GEOMETRIC THERMODYNAMICAL FORMALISM AND
REAL ANALYTICITY FOR MEROMORPHIC FUNCTIONS OF
FINITE ORDER

VOLKER MAYER AND MARIUSZ URBANSKI

ABSTRACT. Working with well chosen Riemannian metrics and employing Nevan-
linna’s theory, we make the thermodynamical formalism work for a wide class of
hyperbolic meromorphic functions of finite order (including in particular exponen-
tial family, elliptic functions, cosine, tangent and the cosine-root family and also
compositions of these functions with arbitrary polynomials). In particular, the
existence of conformal (Gibbs) measures is established and then the existence of
probability invariant measures equivalent to conformal measures is proven. As a
geometric consequence of the developed thermodynamic formalism, a version of
Bowen’s formula expressing the Hausdorff dimension of the radial Julia set as the
zero of the pressure function and, moreover, the real analyticity of this dimension,
is proved.

1. INTRODUCTION

One of the most fruitful tool in the study of ergodic, stochastic or geometric prop-
erties of a holomorphic dynamical system is the thermodynamical formalism. We
present a completely new uniform approach that makes this theory available for a
very wide class of meromorphic functions of finite order. The key point is that we
associate to a given meromorphic function f : C — C a suitable Riemannian metric
do = v|dz|. We then use Nevanlinna’s theory to construct conformal measures for the
potentials —tlog |f’|, and to control the corresponding Perron—Frobenius operator’s.

Here i)
- — 120 Z)
‘f (Z)‘Cf - ‘f( )’ "}/(Z)

is the derivative of f with respect to the metric do. With this tool in hand we obtain
then geometric information about the Julia set J(f) and about the radial (or conical)
Julia set

F(f) ={z € J(f) + Tminf /()] < oo}

We now give a precise description of our results.
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1.1. Thermodynamical formalism. Various versions of thermodynamic formalism
and finer fractal geometry of transcendental entire and meromorphic functions have
been explored since the middle of 90’s, and have speeded up since the year 2000 (see for
ex. [Bal, [CS1], [CS2][KU1], [KU2|, [KU3], [MyU], [UZ1], [UZ2], [UZ3], and especially
the survey article [KU4] touching on most of the results obtained by now). Some
interesting and important classes of functions, including exponential Ae® and elliptic,
have been fairly well understood. Essentially all of them were periodic, the methods
they were dealt with broke down in the lack of periodicity, and required to project the
dynamics down onto the appropriate quotient space, either torus or infinite cylinder.
One has actually never completely gone back to the original phase space, the complex
plane C. A nice exception is the case of critically non-recurrent elliptic functions
treated in [KU2], where the special but most important potential —HD(J(f)) log|f’|
was explored in detail. In this paper we propose an entirely different approach. We
do not need periodicity and we work on the complex plane itself. The main idea,
which among others allows us to abandon periodicity, is that we associate to a given
meromorphic function f a Riemannian conformal metric do = 7|dz| with respect to
which the Perron-Frobenius-Ruelle (or transfer) operator

(1.1) Lipw)= > |f'(2)l; ()

z€f~1(w)

is well defined and has all the required properties that make the thermodynamical for-
malism work. Such a good metric can be found for meromorphic functions f : C — C
that are of finite order p and do satisfy the following growth condition for the deriv-
ative:

Rapid derivative growth: There are ag > max{0, —«;} and £ > 0 such that

(1.2) ()] = 6711+ 2™+ [ f(2)]*2)

for all z € J(f)\ f~!(c0). Throughout the entire paper we use the notation
a = a1 + as.

This condition is very general and forms our second main idea. It is comfortable to
work with and relatively easy to verify (see Section 3) for a large natural class of func-
tions which include the entire exponential family Ae?, certain other periodic functions
(sin(az + b), Atan(z), elliptic functions...), the cosine-root family cos(v/az + b) and
the composition of these functions with arbitrary polynomials. Let us repeat that in
Section 3 these and more examples are described in greater detail. The Riemannian
metric o we are after is

do(z) = (1+[2|°2)7"|dz].

Let (X,m) be a probability measure and 7" : X — X a measurable map. Recall
that, given a bounded above non-negative measurable function g : X — [0, 400), the



measure m is called g-conformal provided that

m(T() = [ gdm

A
for every measurable subset A of X such that T'|x is injective. Our third and fourth
basic ideas were to revive the old method of construction of conformal measures from
[DU1] (which itself stemmed from the work of Sullivan [Su] and Patterson [Pal]) and
to employ results and methods coming from Nevanlinna’s theory. These allowed us
to perform the construction of conformal measures and to get good control of the
Perron-Frobenius-Ruelle operator, resulting in the following key result of our paper.

Theorem 1.1. If f : C — C is an arbitrary hyperbolic meromorphic function of finite
order p that satisfies the rapid derivative growth condition (1.2), then for everyt > £
the following are true.

(1) The topological pressure P(t) = lim, .o = log £7(1)(w) ezists and is indepen-
dent of w € J(f).

(2) There exists a unique \| f'|}-conformal measure my and necessarily \ = e
Also, there exists a unique probability Gibbs state p, i.e. pg is f-invariant
and equivalent to my. Moreover, both measures are ergodic and supported on
the radial (or conical) Julia set.

(3) The density ¥ = du/dmy is a continuous and bounded function on the Julia

set J(f).

Remark 1.2. For the existence of eP(t)|f’|f,-conf07’mal measures the assumption of
hyperbolicity is not needed (see Section 5).

P(t)

Note that even in the context of exponential functions (Ae*) and elliptic functions,
this result is new since it concerns the map f itself and not its projection onto infinite
cylinder or torus.

An important case in Theorem 1.1 is when h is a zero of the pressure function
t +— P(t). In this situation, the corresponding measure my, is |f’|’-conformal (also
called simply h-conformal). We will see that such a (unique) zero h > p/a exists
provided the function f satisfies the following two additional conditions:

Divergence type: The series (t,w) = 3~ ¢ p-1(,) |z| 7t diverges at the critical exponent
(which is the order of the function ¢ = p; w is any non Picard exceptional value).

Balanced growth condition: There are ag > max{0, —«a1} and x > 0 such that
(13) AT M)A+ IF(2)2) S ()] < w1+ [2[*) (1 + |f(2)]*2)
for all finite z € J(f) \ f~1(c0).

1.2. Bowen’s formula. Starting from Section 7 we provide geometric applications
of the key result above and provide, in particular, the following version of Bowen’s
formula.
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Theorem 1.3. (Bowen’s formula) If f : C — Cisa hyperbolic meromorphic function
that is of finite order p > 0, of divergence type and of balanced derivative growth, then
the pressure function P(t) has a unique zero h > p/a and

HD(J,(f)) = h .

This type of formulas has a long and rich history. It has appeared the first time in
the classical Bowen’s paper [Bw| and since then has been generalized and adopted to
a vast number of contexts, taking perhaps on the most perfect form in the class of
hyperbolic rational functions. In this class and in many others the zero of the pressure
function is the value of the Hausdorff dimension of the entire Julia set (which is false
for entire functions [UZ1]). By a reasoning, which is by now standard, Theorem 1.3
leads to the following.

Corollary 1.4. With the assumptions of Theorem 1.3, we have HD(J,(f)) < 2.

This property applied to the sine or exponential family and combined with results
of McMullen [McM] (who showed that the Hausdorff dimension of these functions is
always two) gives the following.

Corollary 1.5. If f is any hyperbolic member of the exponential (z — Xe*) or the
sine (z +— sin(az + 3), a # 0) family then the hyperbolic dimension HD(J,(f)) is
strictly less then HD(J(f)).

Note that such a phenomenon does not exist in the setting of rational functions.
For the exponential family it has been proven in [UZ1].

Proof of Corollary 1.4. Indeed, by Theorem 1.3 and by Theorem 1.1 there exists
an |f’|g—conformal measure for f. Suppose to the contrary that h = 2. Now the
proof is standard (see [UZ1] or [Myl] for details): Firstly, using the definition of the
set J,(f), which gives possibility of taking pull-backs of points lying in a compact
region, and applying Koebe’s Distortion Theorem, one shows that the measure my,
and the 2-dimensional Lebesgue measure restricted to J,.(f) are equivalent. Secondly,
consider an arbitrary point z € J,(f). As above it has infinitely many pull-backs
from a compact region. Since the Julia set is “uniformly” nowhere dense on any
compact part, using Koebe’s Distortion Theorem, one easily deduces that z cannot
be a Lebesgue density point of J.(f). Thus the Lebesgue measure of J,.(f) = 0, and
this contradiction finishes the proof. ]

1.3. Real analyticity. Answering the conjecture of D. Sullivan, D. Ruelle in [R]
(1982) gave a proof of the real-analytic dependence of the Hausdorff dimension of
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the Julia set for hyperbolic rational maps. More recently, this fact was extended
in [UZ2, CS2] to some special families of meromorphic functions (in particular the
exponential family). It was shown that the variation of the Hausdorff dimension of
the radial Julia set J,.(f) is real-analytic at hyperbolic functions. Note that in the
case of hyperbolic rational functions the Julia and the radial Julia set coincide. This
is no longer true in the meromorphic setting and, as we have seen in Corollary 1.5,
there is often a gap between the hyperbolic dimension, i.e. the Hausdorff dimension
of the radial Julia set, and the Hausdorff dimension of the Julia set itself [UZ1].

We investigate the variation of the hyperbolic dimension of meromorphic functions in
a very general setting and prove in particular the following result which contains as
special cases the real analyticity facts established in [UZ2] and [CS2].

Theorem 1.6. Let f : C — C be either the sine, tangent, exponential or the
Weierstrass elliptic function and let fy(z) = f(Agz® + Mg_1297 1+ .. 4+ Xo), A =
(Ads Ad—1, -, Ao) € C* x C?. Then the function

A HD(jr(f/\))

is real-analytic in a neighbourhood of each parameter \° giving rise to a hyperbolic
function fyo.

This result is an example of an application of the general Theorem 1.7 (via Theo-
rem 10.1) that we present now.

The Speiser class S is the set of meromorphic functions f : C — C that have a
finite set of singular values sing(f~!). We will work in the subclass Sy which consists
in the functions f € S that have a strictly positive and finite order p = p(f) and that
are of divergence type. Fix A, an open subset of CN, N > 1. Let

My={fr€So; AeA}, AcCV,

be a holomorphic family such that the singular points sing(fy') = {ai1y, .., aa)
depend continuously on A € A. Consider furthermore H C Sy, the set of hyperbolic
functions from Sy and put

HMp = MpNH.

We say that My is of bounded deformation if there is M > 0 such that for all
j=1,..,N

(1.4)

‘8f>\(z) SM’fﬁ\(z)’ , AEN and z € J(f)).

o\

We also say that My is uniformly balanced provided every f € My satisfies the
condition (1.3) with some fixed constants x, aq, .



6 VOLKER MAYER AND MARIUSZ URBANSKI

Theorem 1.7. Suppose fro € HMy and that U C A is an open neighborhood of \°
such that My is uniformly balanced with oy > 0 and of bounded deformation. Then
the map

A HD(jr(f)\))

is real-analytic near A°.

2. GENERALITIES

The reader may consult, for example, [Nev1], [Nev2] or [H] for a detailed exposition
on meromorphic functions and [Bw] for their dynamical aspects. We collect here the
properties of interest for our concerns. The Julia set of a meromorphic function
f:C — C is denoted by J (f) and the Fatou set by Fy. Since we always work in the

finite plane we denote J(f) = J(f) N C. By Picard’s theorem, there are at most two
points zg € C that have finite backward orbit O~ (zp) = Un>of "(20). The set of
these points is the exceptional set £¢. In contrast to the situation of rational maps it
may happen that £, C J(f). Iversen’s theorem [Iv, Nevl] asserts that every zy € &;
is an asymptotic value. Consequently, £ C sing( f71) the set of critical and finite
asymptotic values. The post-critical set Py is defined to be the closure in the plane

of
U £ (sing(F =)\ £ (o0)) -
n>0

Let us introduce the following definitions.

Definition 2.1. A meromorphic function f is called topologically hyperbolic if

1
S(f) = Zdist(J(f),Pf) > 0.
and it is called expanding if there is ¢ > 0 and A > 1 such that
[(f") ()] =A™ forall z€ J(f)\ f"(c0).
A topologically hyperbolic and expanding function is called hyperbolic.

The Julia set of a hyperbolic function is never the whole sphere. We thus may and we
do assume that the origin 0 € F/ is in the Fatou set (otherwise it suffices to conjugate
the map by a translation). This means that there exists 7' > 0 such that

(2.1) D0, T)nJ(f)=0.

The derivative growth condition (1.2) can then be reformulated in the following more
convenient form:

There are ag > 0, a1 > —ag and k > 0 such that

(2.2) [f'(2)] = 671z f(2)|°2 forall z€ J(f)\ f(c0).

Similarly, the balanced condition (1.3) becomes

(23)  KTHAMIF@I < UF ()] < wle ™ f(2)|*2 forall z€ J(f)\ fH (o)

and the metric do(z) = |z|~*2|dz|.



It is well known that in the context of rational functions topological hyperbolicity and
expanding property are equivalent. Neither implication is established for transcen-
dental functions. However, under the rapid derivative growth condition (2.2) with
a1 > 0 topological hyperbolicity implies hyperbolicity.

Proposition 2.2. FEvery topologically hyperbolic meromorphic function satisfying the
rapid derivative growth condition with c; > 0 is expanding, and consequently, hyper-
bolic.

Proof. Let us fix A > 2 such that Ak ~'T® > 2. In view of rapid derivative growth
(2.2) and (2.1)

(2.4) If'(2)] > k71T forall z € J(f)
and
(2.5) If'(z)| =X forall z€ f7(J(f)\ D(0,R))

provided R > 0 has been chosen sufficiently large. In addition we need the following.
Claim: There exists p = p(\, R) > 1 such that
|(f™)(2)] > X forall n>p and z € D(0,R)NJ(f).

Indeed, suppose on the contrary that there is R > 0 such that for some n, — oo
and z, € D(0, R) N J(f) we have
(2.6) (") (2p)] < A
Put 6 = §(f). Then for every p > 1 there exists a unique holomorphic branch
fo D(f”P(zp), 25) — C of f~™ sending f"»(2,) to z,. It follows from i—Koebe’s
Distortion Theorem and (2.6) that
(2.7) P (D(f™ (2p),28)) D D(2p,6/(2X))

or, equivalently, that f™»(D(zp,d/(2)))) C D(f™(2p),26). Passing to a subsequence
we may assume without loss of generality that the sequence {zp}g‘;l converges to
a point z € D(0,R) N J(f). Since D(Py,26) N D(f™(2p),28) = 0 for every p >
1, it follows from Montel’s theorem that the family { e D(z,(2/\)—16)};<;1 is normal,
contrary to the fact that z € J(f). The claim is proved.

Let p = p(A\, R) > 1 be the number produced by the claim. It remains to show that
(fP)(2)| >2>1 for every ze J(f).

This formula holds if |f7(2)] > R for j = 0,1,...,p because of (2.4), (2.5) and the
choice of A\. If |z| > R but |f/(z)] < R for some 0 < j < p, the conclusion follows
from (2.4) and the claim. O
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The class of Speiser S consists in the functions f that have a finite set of singular
values sing(f~'). The classification of the periodic Fatou components is the same
as the one of rational functions because any map of S has no wandering nor Baker
domains [Bw]. Consequently, if f € S then f is topologically hyperbolic if and only
if the orbit of every singular value converges to one of the finitely many attracting
cycles of f. This last property is stable under perturbation, a fact that we use in
Section 9 and also in the next remark:

Fact 2.3. Let fyo € H be a hyperbolic function and U C A an open neighborhood
of \V such that, for every A\ € U, fy satisfies the balanced growth condition (2.3)
with k > 0,1 > 0 and as > 0 independent of A € U. Then, replacing U by some
smaller neighborhood if necessary, all the f\ satisfy the expanding property for some
¢, p independent of A € U.

We end this part by giving a more detailed description of the divergence type functions
than the one given in the introduction. For a meromorphic function f of finite order
p a theorem of Borel states that the series

(2.8) S(tw)= > |

z€f~1(w)
has the exponent of convergence equal to p meaning that it diverges if ¢ < p and
converges if ¢ > p. Concerning the behavior of (¢, w) in the critical case t = p it
turns out that, if ¥(p, w) = oo for some w € C, then this series diverges for all but at
most two values w € C (see Remark 4.5).

Definition 2.4. If X(p,w) = oo for some w € ¢ \ &¢, then the function f is said to
be of divergence type.

The symbols =< and =< will signify through the whole text that equality respectively
inequality holds up to a multiplicative constant that is independent of the involved
variables.

3. FUNCTIONS THAT SATISFY THE GROWTH CONDITION

Here we present various examples that fit into our context. First of all, the whole
exponential family f\ = Aexp(z), A # 0, clearly satisfies the growth condition (2.2)
with a; = 0 and as = 1. More generally, if P and @ are arbitrary polynomials, then

f(z) = P(z)exp(Q(z)) , z€C,
satisfies (2.2) provided that |f'[ sy > ¢ > 0. In this case a1 = deg(Q) — 1, a2 = 1,
the order p = deg(Q) and consequently £ = 1. Assuming still that |f’|| ;) > ¢ >0
(which holds in particular for expanding maps), the following functions also satisfy
rapid derivative growth condition (2.2):



(1) The sine family: f(z) =sin(az +b), a,b € C, a # 0.

(2) The cosine-root family: f(z) = cos(vaz + b) with again a,b € C, a # 0. Note
that here a; = —% and ag = 1 which explains that negative values of aj
should be considered in (2.2).

(3) Certain solutions of Ricatti differential equations like, for example, the tangent

family f(z) = Atan(z), A # 0, and, more generally, the functions

Ae*" + B
IO =caip

The associated differential equations are of the form w’ = kz¥~!(a+bw +cw?)
which explains that here ay = k — 1 and as = 2.

(4) All elliptic functions.

(5) Any composition of one of the above functions with a polynomial.

with AD — BC #0.

The assertion on elliptic functions deserves some explanation. Let f : C — C be a
doubly periodic meromorphic function and let U = {z € C: |z| > R} U {o0}, where
R > 0 is chosen sufficiently large so that:

a) every component Vj, of f~1(U) is a bounded topological disc, and
b) there is £ > 0 such that for every pole b and any z € V, \ {b} we have

1
11 (2)] < ]f(z)\qu where ¢, is the multiplicity of the pole b.

From the periodicity of f and the assumption |f'|;(sy > ¢ > 0 easily follows now that
f satisfies (2.2) with a3 = 0 and

1

g = inf{l +—:be fﬁl(oo)}
Qv

More generally, the preceding discussion shows that for any function f that has at

least one pole one always has

1
ag < inf{l + o tbe f_l(oo)}

The stronger balanced growth condition (2.3) is also satisfied by an elliptic function
provided all its poles have the same order. General elliptic functions are not of
balanced growth, but they can also be handled (cf. the corresponding remarks in
Section 7). Uniform balanced growth is verified by various families. Here are some
examples.

Lemma 3.1. Let f : C — C be either the sine, tangent, exponential or the Weierstrass
elliptic function and let fA(z) = f(Agz® +Ag_127 4+ ..+ X0), A= (Mg, Ad_1, ..., Xo) €
C* x C%. Suppose A0 is a parameter such that fyo is topologically hyperbolic. Then
there is a neighbourhood U of \° such that My = {fx ;A € U} is uniformly balanced.

Proof. All the functions f mentioned have only finitely many singular values, they
are in the Speiser class. The function fyo being in addition topologically hyperbolic,
its singular values are attracted by attracting cycles. As we already remarked in the
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previous section, this is a stable property in the sense that there is a neighbourhood
U of A% such that all the functions of My = {fy ; A\ € U} have the same property. In
particular, no critical point of fy is in J(f)). The function f satisfies a differential
equation of the form

(fP=Qof
with @ a polynomial whose zeros are contained in sing(f~!). For example, in the
case when f is the Weierstrass elliptic function then

(f")? =4(f —e))(f — e2)(f — e3)

with e, e, e3 the critical values of f. Let A € U and denote Py(2) = A\gz?+Ag_12% 71+
... + Xg. Since

(fA)F = (flo PAP)P = Qo (PP
and fy(z) # 0 for all z € J(fy), the polynomials P} and @ do not have any zero in
J(fx). Consequently

[PL) = |2/ and |Q(2)] = |27 on J(fy)

with ¢ = deg(Q). Moreover, restricting U if necessary, the involved constants can be
chosen to be independent of A € U. Therefore,

OB OHE -

for z € J(f\) and A € U. We verified the uniform balanced growth condition with
a1 =d—1and as = % depending on the choice of f. In the case of the Weierstrass

elliptic function one has ag = 3/2. O

4. GROWTH CONDITION AND COHOMOLOGICAL TRANSFER OPERATOR

For exponential or elliptic functions one can use the periodicity to project the map
onto the quotient space (torus or cylinder). This idea recently lead to many new
results (see [KU4] and the reference therein). Here we replace the quotient spaces by
metric spaces (C,do) which are much more flexible. The first and essential problem
however is to find the right natural metric for a given meromorphic function. We
will describe now how this can be done for meromorphic functions of finite order that
satisfy the rapid derivative growth condition. Recall that we work with the metric

do(z) = [2|*2|dz]

and we set o = a1 + ag. The derivative of a function f: C — C with respect to this
metric is given at a point z € C by the formula

7l = G =P et e,

2|7
We will now see that this is the right choice of the metric in order for the associated
transfer operator £; (with the potential —tlog|f’|,) to act continuously on the Banach
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space Cy(J(f)) of bounded continuous functions on J(f). Indeed

Lp(w)= Y |Gl = D 17 @I (2) e (2)

zef~1(w) zef—1(w)

=[wl® Y I ()T e (2).

zef~1(w)

So, if f satisfies (2.2), then
(4.1) Law)= > |f @L< D |

2€f~1(w) zef~1(w)

Now, assume that f is of finite order p. Then, as we noted in the introduction, a
theorem of Borel states that the last series has the exponent of convergence equal to
p for all but at most two points (the points from £;). Assume that £ is disjoint from
the Julia set J(f); this is for example true if f is topologically hyperbolic. What we
need is the uniform convergence of the last series in (4.1) in order to secure continuity
of the operator £; on the Banach space Cy(J(f)) of bounded continuous functions
endowed with the standard supremum norm. More precisely, we need to know that,
for a given t > p/«, there is M; > 0 such that

(4.2) Lill(w) < M forall we J(f).

It turns out that under our assumptions this is always true:

Theorem 4.1. Assume that f : C — Cisa finite order hyperbolic meromorphic
function of rapid derivative growth. Then for every t > p/a, the transfer operator L,
is well defined and acts continuously on the Banach space Cy(J(f)).

The rest of this section is devoted to the proof of this ” Uniform Borel Theorem”. Let
f be meromorphic of finite order p and let u > p. We are interested in the dependence
of the following series on a:
1
Y(u,a) = —.
( ’ ) Z ’Z‘u

f(z)=a

Borel’s theorem states that this series converges for every non-exceptional value a € C.
But is this convergence uniform? To see this we investigate the error terms in the
proof of Borel’s theorem as given in [Nevl, p. 265] or [Nev2, p. 261]. In order to do
this we use again the fact that 0 € ;. In the following we use the standard notations
of Nevanlinna theory. For example, n(¢,a) is the number of a-points of modulus at
most ¢, N(r,a) is defined by dN(r,a) = n(r,a)/r and T'(r) is the characteristic of
f (more precisely the Ahlfors-Shimizu version of it; these two different definitions of
the characteristic function only differ by a bounded amount). The first main theorem
(FMT) of Nevanlinna yields the following for our situation:
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Corollary 4.2 (of FMT). There is £ > 0 such that N(r,a) < T(r) + Z for all
ac J(f).

Proof. FMT as stated in [Er| or in [H, p. 216] yields
N(r,a) <T(r) +m(0,a) forallr>0andacC

with m(0,a) = —log[f(0),a] and where [a,b] denotes the chordal distance on the
Riemann sphere (with in particular [a,b] < 1 for all a,b € C). Since f(0) € Fy, there
is 7 > 0 such that [a, f(0)] > 7 for all a € J(f). It follows that the error term is
bounded by
0 <m(0,a) < —logT = forall ac J(f).
([l

From the second main theorem (SMT) of Nevanlinna we need the following version
which is from [Nevl, p. 257] ([Nev2, p. 255] or again [H]) and which is valid only
since f is supposed to be of finite order.

Corollary 4.3 (of SMT). Let aj,as, a3 € C be distinct points. Then

3
Z r,a;) 4+ S(r) for every r >0 with S(r)= O(log(r)).

We can now show the following uniform version of Borel’s theorem which implies
Theorem 4.1.

Proposition 4.4. Let f be meromorphic of finite order p and suppose that 0 € Fy.
Then, for every u > p, there is My > 0 such that

Y(u,a) = Z ‘1’u_M forall a€ J(f).
f(z)=a

Proof. Recall that J(f) N D(0,T) = 0. Then n(T,a) = N(T,a) = 0, for all
a € J(f), and by the definition of the Riemann-Stieltjes integral, integration by parts
and the fact that lim, n(ra) _ 0, we get that

TaU/
dn(t * n(t
E(u,a)Z/ n(’a):u/ n(;?)dt.
T e r
In the same way
* n(t * N(t
[T = [T
r 1 v t

Putting both equations together, we get

(4.3) S(u,a) = o /Too N(t.a) )

tu+1
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Now we proceed like in the proof of Borel’s theorem as stated in [Nevl, p. 265] or in
[Nev2, p. 261]: let aj, a2, as be three different points of J(f) and let a € J(f) be any
point. Then it follows from FMT and SMT as stated above that, for every ¢t > T,
(4.4) N(t,a) —=2<T(t) < N(t,a1) + N(t,a2) + N(t,a3) + S(t) .

Dividing this relation by ¢%*!

* N(t,a) * N(t, a]
/T tutl dt < Z/ tutl dt + Ay

and integrating with respect to t gives

Here we used the fact that S(r) = O(log(r)), which implies that [ ti(+t1 dt = A, <
oo. Together with (4.3) we finally have

(4.5) Y(u,a) < X(u,a1) + 2(u, a2) + L(u, az) + u>A,
for every a € J(f). O

Remark 4.5. If the order p > 0, then the above proof shows that 3(p,b) = oo for all
but at most two values b € C provided X(p,a) = oo for some a € C. This property
trivially also holds if p = 0. Note that Koebe’s distortion theorem and hyperbolicity
yield that the two exeptional values for this property cannot be in J(f). Therefore
Y(p,a) = oo for all or none a € J(f).

5. CONSTRUCTION OF CONFORMAL MEASURES

Further properties of transfer operators £; rely on the existence of conformal mea-
sures. Define now the topological pressure as follows

(5.1) P(t) = P(t,z) —hmsup logL” ().

Note that because of hyperbolicity of the function f, Koebe’s Distortion Theorem
and density in J(f) of the full backward orbit of any point in J(f), the number
P(t) = P(t,z) is independent of = € J(f). We recall that m; is called e"®)]|f/|:-
if % = ePO|f'[L or, equivalently, if ?;t is an eigenmeasure of the adjoint
P(t

conformal 1

; of the transfer operator £; with eigenvalue e"'*). Note that then the measure mg,
the Euclidean version of my, defined by the requirement that dm¢(z) = |z|*2dmy(z)
is eP®|f'|*-conformal. If P(t) = 0, then these measures are called t-conformal. In
[Su] Sullivan has proved that every rational function admits a probability conformal
measure. As it is shown below, in the case of meromorphic functions the situation
is not that far apart. All what you need for the existence of an e”®|f’|L -conformal
measure is the rapid derivative growth; no hyperbolicity is necessary. ! We present
here a very general construction of conformal measures.

Irf f is not hyperbolic then F; = () may occur and our method does not work. But then the
Lebesgue measure is 2-conformal.
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Theorem 5.1. If f : C — Cisa meromorphic function of finite order with non-empty
Fatou set satisfying the rapid derivative growth condition, then for everyt > p/« there
exists a Borel probability e*®|f'|t -conformal measure my on J(f).

The rest of this section is devoted to the proof of Theorem 5.1. First of all, changing
the system of coordinates by translation, we may assume without loss of generality
that 0 ¢ J(f). Fix x € J(f). Observe that the transition parameter for the series

o0
Y= Ze‘"sﬁ?ﬂ(:c)
n=1
is the topological pressure P(t). In other words, X5 = 400 for s < P(¢) and 35 < oo
for s > P(t). We assume that we are in the divergence case, e.g. Yp() = oo. For
the convergence type situation the usual modifications have to be done (see [DU1] for
details). For s > P(t), put

o

vs =5 D e (LYY 5,

n=1

The following lemma follows immediately from definitions.

Lemma 5.2. The following properties hold:
(1) For every ¢ € Cy(C) we have

1 . —ns n 1 - —ns rn
/@st:EZG /EtSOd(Sx:EZ@ i) .
5 n=1 5 n=1

(2) vs is a probability measure.
1 1 1L}
3 Bl —(n+1)s En-‘,—l *§5 — _ Ttz
(3) es t¥s Esnzz:le (L) 0 = vs Yo e’

The key ingredient of the proof of Theorem 5.1 is to show that the family (vs)ep)
of Borel probability measures on C is tight and then to apply Prokhorov’s Theorem.
In order to accomplish this we put

Ugp={2€C:|z| > R}

and start with the following observation.

Lemma 5.3. For every t > p/a there is C = C(t) > 0 such that

LiMug)(0) < g for every y € J(f),
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Proof. From the rapid derivative growth condition (2.2) and Proposition 4.4, sim-
ilarly as (4.1), we get for every y € J(f) that

Li(up)(y) = A )] = L S Pl

z€f~H(y)NUr z€f~L(y)NUr
Kt KEM
—(p+ay) ptay
S Rov Z ’Z‘ S Roy :
z€f~1(y)

O

Now we are ready to prove the tightness we have already announced. We recall that
this means that

Ve >0 3R > 0 such that vs(Ug) <e forall s > P(t) .

Lemma 5.4. The family (vs)ssp() of Borel probability measures on C is tight and,
more precisely, there is L > 0 and § > 0 such that

vs(Ur) < LR™® forall R > 0and s > P(t) .

Proof. The first observation is that

L)@ = > > (IFERLIE )

yef~n(x) zef~H(y)NUr

= Y UYWL L)) < s L),

yef—"(z)

where the last inequality follows from Lemma 5.3. Therefore, for every s > P(t), we
get that

1oo—nsn Cloo—nsn—l
n(UR) = 5 3L ()@)€ g D¢ LT @)
n=1 n=1
011 —ns 2C 1
R Ei(l +Z‘;e Etﬂ(‘””)) = P B
n=
This shows Lemma 5.4 and the tightness of the family (vs)s>p)- D

Now, choose a sequence {s;}72,, s; > P(t), converging down to P(¢). In view of
Prokhorov’s Theorem and Lemma 5.4, passing to a subsequence, we may assume
without loss of generality that the sequence {vs, };";1 converges weakly to a Borel
probability measure m; on J(f). It follows from Lemma 5.2 and the divergence
property of ¥, that £im; = e¥’ )m,. The proof of Theorem 5.1 is complete.
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6. GIBBS STATES

We now complete the proof of Theorem 1.1. The first observation is that one can have
a better estimate than (4.1) in diminishing g slightly. Suppose that the derivative
of f satisfies the growth condition (2.2) with o/, = as + ¢, € > 0, instead of ae. Then
@l = A IF @) 2 el @E . 2 e )
TR | |
which, along with Proposition 4.4, leads to the following important estimate of the
transfer operator. For each t > p/a,

(6.1) Lil(w) < K Z 2|7t < Mo forall we J(f).

’w|ta |’Uj‘t£
z€f~1(w)

An immediate advantage of this estimate is the following.
Lemma 6.1. We have limy, o L1 (w) = 0.

The last ingredient we need in this section is the following straightforward consequence
of Proposition 2.2, Koebe’s Distortion Theorem, and the fact that 0 ¢ J(f).

Lemma 6.2. For every hyperbolic meromorphic function f : C — C satisfying the
rapid derivative growth condition there exists a constant K, > 1, called o-adjusted
Koebe constant, such that if R > 0 is sufficiently small, then for every integer n > 0,
every w € J(f), every z € f~™(w) and all x,y € Dy(w, Rlw|™*?)UD(w, R) , we have
that

—1 ) W)
(6.2) Ko Sy = K

As an immediate consequence of this lemma and Montel’s theorem, which implies
that for every open set U intersecting the Julia set J(f) and every point z € J(f)
there exists n > 0 such that UN f~"(z) # ), we conclude that the topological pressure

P(t) = Tim ~log £7(1)(w)
n—oo N
exists and is independent of w € J(f). From these two lemmas above and the
existence of conformal measures (Theorem 5.1) one gets, following the arguments
from formula (3.6) through Lemma 3.6 of [UZ2], the following uniform estimates for
the normalized transfer operator

Ly=ePOr,
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Proposition 6.3. There exists L > 0 and, for every R > 0, there exists g > 0 such
that

for alln > 1 and allw € J(f) N D(0, R).

This allows us to construct an everywhere positive, decreasing to zero at infinity, fixed
point ¢ of the normalized transfer operator £; by putting

w=u) [Gudmi with Gi(x) = limint - > £F1G) 2 € I()
k=1

The Borel probability measure p; = pm; is obviously f-invariant and equivalent
to m;. Repeating the appropriate reasonings from [UZ2] or [MyU], the proof of
Theorem 1.1 follows.

7. GEOMETRIC APPLICATIONS

In the rest of the paper we derive several geometric consequences from the dynamical
results proven in the previous sections. Our primary goal is to complete the proof
of Theorem 1.3 (Bowen’s formula). For this part we strengthen our assumptions and
assume throughout the whole rest of the paper that

f:C — C is a hyperbolic meromorphic function that firstly is of divergence type and,
secondly, of balanced derivative growth (condition (2.3)).

Notice that, with the balanced growth condition, the calculations leading to (4.1) give
the following lower estimate.

(7.1) Law)= > |f @ =" Y ™ we J(f),
zef—1(w) z€f~1(w)

for all t > p/a. In order to bring up geometric consequences, we need some informa-
tion about the shape of the graph of the pressure function.

Proposition 7.1. If f : C — Cisa hyperbolic divergence type meromorphic function
of finite order p > 0 and of balanced derivative growth (condition (2.3)), then the
following hold.

(a) The function t — P(t), t > p/a, is conver and, consequently, continuous.
(b) The function t — P(t), t > p/a, is strictly decreasing.

(c) limy— 400 P(t) = —00.

(d) limy_,(p/ay+ P(t) = +o0.
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Proof. Convexity of the pressure function P(t) follows immediately from its defini-
tion and Hoélder’s inequality. So, item (a) is proved. Items (b) and (c) are straightfor-
ward consequences of the expanding property. In view of (7.1), in order to establish
condition (d), it suffices to prove the following.

(7.2) lim inf{3(t,2): 2z € J(f)} = +oc.

t—(p/a)t
Fix a point £ € J(f) and let & > 0. Then, because of the divergence assumption,
there is @ > p such that X(u,&) > k for all u € (p,0). Consider now the concluding
inequality (4.5) from the proof of Proposition 4.4. Observe first that, for allu > p > 0,

(o0} o 1
(7.3) A, = / &fzdaﬁ < / Mdm =1 < 0.
T ¢ v xztl
It follows now from Remark 4.5 that

Y(u,z) > k/4  for all ue (p,0) and all z € J(f)

provided k has been chosen sufficiently large with respect to I. We proved (7.2) and
therefore the entire proposition. ]

A direct application of Theorem 1.1 gives now

Corollary 7.2. If f : C — Cisa hyperbolic divergence type meromorphic function
of finite order p > 0 and of balanced derivative growth (condition (2.3)), then there
exists a unique h > p/a such that P(h) = 0 and f has a | f'|-conformal measure my,.

Let us remark at this stage that the full power of balanced growth is not needed;
what is really necessary is formula (7.1) which is, for example, valid for all the elliptic
functions.

Here is an other example showing that Proposition 7.1 and Corollary 7.2 do hold
with a weaker, in fact local, version of the balanced growth condition in the case the
supremum of multiplicities of all the poles of the meromorphic function f is finite.

Lemma 7.3. Let f : C — C be a hyperbolic meromorphic function that is of finite
order, divergence type, satisfies the growth condition (2.2) with ag = 1 + ﬁ, Gsup

being the supremum of multiplicities of the poles of f which is supposed to be finite.
If in addition there is a neighborhood D of a pole b and k > 0 such that

[f'(2)] < wl2|** for ze f7HD)NC,
then HD(J,.(f)) > p/a and the pressure function t — P(t) has a zero h > p/a.

Proof. The lower estimate of the Hausdorff dimension of the radial Julia set is
proven in [My2]. More precisely, HD(J,.(f)) > p/ca is shown there. But, inspecting
the proof in [My2] one easily sees that the strict inequality results from the divergence
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assumption together with the appropriate result from the theory of iterated function
systems in [MdU]. We will see below (Lemma 8.1) that the ¢-dimensional Hausdorff
measure

HL(J.(f)) < +oo if P(t) 0.
Consequently P(¢t) > 0 for p/a <t < HD(J,(f)). Existence and uniqueness of the zero
of the pressure function follows now from the items (a), (b) and (c) of Proposition 7.1.
U

The definitions of Hausdorff measure as well as Hausdorff dimension can be found
for example in [Mat] or [PU]. The symbol H’, refers to the t-dimensional Hausdorff
measure evaluated with respect to the Riemannian metric do. Fix t > p/a. By Theo-
rem 5.1 there exists my, an eP®)| f/|¢ -conformal measure, and let m§ be its Euclidean
version defined in the previous section. Then a straightforward calculation shows that

GO () = PO, =€ J(f).

€
dms

(7.4)

Fix any radius

R € (0,56(f))
So, if z € J(f), n > 0, and z € f~"(w), then there exists a unique holomorphic
inverse branch f;" : D(w,4R) — C of f™ sending w to z. Recall that K, is the
o-adjusted Koebe constant produced in Lemma 6.2. It follows from this lemma that
(7.5)
Dy (2, K5 ' Rlw|=2|(f")(2)|51) C £ (Do (w, Rlw| %)) C Dy (2, Ko Rlw|~*2|(f")'(2)|5")

and that
(T.6)  mo(f" (Do (w, Rlwl~))) = e PO (1) (2)]; my (Do (w, Rluw| ).

We recall that the radial Julia set is the set of points of J(f) that do not escape to
infinity:
Jr(f) ={z € J(f): liminf|f"(2)| < oo}

and, obviously,

J(f) = Ju(h) = |J {z € J() : limint |f"(2)] < M}.

M>0 M>0

8. PROOF OF BOWEN’S FORMULA

We start the proof of Bowen’s formula (Theorem 1.3) by the following observation
which, together with Lemma 7.2, shows in particular that HD(J,.(f)) < h.

Lemma 8.1. Ift > p/a such that P(t) <0, then H.(J,(f)) < +oc.

Proof. Since pi; is an ergodic measure there is M > 0 so large that p(Jra(f)) = 1.
Consequently mq(Ja(f)) = 1. Since J(f) N D(0, M) is a compact set,

Qu = inf{my(Dy(w, Rlw|~*?) : w € J(f) N D(0,M))} > 0.
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Now, fix z € J, pm(f) and consider an arbitrary integer n > 0 such that f"(z) €
D(0, M). Recall that D(0,7) N J(f) = 0. It follows from (7.5) and (7.6) that

me (Do (2, Ko R| f"(2)| (/") (2)I51)) =
= e PO ()] e (Do (£7(2), RIS (2)] %))
> Qui(EoR) e PO f1(2)| 2! (Ko RIf™ () =21 (f") (2)I7)'
> Qui(E,R) T (K, RIf" ()21 (/") (=), )"
Thus, there exists ¢ > 0 such that for every z € J, a(f)
s PP (Do e Ko RI)G ))
r—0 T oo (KGRI ()02 (F7) ()] )

Applying now Besicovic’s Covering Theorem, it immediately follows from this in-
equality that Hf,(JnM(f)) < ¢~ L. Since for every x > M, mt(J,«,mH(f)\Jm(f)) =0,
an argument similar to the one above gives that H} (Jrz41(f) \ Jrz(f)) = 0. Since
Jr(f) = Jea (f) WU o (Trrttns1 () \ Jrp4n(f)), the proof is complete. O

In order to complete the proof of Bowen’s formula we have to establish that HD(J,.(f)) >
h. We will do this in adapting the corresponding proof in [UZ2]. The first step is to
show that f has a finite and strictly positive Lyapunov exponent.

Lemma 8.2. We have that
0<x= /log\f’]duh = /log|f'|gdﬂh < 00.

Proof. The equality [log|f’|du, = [log|f’|sdpuy, follows from
log |f|o(2) = log | f'(2)] + az(log |2| — log | f(2)])

and the f—invariance of y5. We have to prove finiteness of [log f.dus. In order to
do so, consider the annulus A4; = D(0,2/71) \ D(0,27). In this annulus we have

(i) un(A;) = 2799 because of Lemma 5.4 and the fact that duj, = ¥ndmy, with
1, bounded. ‘
(i) fi(2) =2 |2]* X 27% due to the balanced growth condition (2.3).

The finiteness of the integrals in the lemma follows. Finally x > 0 since f is expanding.
O

We can now complete the proof of Theorem 1.3 by establishing the following.

Lemma 8.3. HD(J,.(f)) > h.

Proof. Fix & > such that the Lyapunov exponent defined in Lemma 8.2 x > «.
Since pp(J-(f)) = 1 and since py, is ergodic f—invariant, it follows from Birkhoff’s
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ergodic theorem and Jegorov’s theorem that there exists a Borel set Y C J,.(f) and
an integer K > 1 such that up(Y) > % and such that for every z € Y and n > k

1
<e and ﬁlog\(f")’(zﬂg —x| <e.

(1) log (") (2)] — x

Let R = dist(Pys, J(f))/4. Given z € Y and r € (0,R), let n > 0 be the largest
integer such that

D(z,r) C f(D(f"(2), R)).
There is r, > 0 such that for any 0 < r < r, the integer n defined above is n > k.
By the definition of n, D(z,r) is not contained in fz_(n+1)(D(f”+1(z), R)). Koebe’s
distortion theorem yields now

(8.2) r < KR|(f")(2)|7" and r> KTIRI(f") (2)] 7
Passing to the h-conformal measure my, we get from (8.1) that
mp(D(z, 7)) < my, (f2"(D(f"(2), R)) = (/") (2)]5 "mn (D(f"(2), 6))
< (Y ()" < e,
On the other hand, (8.1) together with (8.2) give
e~ (n1)(x+e) < ‘(fnJrl)/(Z)rl <

Therefore
n+1 x—¢
mp(D(z,7)) < ()

When r — 0 then n = n(r) — oo from which we get that

D
lim sup M <1
r—0 rh=e
for every ¢/ > 0. This gives HD(J,(f)) > h — &’ and the lemma follows in taking
e —0. O

9. REAL ANALYTICITY OF THE HYPERBOLIC DIMENSION
In this section we prove Theorem 1.7. From now on we suppose a1 > 0.

9.1. J-stability. The work of Lyubich and Mané-Sad-Sullivan [L1, MSS] on the
structural stability of rational maps has been generalized to entire functions of the
Speiser class by Eremenko-Lyubich [EL]. Note also that they show that any entire
function of the Speiser class is naturally imbedded in a holomorphic family of func-
tions in which the singular points are local parameters.

Here we collect and adapt to the meromorphic setting the facts that are important
for our needs. We also deduce from the bounded deformation assumption of M near
fro a bounded speed condition of the involved holomorphic motions. A holomorphic
motion of a set A C C over U originating at A\° is a map h : U x A — C satisfying
the following conditions:

(1) The map A — h(A, 2) is holomorphic for every z € A.
(2) The map hy : z — ha(z) = h(A, 2) is injective for every A € U.
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(3) h)\o - Zd
The A-lemma [MSS] asserts that such a holomorphic motion extends in a quasicon-
formal way to the closure of A. Further improvements, resulting in the final version of
Slodkowski [Sk], show that each map h) is the restriction of a global quasiconformal
map of the sphere C. Let us call fyo € Mp holomorphically J-stable if there is a

neighborhood U C A of \° and a holomorphic motion hy of J (fro) over U such that
ha(T(fro)) = T(f) and

hyo fro = faohyx on J(fx)
for every A € U.

Lemma 9.1. A function fyo € My is holomorphically J-stable if and only if, for
every singular value a; yo € sing(fi)l), the family of functions

is normal in a neighborhood of A°.

Proof. This can be proved precisely like for rational functions because the functions
in the Speiser class S do not have wandering nor Baker domains (see [L2] or [BM, p.
102)). O

From this criterion together with the description of the components of the Fatou
set one easily deduces the following.

Lemma 9.2. Fach fyo € HMy is holomorphically J-stable and HMy is open in
M.

We now investigate the speed of the associated holomorphic motion.

Proposition 9.3. Let fyo € HMp and let hy be the associated holomorphic motion
over U C A (c¢f. Lemma 9.2). If My is of bounded deformation, then there is C > 0
such that

<C

8h)\(2>
O\j
for every z € J(fy) and j = 1,...,N. It follows that hy converges to the identity

map uniformly on J(fyo) and, replacing U by a smaller neighborhood if necessary,
that there exists 0 < 7 < 1 such that hy is T-Holder for every A € U.

Proof. Let hy be the holomorphic motion such that fy o hy = hyo fyo on J(fy ) for
A € U and such that there are ¢ > 0 and p > 1 for which

(9.1) |(f)'(2)] = cp™  foreveryn>1, z € Jg, and X € U.

(cf. Fact 2.3; this is the only place where a; > 0 is used). Denote z) = hy(z) and
consider

Fa(A 2) = fi(22) — 2.
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The derivative of this function with respect to A; gives

0 ofy 0 0
—FL (A, —h ——nh .
a3, P2 = G () + RV () gr-ha) = gma(2)
Suppose that z is a repelling periodic point of period n. Then A — F,,(\, z) = 0 and
it follows from (9.1) that

ofp o
s (22) () |

e R orei R

)WLA(Z)
o\,

Since f* (z,\) g{?( T 2) + A (zA)) f* —(2)) we have

A \3{*( v 1(%))‘ 1
ma = LA )] (=)

Making use of the expanding (9.1) and the bounded deformation (1.4) properties it
follows that

+ An—l,j-

M
A < ] +An_1j.

The conclusion comes now from the density of the repelling cycles in the Julia set

T (fro):

Ohx(z M
’ 63\() <= pf for every z € J(fxo)-
J
The Hoélder continuity property is now standard (see [UZ2]). O

9.2. The spectral gap of the (real) transfer operator. In order to get the nec-
essary spectral properties of the transfer operator, one does work with the space of
Holder continuous functions H, = H,(J(f),C), 0 < 7 < 1. However, the function
|f'|51 is not necessary in this space. It follows from the distortion property (9.2)
below that it belongs to the following slightly more general one. In order to introduce
it consider w € J(f) and denote the 7—variation of a function g : J(f) N D(w,d) — C
by

l9(z) — 9(y)|

|z —y|

trle) = s { sy € TN D(w.d) |

The Holder space H, we work with consists in bounded functions g : J(f) — C such
that v;.,(g o f, 1) is bounded uniformly in w € J(f) and a € f~!(w). Denote

vr(g) = sup sup ”T,w(g o f;l)‘
weJ(f) acf~H(w)

The space H; endowed with the norm ||g||- = v-(¢9) +/¢]/« is @ Banach space densely
contained in Cp. Here is the classical estimation which is based on the Holder property
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of g € H; and the expanding property of f:

Crg(2) — Lrgw)| = O ST (Y @ el) — Y 1Y O 9)

acf—n(z) be f=m(w)

<e O N (Y (@)l g(fa " (2) — g(f " (w))]
acf=n(z)

+e PO Y ST @) = 1Y 01 [90)]
bef~m(w)

=I+1I

for z,w € J(f) with |z — w| < 6 = §(f) and where f; " is the inverse branch of f~"
defined on D(z,d) such that f,"(z) = a. The majorization of the first term goes as
follows:

I<u (e 3 | @t 1576 - G w)
acf="(z)

< 0r(9)[1£7]loc w15 W) = i )l 2o (g)pm M|z — wl”
acf—™

Concerning the second part, one has to observe that Koebe’s distortion theorem
implies that for any n > 1 and z,w, € J(f) with |z —w| < (f)

92) I SIS =1 @) = 1Y (T ()]G 2 = ]
where a € f7"(z). Therefore

IT=e ™ S (Y 012 = wllg®)] = L7 1glloolz — wl.
bef=m(w)
Altogether we have
L7g(z) - ﬁ?g(w)‘ < (0" DTur(g) + llglloo) |2 = wl”

for all z,w € J(f) with |z —w| < d(f). We proved

(9.3)

Lemma 9.4. £,(H;) C H, and, for any g € H, andn > 1,
I£7 @)l = o~ D70 (g) + [|gloo-

If B is a bounded subset of H, then (9.3) and the fact that ||£?|ls is uniformly
bounded yields that F = {ﬁt(g); g € B} is a equicontinuous bounded subfamily of
(Ch, ||-llso) - The following observation follows then precisely like in [UZ2, Lemma 4.2]
(using limy o0 £:1(w) = 0 which is Lemma 6.1).

Lemma 9.5. If B is a bounded subset of H;, then /jt(B) is a precompact subset of
(Co, [[-lloo)-
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We are now in the position to apply Ionescu-Tulcea and Marinescu’s Theorem 1.5 in
[IM]. Combined with [DU2] (see [UZ2] were these facts are explained in detail) we
finally get:

Proposition 9.6. For allt > p/a there is r € (0,1) such that the spectrum o(L;) C

D(0,r) U {1} and the number 1 is a simple isolated eigenvalue of the operator Ly of
H,.

9.3. Complexified transfer operator. In the remainder of the paper we consider
a hyperbolic function fyo € HMp. Let U C A be a neighborhood of \g on which fy
is hyperbolic and holomorphically J-stable and let

Lorow) = D2 1RGN 9), 1> 7,
zefy H(w)

be the induced family of (real) transfer operators acting continuously on Cy(J (fy), C)
and on Hi(J(fx),C). In order to be able to work on the fixed Julia set J(fy) we
conjugate these operators by T : Cp(T (fr),C) — Co(T (fro), C) where Tx(g) = gohn
and where h) is the associated holomorphic motion. Put

L(t,\)=T\oLyyo0 T>\_1
to be the resulting bounded operator of C, = Cy(J (fyr0), C). We have that
Lt N(g)(w) = Y 1A0a=)"9(z), we T(fr), g€Ch
Zef;ol(w)

Our aim is to establish real analyticity of the hyperbolic dimension of fy. In order to
do so we have to embed these operators in a holomorphic family

(t,\) € C x C*? — L(t,\) € L(H;).
In order to do so, we follow [UZ2] and start with complexifying the potentials | 1], %o

hy. Denote again z)y = hyx(2), 2 € J(fy) and A € Dea(A°, R). Remember that
hx — id uniformly in J(fyo) (Proposition 9.3). Since 0 ¢ J(fyo) the function

_ B (g (o))"
U=(A) = fzo(:) (f) (fi(@))

is well defined on the simply connected domain D¢a(\?, R). Here we choose w — w2
so that this map fixes 1 which implies that

.\ =1 forevery z€ Jo=T(fr)\ f;}(oo).

For this function one has the following uniform estimate.

Lemma 9.7. For every e > 0 there is 0 < r- < R such that |V, (\) — 1| < e for every
A € Dea(A0,7e) and every z € Jo.
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Proof. Suppose to the contrary that there is ¢ > 0 such that for some r; — 0 there
exists \j € Dea(A0,ry) and z; € Jo with |, (Aj) — 1] > e. Then the family of
functions

F=A{V,;z¢€ Do}
cannot be normal on any domain D¢a(A%, ), 0 < r < R. This is however not true.
Indeed, the balanced growth condition (2.3) yields

1T, (N\)] < K2 )%)“a for every z € Jo and |\ — \°| < R.

Since h) — Id uniformly in C it follows immediately that F is normal on some disk
Dea(A,7), 0 <7 < R. O

We can now proceed precisely as in [UZ2] (or in [CS2]). Embed
A= (Adet1, s M) = (Ta—1 + a1, .- To + iyo) € C*

into C?? by the formula A — (Td—1,Yd—1s---, X0, Y0) € C?4, replace in the power series
of the, for every z € Jp, real analytic functions

(t:A) = | f3(20)]5" = exp{=tRlog f ,(2x)} = [fro(2)|;" exp{~tRlog ¥.(\)},

[A=Xo|| < Rand R(t) > £, the real numbers z; = R\, y; = S\; by complex numbers
and obtain by a straightforward adaption of the arguments given in [UZ2, CS2] the
following;:

Proposition 9.8. There is R > 0 such that, for every z € Jy, the function

(£, ) = e (2) = | flo(2)]5" exp{—tR1og T.(N)}
can be extended to a holomorphic function on {Rt > £} x Deza(Xo, R). In addition,
this extension that we still denote o \ has the following properties:
(1) leea(2)] = 1f30(2)[5"
(2) There is 0 < 7 <1 such that ¢ x € Hr and (t,\) — @1\ € H; is continuous.
(3) e is uniformly dynamically Holder.

A continuous function ¢ : J(fyo) — C is called c,—dynamically Hélder of exponent 7
if
[on((fro)a™(2)) = en((fro)a " ()| < colon((fro)a "™ (2))l]z — w|”

for a € f3"(2), [z — w| < 8(fro) and with pn(a) = p(a)e(fro(a)) - - - ¢(fio ' (a)).
As we noted in (9.2), ¢y (2) = [fio(2)|;" is dynamically Holder. The family of
potentials ¢y ) is called uniformly dynamically Holder if the involved constants 7,c,
above can be chosen to be valid for all the potentials of the family. Item (1) of the
preceding proposition means in particular that the transfer operators

(9-4) LN (@) w) = D ¢ia(2)9(2)

Zef;ol (w)
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are (uniformly) bounded on C}, (such potentials are also called (uniformly) summable).
In fact, much more is true since Proposition 9.8 together with Corollary 7.7 of [UZ2]
yield:

Corollary 9.9. There are 0 < 7 <1 and R > 0 such that the operators L(t,\) are
bounded operators of H: and such that the map

(t, ) € {®t > p/a} x Desa(Mo, R) — L(t, \) € L(H,)

s holomorphic.

9.4. Real analyticity of the hyperbolic dimension. We are now in position to
proof Theorem 1.7. We take the notation of the preceding section, in particular fyo €
H is a hyperbolic function. Consider a real tg > £. Then we have Ly x, = L(to, Xo) €
L(H;) and this operator has a simple and isolated eigenvalue which is y(tp, A\g) =
e () - where Pyo(to) is the topological pressure of fyo at to (see Proposition 9.6).
From the perturbation theory for linear operators (see [Ka]) it follows now that there
is 7 > 0 and a holomorphic map

(ta )‘) € ]D)(C(t07 T) X ]D)(Cz‘i()‘oa T) = ’Y(t, >‘)
such that

(1) ~(t,\) is a simple isolated eigenvalue of L(t,\) € L(H;) and
(2) there is # > 0 such that the spectrum
a(L(t,A)) ND(eH00) g) = {y(t,\)}
for all (t, )\) S D(c(to, 7’) X Dc2d ()\0, 7“).

Coming now back to the initial parameters, real t and A € C%, we remember that the
operators L(t, \) are conjugate to L, via the operator T\ that consist in composi-
tion with the holomorphic motion hy. From the Hélder continuity property (Propo-
sition 9.3) of h) it follows that we may assume that there is 0 < 7 < 1 such that
T\(H (T (f)),C)) € H-(T(fr0),C) for all ||A — \g|| < r. Consequently e2®) Py (t)
the topological pressure of f at t, is an eigenvalue of £;  provided we can show the
following:

Lemma 9.10. For every t > p/a the function A — Px(t) is continuous

Proof. We have that P (t) = limp—oc + log Zzef;l(w) |2 (2)]," with w € J(fy) is
any finite point. The continuity assertion results directly from Lemma 9.7 since it is
shown there that for any z € Jy

(1 N E)n < ‘(ff),(h)\(z))‘U

< R @l < (14¢)™
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Altogether we obtained real analyticity of the pressure function. From Bowen’s for-
mula (Theorem 1.3)) we know that the hyperbolic dimension HD(7,(f))) is the only
zero of the pressure function ¢ — P)(¢). Real analyticity of this zero with respect to
A results from the implicit function theorem since clearly

B,
ZPy(t) < —1
B A(t) < —logp <0

where p > 1 is the expanding constant that is common to the fy (see Fact 2.3).

10. AROUND THEOREM 1.6

In this section we derive the most transparent consequences of Theorem 1.7, notably
Theorem 1.6. We begin with the following.

Theorem 10.1. Let fy = fo Py with f : C — C a meromorphic function and,
for every A = (Mg, Ad—1,- .-, A1, \o) € CHL, Py : C — C is the polynomial given by
the formula Py\(z) = Z;‘l:() N;jzd. Suppose that fyo is hyperbolic and that there is a
neighborhood U C C\ {0} x C% of \Y such that {fx; A € U} is uniformly balanced
with g > 1 and oy > 0. Then the function A — HD(J,(f o Py)) is real-analytic near
0.

Proof. Put fy = f o Py. For every v € C%*! put

d—1

Qy(2) =2+ 977 and gy =7af 0 Q.
j=0

Consider also H, the change of coordinates in the parameter space, given by the
formula

Hd Adets - A 20) = Y% Aact, -3 Az, do),

where \y — )\(1/ “isa holomorphic branch of dth radical defined on the ball Dga (XY, [AY]).
Let T, : C — C be the multiplication map defined as T’,(z) = fyglz. Notice that

(10.1) Ty © 9un © Ty = -
So, Jr(fx) = T (Tr(9(m(n))), and in consequence,
HD(7-(fx)) = HD(7r(9((n)))-

Since in addition H (%) = (()\2)1/‘1, PV ARV )\8), in order to prove our theorem,
it is enough to show that the map v — HD(J,(g)) is real-analytic near the point
A0 = (AYYNG .. 0 N)) € H(U). Tt follows from (10.1) that for every A in a
neighbourhood of \° and every z € J(9¢r(»))), we have

909 (2)] = N ATy ()] and (g (2)] = 1A (Tron (2))].
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Consequently,
‘giqp\) (2)]
953 (2)]

_ |)\—é||f§\(TH(>\)(2))|
ATy ()]

1
Since Ty(x)(2) € J(fr) and since |\, ?| is bounded away from zero and infinity on
a neighbourhood of \°, it follows from the uniform balanced growth of {fy; A € U}
that g, also has this property for A near A°. Aiming to apply Theorem 1.7, we are
therefore left to show that for a sufficiently small bounded neighbourhood of 7°, the
family My = {gy},cn(v) is of bounded deformation. We have for every z € C that

d—1
(102)  ¢(2) = 1/ (Qy ()@ (2) = 7l (@4 (2) | d=1 + 3 gy 271
j=1
01, = F22) = 1@ 2) + 7l (@ () T,

(10.3) d—1
= F(Q(2) +1af (Q4(2) > —jvivg 14,
j=1
and
(104) i) i= 22) = 2f (@ (N TF = (@

foralli=0,1,...,d— 1. Taking U sufficiently small, there clearly exists p € (0, +00)
such that

(10.5) Q) (2) > 1

for all v € H(U) and all z € C with |z| > p. Now, since g, is of uniformly rapid
derivative growth on H(U) and since, after a conjugation by translation, there exists
R > 0 such that

(10.6) J(9y) N D(0,R) =0
for all v € H(U), it follows from (10.2) that Q' (z) # 0 for all v € H(U) and all
z € J(gy). By a standard compactness argument, it then follows from J-stability of
g, that decreasing U appropriately, we get
= inf{|Q}(2)| : v € H(U), z € D(0,p) N T (g4)} > 0.

Combining this and (10.5), we obtain

B :=inf{|Q.(2)| : v € H{U), z € J(gy)} > min{1, A} > 0.
It follows from (10.2) and (10.4) that for all i = 0,1,...,d — 1 we have
k

gily, 2 E 2

= |4 —
|9%,(2)] Q% (2)] dzd=1 + Y971 Gy e
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Since obviously, lim, o (|2[*/|Q’,(2)|) < 1/d uniformly with respect to v € H(U) for
alli=0,1,...,d — 1, invoking the definition of B, we see that

By := max {sup{ 2] :yeH(U),zeJ(gw)}}<+oo.

0<i<d—1 Q7 (2)]
Combining this and (10.7), we see that with U sufficiently small,
(10.8) By := o nax {sup {\gfy(z)\ vy € HU), z€ JT(gy) ¢ ¢ < +00.
It follows from (10.2) and (10.3) that
. 0Q(2)
900, 2| | fo@uy(z) . "o
(109 19, (2)] Va(f 0 @Qy)'(2) Q4 (2)]
< 1 102l S i
- I(foQy) (2)]  |dzd—1 + Z?;i Fyvg tait

Since we have the uniformly balanced growth property, since a; > 0 and as > 1, and
taking into account (10.6), we conclude that

(10.10) Bs ::sup{|7d|—1 |f o Q4 (2)]

WM:WEH(U)’ZEJ(Q’Y)} < too.

}<+oo,

:y € HU), zEj(gy)} < 400.

Since obviously,
d—1 . —j=1_j
lim sup { Xjm —ive’
_ d—1 . —1_i_
2= qen ) || dzd + 20501 g !
invoking the definition of B, we see that
d—1 . —j—1_j
Zj:l g’ A

By :=sup —
{ dz4=1 + 57 g A
Combining this, (10.10), (10.9), and (10.8), we see that

max {Sup{M vy e HU), z € \7(97)}} < +o0.

0<i<d |94,(2)]
We are done. OJ

Note that if d = 1, then with the notation of the proof of the previous theorem,
9r, = Aaf and, as an immediate consequence of this proof, we have the following.

Corollary 10.2. Suppose that f : C — Cisa meromorphic function and consider the
analytic family F = {\f}xec\j0y- If f € F is hyperbolic and if this family is uniformly
balanced near f with ag > 1 and aq > 0, then the function A — HD(J,(\f)) is real-
analytic in a neighbourhood of \° = 1.
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Remark 10.3. If in the formulation of Theorem 10.1 the parameter Ay is kept fized
equal to 1, then the derivative gq(7y, z) disappears and it suffices to assume that ag > 0
(and a; > 0).

We end this section by noting that Theorem 1.6 is an immediate consequence of
Theorem 10.1 and Lemma 3.1.
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