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Abstract. We consider a class of transcendental meromorphic functions f : C �→ C with
infinitely many poles. Under some regularity assumption on the location of poles and the
behavior of the function near the poles, we provide explicite lower bounds for the hyper-
bolic dimension (Hausdorff dimension of radial points) of the Julia set and upper bounds
for the Hausdorff dimension of the set of escaping points in the Julia set. In particular the
Hausdorff dimension of the latter set is less than the Hausdorff dimension of the former set.
Consequently, the Hausdorff dimension of the set of escaping points is less than 2 and the
area of this set is equal to zero. The functions under consideration may have infinitely many
singular values, and we do not even assume them to belong to the class B. We only require
the distance between the set of poles and the set of finite singular values to be positive.

1. Introduction and general preliminaries

The Fatou set F (f) of a meromorphic function f : C �→ C is defined in exactly the same
manner as for rational functions; F (f) is the set of points z ∈ C such that all the iterates
are defined and form a normal family on a neighborhood of z. The Julia set J(f) is the
complement of F (f) in C. Thus, F (f) is open, J(f) is closed, F (f) is completely invariant
while f−1(J(f)) ⊂ J(f) and f(J(f)\{∞}) = J(f). For a general description of the dynamics
of meromorphic functions see e.g. [3]. It follows from Montel’s criterion of normality that if
f : C �→ C has at least one pole which is not an omitted value then

J(f) =
⋃
n≥0

f−n(∞). (1.1)

(cf. [2]). By Sing(f−1) we denote the set of singular values of f i.e. c ∈ Sing(f−1) if c ∈ C

and c is a critical or an asymptotic value of f . We want to point out that we do not consider
multiple poles as critical points. We also recall that f ∈ B if Sing(f−1) is bounded. Let

I∞(f) := {z ∈ J(f) : lim
n→∞ f

n(z) = ∞}

Key words and phrases. Meromorphic functions, Julia set, escaping points, Hausdorff dimension, hyperbolic
dimension.

2000Mathematics Subject Classification. Primary 37F35. Secondary 37F10, 30D05.

1



2 JANINA KOTUS AND MARIUSZ URBAŃSKI

be the subset of the Julia set consisting the points escaping to infinity under iterates of f .
We also define the radial Julia set Jr(f) as the set of points z in J(f) for which there exists a
family of neighborhoods D(z, rj), rj → 0, which can be mapped by f with bounded distortion
until the diameter of the image reaches of fixed size. The Hausdorff dimension of Jr(f) is
called the hyperbolic dimension of the Julia set J(f), which we denote by HypDim(J(f)).
Let Hh and l2 denote the h-dimensional Hausdorff measure and the 2-dimensional Lebesgue
measure, respectively, HD(X) denote the Hausdorff dimension of the set X.

It was shown by Baker [1] that, if f is a transcendental entire function, then J(f) must
contain continua and so the Hausdorff dimension of J(f) satisfies 1 ≤ HD(f) ≤ 2. The result
of Baker was extended recently by Stallard and Rippon to the class MF of meromorphic
functions with finitely many poles. In [11] they showed that if f ∈ MF then J(f) contains
continua, so 1 ≤ HD(f) ≤ 2. Note that, for transcendental meromorphic functions with
infinitely many poles, the Hausdorff dimension of the Julia set is positive but can be arbitrarily
small - see [17]. If f is in the class B, then one can get a better estimate on the lower bound
of the Hausdorff dimension of the Julia set. First, in [16] Stallard proved that for entire f ∈ B
one has HD(f) > 1, next Stallard and Rippon proved the same for f ∈ MF ∩ B (see [12]).

Restricting the class of functions considered, further progress has been done in [5] and
[7]. Then in [8]. In [5] and [7] explicite estimates for lower bounds of HypDim(J(f)), the
hyperbolic dimension of the Julia set and upper bounds for the Hausdorff dimension of I∞(f),
the set of escaping points in the Julia set, have been obtained for the class of elliptic functions.
Mayer in [8] has also obtained the explicite lower bound for HypDim(J(f)). In the present
paper, developing the methods from [7] and getting rid of periodicity assumptions, we provide
explicite bounds for a much wider class of meromorphic functions. It follows as an immediate
corollary that for this class of meromorphic functions HD(I∞(f)) < 2, which in turn readily
implies that ∞ is not a metric attractor, meaning that the area of I∞(f) vanishes. Let

A := f−1(∞)

be the set of poles. For every pole a of f , by b(a) we denote the residuum of f at a. The
following theorems are the main results of our paper.

Theorem A. Let f : C �→ C be a transcendental meromorphic function of finite order ρ > 0
satisfying

(a) ∞ is not an asymptotic value of f , A is infinite and
(i) there exist α ≥ 0 such that for a ∈ A one has |b(a)| 
 |a|−α

(ii) there exist M ∈ N and κ ≥ 0 such that

|f ′(z)| 
 m(a)b(a)

|z − a|m(a)+1
and |f(z)| 
 b(a)

|z − a|m(a)

for z ∈ D(a, r(a)), where m(a) ∈ N, m(a) ≤M and r(a) 
 |a|−κ.

(b) dist(Sing(f−1), a) > 2r(a) for a ∈ A.
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Then

HD(I∞(f)) ≤ ρM

α +M + 1
.

The comparability sign e.g. |b(a)| 
 |a|−α means that

C−1 ≤ |b(a)|/|a|−α ≤ C

for some constant C > 0 and all a ∈ A. Roughly speaking the condition (ii) enables us to
replace f ′ by its principal parts in r(a)-neighborhood of the pole a uniformly with respect to
a. The condition on f given in (ii) implies

f(z) 
 c(a) + b(a)(z − a)−m(a) + . . .

in D(a, r(a)) with c(a) bounded uniformly in a. It says that when we reconstruct f from f ′ in
D(a, r(a)) the ’constants of integration’ are not too large. If w ∈ C is not an omitted value,
then by w-points we call f−1(w) = {zn(w); n ∈ N}. The exponent of convergence ρc(f, w) of
the series ∑

(u, w) =
∑
n

|zn(w)|−u

is defined by ρc(f, w) = inf{u > 0 :
∑

(u, w) < ∞}. Theorem of Borel says that, if f is a
meromorphic function of finite order ρ then ρc(f, w) = ρ for all values w ∈ C \Ef , where Ef is
the set of Picard exceptional values. It follows from Borel-Picard Theorem that f is of finite
order if and only if ∑

(u, w) <∞ if u > ρ and∑
(u, w) = ∞ if u < ρ

for w ∈ C \ Ef . The meromorphic function of finite order ρ is of divergent type if∑
(u, w) =

∑
n

|zn(w)|−ρ = ∞

for w ∈ C \ Ef . Notice also that in our case f does not even have to belong to the class B.

We only need to know that dist(Sing(f−1), a) > 2r(a) for a ∈ A.

Remark 1.1. In Theorem A it suffices if the assumption

dist(Sing(f−1), a) > 2r(a)

holds for all but finitely many poles a ∈ A.

Now, we give the lower bound on the hyperbolic dimension of Julia set for the functions
under consideration.
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Theorem B. Let f : C �→ C be a transcendental meromorphic function satisfying the as-
sumptions of Theorem A except for that concerning ∞. Then

HypDim(J(f)) ≥ ρM

α +M + 1
.

If, in addition, the function is of divergent type, then this inequality becomes strict.

The proof of Theorem B does not depend on the assumption that ∞ is or not an asymptotic
value of f . Theorems A and B imply the following corollary.

Corollary 1.2. Let f : C �→ C be a transcendental meromorphic function satisfying the
assumptions of Theorem A and h := HD(J(f)). Then Hh(I∞(f)) = 0, and consequently
l2(I∞(f)) = 0.

The transcendental meromorphic functions considered in Theorem A are not entire nor have
finitely many poles. In those cases ∞ is an asymptotic value, so there is an asymptotic tract
associated with ∞. Therefore, if z escapes to infinity, its forward trajectory stays in that tract.
In our case the escaping points must come arbitrarily close to poles. This difference is reflected
in the estimates of the Hausdorff dimension of escaping points. For entire functions of finite
order e.g. the exponential or cosine family, C. McMullen proved HD(I∞(f)) = HD(J(f)) = 2,
while in our case HD(I∞(f)) < HD(J(f)) ≤ 2.

In Section 2 we prove Theorem A and in Section 3 Theorem B. In Section 4 we provide
some examples of non-periodic functions for which the assumptions of Theorems A and B are
satisfied.

In the sequel f � and diams denote the derivatives and diameters defined by means of the
spherical metric. By B(x, r) and Bs(x, r), respectively, we mean the open ball centered at x
and with the Euclidean (resp. spherical) radius r.

2. Proof of Theorem A

Let BR = {z ∈ C : |z| > R}. Take R0 such that

R0 > 2 max{r(a) : a ∈ A}. (2.1)

The hypothesis (ii) means that the sets D(a, r(a)) are mutually disjoint. Let a ∈ A and
z ∈ D(a, r(a)), then

|f(z)| 
 |b(a)|
|z − a|m(a)

and |f ′(z)| 
 m(a)|b(a)|
|z − a|m(a)+1

, (2.2)

where m(a) ≤ M , b(a) 
 |a|−α and r(a) 
 |a|−κ for all a ∈ A. A straightforward calculation
based on (2.2) shows that f(D(a, r(a)) ⊃ BR for all except finitely many poles. Indeed,
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|b(a)||r(a)|−m(a) 
 |a|κm(a)−α � R0. Thus there exists R1 > R0 such that f(D(a, r(a))) ⊃ BR0

for all a ∈ A∩BR1 . For every a ∈ A by Ba(R) we denote the connected component of f−1(BR)
containing a. Thus if R ≥ R1, then for all a with |a| > R1, we have

Ba(R) ⊂ D(a, r(a)). (2.3)

Also (2.2) implies that there is a constant L ≥ 1 such that for all poles a and all R ≥ R0, we
have

diam(Ba(R)) ≤ LR− 1
m(a) |a|−α/m(a),

diams(Ba(R)) ≤ LR− 1
m(a) |a|−2−α/m(a).

(2.4)

If

U ⊂ BR \ {∞} ∩ ⋃
a∈A

D(a, 2r(a))

is an open simply-connected set, then all holomorphic inverse branches f−1
a,U,1, . . . , f

−1
a,U,m(a) of

f are well-defined on U , and for every 1 ≤ j ≤ m(a) and all z ∈ U we have

|(f−1
a,U,j)

′(z)| 
 |z|−m(a)+1
m(a) |a|− α

m(a) . (2.5)

Therefore

|(f−1
a,U,j)

�(z)| 
 |z|−m(a)+1
m(a)

1 + |z|2
1 + |(f−1

a,U,j)(z)|2

 |z|m(a)−1

m(a)

|a|2+α/m(a)
, (2.6)

where the second comparability sign we wrote assuming in addition that |a| is large enough,

say |a| ≥ R2 > R1. LetK be an upper bound of the ratios of |(f−1
a,U,j)

�(z)| and |z|m(a)−1
m(a) /|a|2+α/m(a)

with a, U, j as above. Given two poles a1, a2 ∈ B2R2 , we denote by f−1
a1,a2,j : B(a2, 2r(a2)) �→

C, j = 1, . . . , m(a1), all holomorphic inverse branches of f . It follows from (2.1) and (2.3)
that

f−1
a2,a1,j

(
B(a1, r(a1))

)
⊂ Ba2(2R2 − r(a1)) ⊂ Ba2(R2) ⊂ B(a2, r(a2)) (2.7)

for j = 1, . . . , m(a1). Set

IR(f) = {z ∈ C : ∀n≥0 |fn(z)| > R }.
Since the series ∑

a∈A

|a|−u

converges for all u > ρ, given t > ρM
α+M+1

, there exists R3 > R2 such that

MKt
∑

a∈A∩BR3

|a|−t(α+M+1
M

) ≤ 1, (2.8)
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where a constant K > 0 comes from the comparability signs in (2.6). Consider R4 > 4R3.
Define I = A ∩ BR3 . It follows from (2.3) and (2.7) that for every l ≥ 1, and R > 2R4 the
family of sets

Wl :={
f−1

al,al−1,jl
◦ f−1

al−1,al−2,jl−1
. . . ◦ f−1

a2,a1,j2 ◦ f−1
a1,a0,j1

(
Ba0(R/2)

)
: ai ∈ I, 1 ≤ ji ≤ m(ai), i = 0, 1, . . . , l

}
is well-defined and covers IR(f). Applying (2.6) and (2.4), we may now estimate as follows.

Σl =

=
∑
al∈I

m(al)∑
jl=1

. . .
∑
a1∈I

m(a1)∑
j1=1

∑
a0∈I

diamt
s

(
f−1

al,al−1,jl
◦ f−1

al−1,al−2,jl−1
. . . ◦ f−1

a2,a1,j2 ◦ f−1
a1,a0,j1

(
Ba0(R/2)

))

≤ ∑
al∈I

m(al)∑
jl=1

. . .
∑
a1∈I

m(a1)∑
j1=1

∑
a0∈I

||
(
f−1

al,al−1,jl
◦ f−1

al−1,al−2,jl−1
. . . ◦ f−1

a2,a1,j2
◦ f−1

a1,a0,j1

)�

|Ba0(R/2)
||t∞

· diamt
s

(
Ba0(R/2)

)

≤ ∑
al∈I

m(al)∑
jl=1

. . .
∑
a1∈I

m(a1)∑
j1=1

∑
a0∈I

K lt

( |al−1|(m(al)−1)/m(al)

|al|2+α/m(al)

)t

·
( |al−2|(m(al−1)−1)/m(al−1)

|al−1|2+α/m(al−1)

)t

. . .

. . .

( |a0|(m(a1)−1)/m(a1)

|a1|2+α/m(a1)

)t

Lt
(
R

2

)− t
m(a0) 1

|a0|(2+α/m(a0))t

≤ Lt
(

2

R

) t
M

K lt
∑
al∈I

m(al)∑
jl=1

. . .
∑
a1∈I

m(a1)∑
j1=1

∑
a0∈I

|al|−t(2+α/M)
(
|al−1|−tα+M+1

M . . . |a0|−tα+M+1
M

)

= Lt
(

2

R

) t
M

K lt
∑
al∈I

m(al)∑
jl=1

. . .
∑
a1∈I

m(a1)∑
j1=1

∑
a0∈I

(
|al|−tα+M+1

M |al−1|−tα+M+1
M . . . |a0|−tα+M+1

M

)

≤ Lt
(

2

R

) t
M

K lt

⎛
⎝ ∑

a∈A∩BR3

|a|−tα+M+1
M

⎞
⎠

l

M l

≤ Lt
(

2

R

) t
M

⎛
⎝MKt

∑
a∈A∩BR3

|a|−tα+M+1
M

⎞
⎠

l

.

Applying (2.8), we therefore get Σl ≤ Lt(2/R)t/M . Since the diameters (in the spherical
metric) of the sets of the covers Wl converge uniformly to 0 when l ↘ ∞, we infer that
Ht

s(IR(f)) ≤ Lt(2/R)t/M , where the subscript s indicates that the Hausdorff measure is defined
with respect to the spherical metric. Consequently HD(IR(f)) ≤ t, and if we put

IR,e(f) :=
{
z ∈ C : lim inf

n �→∞ |fn(z)| > R
}

=
⋃
k≥1

f−k(IR(f)),
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then also HD(I∞(f)) ≤ HD(IR,e(f)) = HD(IR(f)) ≤ t. Letting now t ↘ ρM
α+M+1

finishes the
proof.

3. Proof of Theorem B

Let R2 be a constant defined above. Fix a pole a0 ∈ A ∩B2R2 with m(a0) = M . For every
pole a ∈ A satisfying |a| > 2R2 and m(a) = M , we fix inverse branches of f :

f−1
a,a0,1 : B(a, r(a)) �→ C and f−1

a0,a,1 : B(a, r(a)) �→ C.

In view of (2.7), we have

f−1
a,a0,1

(
B(a, r(a))

)
⊂ B(a0, r(a0)) and f−1

a0,a,1

(
B(a0, r(a0))

)
⊂ B(a, r(a)).

The family

S = {f−k
a0,a,1 ◦ f−1

a,a0,1 : B(a0, r(a0)) �→ B(a0, r(a0)); an ∈ A ∩B2R2}
forms a conformal infinite iterated function system in the sense of [10]. We set

φn = f−1
a0,a,1 ◦ f−1

a,a0,1

and, given ω ∈ (A ∩B2R2)
n, n ≥ 1, we say that |ω| = n, and we put

φω = φω1 ◦ φω2 ◦ . . . ◦ φωn.

The set

JS =
⋂
n≥0

∑
|ω|=n

φω(B(a0, rn0))

is called the limit set of the iterated function system S. It was proved in [10] that JS is
contained in the closure of all fixed points of φω, where ω ∈ ⋃

n≥1(A ∩ B2R2)
n. Since these

periodic points are repulsive, we conclude that JS ⊂ J(f). Given t ≥ 0, we consider the
Poincaré series associated to the system S,

ψ(t) =
∑

a∈A∩B2R2

||(φn)�||t∞,

where ||(φn)�||∞ = sup{|(φn)�(z)| : z ∈ B(a0, r(a0))} and the number

θS = inf{t ≥ 0 : ψ(t) <∞}.
We shall prove that θS <

ρM
αM+1

and ψ(θS) = ∞. In view of (2.6), we can write

ψ(t) 
 ∑
a∈A∩B2R2

⎛
⎝ |a|M−1

M

|a0|2+α/M

⎞
⎠

t⎛
⎝ |a0|M−1

M

|a|2+α/M

⎞
⎠

t


 ∑
a∈A∩B2R2

|a|−tα+M+1
M .
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It follows from Borel theorem that the series
∑

a∈A∩B2R2
|a|−tα+M+1

M converges if tα+M+1
M

> ρ.

Therefore the equalities θS <
ρM

α+M+1
and ψ(θS) = ∞ are proved. It follows from Theorem 3.20

in [10] that HD(JS) ≥ ρM
α+M+1

. Since JS ⊂ J(f), we are done. If, in addition, f is of

divergent type, then for tα+M+1
M

= ρ the series
∑

a∈A∩B2R2
|a|−tα+M+1

M diverges. It implies that

θS = ρM
α+M+1

and ψ(θS) = ∞. Therefore, invoking again Theorem 3.20 in [10], we obtain that

HD(JS) > ρM
α+M+1

.

4. Examples

Example 1. We consider the first Painlevé equation (P1)

f ′′ = z + 6f 2.

The solutions of (P1) are meromorphic functions of order ρ(f) = 5
2

of divergent type (cf. [4],
[14], [15]). They have infinitely many poles with Laurent expansions series

f(z) = (z−p)−2− p

10
(z−p)2− 1

6
(z−p)3 +h(z−p)4 +

p2

300
(z−p)4 +

p

150
(z−p)7 +

∞∑
k=8

ak(z−p)k

at every pole p, convergent at least for 0 < |z−p| < c|p|−1/4, c is a constant independent of p.
Thus the disks D(p, c

2
|p|−1/4) must be mutually disjoint for sufficiently large |p|. All the poles

are double and have the same residuum equal to 1, so M = 2 and α = 0. The estimate on
r(p) 
 |p|−1/4 imply that κ = 1

4
. Since f is of divergence type, if for some first transcendent

f the hypothesis (a) of Theorem A, modified as in Remark 1.1, is satisfied then

HypDim(J(f)) >
5

3
.

Example 2. Now we consider these solutions of the second Painlevé equation (P2)

f ′′ = β + zf + 2f 3

which are meromorphic functions of order ρ(f) = 3. We note that for most classes of second
transcendents 3/2 ≤ ρ(f) ≤ 3 (cf. [4], [14], [15]). They have infinitely many poles with
residue +1 and -1, except where β = ±1/2 and f solve the Riccati Equation. The Laurent
development at the pole p

f(z) = ε(z−p)−1− εp
6

(z−p)−α + ε

4
(z−p)2+h(z−p)3+

p2

300
(z−p)4+

p

150
(z−p)7+

∞∑
k=8

ak(z−p)k

is convergent at least for 0 < |z−p| < c|p|−1/2, c is a constant independent of p. Thus M = 1,
α = 0 and κ = 1

2
. If for some second transcendent f the hypothesis (a) of Theorem A,

modified as in Remark 1.1, is satisfied then

HypDim(J(f)) ≥ 3

2
.
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It follows from the results of N. Steinmetz that for example the first transcendent has only
one asymptotic value equals to ∞.

Example 3. Let

f(z) =
1

z sin z
.

So f is a meromorphic functions with infinitely many poles

A(f) = {z0 = 0} ∪ {zn = nπ : n ∈ Z
∗} ,

where all of them except for z0 = 0 are simple. Notice that ∞ is not an asymptotic value
of f . Thus we have m = 1, α = 1, ρ = 1. Sing(f−1) consists of one asymptotic value 0

and infinitely many critical values cn 
 ±
((
n + 1

2

)
π
)−1

, n ∈ Z. So f ∈ B and satisfies the

hypothesis (a) of Theorem A, modified as in Remak 1.1. Consequently

HD(I∞(f)) ≤ 1

3
< HypDim(J(f)).

Example 4. Let

f(z) =
1

z cos
√
z
.

So f is a meromorphic functions with infinitely many poles

A(f) = {z0 = 0} ∪
{
zn =

(
n+

1

2

)2
π2;n ∈ N

}
,

where all of them are simple. Notice that ∞ is not an asymptotic value of f . Thus we have
m = 1, α = 1

2
, ρ = 1

2
. Sing(f−1) consists of one asymptotic value 0 and infinitely many

critical values |cn| =
∣∣∣ 1
zl cos(zl)

∣∣∣ 
 ∣∣∣ 1
zl

∣∣∣ → 0, where zl = lπ + 1
lπ
, l ∈ Z. So f ∈ B and satisfies

the hypothesis (a) of Theorem A, modified as in Remak 1.1. Consequently

HD(I∞(f)) ≤ 1

5
< HypDim(J(f))

Example 5. The Airy function

Ai(z) =
1

2π

∫
Imζ=η>0

exp
(1

3
iζ3 + iζz

)
dζ

is the solution of the equation f ′′ − zf = 0. The zeros of Ai are asymptotically

an =
(

3
2
π(n− 1

4
)
)2/3

+O
(
n−4/3

)
. For fλ(z) := λ

Ai(z)
, λ ∈ C∗, then |b(an)| = 1

|(fλ(an))′| we have

m = 1, ρ = 3
2
, α = 1

4
. If for some λ the hypothesis (a) of Theorem A is satisfied then

HD(I∞(fλ)) ≤ 2

3
< HypDim(J(fλ)).

Example 6. Let
f(z) = R(ez),
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where R is a rational function such that R(0) �= ∞ and R(∞) �= ∞. So f(z) is a simply-
periodic meromorphic function with finitely many poles at each strip of periodicity. This
class of functions contains for example, the tangent family λ tan(z), λ ∈ C

∗. Let M denote
the maximal multiplicity of the poles of R. Since Sing(f−1) is finite, the hypothesis (a) of
Theorem A, modified as in Remark1.1, is always satisfied. It is easy to see that ρ = 1 and
α = 0, so

HD(I∞(f)) ≤ M

M + 1
< HypDim(J(f)).

In this case one can get a better estimate on HypDim(J(f)). It follows from [13] that
HypDim(J(f)) > 1.

Example 7. As we mentioned before, Theorems A and B can be applied to elliptic fictions
(see [7]).
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[6] J. Kotus and M. Urbański, Existence of invariant measures for transcendental subexpanding functions,

Math. Zeit. 243 (2003), 25-36.
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