘:1 1
= Yy A )Y\ H Y

Using (2.6) in Lemma 2.3 we get that the series on the left above is converg-
ing towards

*ZO" 1
= ()
which finishes the proof. "
Using (2.4) and Lemma 2.2 in (2.3) we get
1 1
(2£d'()\)/ log | FX |dfiy — d(N) (1 - ) / Re — =0
Iro A JIxg kz>1 (Ff)/ o hy

for any function g continuous on Jy we have fiy(gohy) = px(g), We deduce
from (2.8) that Proposition 2.1 is true.

3. LOCAL DYNAMIC AND UNIFORM ESTIMATES

In this section we introduce some notations and collect estimates proved in
the appendix in a more general setting®. We then use these estimates in order
to control uniformly conformal measures (my) and equilibrium measures

(k)
3.1. Notation. We know that NP C {2 €C| — 5 <Im z < G}
Given 0 < 6 < § we denote Sy the sector {re®|r >0, - <a <0}

For rop <<1 we fix 0 < # < § to be such that J; N B(0,7) C Sp. Then we
choose ¢y > 0 small enough so that forany 0 < A =14¢e¢ < X =14¢g
we have fy '(Sp) C Sp and Jy N B(0,r) C Sp. We then set vo = {roe’* | t €
| —6,00}, v1(\) = f5 ' (70). Joining roe' with f5 ! (roe’®) by a line, and doing
the same with roe "’ and its image by f)\_l, we get a cell Cp(A). It is a simply
connected domain. A compactness argument tells us that if 1 < A\ < g,
then there exists a simply connected domain V' C Sy such that the closure of
UxCo(A) is a subset of V. In particular, Keebe distorsion Theorem gives us
a constant K > 1 only depending on r¢ and Ag such that for any univalent

function h on V' and any point x and y in UyCp(A) we have % < ‘Izigﬂ <K.

We will use later on this fact with inverse branches of f{'. They are well

3We deal in the appendix with a family of germ of holomorphic in a neighborhood of
a repelling fixed point which degenerates into a parabolic fixed point with p petals.
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defined on V since the post-singular set of the f)’s, i.e. the orbit —\ under
fx, is a subset of (—o0,0).

We then define for each integer n the set Cp,()\) := f,"(Co())), with
fy " being the inverse branch of f{' defined on B(0,rp) that fixes 0. In the
following we are working with respect to measures concentrated on Jy of
dimension strictly greater to 1. One checks easily in that context that with
respect to such measure (Cy,(A))nenugoy 1s a partition of B(0,70). Moreover

the set Co()) is mapped univalently by f;™ to Cy(A).

Let N: be an integer4 and defined the sequence (ap)nen as ane = %, if
n < Ng, and ape = ¢(1 +¢)7", if n > N.. Note that a,. — 0. In
order to simplify notations, we let a, := a,.. We consider now the one
parameter familly of sequences, (an(a))nen, defined for n € N by ap(a) :=
a®. We are also interested in partial sums of > a,(a). For k < n we let
Skn(@) = > pai(«). The sequence (an(cr)) will describe, for different
values of «, the distorsion around 0, the conformal measure of partition
sets of a neighborhood of 0, and the partial sums Sy, () will play a role
in controlling the invariant measure of the same partition sets, as well as
evaluating the integral which is crucial in order to get our main result. Those
estimates are easy and we use them in this section but we postponed their
proofs to the appendix.

3.2. Uniform estimates of the distorsion. In this section we give uni-
form estimates depending on A for the local dynamics next to the repelling-
parabolic fixed point 0. We recall that the family we are studying is given
for A\:=1+4¢>1Dby fi(z) = A(e* — 1). In particular, in a neighborhood of
0, the local dynamic is given by the following Taylor expansion

Fa(2) = fa(z) = Az + 2% 4 22ga(2)-

With g)(z) uniformly bounded, independently of A, as soon as a neighbor-
hood of zero has been fixed. Note in particular that for € = 0 , the point 0
is a parabolic fixed point with one petal.

We apply the general results of the first appendix of this paper to this special
family fy. In the remaining of the paper we set A = 14 ¢ and we denote the
relevant quantities by indexing them equally well either by € or A. Moreover,
in the remainder of this section F; ™ will be the inverse branch of F} ™ that
fixes 0. From Proposition 5.7 we deduce that

Proposition 3.1. Let 0 < rg, 1 < Ay being fized. Then there exists K > 1
such that Y\ € (1, \o), Yz € Cp(N), and ¥n € N
1 —-n
7 (2) S [(F)(2)] < Kan(2)-
The following result is technical but will be crucial in order to control the
sign of the derivative d’(\).

4 our study we have Ng ~ % = ﬁ
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Lemma 3.2. Let 0 < rg, 1 < \g being fized. There exists an integer N such
that ¥n > N, Vk € NN [1,n — N], VA € (1, \g) and Vz € Cr()\)

V3
2
Proof. Let z € C, and 0x(z) = arg(F})'(z). The Lemma boils down to
proving that [0x(2)] < §.
One computes that (F¥)'(z) = H;‘:é F)'\(Ff\(z)) = \k exp(zg?;é Ff\(z)) So
that we have 0;(z) = E;:Ol Im (Fi(z)) Since F)]\.(z) belongs to Cj,—; we

(FY)' ()] < Re (FY)'(2):

may use Corollary 5.8 which asserts that |Zm (Z)| < ﬁ for any Z €
C—j. We thus have
n—k 1 +0o0 1
oSS <3 L
el ) e ¥
This is less than § if IV is big enough and we are done. "

We end this section with two more estimates of the distorsion. The first
one needs the following observation on the localization of J(fy).

Lemma 3.3. For every R > 0 there exists A > 0 such that for all A > 1,

+o00o
J(\ |J B@mni,R) C{z€C:Rez>A}.

n=—oo

Proof. First notice that
Hh{zeC:Rez<0})=B(-\1)C{zeC:Rez<1-A} C{zeC:Rez <0}
Thus
(3.1) {z €C:Re z <0} C F(f\) := Fatou set of f).

Now write z = x + 4y. Then

Re (fa(z)) = Re (M€ cosy + iebrsiny — 1)) = A(e“ cosy — 1).
Note that there exists A; > 0 so small that if 0 < z < A; and = + iy ¢
¢ B(2wni, R), then dist(y, {27ni : n € Z}) > R/2, and consequently,

coszj< cos(R/2). Hence, Re (fa(2)) < A(e?tcos(R/2) — 1). Take now
0 < A < A so small that e® cos(R/2) < 1. So Re (fr(z)) < 0 and, by
(3.1), fa(z) € F(fr). Therefore we have proved that
+oo
{zeC\ U B(2mni, R) : Re z < A} C F(fy).
We are done. [
Now notice that if Re z > A, then

1£5(2)] = XeReZ > Ne? > 1.

Combining this and Lemma 3.3, we obtain the following.
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Lemma 3.4. For every R > 0 there exists v > 1 such that for every z €
J(F)\) \ B(Ov R)}
|FA(2)] = 7.

Using Proposition 5.7, Lemma 3.4 and the same reasoning as for the proof
of Lemma 3.6 in [Ha,Zi!] we prove the following result

Lemma 3.5. There exist 0 < ro, 1 < A9 and 1 < K such that VA € (1, \o)
and Vz € Jy,

F}(2) ¢ B(0,r0) = Kn* <|(F})'(2)]-

3.3. Conformal measures. Let us recall that a probability measure m is
called conformal if its strong Jacobian is equal to |F)’\|d(’\). This means that
for any measurable set A on which f) is 1-1 we have

(3:2) maA(RA(A) = [ 1BV

Those measures are usually a powerful tool to study Hausdorff dimension of
Julia sets. In fact their definition is dynamical but they very often carry a
geometrically significant information about the Julia set. In many of cases
they coincide (up to a multiplicative constant) with Hausdorff or packing
measures on the Julia set.

Using Proposition 5.7 and the notation introduced below we get the fol-
lowing.

Proposition 3.6. Let 0 < rg, 1 < Ag being fized. Then there exists K > 1
such that VA € (1, ), and Vn € N

%an(Zd()\)) < maA(Ca(N)) < Kan(2d(N))

Proof. This is not difficult when one observes that for each A the function
F{ is univalent on C,, (). In particular using the definition of a conformal
measure we deduce that :

33 M) =mRC) = [ IR

We then use estimates of Proposition 3.1, since |(F})'| on Cy () is com-
parable with [(Fy ™)'|7! on Cy(A). We deduce that there exists a constant
K > 0 such that for any z € Cp(A)

(34) (F2) (2)] " < ma(Cn(N) < K|(F7) (2)] 74

1
K

We can now conclude the proof by using again Proposition 5.7. "

Remark : Let my be any accumulation point of the family of probability
measures (m))x>1. Let (A,) be a sequence of real numbers converging from
above towards 1 such that the sequence (my),,) converges weakly to my, and
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(d(An)) converges to some d > 0. For any r > 0 one may find N(r) such
that

Vn > N(r) B(0,r)nJy, c {0}U UkSN(r)Ck<)\n)

And in particular we conclude if 7 > 0 is such that ms({|z| = r}) = 0, that
we have

. . K
Moo (B(0,7)) = nhjgo my, (B(0,7)) < nhjgo Z m, (Ck(An)) < W‘
k>N (r)

So that we conclude that that ms, has no atom at 0. And it is one of the
main point in order to conclude that d(\) — d(1) when A\ — 1, see [Ur,Zd?].

We end this section about conformal measures with a technical Lemma.
It will be used in the next section concerning invariant measures.

Before stating and proving this result we recall that P = {z € C| —
im < ZIm z < in}. And for any M > 0 and any r > 0 we introduce the
following notation : Py := {z € P|Re z < M}, B, := P\ B(0,r) and
Br,M = Py N B,

Lemma 3.7. There exists 0 < o < [3 such that YM > 2, VX € [1, \], with
Ao < 5, Vr €]0, 5 — Xo] and VA C B(0,7) measurable, we have

(3.5) amy(A) < my(Fy H(A) N B,) < Bmy(A).
and
(3.6) mA(FyH(A) N Byar) < my(Fy H(A) N By) < 548ma(FyH(A) N Byoar).

Proof. Let By, be the connected component of Fy, '(B(0, 7)) such that f\(By) =
B(2ikm,r). For any z € By, we have :

(3.7) IF5(2)] = [1A(2)] = [fa(2) + Al = [A + 2ikm + ae”|,

with @ < r and 0 < 0 < 27. With our assumptions this leads, for |k| > 1, to
T T

(3.5 dfklr — 7 < [F(2)] = |f4(2)] < 2lklr + 7

Since |f(2z)| = Aexp(Re z), we also get, for any |k| > 1, that
Vz e B logh < Re z

As a consequence we see that F) '(B(0,7)) N B, = Ulk|>1 B
The measure m) being conformal we have

mA(A):m,\(FA(Ak)):/A |FS 19N dm,
k

And from (3.8) we deduce that

my(A)

my(A)
- N 7 <
@lk]r + 1)) =

3.9 AN
(3.9) @k — )i

my(Ag) <



12 GUILLAUME HAVARD, MARIUSZ URBANSKL MICHEL ZINSMEISTER

so that

(3.10) . .

2my(A) < m)\(F_l(A)ﬁBT) < 2my(A) i
kZZI (2km + 5 )4 A kZZI (2km — Z)4N)

The function A +— d(A\) being continuous on [1, Ag] one may consider its

minimum ¢ which is strictly greater than 1. With oo =25, m and
- 3

ﬁ = 22’621 m we haVe :
amy(4) < mA(Fgl(A) NB,) < Bmy(A).

This is (3.5).
Note that (3.8) tells us that for any z € B; we have Re z <log(2m+ %) <
2 < M. This implies that By C B, . In particular we have

m,\(Al) § m)\(F/\_l(A) N BT,M)‘
We then deduce from (3.9) that
mx(A) -1
AN« F 1A )
r + 3 = M0 B
Together with (3.5) we conclude that

ma(Fy Y (A) N B,) < (27 + g)%mA(F/\_l(A) N Brar)-

Since (27 4 %)? < 54 we conclude that the left hand side inequality of (3.6)
holds. The right hand side being obvious the proof is finished. "

3.4. Invariant measures. Let us first recall that uy = pam, is the unique
F)\-invariant probability measure equivalent with my. This measure is also
the unique equilibrium state for the potential —d(\) log |F}| i.e.

hyu, —d(N) /log |FX|dpy = sup{h,, — d(\) /log |\FY |du},

where supremum is taken over all F)-invariant ergodic probability measures
such that) [log|F}|du < +oo. The function py is obtained in [Ma,Ur| as
the limit of the sequence £} (1). The main results of this section is

Proposition 3.8. Let 0 < g, 1 < Ag being fized. Then there exists K > 1
such that VA € (1, o), and Vn € N

i- %an(2d()‘) - 1) < M)\(Cn()‘)) < Kan(Qd()‘) - 1) if n < Ne.

ii- Lan@IO) < (0, () < K 2nZIA) ifn > N..
Proof. Let B, := P\ B(0,r). We know that px(B,) > 0 so that the first
return time N ,(2) := inf{n > 1| F}(z) € B,} is finite py-almost-surely.
Let By, = {Ny, = n}. We recall that the sets (C,) are introduced at
the beginning of this section. Note that for 7 small enough we have Bj ,, N
B(0,r) = Cn(X). Since py is Fy-invariant its restriction to B, is invariant
for the first return map in B,, that we denote T). Moreover, u) can be built
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from this Ty-invariant measure and this leads, for any measurable set A, to

the formula
Z Z i (F YN B, NB,).

n>1 k=0

We are interested in the sets C; for which we get

ZZW ke)nB,nB,.

n>1 k=0

Note now that the set F/\_k(Cl) NB,NB, is empty unlessn > [ and k = n—1I.
In this case we have F)\_(n_l)(Cl) NB,NB, = F/\_l(Cn_l) N B,. We thus

conclude that
= palF )N By):

n>l

In Corollary 3.10, that we admit for the moment, we show that there exists
K, > 0, independent of A, such that for any A C B(0,r) we have

1 _
) < (F (A1) < Kima(A)
So,
1
EZm,\(C ) < M)\(Cl < KIZm)\
n>l n>l

From Proposition 3.6 we deduce that there exists Ko > 0 such that
722% 2d(N)) < pa(Cr) < K Y an(2d(N)).
n>l n>l n>l

With the notations used in the appendix this is exactly
o Stol2(N) < 12(C1) < Ko aoe (240V)
We the use Corollary 5.10 to finish the proof. "
Lemma 3.9. There exists K > 0 such that for all e > o, v > 0 small
enough, and for all M > 0 big enough we have,
% <pAr<K onB.y, and py<K onDB,

From this Lemma and Lemma 3.7 we easily conclude this.

Corollary 3.10. There exists K > 0 such that for all positive v and € small
enough, and for any measurable set A C B(0,r) we have

ma(A) < pa(Fy (A) N B,) < Kima(4)
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Proof. Let > 0 and € > 0 be small enough so that the assertions of
Lemmas 3.7 and 3.9 hold. Let K > 0 coming from Lemma 3.9 be larger
than max{3,a "'}, both a and 3 coming from Lemma 3.7. By Lemma 3.7
we know that for any A C B(0,r) we have

%mA(F/\_l(A) N B,) < ma(A) < Kma(F ' (A) N B,).

From the right hand side inequality in Lemma 3.9 we know that
A (F5H(A) N By) < Kmy(Fy HA) N B,)-
These two inequalities give us
pA(Fy H(A) N B,) < KPmy(A)-

For the other inequality we first note that Lemma 3.7 also asserts that

1
(B} (4) N Byar) < ma(Fy (A) N B,) < Kma(Ey(A) N Brar)-

Since Lemma 3.9 implies that

1
A (FT (A) 0 Boar) < s (F (A) 0 Brar) < Koma(FyH(A) 0 By,

we conclude that
ma(A) < Kmy(Fy 1 (A)NB,) < K2my(Fy H(A)NB, ) < K2 un(Fy  (A)NBr )
We easily deduce that

mA(A) < K3 (Fy(4) N B,):

This is the left hand side inequality of the Corollary and its proof is finished.
[

Proof. Before starting the proof of Lemma 3.9 we sketch the strategy. We
first use a result of Urbariski and Zdunik, Lemma 3.4 in [Ur,Zd!], that asserts
that as long as we stay far away from the post-singular set, iterates of Ly
are uniformly bounded from above by a constant that does not depend on
A. This gives us that p) is bounded from above in some B,. And this allows
us to prove that for r and € small enough, and for M big enough we have

% < pa(Brm) < 1.

In order to control py on B, ys we use Kaebe’s distortion Theorem on B, yr
and prove that the measures m) have the bounded distortion property on
B, a1, with a constant which only depends on 7 and m. This implies, see [Ma]
(compare [Ha] Propositions 1.2.7 and 1.2.8), that there exists an F)-invariant
measure vy which gives mass 1 to B, s and which is equivalent with my. Its
Radon-Nikodym derivative is such that % < j:l *A < K on B, with some
K > 0 independent of A. Since m) is ergodic and conservative, there is, up
to a multiplicative constant, only one possible invariant measure equivalent
to it. This means that py = a)vy. Integrating on B, )y we conclude that

ay = px(By ). This leads to ﬁ <pr< K.




15

We now go into further details. Note that the singular set of F) is the
one point —A which sequence of iterates converges towards 0 from the left.
In particular B, s is a simply connected domain on which inverse branches
of Fy are well defined. Since J) is a subset of {—5 < Zm z < §} one may
find an open simply connected domain U, ps such that : U,: M C 8572 a and
JxN B,y C Uppr. We have thus an annulus B%QM \ U, v and an associate

Koebe constant /K, ps. We conclude that for any A and any n € N we have
L B0@

Kenr = LY(W)(y) =
Since for a measurable set A we have my(Fy "(A4)) = [ L%(1)dmy, we con-
clude, if A C U, m, that

Loomad) _ maA) e ma(d)

KnM m)\(UT,M) - mA(F)\_”(Ur,M)) -0 m)\(UT,M)

This is precisely the bounded distortion property for my on U,y as it is
used in [Hal. Since (Jy, Fi\,m)) is ergodic and conservative there is, up to a
multiplicative constant, only one invariant measure equivalent with my. Let

vy be the one that gives mass 1 to B, js. It follows from Propositions 1.2.7
and 1.2.8 in [Ha] that

(3.11) Ve e Uy Yy € U

my-almost surely on B, pr <
’ K r. M dm A

The measures py) and vy only differ by a multiplicative constant which can
be computed by integrating the function 1 over B, ;. We deduce that
px = px(Byar)vy and we conclude that

px(Brar)
KT,M

Using inequalities (3.11) one may now adapt the reasoning of Lemma 3.4
in [Ur,Zd'] to our situation. Let M be large enough and r small enough so

that : % > r and for all A € [1, \o] if Re z > M then L5(1)(z) < 1.
The purpose of the first requirement is the following

(313) Vze P  (Rez>M and Fy(y)=2)=ly|>r (e yebB):
We prove by induction that H, is true for all n with

(3.12)  mjy-almost surely on B, a < px < Ky pmrpn(Brovr)-

K’F,M
my (BT,M)

Notice that Hy is obvious and assume that H, is true. Since £)(1)(z) <
D k>Re - k%()\), and since d()) is converging towards d(\g), one deduces that

Hy < [[LX(1)xB, |l <

L(1)(2) is, uniformly in A, converging towards 0 as Re z — oo. We deduce
that ||£x(1)x8, || is achieved for some z; € B,. An easy induction leads,
for all integers n > 0, to the existence of some z, € B, such that

LY (D)X B, oo = LX(1)(2n)-
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Consider 2,41 and assume that it lies in B, js. Then we have

L3 (1) (2041)
r,M

1= [yt mam > [ £ W s > 7 (Brar)
The last inequality is an application of (3.11) and we conclude that H,, 1 is
true. But 2,41 might be with a real part greater than M. In this case we
have

L3 (1) (2n1) = LALR (1)) (2n41) < LR3(1)(20) LA (1) (zn41) < LR (20):

Those inequalities are implied by our assumptions on M and r that ensure us
first, that any pre-image of z,1 is in B;, and second, that £(1)(zp+1) < 1.
We may now apply our inductive assumption to conclude that H,4; is true
so that this hypothesis is true for any integer n. Let o, a7, be defined as
the infimum of the set (my(By,n)) where A € [1, Xg]. Since A — my(By )
is continuous on [1, \g], this infimum is achieved and is strictly greater than

0. Fix r small and chose M (r) such that all assumptions are fulfilled and

K . .
set Cppy = ﬁ We deduce from our analysis that lim, .., £3(1) =

pr < Cr )y, on B.. We have thus proved the left hand side inequality of
Lemma 3.9. In order to finish the proof of this Lemma we need to prove
that % < p) < K on B, p. By (3.12) this will be done if one can prove that
pia(Byar) > 3 for suitable r and M.

Since we know that py < C, ), on B,, we may already use the left-hand
side inequalities of Proposition 3.8. In particular for any n we have

C,
ia(Cn) < — A0 with 1 < § = inf{d()\)}, well defined by continuity.

Let now N be big enough so that

> <1
n20—-1 — 4Cr,)\0

n>N

Chose 7’ small enough so that for any A € [1, \g] we have
B(0,7") C Up>nChr(N):

Such a choice is possible because of Proposition 5.7. We then easily conclude
that 15 (B(0,7")) < 1. As a consequence, one may assume, without loss of
generality, that we have started our analysis with » > 0 small enough so
that p\(B(0,7)) < 1.

By Lemma 4.1 in [Ur,Zd?], we know that the sequence of measures (m,)
is tight. In particular, if M is chosen large enough, then for any A € [1, Ag]

we have my(Pf;) < ﬁ. From where we deduce that uy(P§;) < 1.
™A

Note now that py(Brar) = 1 — pa(B(0,7)) — pa(Pg;) > 3. As already
mentioned this inequality finishes the proof of the Lemma. "
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4. CONTROLLING THE INTEGRALS

In this section we mainly reproduce the reasoning of [Ha,Zi']. Never-
theless there are some differences we would like to emphasize : the main
being that we do not know whether the dimension of J(F}) is less than %
or not. Note also that the Markov partition used in [Ha,Zi!] is replaced in
the present article by the backward images of the fundamental domain Cj.
Finally, note that we work directly on Jy without conjugating the dynamics.

Before we start the proofs and in order to simplify some expressions and

calculations, we introduce the following notation. Let

k=1
n
1
¢, = AVIE
= 1(EY)]
=1
U= )
2 Y
and
2|
so that formula (2.1) may be written
d(A 1
0 =-"2 (1= 5) [ re @yan
XM,\ >\ .])\
We will need the following equation which is an easy computation
1 1
4.1 UV=-—_—VoF'+ V¥ d=—— ""DPoF\'+ D,
4 (Fy " [GRIAR

4.1. Lyapunov exponents. In this paragraph we prove that the Lyapunov
exponents do not play any role in our estimates of the derivative. In order
to do this we only need to check that they are uniformly bounded above and
separated away from zero. More precisely we prove the following.

Proposition 4.1. There exist 19 > 0, A\g > 1 and K > 1 such that VA €
(X, Ao) we have

1
7 < X ;:/ log | F3|duy < K-
I

Proof. First note that YA > 1 and Vz € Jy we have |F}(z)| > 1. In particular
we have

/ log |Fx|dpx < Xuy-
Co



18 GUILLAUME HAVARD, MARIUSZ URBANSKL MICHEL ZINSMEISTER

There is Ky > 0 such that Re z > K; for any z € Cy(\) and any A €
(1, Ao), and by Proposition 5.5 there is K5 such that u)(Cy) > Ka. Since
log | F3(z)| = log A + Re z we deduce that

0< K1Ky < / log | F}|duy < Xy

Co

This is the first part of the proof.

For the other part note first that continuity of A — d(\) and the fact that
d(1) > 1 imply that there exist & > 1 and # > 0 such that o + 8 < d(\) for
any A € (1, \p). This implies in particular that YA € (1, \g) and Vz € J)
1 < 1 ‘
[(FX) ()[4~ [(FA) (2) |47
Consider now the following partition of the strip P : (Ap)nen, with A, :=
{ze P|n—1<Rez<n}. Wehave

+00 oo
=2 / log | F}|djix <log Ao+ / Re zdpx(2)
n=1"74n n=1"4n

+oo
<log o+ Y nua(An)-

n=1
Lemma 3.9 implies that there exists K3 > 0 such that py(A4,) < Ksmy(A4,)
for n > 2. Note now that

mA(An):/ XAndmA:/ Lx(xa, )dmA-
A Jy

For any z € J) and any k € Z we let z; be the preimage of z for F)\ such
that fy(zx) = z + 2ikw. We thus have

XAn Z ‘FI ’d(A) XAn (Zk)
With « and 3 defined above, thls gives that
1
Lx(x4,) Z WXA o (21):
kEZ

Since |F}(z1)| = Ae™®€ #k = |z + A + 2ikn|, we have

1 1
- - < \ BB
Gl ) < Lo

so that
1

+ 2ikm|e

< A Pemhn
Lx(xa,)(z) <A Pe gz EES

As we have a > 1, there is K4 > 0, independent of A\ and z, such that

1
< Ky \°.
2 2+ A+ 2ikm|e !
kEZ
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This tells us that
La(xa,)(z) < Kqe O

Integrating with respect to my, and summing over n > 1, we get
Xy < log Ao+ Ksgmy(Ar) + KKy Z e P < K,
n>2

With K5 :=log A\g + K3+ K3K4%. This is clearly independent of A and
we are done ]

Note that with some more work one can indeed prove that x,, converges
towards x,, as A converges towards 1 from above.

4.2. Controlling the integral away from 0. Let N be an integer® and
set My = UnzNJrl Cy, and By = J) \ My. Note that both set My and By
depends on .

Proposition 4.2. There exists k(N) > 0 such that VA € [1, \g] we have
[ v < k).
Bn

Proof. Let Dy = By and for any n € N let D,, = Cy . Following [Ha,Zi']
let U,, be the set of points which arrive or come back to By after exactly
n iterates, which means that U, = F)\_l(Dn). Note that U, N M, = D,,.

Given Ny € N we set A, = F)\_N0 (Un) N By. Since (U,) is a partition of J),
(A,) is a partition of By and we have

+oo
<I>d,u>\ = / (I)d[,L/\

Using relation 4.1 with n = Ny + k we get
1 No-+k
Pdpy = / i PO F T @ | dpn
/Ak A \|EYH 2 ’

Using the fact that F)]\VOJrk(Ak) C By, Lemma 3.5 and Lemma 3.4 we deduce

that
K(NV)

dduy < ——2 | Do FNotEg, 4+ (Ng + k) (A
" MA_(NOJFk)Q/Ak o F\" dpx + (No + k) pa(Ak)

The fact that F/{VOJF]“(Ak) C By also implies that x4, < xBy © F;\Vﬁk, from

the invariance of u) we thus get

/ do F<V°+kdu)\ < /XBN o Fivo+k§) ) F>{V0+kd,u,\ < / Dduy.
Ak By

The integer N being fixed, one may choose Ny big enough so that

Ng
we deduce that

dpn < 2(No + k)pa(Ak) < 4(k + N)Nop(Ag).
Ay

5This integer will be chosen later big enough to ensure that for any z, € C,, we have
anN arg(zn) < §.
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In order to estimate py(Ag), we first use Lemma 3.9 to conclude that
pa(Ar) < Kmy(Ag) < Km)\(F/\_NO(Uk)), for some constant K independent
of k, Ny and . Since Uy, = F; ' (Dy), we get iy (Az) < Kmy(Fy "™ (Dy)).
But
m,\(F)\_(NO+1)(Dk)) = /XDk o F)]\VO+1dm)\ = [:iVOJrl(l)dm)\.
Dy,

Since there exists K1(Ny) independent of A and k such that Ef\VOH(l) <
K1(Np), using Lemma 3.6 and the fact that Dy = Cyyp, we get

—(No+1) K
my(F) Dy) < K1(No)mx(Cnyi) < N1 R
We thus conclude that

Pdpy < 4NoKo

i (V7 R
Summing over k we end up with
T
Pdpiy < 4NoK> ) | oy = ANo K Tad) 1
By o (VR ™ home1 ¥ »
Since d(A) > 1, and since Ny only depends on N, we conclude that

AN K 1 K3(No)
/BN PN S 30— 1) (N = 1201 = N2

=k(N)- [

4.3. Controlling the integral in a neighborhood of 0. In this para-
graph we deal with the remaining part of [Re (¥)duy. If we note My =
Jx \ By we prove

Proposition 4.3. There ezists K > 0 and N € N such that for VA € (1, \o)
1

— (A —1)2N)=3 < Re (W)duy < K(A—1)2NV=3 0 4rdn) < 3,
K My

1
——logA—=1) < [ Re (W)dpy < —Klog(A—1), ifd(\) =3,
K M

Re (V)duy| < K, ifd(\) > 3.

‘MN

Proof. We split this integral into several pieces. First we note using 4.1 that

+00
Re (V)dpuy = Z [/C Re ((FT}_N)’\IIOFQ_N> dMA+/C Re (\I’n—N)dﬂA]-

Mn n=N+1 A

We first deal with the left hand side of the sum that we bound integrating
the modulus of the function.

1 .
/ Re <(F1)’V\l—JV>/\IJOF>\ N) d/,L)\

1
< | ———®o F Ny
/cn [(Fp=Ny) A
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We use Lemma 3.5 and the fact that for z € C,,, we have F/{‘_N(z) eCy C
B,, to conclude that

1
Re | ———T o FI™N | duy
/cn ((FfN)’ g )

Summing over n > N we get

v ),
< — Pdpuy-
(n— N)? By A

—+o00 1 “+00 1

§ j Re | ——— Vo N dM] <K @duAE =
— by =

n=N+1 [/C” <(Fj\l Ny ) By =

By Proposition 4.2 we conclude that there exists K (N) > 0 such that

+oo
Z [/ Re <(F/7\11—N),\IJOF§_N> du,\]

n=N
We now deal with the right hand side. We have

Re (Yn—n)dpy = Tg/n Re <(F1f)’> dpy:

Choose N big enough so that conclusions of Lemma 3.2 hold. For any z € C,
and any k£ < n — N we have

V3|0 < Re (R (2,

(4.2) < K(N)-

Cn

so that

Re (Yn-n)dpy ~ Z/ Re <\Fk]’) dpiy

Note now that for any z € C),, we have by the Chain Rule that
Fn /
(B (2) = 03
(FX0) (FY(2))
with Ff(z) € C,,_. We deduce, using Proposition 3.1, that
1 an(2)
[(FX) (2] an—k(2)
Estimates of py(Cy,) are given by Proposition 3.8 and we conclude that
an(2d(N) — 1)a, (2 )Zk 1 an—k(=2) ifn <N,
/ Re (Yn-n)dpx ~ { . )
Lan(2d(N))an(2) 371 an-i(=2) ifn > Ne.

Since an(a)an(B) = an(a + B), and with S, (@) = >} a;j(a), this can also
be written

an(2d(N) + 1)Snn_1(~2) if n < N,

n-N)dpix ~
Re (1/) N) 12D { %an(zd(A)+2)SN,n—l(_2) if n > N..

Chn
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Use now Corollary 5.11 we have Sy p—1(—2) ~ (ap(—3) —an(—3)) if n < N,
and Sy p—1(—2) ~ @ if n > N. and we get
an(2d(N) + 1)(an(—=3) —an(=3)) if n < N,

Cn L an(2d(X) + 2)an(—2) if n > N..
Since ay,(a)an(B) = an(a+ 5) we get

an(2d(N) —2) —an(—3)an(2d(N) +1) ifn < N,

/ Re (Vn—n)dpx ~ L .
Cn = a,(2d(N)) if n > N..

Summing over n > N this gives us >, <y an Re (n—n)duy is comparable
with B

o ( (.80, (2400) = 2) = (=350 (24N + 1), N 4ou(200) )

Re (Yn—n)dpy ~ {

We then deduce from Corollary 5.10 and Corollary 5.11 that Sy n_(2d()\) +
1) ~ an(2d())) ~ 1, and also that Sy, ;oo(2d(X)) ~ NI 24001,
Estimates of Sy,n.(2d(\) — 2) depend on the comparison of d()\) with 3.
More precisely, if d(\) > 3 then Corollary 5.11 tells us that Sx,n. (2d()) —
2) ~ 1, if d(\) = 2 then it tells us that Sy n.(2d(\) — 2) ~ log N, and if
d(\) < 3 then Sy n.(2d(N) —2) ~ 243 Summarizing all those estimates
we get

1 if d(\) > %
S | Re (u-n)dur~{ logN. ifd(A) =3
n>N 7 Cn e2N=3if d(N) > 5

4.4. Proof of the main result. We are now in position to prove the main
result of this paper that we recall here.

Theorem 4.4. There exists A\g > 1, and K > 1 such that

FO-DHO2 < @) < KO- DM ipd) <3
[N < KA-1Dlogxty ifd(l) =53,
d'(N)] < K(A-1) ifd(1) > 3.

In particular the function X\ d()\) is C' on [1,+00), with d'(1) = 0.

Proof. Let us recall that we have
d(A 1
d/(/\) = —Q < ) Re \I/)\d,u)\-
XMA A N

We first use [Ur,Zd?], where it is proved that A ~ d()\) is continuous
on [1,400) , and Proposition 4.1 to conclude that there exists A\; > 1 and
K7 > 1 such that VA € (1, A1) we have

1 d(\) 1
E(A—l) < ™ <1— )\) <Ki(A—1)
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Note that given any integer N we have

Re Wdjuy — / Udpy + / Uy,
N Mpn

Jy B

so that

)

(V)] < 2K, max(

/‘I’Adlb\ / ‘If,\dm>'
By My

We may thus use Proposition 4.2 and Proposition 4.3 to conclude that d’'(\)
is converging towards 0 when A is converging towards 0 from above. In
particular there is Ao > 1 such that VA € [1, Ag),

We deduce that

()‘ - 1)7

so that

()\ o 1))\—1()\ o 1)2d(1)—3 < ()\ - 1)2d(/\)—3 _ ()\ - 1)2d(1)—3(}\ - 1)2(d()\)—d(1))

< ()\ _ 1)—()\—1) ()\ _ 1)2d(1)—3

Since A — (A — 1)*~! is continuous on [1, Ag] there exists K3 > 1 such that
S
K3

Using again Proposition 4.2 and Proposition 4.3, and the fact we just proved

that allows us to replace d(\) with d(1), we conclude the proof of the main
result in case d(1) > 3.

(}\ - 1)2d(1)73 < ()\ - 1)2(1(/\)73 < KB()\ - 1)2d(1)73‘

Assume now that d(1) < 2. Choose Ay > 1 such that VA € (1,\4) we
have )
2K(N) < / Uadp,
K Jary
with K(N) given by Proposition 4.2 and K by Proposition 4.3. We then

conclude that
/ \I’Adﬂ,\N/ Wadpiy
J>\ MN

And we can conclude using Proposition 4.3, and the fact that d(\) may be
replaced by d(1). [

5. APPENDICES

5.1. Estimates close to a repelling/parabolic fixed point. In this ap-
pendix we show how to get estimates in case of a degeneracy towards a
multi-petal parabolic fixed point. It is a two steps proof : first we deal
with the real axis then we extend estimates obtained in the real line to the
complex plane using Keebe’s distortion Theorem.
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Consider the following family of germs of holomorphic functions defined
in a neighborhood of 0 that we denote by U:

fe(z) = (1+e)z+ AR Zp+29€(z)'

Assume that there is an inverse branch f=! well defined on U that leaves
a sector Sy := {re'*|0 < a < 0} invariant, for some 0 < § < . Let
Up := UNSy. Assume also that Vz € U we have |zg-(2)| < 3. Let I = UNR*
and assume that f-=1(I) C I and that f. is not decreasing on I.

This appendix is organized as follow : in the first two paragraphs we study

those germs giving in the second paragraph uniform estimates for |(f=™)'|.

5.1.1. The mean value Theorem and its consequences. We start with the
following easy fact.

Lemma 5.1. Let f : R — R" be a decreasing map with antiderivative F on
R and let (up)nen be a decreasing sequence of real numbers. Suppose that
there exist n > 1 such that for all k < n we have

i- Ky < (up —ugy1)f(ug), then Kik < F(ug) — F(ug):
it~ (up — ugs1) fugsr) < Ko, then F(ug) — F(ug) < Kok-
Proof. One only needs to check that our assumptions imply

Uk

(g — upq1) f(ur) < f@)dt < (ur — ugs1) f(upr1):

Uk+1

In particular we point out the following two particular cases :

Corollary 5.2. Let (x,,) be a decreasing sequence of positive real numbers.
Assume that there exist 0 < K1 < Ko and n € N such that Vk < n,

+1 p+1
Kz < (zn — ) < Koz .

Then there exist Kl and K26 such that for Vk <n
Ky < kray < Ky

Corollary 5.3. Let (uy) be a decreasing sequence of real numbers. Assume
that there are a >0, 3 >0, p > 0 and n € N such that Vk <n

(uk — upt1) < o+ Pelr

Then Vk < n we have
1

arp T e—ak < Uk —u0,
(o + Pepuo)p

Let us provide a short argument of how these corollaries can be deduced
from the Lemma 5.1.

=

60ne can take for instance Ky = (pKl)_% and K1 = (pKy + %)_ .
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Proof. For Corollary 5.2 we use the Lemma with the function f : z +—
=Pt g0 that one may take F : z — —%x*p. We deduce that we have :

1/1 1
Kl'n S “\ — P S KQ'n'
P \Tnh Ty

Elementary computations then lead to the desired inequalities.

For Corollary 5.3 we now consider the function f : z — (1 + gep”")_l.
One first checks that F': z — x — %log f(x) is an antiderivative of f. Our
assumptions on (u,) may now be written as

(up — wpq1) f(ur) < o

Using the Lemma 15.1 we deduce that F(ug) — F(ux) < ak. This can be
written in the form

DU,
% < ak-
o+ [epto ) —
Applying exponents to both sides of this last inequality, we deduce that
1

o+ [ePU N\ p e_ak e

o + [Fepuo -
From this we get our estimates. "

Al
ug — Uk + — log
p

5.1.2. Uniform estimates along the real azis. We now come back to our
dynamical setting. Let z¢p € I be a fixed element. Assume for convenience
that xg < 1. Define for any n > 0, f-(zp+1(g)) = zn(€), where xg(e) = xo.
For each € > 0 sufficiently small, we define N, as N. = sup{n € N |z} > ¢},
and for ¢ = 0 as Ng = 4o0o. Note that for any € > 0 small enough,
the sequence (xy,()) is strictly decreasing towards 0. So that N; is a well
defined integer. Our main results in this paragraph is the following.

Proposition 5.4. There exists K > 1 such that for all € > 0 small enough,

(5.1) K 1<eN.<K, £>0,
(5.2) K l<zn v <K, V<N,
(5.3) K '<aer(l+e)" <K, VYn>N..

This result may be interpreted in the following way : N is a ”parabolic
time”. During that time, the fixed point 0 acts on the orbit of zg, (z,), as
if it was a parabolic fixed point with p petals. For n greater than N, the
orbit of xg is close enough to 0 and realize that it is indeed an attracting
fixed point for f= 1.

In the following Lemma we obtain estimates which are true for all n € N

Lemma 5.5. There exists K > 1 such that for all € > 0 small enough,

1 1
(5.4) K*15;(1 +e)"<2, <K—, VneN

10
ne
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Proof. All our estimates will result from the following very definition of (x,).

(5.5) Tn = (1+€)Tnt1 + ffiill(l + Tnt19:(Tn+1))-

Assuming that € < 1, we easily deduce from this equality that for any n we
have

(5.6) 1< <@+2h) <4

Tn+1
From 5.5 we deduce that

Tn — Tn+1 € Tn+1 P
(57) I =7 + gg($n+1).
zP T T
n n n

We get from (5.6) and (5.7) that Vn

. 1 Ty — Tptl

K= L= i

[un

Using now Corollary 5.2 we conclude that Vn, xnn% < (%) g < 2. This is
precisely the left hand side of 5.4 in Proposition 5.4.

The right hand side of 5.4 is obtained when one notes that (5.5) also
implies that
log z, — log zn41 = log(1 + ¢ + fo—i—l + xﬁiige(xn-&-l)) <log(l+e¢)+ 2x€z+1'

We may thus apply Corollary 5.3 with the sequence w, := logz,, a =
log(1 +¢), and § = 2, and deduce that

log(l+e)r  _ I
(log(1+¢) + 261’“0)% -

Assuming that log(1 +¢) < eP“0 we get
1 1
3 rer(l4e) " <e'" =um,.

In order to get estimate (5.2), we check that the assumptions on g., the
definition of N and relation (5.7) leads for all n < N; to
o=t 3,
i 2
Corollary 5.2 then tells us that ¥n < N we have

~ 1
Ky <xpyne,
~ 1
with, for instance, K; = (2 + &) "
0
We are now in position to give estimates for N.. They easily come out

from the following inequalities we have already proved:
(5.8)

Kl 1 < Xl 1 < TN.—1 < TN, < < 1 < < 2
» L3 T 5 = S INALZEP TN, &
Kop NZ Kop (Na — 1);0 Kop Ky N
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From there we deduce that

(5.9) Ry <erN. <2,

with Kg = Il((glp'
Now we only need to take care of (5.3). We start by noticing that for all n
we have (14-¢€)z,11 < 2,,. For any n > N. we thus have (1+¢&)" ez, < 2.

This leads to
(5.10) Tp < (14+e) "oy (1+¢)Ne.

By definition of N, and relation (5.6) we have

1
N Korn. 11 < Koer-

By relation (5.9) we also have

2P
L+e)Ve <1+ )N <
Ne
From this and (5.10) we deduce that
(5.11) n < KoePer (14 6)™™

Taking K = Kgp e?” finishes the proof of the Proposition.

Let now a(p) := p—;ﬁl. The following corollary is useful
Corollary 5.6. There exists K > 1 such that for all € > 0 small enough we
have
(i) K71< (xn — :Un+1)n°‘(p) <K Vn<N,
(ii)) K'< (2p—2p1)e @1 4+)PtOn <K Vn< N,
Proof. From relation (5.5) we deduce that Vn € N,

p+1

ETnt1 < Ty — Tyl < 20, ¢

Using Lemma 5.5, we deduce that the right-hand side inequality of i-, as
well as the left hand side inequality of (ii) are true.

Let n < N.. Then, from (5.2) and (5.6), we deduce that

! ! AR < ( )
X Iy — X .
oK KET nale) = peptT = Tl =i

This is the left-hand side inequality of (i).

In order to finish fix n > N.. Then, by relation (5.5) and Proposition 5.4,
we get that

Tp — Tptl < 356173:_11 < 3Kp+1€0‘(p)(1 + 5)*(7’“)".

The proof of the Corollary is now complete. "
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5.1.3. Extension to the complex plane. As already mentioned, this extension
is done via Kaebe’s distortion Theorem. It asserts that given two simply
connected domains in C, V' C V', such that the boundary of V is at a
positive distance from the boundary of V', there exists a constant K > 0,
which depends only on the modulus of the annulus V'’ \ V', and such that
for any univalent function f defined in V' we have for all z,y € V we have,

!/
L TAC T
K= [f'(y)]
Proposition 5.7. Let V be a simply connected domain such that V C Us.

Then there exists K > 0 such that Ve small enough, Yn € N and Vz € V' we
have

(i) L< ne0|(fy(:)| <K ifn < N..
(i) 1+ Cn< |7y ()| < Ke®(14e)"#tn ifp > N

3

Proof. Enlarging V if necessary one may assume that there is o € VRN
Uy such that for all e small enough x1(¢) := f= () is also in V. Kaebe’s
distortion Theorem implies that for all n, all € and all z € V' we have

L (zn(e) — nyi(e)) iy (zn(€) — Tnyi(e))
= < |(f <K :
O nnlE) <oy ey < D
Applying Corollary 5.6, and noticing that o — z1(g) > a > 0 with some real
a independent of ¢, lead to the desired inequalities. "

The following result gives uniform estimates on how closely the orbits are
tangent to the real axis.

Corollary 5.8. There exists K > 0 such that Ve small enough, Vn € N and

Vzo € V, we have
n 1
1Zm (f="(20))] € K— ="
na(P)

In particular, the series > 0" o Im (f="(20)) converges.

Proof. Note that |Zm (z,)| = |Zm (zp, — zp)| < |zn — 2| Koebe’s distortion
theorem leads to |z, —z,| < K m and Proposition 5.7 gives the result.

5.2. Estimates of some partial sums. In this appendix we single out
the behaviour of the partial sums we need to evaluate at several steps in the
proof of our main result. It seemed to us that postponing those estimates
to an appendix will clarify the exposition. We are thus in this paragraph
dealing with a sequence of real numbers defined by : a, = 1/n for n < N,
and a, = e(1 +¢)~" for n > N, where N, is comparable with 1/e. We are
indeed interested in the sequences (a,(a))nen, with @ € R and a,(«) = af,
and partial sums S, (@) = 37} an(a).

The first Lemma, whose proof is straightforward and left to the reader
asserts, the following.
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Lemma 5.9. For any k < n in N we have

1 o l—a _ .l1-« .
Skn(a) ~ l—a(n k ) Zf”SNe and a # 1
7 log% ifn<N:anda=1

Sk (a) ~ %(ak(a) —an(@)), if k > N; and a # 0.

As its consequence, we get the following.

Corollary 5.10. If o > 0 then

(i) Sn,+o0 (@)
(i) Sn,+o0 (@)
(111)  Sp,too(c)
(iv) S 00 (@)

Proof. Since ae > 0, we see that the sequence (1+¢)~*" converges to 0, and
Lemma 5.9 implies that (7) is true. Note that we have

maX<Sn7Ns (0[), SN&F‘FOO(O[)) S SnvNe S Qma'X(Sn7Ne (a)’ SN5,+OO(Q))

Using (%) that we have just proved, the fact that we have an. ~ an_4+1, and
the fact that N. ~ ¢!, we conclude that

o) it > N,

an(a—1) if n < N; and a > 1,

log%—i—K ifn < N., a=1, for some K > 0.
N1« ifn < N and a < 1,

e 22

an a—1 11—«
5N5,+oo~f~6 ~ N

Let us now estimate S, n. by considering three cases. We start with the
case when a = 1. Indeed, Lemma 5.9 implies that S, n, ~ log(%). This
gives us (7).

Assume now that a > 1. Then Sy, 400 ~ N27% < ! = q,(a - 1).
Moreover, in virtue of Lemma 5.9, we have S, y. ~ n!=* — N2~ Thus

n
Sn.N. ~ ap(o—1)(1 — N

In particular S, n. < ana — 1. So, we can conclude that Sy, +o0(@0) S an(a—
). If & < %, we have (1 — N%)a*1 > (1 —1)*"1. And we also have
Sn,too(@) Z an(a —1); so, we are done. On the other hand, if - > 3, then

)a—l‘

Snctoo(@) = Sy, oo(@) ~ NI o= = (@ — 1)-

This ends the proof of (7).
Assume finally that 0 < o« < 1. Then Lemma 5.9 tells us that

Snst (O[) ~ (Nel_a - na_l) S Nﬁl_a ~ SNs:OO'
We thus conclude that max (S, n. (), SN. +0o(@)) ~ SN. 4+oo. This proves

(iv) and ends the proof of the Corollary. "

We can also prove the following result with the same kind of arguments.
So we omit them.
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Corollary 5.11. Let N be a fized integer such that 2N < N ~ % Then
we have the following estimates of Sy n(c) for N < n:

(

any(a—1)—ap(a—1) forl<a

log + fora=1 forn < N,
an(a—1) —any(a—1) fora<1
Snn(a) ~ 1 forl<a

log N. forl=a«
N7 foro<a<1
an() fora <0

£

for n > N,
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