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Abstract. Making an extensive use of small transfinite topological dimension
trind, we ascribe to every metric space X an ordinal number (or −1 or Ω) tHD(X),
and we call it the transfinite Hausdorff dimension of X. This ordinal number shares
many common features with Hausdorff dimension. It is monotone with respect to
subspaces, it is invariant under bi-Lipschitz maps (but in general not under home-
omorphisms), in fact like Hausdorff dimension, it does not increase under Lipschitz
maps, and it also satisfies the intermediate dimension property (Theorem 2.7). The
primary goal of transfinite Hausdorff dimension is to classify metric spaces with in-
finite Hausdorff dimension. Indeed, if tHD(X) ≥ ω0, then HD(X) = +∞. We
prove that tHD(X) ≤ ω1 for every separable metric space X, and, as our main
theorem, we show that for every ordinal number α < ω1 there exists a compact
metric space Xα (a subspace of the Hilbert space l2) with tHD(Xα) = α and which
is a topological Cantor set, thus of topological dimension 0. In our proof we develop
a metric version of Smirnov topological spaces and we establish several properties
of transfinite Hausdorff dimension, including its relations with classical Hausdorff
dimension.

1. Introduction

In [5] Felix Hausdorff has defined the concept of Hausdorff dimension. It ascribes to
each metric space either a real non-negative number or +∞. Hausdorff dimension
is naturally invariant under isometries but is not, in general, invariant under home-
omorphisms. Isometries form however a rather narrow class of maps. Fortunately
Hausdorff dimension is invariant under bi-Lipschitz maps, which provide a much big-
ger variety of mappings. This is primarily why the class of Lipschitz maps seems to be
most appropriately suited to deal with the issues related to Hausdorff dimension. As
matter of fact the situation is even better since bi-Lipschitz maps preserve measure
classes of Hausdorff measures, and the corresponding Radon-Nikodym derivatives are
uniformly bounded above and uniformly separated from zero. A good modern ac-
count of the theory of Hausdorff dimension can be found n [3], [4], and [9]; the reader
may also consult Chapter 7 of [11].
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P. Urysohn in [13] and K. Menger in [10] have introduced the concept of (small
inductive) topological dimension, and in [14] P. Urysohn has indicated a possibility
of defining transfinite topological dimensions. The formal definition appeared in [6].
An excellent account of the theory of topological dimensions, both finite and infinite,
can be found in [2].

All existing transfinite dimensions are topological invariants. E. Marczewski has
proved in [8] that for any separable metric space (X, ρ) its Hausdorff dimension is
greater than or equal to its topological dimension (in the class of separable metric
spaces all three classical dimensions ind, Ind, and dim coincide). A proof and more
details can be found in [7]. In fact ind(X) = inf{HD((X, ρ))} where the supremum is
taken over all metrics ρ compatible with topology on X. In general the two dimen-
sions, Hausdorff and topological, are therefore really different, in fact B. Mandelbrot
proposed to call a metric space X a fractal if its Hausdorff dimension is larger than the
topological dimension. The Hausdorff and topological dimensions differ in one impor-
tant aspect more. Namely, as we have already indicated, the topological spaces with
infinite topological dimension can be further classified by ascribing to them transfinite
topological dimensions trind and trInd. In contrast, for the the spaces with infinite
Hausdorff dimension there seems to have been no step further. In this paper we
propose to fill in this gap. Namely, making an extensive use of small transfinite topo-
logical dimension trind, we ascribe to every metric space X an ordinal number (or −1
or Ω) tHD(X), and we call it the transfinite Hausdorff dimension of X. This ordinal
number shares many common features with Hausdorff dimension. It is monotone with
respect to subspaces, it is invariant under bi-Lipschitz maps (but in general not under
homeomorphisms), in fact, like Hausdorff dimension, it does not increase under Lips-
chitz maps, and it also satisfies the intermediate dimension property (Theorem 2.7).
The primary goal of transfinite Hausdorff dimension is to classify metric spaces with
infinite Hausdorff dimension. Indeed, if tHD(X) ≥ ω0, then HD(X) = +∞. We prove
that tHD(X) ≤ ω1 for every separable metric space X, and, as our main theorem, we
show that for every ordinal number α < ω1 there exists a compact metric space Xα

(a subspace of the Hilbert space l2) with tHD(Xα) = α and which is a topological
Cantor set, thus of topological dimension 0. In our proof we develop a metric ver-
sion of Smirnov topological spaces and we establish several properties of transfinite
Hausdorff dimension, including its relations with classical Hausdorff dimension.

2. Definition and Basic Properties of tHD

We first recall the definition of the small transfinite dimension trind.

Definition 2.1. To every topological regular space X assigned is the small transfinite
dimension of X, denoted by trind(X), which is the integer −1, an ordinal number,
or the symbol Ω. The value of trind(X) is uniquely determined by the following
conditions.

• trind(X) = −1 if and only if X = ∅.
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• trind(X) ≤ α, where α is an ordinal number, if for every point x ∈ X and
each neighbourhood V of x, there exists an open set U ⊂ X such that

x ∈ U ⊂ V and trind(∂U) < α.

• trind(X) = α if trind(X) ≤ α and trind(X) ≤ β for no ordinal β < α.
• trind(X) = Ω if there is no ordinal α such that trind(X) ≤ α.

We keep the convention that α < Ω for every ordinal α.

Let M be the category of all metric spaces, and let M0 be the category of all separable
metric spaces. If X ∈ M and E ⊂ X, then the set E is considered as a metric subspace
of X endowed with the metric inherited from X. The collection of all metric subspaces
of X is denoted by Pm(X). Let (X, ρX ) and (Y, ρY ) be two arbitrary metric spaces.
Recall that a map f : X → Y is called Lipschitz (or Lipschitz continuous) if there
exists a real number L ≥ 0 such that

ρY (f(x2), f(x1)) ≤ LρX(x2, x1)

for all x1, x2 ∈ X. The number L is referred to as a Lipschitz constant of the map
f . Denote the least Lipschitz constant of the map f by Lip(f). Note that the
composition of two Lipschitz maps f : X → Y and g : Y → Z is a Lipschitz map, and
Lip(g ◦ f) ≤ Lip(f)Lip(g). Given a Lipschitz map f : X → Y we denote its domain
by Dom(f) (in our case equal to X), and the image f(X) by Im(f). A bijective
Lipschitz map f : X → Y is said to be bi-Lipschitz if its inverse f−1 : Y → X is also
Lipschitz continuous. Denote by L(X,Y ) the collection of all Lipschitz maps from X
to Y , and by L(X,Y ) the collection of all Lipschitz maps f : E → Y , where E ∈ Pm.
Set

L(X) =
⋃

Y ∈M
L(X,Y ), L0(X) =

⋃
Y ∈M0

L(X,Y ),

and
L(X) =

⋃
Y ∈M

L(X,Y ), L0(X) =
⋃

Y ∈M0

L(X,Y ).

Let Ls(X), Ls
0(X), Ls(X), and Ls

0(X) be the subcollections respectively of L(X),
L0(X), L(X), and L0(X) consisting of surjective maps. The basic concept introduced
in this paper is provided by the following.

Definition 2.2. The transfinite Hausdorff dimension tHD(X) of a metric space X
is equal to −1 if and only if X = ∅, and is less than or equal to (≤) an ordinal α if
and only if trind(Im(f)) ≤ α for every map f ∈ L(X). Then we define the transfinite
Hausdorff dimension of the space X by setting

tHD(X) := sup{trind(Im(f)) : f ∈ L(X)} ≥ trind(X).

Otherwise, we set tHD(X) = Ω, and in any case we write

tHD(X) = sup{trind(Im(f)) : f ∈ L(X)} ≥ trind(X).
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Directly from this definition we get the following.

Theorem 2.3. (monotonicity theorem) If X ∈ M and E ∈ Pm, then tHD(E) ≤
tHD(X).

Since, as we already mentioned, the composition of two Lipschitz maps is Lipschitz,
we get the following.

Theorem 2.4. If X and Y are two metric spaces and f : X → Y is a Lipschitz
map, then tHD(f(X)) ≤ tHD(X). So, if f : X → Y is bi-Lipschitz, then tHD(Y ) =
tHD(X).

Since the image of a separable metric space under a Lipschitz continuous map is a
separable metric space, we get the following.

Theorem 2.5. If X ∈ M0, then

tHD(X) = sup{trind(Im(f)) : f ∈ L0(X)} ≥ trind(X).

We shall prove the following.

Theorem 2.6. If X ∈ M, then

tHD(X) = sup{trind(Im(f))},
where the supremum is taken over all surjective maps f ∈ L(X), with closed domains
and complete codomains.

Proof. Suppose f : M → Y is a Lipschitz map with M ∈ Pm. Let Ŷ be the
metric completion of Y . Since f is Lipschitz continuous, it extends (uniquely) to a
Lipschitz continuous map (with the same Lipschitz constant) f̂ : M̄ → Ŷ . Then the
map f̂ |M̄ : M̄ → f̂(M̄ ) belongs to L(X), M̄ is a closed subspace of X, f̂ |M̄ (M̄) is a
complete metric space, and trind(f̂ |M̄ (M̄)) ≥ trind(f(M)). We are done. �

Theorem 2.7. (intermediate dimension property) If X is a compact metric space
and tHD(X) < Ω, then for every β ≤ tHD(X) there exists a closed subspace Mβ of
X such that tHD(Mβ) = β.

Proof. The theorem is trivially obvious if X = ∅. So, in what follows we may
assume that X 
= ∅. We shall prove first the following.

Claim. For every β < tHD(X) there exists β ≤ γ < tHD(X) such that γ =
tHD(M) for some closed subspace M of X.

Proof. Suppose on the contrary that there exists β < tHD(X) such that for every
closed subspace M of X either tHD(M) < β or tHD(M) = tHD(X). By Theorem 2.6
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there exists a closed subspace F of X and a Lipschitz continuous surjection f : F → Y
such that trind(Y ) > β. Since trind(Y ) ≤ tHD(X) < Ω, it follows from Theorem 7.1.8
in [2] that Y is countable dimensional, meaning that

(2.1) Y =
⋃
n=1

Yn,

where ind(Yn) = 0 for all n ≥ 1. Suppose that for every point y ∈ Y and every
open neighbourhood U of y there exists a partition L between y and ∂U such that
tHD(f−1(L)) < tHD(X). Then we would have trind(L) ≤ tHD(L) ≤ tHD(f−1(L)) <
β. But this would imply that trind(Y ) ≤ β. The contradiction obtained shows that
there exist y1 ∈ Y and an open neighbourhood U1 of y1 in y such that tHD(f−1(L)) =
tHD(X) for every partition L between y1 and ∂U1. By Theorem 4.1.13 in [2] there now
exists a partition L1 between y1 and ∂U1 such that L1∩Y1 = ∅. Since tHD(f−1(L)) =
tHD(X) and f−1(L) ⊂ X, we can proceed by induction to produce a sequence (yn)∞1 ,
of points in Y , a sequence (Un)∞1 of open subsets of Y , and a sequence (Ln)∞1 of
closed of Y with the following properties holding for all n ≥ 1:

(a) yn ∈ Un ∩ Ln−1.
(b) Ln is a partition between yn and Ln−1 ∩ ∂Un in Ln−1.
(c) tHD(f−1(Ln)) = tHD(X)
(d) Ln ∩ Yn = ∅,

where L0 = Y . It follows from (b) that Ln ⊂ Ln−1. Also, because of (c), we have
for each n ≥ 0 that Ln 
= ∅. Thus (all the sets Ln are compact)

⋂∞
n=0 Ln 
= ∅. This

however contradicts (d) and (2.1). The claim is proved.

Now, the conclusion of the proof is a consequence of Claim. Indeed, denote by FX

the collection of all closed subsets of X. Let

V = {− ≤ α ≤ tHD(X) : ∀(−1≤β≤α) ∃(M∈FX)tHD(M) = β}.
Then sup(V ) ≤ tHD(X), and if sup(V ) = tHD(X), we are done. Otherwise, put

W = {− ≤ α ≤ tHD(X) : α /∈ V and ∃(M∈FX)tHD(M) = α}.
Then W 
= ∅ (as tHD(X) ∈ W ) and sup(V ) < min(W ). Take M ∈ FX such that
tHD(M) = min(W ). Applying now our claim to the space M and ordinal β = sup(V ),
we get a closed subset K of M such that sup(V ) ≤ tHD(K)) < min(W ). But then
tHD(K) = sup(V ) ∈ V . If sup(V )+1 = min(W ), we would have [0, sup(V )+1] ⊂ V ,
which is a contradiction. Thus sup(V ) + 1 < min(W ), and therefore, applying Claim
with the space M and ordinal β = sup(V )+1, we would get a closed subspace L of M
such that sup(V ) + 1 ≤ tHD(L) < min(W ). This however contradicts the definition
of W and finishes the proof. �

The last theorem in this section is this.

Theorem 2.8. If X is a metric space and its Hausdorff dimension is finite, then
trind(X) ≤ tHD(X) ≤ E(HD(X)), where E(t) is the integer value of the real number
t. Consequently, HD(X) = +∞ whenever tHD(X) ≥ ω0.
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Proof. The left-hand side inequality is already stated in the definition of transfinite
Hausdorff dimension. Since HD(X) < +∞, it follows from Marczewski’s Theorem
that trind(X) < +∞ and, applying this theorem once more, we get that,

HD(X) ≥ HD(D(f)) ≥ HD(Im(f)).

So, taking the supremum, we obtain that HD(X) ≥ tHD(X), and, as tHD(X) is now
an integer, we are done. �

3. Further Properties of Transfinite Hausdorff Dimension

As an immediate consequence of Theorem 7.1.6 and Theorem 7.1.17 in [2], we get the
following.

Theorem 3.1. If a metric space X has a topological base of cardinality ≤ ℵα and
tHD(X) < Ω, then tHD(X) ≤ ωα+1. In particular, if X is separable, then tHD(X) ≤
ω1.

Given two ordinal numbers α1, α2 write them in the canonical form αi = λi + ni,
i = 1, 2, where λi is a limit ordinal number and ni ≥ 0 is a finite ordinal number. Set

Σ(α1, α2) =

{
λi + ni if λi > min{λ1, λ2}
λ1 + n2 + n1 + 1 if λ1 = λ2.

Theorem 3.2. If a compact metric space X is a union of two closed subspaces X1

and X2, then
tHD(X) ≤ Σ(tHD(X1), tHD(X2)).

Proof. Let M be a closed subspace of X and let f : M → Y be a Lipschitz
continuous map. Then f(M ∩X1) and f(M ∩X2) are closed subspaces of f(M), and,
by Theorem 7.2.6 in [2], we get

trind(f(M)) ≤ Σ(trind(f(M ∩ X1)), trind(f(M ∩ X2))

≤ Σ(tHD(X1), tHD(X2)).

We are thus done by applying Theorem 2.6. �

For Γ, any set of ordinals, let lsup(Γ) be the least ordinal greater than all elements
of Γ. Corollary 7.2.8 from [2] can be restated as follows.

Theorem 3.3. If a metric space X is a union of finitely many closed subsets X1,X2, . . . ,Xn,
then trind(X) < lsup{trind(X1), . . . , trind(Xn)}.

As an immediate consequence of Theorem 3.2, we get the following.

Theorem 3.4. If a metric space X is a union of finitely many closed subspaces
X1,X2, . . . ,Xn, then tHD(X) < lsup{tHD(X1), . . . , tHD(Xn)}.
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We shall now prove a purely topological lemma which will be used in the sequel.

Lemma 3.5. Suppose a metric space X =
⋃

i∈J Xi, where {Xj}j∈J is a locally finite
family of closed subsets of X, then trind(X) ≤ lsup{trind(Xj) : j ∈ J}.

Proof. Set λ = lsup{trind(Xj) : j ∈ J}. Let x ∈ X and let V be an arbitrary open
neighbourhood of x. Since the family {Xi}j∈J is locally finite, there exist an open
neighbourhood U of x and a finite subset F of J such that Ū ⊂ V and Ū ⊂ ⋃

j∈F Xj .
It then follows from Corollary 3.3 that

trind(∂U) ≤ trind(Ū) ≤ trind

⎛
⎝ ⋃

j∈F

Xj

⎞
⎠ < lsup{trind(Xj) : j ∈ F} ≤ λ.

Hence, trind(X) ≤ λ, and we are done. �

Let α and λ be two arbitrary ordinals. Define α∗(λ) by the following transfinite
recursion.

0∗(λ) = λ and α∗(λ) = lsup{β∗(λ) : β < α}.
We shall prove the following.

Lemma 3.6. Suppose a metric space X = X0 ∪
⋃

j∈J Xj , where X0 is a closed set,
and {Xi}j∈J is a family of closed subsets of X, locally finite at each point of X \X0.
Then

trind(X) ≤ (1 + trind(X0))∗(lsup{trind(Xj) : j ∈ J}).
Proof. The proof is by transfinite induction with respect to the ordinal number

trind(X0). Indeed, if trind(X0) = −1, the statement reduces to Lemma 3.5. So,
suppose for the inductive step that the lemma is true for all β < α = trind(X0).
Fix x ∈ X and then V , an open neighbourhood of x in X. If x /∈ X0, then there
exist an open neighbourhood U of x and a finite subset F of J such that Ū ⊂ V and
Ū ⊂ ⋃

j∈F Xj . It then follows from Theorem 3.3 that

(3.1)

trind(∂U) ≤ trind(Ū) ≤ trind
( ⋃
j∈F

Xj

)
< lsup{trind(Xj) : j ∈ F}

≤ lsup{trind(Xj) : j ∈ J}
≤ (1 + α)∗(lsup{trind(Xj) : j ∈ J}.

So, suppose that x ∈ X0. By the very definition of the dimension trind there exists
an open (with respect to the relative topology on X0) neighbourhood U ′ of x in X0

contained with closure in X0 ∩ V and such that trind(∂U ′) < α. Then, by the last
assertion in Lemma 1.2.9 in [2], there exists a partition L between x and ∂V such
that L ∩ X0 ⊂ ∂U ′. We have L = (L ∩ X0) ∪

⋃
j∈J L ∩ Xj . Since trind(L ∩ X0) ≤
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trind(∂U ′) < α, applying the inductive assumption, we get that
trind(L) ≤ (1 + trind(L ∩ X0))∗(lsup{trind(L ∩ Xj) : j ∈ J})

≤ (1 + trind(L ∩ X0))∗(lsup{trind(Xj) : j ∈ J})
< (1 + α)∗(lsup{trind(Xj) : j ∈ J}).

Looking at this and (3.1), we conclude that

trind(X)) ≤ (1 + trind(X0))∗(lsup{trind(Xj) : j ∈ J}).
The inductive proof is complete. �

Drawing conclusions for the transfinite Hausdorff dimension, we shall prove the fol-
lowing.

Theorem 3.7. Suppose a compact metric space X = X0 ∪
⋃

j∈J Xj , where X0 is a
closed set and {Xj}j∈J is a family of closed subsets of X, locally finite at each point
of X \ X0. Then

tHD(X) ≤ (1 + tHD(X0))∗(lsup{tHD(Xj) : j ∈ J}).
In particular, if the set J is countable and tHD(Xj) < ω1 for all j ∈ J ∪ {0}, then
tHD(X) < ω1.

Proof. Let M be a closed subspace of X and let f : M → Y be a Lipschitz map.
Then

f(M) = f(M ∩ X0) ∪
⋃
j∈J

f(M ∩ Xj),

and constituents of this union are closed subsets of f(M). We shall show that the
family {f(M ∩ Xj)j∈J is locally finite at each point of f(M) \ f(M ∩ X0). Indeed,
suppose for the contrary that there exists y ∈ f(M)\f(M ∩X0) such that the family
{f(M ∩ Xj)j∈J is not locally finite at y. This means that there exist an infinite
countable subset {jn}∞n=1 of J , and for each n ≥ 1 a point xn ∈ M ∩ Xjn such that
limn→∞ f(xn) = y. Since M is a compact set, passing to a subsequence, we may
assume without loss of generality that limn→∞ xn = x for some x ∈ M . But then the
family {Xj}j∈J is not locally finite at x. Hence x ∈ X0. Then, y = f(x) ∈ f(M ∩X0),
contrary to the choice of y. Therefore, we may apply Lemma 3.6 to get that

trind(f(M)) ≤ (1 + trind(f(M ∩ X0)))∗lsup{trind(f(M ∩ Xj) : j ∈ J})
≤ (1 + tHD(M ∩ X0))∗lsup{tHD(M ∩ Xj) : j ∈ J})
≤ (1 + tHD(X0))∗lsup{tHD(Xj) : j ∈ J}).

Applying Theorem 2.6, we therefore get that

tHD(X) ≤ (1 + tHD(X0))∗(lsup{tHD(Xj) : j ∈ J}).
We are done. �

Toward the end of the section, we shall prove the following little fact from the theory
of topological transfinite dimension.
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Proposition 3.8. If X is a metric space and X = X∗ ∪ X0, where X∗ is closed and
X0 is a Fσ set with ind(X0) ≤ 0, then

trind(X) = max{trind(X∗), trind(X0)}.
Proof. Replacing X0 by X0 \ X∗ we may assume without loss of generality that

X∗∩X0 = ∅. We will proceed by transfinite induction with respect to α = trind(X∗).
Indeed, if α < ω0, this is a special case of the Sum Theorem for the dimension ind.
So, suppose that α ≥ ω0 and that theorem is true if trind(X∗) < α. Fix a point x ∈ X
and a closed set F not containing x. If x ∈ X0, then (as X∗ ∩ X0 = ∅) there exists
r > 0 such that F ∩B(x, 2r) = ∅ and B(x, 2r)∩X∗ = ∅. But then ∂B(x, r) ⊂ X0, and
therefore, trind(∂B(x, r)) ≤ 0. So, ∂B(x, r) is a partition between x and F whose
trind dimension is ≤ 0. If x ∈ X∗, then there exists a partition L′ in the space X∗
between x and F ∩ X∗ such that trind(L′) < α = trind(X∗). By Lemma 1.2.9 in [2]
there then exists a partition L in X between x and F such that X∗∩L ⊂ L′. Writing
L = (X∗∩L)∪(X0∩L) and noting that trind(X∗∩L) ≤ trind(L′) < α, we may apply
the inductive assumption to conclude that trind(L) = max{trind(X∗ ∩L), trind(X0 ∩
L)} < α. Thus, trind(X) ≤ α, and we are done. �

Corollary 3.9. If X is a compact metric space and X = X∗∪X0, where X∗ is closed
and X0 is a Fσ set with tHD(X0) ≤ 0, then

tHD(X) = max{tHD(X∗), tHD(X0)}.
In particular, if X∗ 
= ∅, then tHD(X) = tHD(X∗).

Proof. Let M be a closed subspace of X and let f : X → Y be a Lipschitz
continuous surjection. Then Y = f(X∗) ∪ f(X0), where f(X∗) is a closed set and
f(X0) is a Fσ set. But trind(f(X∗)) ≤ tHD(X∗) and trind(f(X0)) ≤ tHD(X0) ≤ 0.
So, applying Proposition 3.8, we get that

trind(f(X)) = max{trind(f(X∗)), trind(f(X0))} ≤ max{tHD(X∗), tHD(X0)}.
Taking the supremum we thus get that

tHD(X) ≤ max{tHD(X∗), tHD(X0)}.
Since the opposite inequality holds because of the monotonicity theorem, we are done.
�

4. Operations on Metric Spaces

If (X1, ρ1) and (X2, ρ2) are two arbitrary metric spaces, then X1 × X2 the metric
space with the metric ρ given by the formula

ρ((a1, a2), (b1, b2)) =
√

ρ2
1(a1, b1) + ρ2

2(a2, b2).

Obviously, we have the following.
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Observation 4.1. If the metric spaces X1 and X2 are both respectively isometrically
embedded in Hilbert spaces H1 and H2, then the Cartesian product X1 × X2 embeds
isometrically in the Hilbert space H1 ×H2.

The Cartesian product of any finite number of metric spaces is defined analogously,
and if all factors are isometrically embedded in Hilbert spaces, then so is the product.

Given two sets A and B in a metric space (X, ρ) we define

distρ(A,B) := inf{ρ(a, b) : (a, b) ∈ A × B}
and

Distρ(A,B) := sup{ρ(a, b) : (a, b) ∈ A × B}.
Let now J be a countable infinite set and let {(Xj , ρj)}j∈J be a collection of compact
metric spaces. Let ω(⊕j∈JXj) be the topological one point (Alexandrov) compacti-
fication of the topological disjoint union ⊕j∈JXj . A metric space (ω(⊕j∈JXj), ρ) is
called a metric one point (Alexandrov) compactification of ⊕j∈JXj if ρ induces on
ω(⊕j∈JXj) the Alexandrov compactification topology, and for each j ∈ J the restric-
tion ρ|Xj is proportional to ρj. The metric ρ is then referred to as an Alexandrov
metric. An Alexandrov metric ρ on ω(⊕j∈JXj) is called balanced if

Dρ := max

{
sup
i,j∈J

{
Distρ(Xi,Xj)
distρ(Xi,Xj)

}
, sup

j∈J

{
Distρ(ω,Xj)
distρ(ω,Xj)

}}
< +∞.

The number Dρ is referred to as the balance constant of the metric ρ. We have the
following, actually obvious.

Proposition 4.2. If J is a countable infinite set and if {(Xj , ρj)}j∈J is a collection
of compact metric spaces, then there exists at least one balanced (even with balance
constant equal to 1) Alexandrov metric on ω(⊕j∈JXj).

Proof. Let φ : J → N be an arbitrary bijection. Define a metric ρ on ω(⊕j∈JXj)
as follows.

ρ(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2−φ(j)diam−1(Xj)ρj(x, y) if x, y ∈ Xj

0 if x = y = ω

2−min{φ(i),φ(j)} if i 
= j and x ∈ Xi, y ∈ Xj

2−φ(j) if x ∈ Xj and y = ω,

where we take the convention that 0−1 = ∞ and 0·∞ = 0. Clearly, ρ is an Alexandrov
metric on ω(⊕j∈JXj) with balanced constant Dρ = 1. We are done. �

Another obvious fact is the following.

Lemma 4.3. Suppose that J is a countable infinite set, {(Xj , ρj)}j∈J is a collection of
compact metric spaces, and ρ is a balanced Alexandrov metric on ω(⊕j∈JXj). Suppose
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further that for each j ∈ J , Aj is a subset of Xj , and fj : Aj → Xj is a Lipschitz
continuous map with the Lipschitz constant bounded above by the same number L.
Define the map f : {ω} ∪ ⋃

j∈J Aj → ω(⊕j∈JXj) by requiring that f(ω) = ω and
f |Aj = fj for all j ∈ J . Then f is a Lipschitz map with Lip(f) ≤ max{L,Dρ}. Also
Im(f) = {ω} ∪ ⋃

j∈J fj(Aj).

We end this section with the following.

Proposition 4.4. If J is a countable infinite set and {(Xj , ρj)}j∈J is a collection
of compact metric spaces embedded in a separable Hilbert space, then there exists a
balanced Alexandrov metric on ω(⊕j∈JXj) embeddable in a separable Hilbert space
and with its balanced constant bounded above by 2.

Proof. We may assume without loss of generality that all the spaces Xj , j ∈ J ,
are contained in the Hilbert space l2. Let φ : J → N be an arbitrary bijection. For
every x ∈ l2 let Tx : l2 → l2 be the translation given by the formula Tx(y) = y + x.
For every α > 0 let Hα : l2 → l2 be the homothety given by the formula Hα(y) = αy.
Since all the spaces Xj , j ∈ J , are bounded, for each j ∈ J there exist αj > 0 and
xj ∈ l2 such that

Txj ◦ Hαj(Xj) ⊂ B(0, 2−φ(j)) \ B(0, 3 · 2−(φ(j)+2)).

Define the map h : ω(⊕j∈JXj) → l2 by requiring that h(ω) = 0 and h|Xj = Txj ◦Hαj

for all j ∈ J . For all x, y ∈ ω(⊕j∈JXj) set then ρ(x, y) = ||h(x) − h(y)||. Clearly this
is a balanced Alexandrov metric on ω(⊕j∈JXj) with its balanced constant bounded
above by 2. �

5. Smirnov’s Cantor Sets

Let I be the interval [0, 1] endowed with its standard Euclidean metric. Starting with
the singleton {0} we shall now define a transfinite sequence ((Sα, ρα))α<ω1 consisting
of compact metric spaces. We do it as follows. S0 = {0}, Sα = Sβ × I if α =
β + 1, and (Sα, ρα) is a balanced Alexandrov metric compactification ω(⊕β<αSβ) of
⊕β<αSβ. This is a well-defined sequence because of Proposition 4.2. We refer to it as
a Smirnov’s sequence. In view of Observation 4.1 and Proposition 4.4, we even get
the following.

Proposition 5.1. There exists a Smirnov’s sequence ((Sα, ρα))α<ω1 whose all ele-
ments are contained in the Hilbert space l2.

We recall that topological Smirnov spaces were introduced in [12]. A good account of
their properties can be found in [2]. Now we pass to define Smirnov’s Cantor sets and
sequences. Suppose C ⊂ I is a topological Cantor set (perfect, totally disconnected
set) with positive (linear) Lebesgue measure λ(C). Let φ : C → I be the function
given by the formula

φ(t) = λ(C)−1λ([min(C), t]).
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Clearly φ is a Lipschitz continuous map with Lipschitz constant equal to λ(C)−1 and
φ(C) = I. Given Smirnov’s sequence ((Sα, ρα))α<ω1 define C0 to be {0}, Cα = Cβ×C
if α = β + 1, and Cα = {ω} ∪ ⋃

β<α Cβ, if α < ω1 is a limit ordinal number.
((Cα, ρα|Cα))α<ω1 is refered to as a Smirnov’s sequence of Cantor sets (associated to
the Smirnov’s sequnce ((Sα, ρα))α<ω1 of Smirnov spaces). Clearly Cα ⊂ Sα for all
α < ω1, and Cα is a topological Cantor set. Let us prove the following.

Lemma 5.2. If (Sα)α<ω1 is a Smirnov’s sequnce and (Cα)α<ω1 is the corresponding
Smirnov’s sequence of Cantor sets, then tHD(Cα) ≥ trind(Sα) for all α < ω1.

Proof. We shall define by transfinite induction a sequence (φα)α<ω1 of Lipschitz
continuous surjections from Cα onto Sα with Lipschitz constants bounded above by
max{2, λ(C)−1}. Indeed, set φ0 to be the identity map on {0} and suppose that for
some 0 ≤ α < ω1 the claimed maps φβ : Cβ → Sβ are defined for all 0 ≤ β < α. If
α = γ + 1, set φα = φγ × φ : Cγ × I → Sγ × I. Then Im(φα) = Im(φγ) × Im(φ) =
Sγ × I = Sα. Also,

Lip(φα) ≤ max{Lip(φγ),Lip(φ)} ≤ max{2, λ(C)−1, λ(C)−1} = max{2, λ(C)−1}.
If α is a limit number, let φα : Cβ → Sα be the Lipschitz continuous function con-
structed in Lemma 4.3 out of functions φβ : Cβ → Sβ, β < α. Then

Im(φα) = {ω} ∪
⋃
β<α

φβ(Cβ) = {ω} ∪
⋃
β<α

Sβ = Sα,

and, according to this lemma and because of our inductive assumption, the map
φα : Cβ → Sα is Lipschitz continuous with

Lip(φα) ≤ max{max{2, λ(C)−1}, 2} = max{2, λ(C)−1}.
The inductive construction of Lipschitz maps (φα)α<ω1 is complete. By the very
definition of the transfinite Hausdorff dimension we thus have for all α < ω1 that
tHD(Cα) ≥ trind(Im(φα)) = trind(Sα). We are done. �

Now, we shall prove the following.

Lemma 5.3. If (Sα)α<ω1 is a Smirnov’s sequnce, then tHD(Sα) < ω1 for all α < ω1.
Proof. Since S0 is a singleton, the statement is true if α = 0. Proceeding by

transfinite induction suppose the lemma is true for all β < α, where α < ω1. Write
α = γ + n, where γ is a limit number and n ≥ 0 is a finite number. Then Sα is
isometric to Sγ × In, where I0 is a singleton. But Sγ = {ω} ∪ ⋃

β<γ S′
β, where S′

β is
a similar copy of Sβ. So,

(5.1) Sγ × In = (ω × In) ∪
⋃
β<γ

S′
β × In.

But S′
β × In is bi-Lipschitz equivalent to Sβ × In = Sβ+n. Since β + n < γ ≤ α, the

inductive hypothesis gives that tHD(S′
β × In) = tHD(Sβ+n) < ω1. We also know that
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tHD({ω} × In) = n. Since, in addition, all the sets {ω} × In and S′
β × In, β < γ, are

compact, and S′
β × In are also open subsets of Sγ × In, we can apply Theorem 3.7

to the decomposition (5.1) to conclude that tHD(Sα) = tHD(Sγ × In) < ω1. We are
done. �

Thus, by Theorem 2.3 (monotonicity of transfinite Hausdorff dimension), we have
that tHD(Cα) ≤ tHD(Sα) < ω1. Since supα<ω1

{trind(Sα)} = ω1 (see Example 7.2.12
in [2]), applying Lemma 5.2, we get the following.

Theorem 5.4. If (Sα)α<ω1 is a Smirnov’s sequnce and and (Cα)α<ω1 is the corre-
sponding Smirnov’s sequence of Cantor sets, then

(a) trind(Sα) ≤ tHD(Cα) < ω1.
(b) supα<ω1

{tHD(Cα} = ω1.
(c) #{tHD(Cα) : α < ω1} = ℵ1.
(d) The family (Cα)α<ω1 contains uncountably many Cantor sets, no two of which

are bi-Lipschitz equivalent.
(e) If α ≥ ω0, then HD(Cα) = +∞.

As a consequence of this theorem, Theorem 2.7, and Corollary 3.9, we get the follow-
ing.

Theorem 5.5. For every ordinal 0 ≤ α < ω1 there exists a topological Cantor set
Xα ∈ M0 (category of separable metric spaces), even a subspace of the Hilbert space
l2, such that tHD(Xα) = α. In particular, no two distinct sets Xα are bi-Lipschitz
equivalent.

Proof. For α = 0 take Xα to be the middle-third Cantor set. In view of Theo-
rem 5.4(b), Theorem 2.7, and Proposition 5.1, for every ordinal 1 ≤ α < ω1 there
exists a compact metric space Yα ⊂ l2 such that tHD(Yα) = α and ind(Yα) = 0.
In virtue of Cantor-Bendixon Theorem we can write Yα = Xα ∪ X0 where Xa is a
perfect set and X0 is countable. Since tHD(Yα) ≥ 1, we have Xα 
= ∅, whence Xα

is a topological Cantor set, as ∈ (Xα) ≤ ind(Yα) ≤ 0. Since Xα is compact, and
X0 is Fσ and tHD(X0) ≤ 0 (as X0 is countable), we get from Corollary 3.9 that
tHD(Xα) = tHD(Yα) = α. We are done. �

6. Miscellanea

As we have shown in Theorem 2.8, if HD(X) < +∞, then tHD(X) ≤ E(HD(X)). It
is however not true that always, if HD(X) is finite, then tHD(X) = E(HD(X)). For
instance, if C ⊂ [0, 1] is a Cantor set whose Hausdorff dimension is equal to 1 but
whose (linear) Lebesgue measure is equal to 0, then tHD(C) = 0. We conjecture:

Conjecture 6.1. If X is a metric space and HD(X) < +∞, then tHD(X) ≥
E(HD(X)) − 1. Consequently, tHD(X) ∈ {E(HD(X)) − 1, tHD(X)}.
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In Lemma 5.2 we have shown that for every Smirnov metric space Sα, α < ω1, and
any Cantor Smirnov’s space Cα, we have tHD(Sα) ≥ tHD(Cα) ≥ trind(Sα). Then
Lemma 3.6 and the construction of Smirnov spaces allow us to get an explicite upper
bound on tHD(Sα). In fact we conjecture this.

Conjecture 6.2. For every ordinal number α < ω1, for every Smirnov metric space
Sα, and any Cantor Smirnov’s space Cα, we have tHD(Sα) = tHD(Cα) = trind(Sα).

Remark 6.3. It is easy to see that each separable metric space embeds in a Lipschitz
continuous manner into the Hilbert space l2. Therefore, if X is a separable metric
space, then

tHD(X) = sup{trind(Im(f) : f ∈ L(X, l2)}.
Furthermore, if X is a subspace of a l2, then (see [1]) each map in L(X, l2) extends
in a Lipschitz continuous fashion to a map from X to l2. We then have the following.

tHD(X) = sup{trind(Im(f) : f ∈ L(X, l2)}.

Remark 6.4. We could have chosen the large transfinite topological dimension trInd
to define the transfinite Hausdorff dimension. However, large transfinite dimension is
monotone only with respect to closed subspaces, and not for all subspaces. This could
affect monotonicity of the corresponding transfinite Hausdorff dimension, making it
look less similar to the classical Hausdorff dimension.

Remark 6.5. If we defined the transfinite Hausdorff dimension as the supremum over
all closed maps in Lc(X), where the subscript c indicates that we allow only closed
domains and closed maps, we would get the same values for transfinite Hausdorff
dimensions of compact metric spaces, and a theory behaving in some aspects better
(for example the intermediate subspace theorem would hold for all complete metric
spaces) for a larger classes of metric spaces. The transfinite Hausdorff dimension
defined in such a way would be also invariant under bi-Lipschitz maps, however the
property that tHD(f(X)) ≤ tHD(X) would in general hold only for closed Lipschitz
mappings f , which, like for the classical Hausdorff dimension, holds for the transfinite
Hausdorff dimension, defined in this paper, for all Lipschitz continuous maps.

References

[1] L. Ambrosio and P. Tilli, Topics on Analysis in Metric Spaces, Oxford University Press 2004.
[2] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag 1995.
[3] K. J. Falconer, Geometry of Fractal Sets, Cambridge University Press 1986.
[4] K. J. Falconer, Fractal Geometry, J. Wiley, New York 1999.
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